1
|
Hamden JE, Salehzadeh M, Bajaj H, Li MX, Soma KK. Lipopolysaccharide differentially alters systemic and brain glucocorticoid levels in neonatal and adult mice. J Neuroendocrinol 2025; 37:e13481. [PMID: 39694531 PMCID: PMC11791005 DOI: 10.1111/jne.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Glucocorticoids (GCs) are secreted by the adrenal glands and increase in response to stressors (e.g., infection). The brain regulates local GC levels via GC synthesis, regeneration and/or metabolism. Little is known about local GC regulation within discrete brain regions at baseline or in response to stress. We treated male and female C57BL/6J mice at postnatal day 5 (PND5) or PND90 with lipopolysaccharide (LPS; 50 μg/kg bw i.p.) or vehicle and collected blood and brain after 4 h. We microdissected the prefrontal cortex, hippocampus, hypothalamus and amygdala. We measured seven steroids, including corticosterone, via liquid chromatography-tandem mass spectrometry and measured transcripts for key steroidogenic enzymes (Cyp11b1, Hsd11b1, Hsd11b2) via qPCR. At both ages, LPS increased GC levels in blood and all brain regions; however, the increases were much greater at PND90 than at PND5. Interestingly, PND5 corticosterone levels were lower in prefrontal cortex than in blood, but higher in amygdala than in blood. These changes in corticosterone levels align with local changes in steroidogenic enzyme expression, demonstrating robust regional heterogeneity and a possible mechanism for the region-specific effects of early-life stress. In contrast, PND90 corticosterone levels were lower in all brain regions than in blood and similar among regions, and steroidogenic enzyme mRNA levels were generally not affected by LPS. Together, these data indicate that local GC levels within discrete brain regions are more heterogeneous at baseline and in response to LPS at PND5 than at PND90, as a result of increased local GC production and metabolism in the neonatal brain.
Collapse
Affiliation(s)
- Jordan E. Hamden
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Melody Salehzadeh
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hitasha Bajaj
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Graduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Michael X. Li
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kiran K. Soma
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Graduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Mundorf A, Freund N. Effects of Early Stress Exposure on Anxiety-like Behavior and MORC1 Expression in Rats. Biomolecules 2024; 14:1587. [PMID: 39766294 PMCID: PMC11674774 DOI: 10.3390/biom14121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Exposure to stress during early and late childhood can lead to long-lasting neurobiological and behavioral impairments. Although sensitive periods for stress exposure are well established, less is known about the trajectory of induced alterations throughout development. In this study, we investigated the impact of maternal separation (MS), social isolation, and their combination on anxiety-like behavior and gene expression across developmental stages. Sprague Dawley rats were exposed to one or both stressors and later assessed for anxiety-like behavior in juvenility, adolescence, and adulthood. mRNA levels of Morc1, a gene linked to early-life stress and depression, were measured in the medial prefrontal cortex to assess developmental changes. The results showed that MS had age- and sex-dependent effects on anxiety-like behavior. Juveniles exhibited less anxiety after MS, while adolescents showed more pronounced behavioral changes following social isolation. No behavioral changes were observed in adults. Males exhibited greater anxiety-like behavior than females in adolescence and adulthood, but not in juvenility. Female adults exposed to both MS and social isolation had significantly lower Morc1 expression compared to controls. These findings highlight the dynamic effects of early stress across the lifespan, underscoring the critical role of adolescence and differential stress susceptibility by age and sex.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, 44801 Bochum, Germany
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School, 20457 Hamburg, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
3
|
Duan TQ, Hagenauer MH, Flandreau EI, Bader A, Nguyen DM, Maras PM, Merscher S De Lima R, Gyles T, Mclain C, Meaney MJ, Nestler EJ, Watson SJ, Akil H. A meta-analysis of the effects of early life stress on the prefrontal cortex transcriptome suggests long-term effects on myelin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624315. [PMID: 39605735 PMCID: PMC11601536 DOI: 10.1101/2024.11.22.624315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Early life stress (ELS) refers to exposure to negative childhood experiences, such as neglect, disaster, and physical, mental, or emotional abuse. ELS can permanently alter the brain, leading to cognitive impairment, increased sensitivity to future stressors, and mental health risks. The prefrontal cortex (PFC) is a key brain region implicated in the effects of ELS. Methods To better understand the effects of ELS on the PFC, we ran a meta-analysis of publicly available transcriptional profiling datasets. We identified five datasets (GSE89692, GSE116416, GSE14720, GSE153043, GSE124387) that characterized the long-term effects of multi-day postnatal ELS paradigms (maternal separation, limited nesting/bedding) in male and female laboratory rodents (rats, mice). The outcome variable was gene expression in the PFC later in adulthood as measured by microarray or RNA-Seq. To conduct the meta-analysis, preprocessed gene expression data were extracted from the Gemma database. Following quality control, the final sample size was n=89: n=42 controls & n=47 ELS: GSE116416 n=23 (no outliers); GSE116416 n=44 (2 outliers); GSE14720 n=7 (no outliers); GSE153043 n=9 (1 outlier), and GSE124387 n=6 (no outliers). Differential expression was calculated using the limma pipeline followed by an empirical Bayes correction. For each gene, a random effects meta-analysis model was then fit to the ELS vs. Control effect sizes (Log2 Fold Changes) from each study. Results Our meta-analysis yielded stable estimates for 11,885 genes, identifying five genes with differential expression following ELS (false discovery rate< 0.05): transforming growth factor alpha ( Tgfa ), IQ motif containing GTPase activating protein 3 ( Iqgap3 ), collagen, type XI, alpha 1 ( Col11a1 ), claudin 11 ( Cldn11 ) and myelin associated glycoprotein ( Mag ), all of which were downregulated. Broadly, gene sets associated with oligodendrocyte differentiation, myelination, and brain development were downregulated following ELS. In contrast, genes previously shown to be upregulated in Major Depressive Disorder patients were upregulated following ELS. Conclusion These findings suggest that ELS during critical periods of development may produce long-term effects on the efficiency of transmission in the PFC and drive changes in gene expression similar to those underlying depression.
Collapse
|
4
|
Campbell TS, Donoghue K, Roth TL. Unlocking the epigenome: Stress and exercise induced Bdnf regulation in the prefrontal cortex. Neurotoxicol Teratol 2024; 103:107353. [PMID: 38648864 PMCID: PMC11636650 DOI: 10.1016/j.ntt.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Aversive caregiving in early life is a risk factor for aberrant brain and behavioral development. This outcome is related to epigenetic dysregulation of the brain-derived neurotrophic factor (Bdnf) gene. The Bdnf gene encodes for BDNF, a neurotrophin involved in early brain development, neural plasticity, learning, and memory. Recent work suggests that exercise may be neuroprotective in part by supporting BDNF protein and gene expression, making it an exciting target for therapeutic interventions. To our knowledge, exercise has never been studied as a therapeutic intervention in preclinical rodent models of caregiver maltreatment. To that end, the current study investigated the effect of an adult voluntary wheel running intervention on Bdnf methylation and expression in the prefrontal cortex of rats who experienced aversive caregiving in infancy. We employed a rodent model (Long Evans rats) wherein rat pups experienced intermittent caregiver-induced stress from postnatal days 1-7 and were given voluntary access to a running wheel (except in the control condition) from postnatal days 70-90 as a young adulthood treatment intervention. Our results indicate that maltreatment and exercise affect Bdnf gene methylation in an exon, CG site, and sex-specific manner. Here we add to a growing body of evidence of the ability for our experiences, including exercise, to permeate the brain. Keywords: Early life stress, Bdnf, exercise, prefrontal cortex.
Collapse
Affiliation(s)
- Taylor S Campbell
- University of Delaware, Psychological & Brain Sciences, Newark, DE 19716, United States of America.
| | - Katelyn Donoghue
- University of Delaware, Psychological & Brain Sciences, Newark, DE 19716, United States of America
| | - Tania L Roth
- University of Delaware, Psychological & Brain Sciences, Newark, DE 19716, United States of America
| |
Collapse
|
5
|
Shih CW, Chang CH. Anatomical analyses of collateral prefrontal cortex projections to the basolateral amygdala and the nucleus accumbens core in rats. Brain Struct Funct 2024; 229:97-114. [PMID: 37910300 DOI: 10.1007/s00429-023-02722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
The basolateral amygdala (BLA) and the nucleus accumbens core (NAcc) share some similar behavioral functions, such as associative learning, Pavlovian to instrumental transfer, and choice behavior. However, their prefrontal anatomical inputs have not been well characterized before, especially the collateral projections. In this study, we analyzed the distribution and collateralization of projections to the BLA and the NAcc from the prefrontal cortices (PFC), including the prelimbic (PL) and the infralimbic (IL) divisions of the medial prefrontal cortex (mPFC) and the subregions of the orbitofrontal cortex (OFC), such as the medial OFC (MO), the lateral OFC (LO), and the ventral OFC (VO). Double retrograde tracing approach was used, in which Cholera toxin subunit B conjugated with the Alexa Fluor 488 (CTB-AF488) or Alexa Fluor 594 (CTB-AF594) were unilaterally injected into the BLA and the NAcc, respectively, in male Long-Evans rats (n = 6). Among the sampled neurons, prefrontal projection to the BLA or the NAcc is more robust on the ipsilateral side, and more robust from the PL, the IL, and the MO compared to from the LO and the VO. The majority of the projections from the PFC to the BLA and/or the NAcc are confined in deep layer. In addition, for each of the prefrontal areas, about 15-25% BLA-projecting neurons send collateral projections to the NAcc, and vice versa. In conclusion, our data suggested that prefrontal control over the BLA and the NAcc is not entirely independent. The functional importance of the collateral projections awaits further examination.
Collapse
Affiliation(s)
- Cheng-Wei Shih
- Institute of Systems Neuroscience, National Tsing Hua University, Kuang-fu Rd, Sec 2, No 101, Hsinchu, 30013, Taiwan
- Brain Research Center, National Tsing Hua University, Kuang-fu Rd, Sec 2, No 101, Hsinchu, 30013, Taiwan
| | - Chun-Hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Kuang-fu Rd, Sec 2, No 101, Hsinchu, 30013, Taiwan.
- Brain Research Center, National Tsing Hua University, Kuang-fu Rd, Sec 2, No 101, Hsinchu, 30013, Taiwan.
| |
Collapse
|
6
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
7
|
Díez-Solinska A, Azkona G, Muñoz-Culla M, Beitia-Oyarzabal G, Goñi-Balentziaga O, Gómez-Lazaro E, Vegas O. The role of sociability in social instability stress: Behavioral, neuroendocrine and monoaminergic effects. Physiol Behav 2023; 270:114306. [PMID: 37516231 DOI: 10.1016/j.physbeh.2023.114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Extensive literature has reported a link between social stress and mental health. In this complex relationship, individual strategies for coping with social stress are thought to have a possible modulating effect, with sociability being a key factor. Despite the higher incidence of affective disorders in females and sex-related neurochemical differences, female populations have been understudied. The aim of the present study was, therefore, to analyze the behavioral, neuroendocrine, and neurochemical effects of stress in female OF1 mice, paying special attention to social connectedness (female mice with high vs low sociability). To this end, subjects were exposed to the Chronic Social Instability Stress (CSIS) model for four weeks. Although female mice exposed to CSIS had increased arousal, there was no evidence of depressive-like behavior. Neither did exposure to CSIS affect corticosterone levels, although it did increase the MR/GR ratio by decreasing GR expression. Female mice exposed to CSIS had higher noradrenaline and dopamine levels in the hippocampus and striatum respectively, with a lower monoaminergic turnover, resulting in an increased arousal. CSIS increased serotonin levels in both the hippocampus and striatum. Similarly, CSIS was found to reduce kynurenic acid, 3-HK, and IDO and iNOS enzyme levels in the hippocampus. Interestingly, the observed decrease in IDO synthesis and the increased serotonin and dopamine levels in the striatum were only found in subjects with high sociability. These highly sociable female mice also had significantly lower levels of noradrenaline in the striatum after CSIS application. Overall, our model has produced neuroendocrine and neurochemical but not behavioral changes, so it has not allowed us to study sociability in depth. Therefore, a model that induces both molecular and behavioral phenotypes should be applied to determine the role of sociability.
Collapse
Affiliation(s)
- Alina Díez-Solinska
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| | - Garikoitz Azkona
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain.
| | - Maider Muñoz-Culla
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain; Biodonostia Institute, 20018 Donostia-San Sebastian, Spain
| | - Garikoitz Beitia-Oyarzabal
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| | - Olatz Goñi-Balentziaga
- Department of Clinical and Health Psychology, and Research Methods, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| | - Eneritz Gómez-Lazaro
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| | - Oscar Vegas
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain; Biodonostia Institute, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
8
|
Zhou Q, Jiang N, Dong Y, Tian K. Dexmedetomidine alleviates anxiety-like behaviors in female mice with musculoskeletal pain through SIRT1/p53 axis. Brain Res Bull 2023; 201:110698. [PMID: 37406884 DOI: 10.1016/j.brainresbull.2023.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Musculoskeletal pain is the most common form of chronic pain. Anxiety increases pain intensity and appears to have a major impact on the prevalence and also disability of musculoskeletal pain in women. We examined the effect of dexmedetomidine (DEX) on anxiety-like behaviors associated with musculoskeletal pain and the underlying molecular mechanism in female mice. METHODS Musculoskeletal pain was induced by injection of acidified saline into the gastrocnemius muscle in adult female mice, and the von Frey filament test is used to measure mechanical sensitivity. DEX and EX527 (SIRT1 inhibitor) were administered after modelling. Behavioral tests were used for anxiety and motor activity tests. SIRT1, p53 and acetyl-p53 were quantified by Western blot. RESULTS Adult female mice with musculoskeletal pain exhibit increased fear-like behavior by reducing SIRT1 expression in the medial prefrontal cortex (mPFC). While administration of DEX was able to alleviate mechanical hypersensitivity and anxiety-like behaviors by blocking SIRT1 decline and acetyl-p53 upregulation in mPFC, EX527 inhibited acetyl-p53 rise and reversed the antinociceptive and anxiolytic effects of DEX. CONCLUSION DEX may alleviate anxiety-like behaviors in mice with musculoskeletal pain via the SIRT1/p53 axis. These results suggest that DEX may have a potential therapeutic role in musculoskeletal pain-induced anxiety.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China; School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Ningbin Jiang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yinv Dong
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke Tian
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Yin YY, Lai ZK, Yan JZ, Wei QQ, Wang B, Zhang LM, Li YF. The interaction between social hierarchy and depression/anxiety: Involvement of glutamatergic pyramidal neurons in the medial prefrontal cortex (mPFC). Neurobiol Stress 2023; 24:100536. [PMID: 37057073 PMCID: PMC10085780 DOI: 10.1016/j.ynstr.2023.100536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
Social hierarchy greatly impacts physical and mental health, but the relationship between social hierarchy and depression/anxiety and the underlying neural mechanism remain unclear. The present study used the tube test to determine the social hierarchy status of mice and then performed several behavioral tests to evaluate depression-like and anxiety-like behaviors. Electrophysiological techniques were used to record the firing activities of glutamatergic pyramidal neurons and local field potentials in the medial prefrontal cortex (mPFC). The results suggested that the mice in each cage (4 per cage) established a stable social hierarchy after 2 weeks. Subordinate mice displayed significantly fewer pushing and advancing behaviors, and more retreat behaviors compared with dominant mice. Furthermore, subordinate mice had significantly more immobility durations in the TST, but significantly fewer distances, entries, and time into the center in the OFT, as well as significantly less percent of distances, entries, and time into the open arms in the EPMT, compared with dominant mice, which indicated that subordinate mice displayed depression- and anxiety-like behaviors. In addition, chronic restraint stress (CRS) significantly induced depression- and anxiety-like behaviors in mice and altered social dominance behaviors in the tube test. CRS mice displayed significantly fewer pushing and advancing behaviors, and more retreat behaviors compared with control mice. Furthermore, low social rank and CRS significantly decreased the firing of pyramidal neurons and γ-oscillation activity in the mPFC. Taken together, the present study revealed an inverse relationship between social hierarchy and depression/anxiety, and the neural basis underlying this association might be the excitability of pyramidal neurons and γ oscillation in the mPFC. These findings established an important foundation for a depression/anxiety model based on social hierarchy and provided a new avenue for the development of therapies for stress-related mood disorders.
Collapse
|
10
|
FAAH Inhibition Restores Early Life Stress-Induced Alterations in PFC microRNAs Associated with Depressive-Like Behavior in Male and Female Rats. Int J Mol Sci 2022; 23:ijms232416101. [PMID: 36555739 PMCID: PMC9782513 DOI: 10.3390/ijms232416101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Early life stress (ELS) increases predisposition to depression. We compared the effects of treatment with the fatty acid amide hydrolase (FAAH) inhibitor URB597, and the selective serotonin reuptake inhibitor paroxetine, on ELS-induced depressive-like behavior and the expression of microRNAs (miRs) associated with depression in the medial prefrontal cortex (mPFC), hippocampal CA1 area, lateral habenula and dorsal raphe in rats. We also examined the mRNA expression of serotonergic (htr1a and slc6a4) and endocannabinoid (cnr1, cnr2 and faah) targets in the mPFC following ELS and pharmacological treatment. Adult males and females exposed to the 'Limited Bedding and Nesting' ELS paradigm demonstrated a depressive-like phenotype and late-adolescence URB597 treatment, but not paroxetine, reversed this phenotype. In the mPFC, ELS downregulated miR-16 in males and miR-135a in females and URB597 treatment restored this effect. In ELS females, the increase in cnr2 and decrease in faah mRNAs in the mPFC were reversed by URB597 treatment. We show for the first time that URB597 reversed ELS-induced mPFC downregulation in specific miRs and stress-related behaviors, suggesting a novel mechanism for the beneficial effects of FAAH inhibition. The differential effects of ELS and URB597 on males and females highlight the importance of developing sex-specific treatment approaches.
Collapse
|
11
|
Mahmoodkhani M, Ghasemi M, Derafshpour L, Amini M, Mehranfard N. Developmental effects of early-life stress on dopamine D2 receptor and proteins involved in noncanonical D2 dopamine receptor signaling pathway in the prefrontal cortex of male rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:697-703. [PMID: 33962496 DOI: 10.1515/jcim-2020-0539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Dopamine neurotransmission is implicated in multiple neuropsychiatric disorders, most strikingly in Parkinson's disease, bipolar disorder, attention-deficit hyperactivity disorder and schizophrenia. In addition to canonical pathway, D2-receptor (D2R) exerts some of its biological actions through regulating the activity of Akt and GSK3, which in turn were found to be altered in several psychiatric illnesses. The present study examined the impacts of maternal separation, an early-life stress model which has been associated with disturbed neurodevelopment and appearance of many psychiatric disorders, on developmental changes in dopamine concentration and the expression of D2Rs, Akt and GSK-3β in the medial prefrontal cortex (PFC; a key target of stress) in adolescent and young adult male rats. METHODS Maternal separation was performed 3 h per day from postnatal days 2 to 11. The PFC protein and dopamine contents were determined using western blotting analysis and Eliza, respectively. RESULTS Results indicated long-term increases in the prefrontal dopamine levels in stressed adolescent and young adult male rats, accompanied by significant downregulation of D2R as well as upregulation of p-Akt and GSK-3β contents in stressed adolescence compared to controls, with all protein levels that returned to control values in stressed adult rats. CONCLUSIONS Our findings suggest that early-life stress differentially modulates prefrontal D2R/Akt/GSK-3β levels during development. Since adolescence period is susceptible to the onset of specific mental illnesses, disruption of noncanonical components of D2R signaling during this critical period may have an important role in programming neurobehavioral phenotypes in adulthood and manipulations influencing Akt/GSK-3β pathway may improve the expression of specific dopamine-related behaviors and the effects of dopaminergic drugs.
Collapse
Affiliation(s)
- Maryam Mahmoodkhani
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Derafshpour
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amini
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
12
|
Chronic social instability stress down-regulates IL-10 and up-regulates CX3CR1 in tumor-bearing and non-tumor-bearing female mice. Behav Brain Res 2022; 435:114063. [PMID: 35988637 DOI: 10.1016/j.bbr.2022.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
Extensive literature has reported a link between stress and tumor progression, and between both of these factors and mental health. Despite the higher incidence of affective disorders in females and the neurochemical differences according to sex, female populations have been understudied. The aim of this study was therefore to analyze the effect of stress on tumor development in female OF1 mice. For this purpose, subjects were inoculated with B16F10 melanoma cells and exposed to the Chronic Social Instability Stress (CSIS) model. Behavioral, neurochemical and neuroendocrine parameters were analyzed. Female mice exposed to CSIS exhibited reduced body weight and increased arousal, but there was no evidence of depressive behavior or anxiety. Exposure to CSIS did not affect either corticosterone levels or tumor development, although it did provoke an imbalance in cerebral inflammatory cytokines, decreasing IL-10 expression (IL-6/IL-10 and TNF-α/IL-10); chemokines, increasing CX3CR1 expression (CX3CL1/CX3CR1); and glucocorticoid receptors, decreasing GR expression (MR/GR). In contrast, tumor development did not alter body weight and, although it did alter behavior, it did so to a much lesser extent. Tumor inoculation did not affect corticosterone levels, but increased the MR/GR ratio in the hippocampus and provoked an imbalance in cerebral inflammatory cytokines and chemokines, although differently from stress. These results underscore the need for experimental approaches that allow us to take sex differences into account when exploring this issue, since these results appear to indicate that the female response to stress is mediated by mechanisms different from those often proposed in relation to male mice.
Collapse
|
13
|
Prefrontal cortical circuits in anxiety and fear: an overview. Front Med 2022; 16:518-539. [PMID: 35943704 DOI: 10.1007/s11684-022-0941-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/06/2022] [Indexed: 11/04/2022]
Abstract
Pathological anxiety is among the most difficult neuropsychiatric diseases to treat pharmacologically, and it represents a major societal problem. Studies have implicated structural changes within the prefrontal cortex (PFC) and functional changes in the communication of the PFC with distal brain structures in anxiety disorders. Treatments that affect the activity of the PFC, including cognitive therapies and transcranial magnetic stimulation, reverse anxiety- and fear-associated circuit abnormalities through mechanisms that remain largely unclear. While the subjective experience of a rodent cannot be precisely determined, rodent models hold great promise in dissecting well-conserved circuits. Newly developed genetic and viral tools and optogenetic and chemogenetic techniques have revealed the intricacies of neural circuits underlying anxiety and fear by allowing direct examination of hypotheses drawn from existing psychological concepts. This review focuses on studies that have used these circuit-based approaches to gain a more detailed, more comprehensive, and more integrated view on how the PFC governs anxiety and fear and orchestrates adaptive defensive behaviors to hopefully provide a roadmap for the future development of therapies for pathological anxiety.
Collapse
|
14
|
Developmental complex trauma induces the dysfunction of the amygdala-mPFC circuit in the serotonergic and dopaminergic systems. Biochem Biophys Res Commun 2022; 605:104-110. [DOI: 10.1016/j.bbrc.2022.03.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
|
15
|
Karimi F, Anari H, Yousefi Nejad A, Karbalay-Doust S, Naseh M. Post-weaning exposure to Sunset Yellow FCF induces behavioral impairment and structural changes in the adult rat medial prefrontal cortex: protective effects of Coenzyme Q10. Int J Dev Neurosci 2022; 82:303-313. [PMID: 35293019 DOI: 10.1002/jdn.10178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/07/2022] Open
Abstract
Sunset Yellow FCF (E110) is a water soluble synthetic dye that has adverse neurobehavioral effects. Coenzyme Q10 (CoQ10) is known as a neuroprotective agent. The present study aimed to evaluate the effects of post-weaning exposure to Sunset Yellow FCF on behavioral and structural changes in the adult rat medial prefrontal cortex and the protective effects of CoQ10. The weanling rats were randomly divided into six groups: distilled water, CoQ10 (10 mg/kg/day), and low (2.5 mg/kg/day), and high (70 mg/kg/day) doses of Sunset Yellow FCF with or without CoQ10 consumption for six weeks. A battery of behavioral tests including open field and Morris water maze tests were done at the end of the 6th week, and then the animals' brains were removed for stereological methods. Our finding indicated that the high dose of Sunset Yellow FCF led to a reduced total volume of mPFC (15.16%), especially in the anterior cingulate cortex (ACC) region (21.96%), along with loss of neurons (32%) and glial cells (37%), which was associated with higher anxiety behavior and loss in spatial memory. However, CoQ10 prevented the neural loss and glial cells, improved anxiety like behaviors and memory impairment. On the other hand, the acceptable daily dose (low dose of Sunset Yellow FCF) did not show a discernible effect on the same parameters. This study showed that the CoQ10 can protect the alteration in mPFC structure and behavioral changes of the rats exposed to high dose of Sunset Yellow FCF.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamideh Anari
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Yousefi Nejad
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Dalmaz C, Barth B, Pokhvisneva I, Wang Z, Patel S, Quillfeldt JA, Mendonça Filho EJ, de Lima RMS, Arcego DM, Sassi RB, Hall GBC, Kobor MS, Meaney MJ, Silveira PP. Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children. Neurobiol Learn Mem 2021; 185:107509. [PMID: 34454100 DOI: 10.1016/j.nlm.2021.107509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
During development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins. We investigated if individual variations in the expression of a network of genes co-expressed with the synaptic protein VAMP1 in the prefrontal cortex moderate the effect of early environmental quality on the performance of children in cognitive flexibility tasks. Genes overexpressed in early childhood and co-expressed with the VAMP1 gene in the PFC were selected for study. SNPs from these genes (post-clumping) were compiled in an expression-based polygenic score (PFC-ePRS-VAMP1). We evaluated cognitive performance of the 4 years-old children in two cohorts using similar cognitive flexibility tasks. In the first cohort (MAVAN) we utilized two CANTAB tasks: (a) the Intra-/Extra-dimensional Set Shift (IED) task, and (b) the Spatial Working Memory (SWM) task. In the second cohort, GUSTO, we used the Dimensional Change Card Sort (DCCS) task. The results show that in 4 years-old children, the PFC-ePRS-VAMP1 network moderates responsiveness to the effects of early adversities on the performance in attentional flexibility tests. The same result was observed for a spatial working memory task. Compared to attentional flexibility, reversal learning showed opposite effects of the environment, as moderated by the ePRS. A parallel ICA analysis was performed to identify relationships between whole-brain voxel based gray matter density and SNPs that comprise the PFC-ePRS-VAMP1. The early environment predicts differences in gray matter content in regions such as prefrontal and temporal cortices, significantly associated with a genetic component related to Wnt signaling pathways. Our data suggest that a network of genes co-expressed with VAMP1 in the PFC moderates the influence of early environment on cognitive function in children.
Collapse
Affiliation(s)
- Carla Dalmaz
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Depto Bioquimica e PPG CB Bioquimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Jorge A Quillfeldt
- PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Depto Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Euclides J Mendonça Filho
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Randriely Merscher Sobreira de Lima
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danusa M Arcego
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Patrícia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Tsigkaropoulou E, Ferentinos P, Karavia A, Gournellis R, Gonidakis F, Liappas I, Douzenis A, Michopoulos I. Personality dimensions could explain resilience in patients with eating disorders. Eat Weight Disord 2021; 26:1139-1147. [PMID: 32948998 DOI: 10.1007/s40519-020-01012-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/05/2020] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Resilience can be defined as the ability to maintain health in the face of adversity. Resilience has been associated with personality traits. Personality traits in the context of Eating Disorders (ED) have also been examined. However, the relationship between resilience and personality profile in patients with ED has not been studied. The aim of this study is to investigate whether personality dimensions impact on resilience, in patients with ED, compared to healthy participants. METHODS Connor and Davidson resilience scale, as a measure of resilience and temperament-character inventory, as a measure of personality dimensions, were completed by 100 participants: 50 (50%) healthy University students (controls subgroup) and 50 (50%) patients with ED, matched on age and gender. RESULTS Patients with ED showed lower resilience than healthy participants and scored higher on harm avoidance, and lower on reward dependence, self-directedness and cooperativeness than controls. Lower harm avoidance, higher persistence and higher self-directedness were associated with resilience in both subgroups. Self-directedness and persistence predicted resilience in both subgroups. Only Harm Avoidance predicted resilience in patients' subgroup. CONCLUSION To our knowledge, there are no existing data examining the effect of personality dimensions in resilience, in the context of ED. We found that only the effect of Harm Avoidance in resilience was different among the participants' subgroups. In conclusion, Harm Avoidance could explain differences in resilience between healthy participants and patients with ED. LEVEL OF EVIDENCE Level III: case-control analytic study.
Collapse
Affiliation(s)
- Evdoxia Tsigkaropoulou
- Second Department of Psychiatry, Eating Disorders Unit, National and Kapodistrian University of Athens, Medical School, "Attikon" University General Hospital, Athens, Greece.
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, Eating Disorders Unit, National and Kapodistrian University of Athens, Medical School, "Attikon" University General Hospital, Athens, Greece
| | - Anna Karavia
- Second Department of Psychiatry, Eating Disorders Unit, National and Kapodistrian University of Athens, Medical School, "Attikon" University General Hospital, Athens, Greece
| | - Rossetos Gournellis
- Second Department of Psychiatry, Eating Disorders Unit, National and Kapodistrian University of Athens, Medical School, "Attikon" University General Hospital, Athens, Greece
| | - Fragkiskos Gonidakis
- First Department of Psychiatry, National and Kapodistrian University of Athens, Medical School, 'Eginition' University Hospital, Athens, Greece
| | - Ioannis Liappas
- First Department of Psychiatry, National and Kapodistrian University of Athens, Medical School, 'Eginition' University Hospital, Athens, Greece
| | - Athanasios Douzenis
- Second Department of Psychiatry, Eating Disorders Unit, National and Kapodistrian University of Athens, Medical School, "Attikon" University General Hospital, Athens, Greece
| | - Ioannis Michopoulos
- Second Department of Psychiatry, Eating Disorders Unit, National and Kapodistrian University of Athens, Medical School, "Attikon" University General Hospital, Athens, Greece
| |
Collapse
|
18
|
Oswald LM, Dunn KE, Seminowicz DA, Storr CL. Early Life Stress and Risks for Opioid Misuse: Review of Data Supporting Neurobiological Underpinnings. J Pers Med 2021; 11:315. [PMID: 33921642 PMCID: PMC8072718 DOI: 10.3390/jpm11040315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
A robust body of research has shown that traumatic experiences occurring during critical developmental periods of childhood when neuronal plasticity is high increase risks for a spectrum of physical and mental health problems in adulthood, including substance use disorders. However, until recently, relatively few studies had specifically examined the relationships between early life stress (ELS) and opioid use disorder (OUD). Associations with opioid use initiation, injection drug use, overdose, and poor treatment outcome have now been demonstrated. In rodents, ELS has also been shown to increase the euphoric and decrease antinociceptive effects of opioids, but little is known about these processes in humans or about the neurobiological mechanisms that may underlie these relationships. This review aims to establish a theoretical model that highlights the mechanisms by which ELS may alter opioid sensitivity, thereby contributing to future risks for OUD. Alterations induced by ELS in mesocorticolimbic brain circuits, and endogenous opioid and dopamine neurotransmitter systems are described. The limited but provocative evidence linking these alterations with opioid sensitivity and risks for OUD is presented. Overall, the findings suggest that better understanding of these mechanisms holds promise for reducing vulnerability, improving prevention strategies, and prescribing guidelines for high-risk individuals.
Collapse
Affiliation(s)
- Lynn M. Oswald
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| | - Kelly E. Dunn
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21230, USA;
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Carla L. Storr
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| |
Collapse
|
19
|
Baskak B, Kir Y, Sedes N, Kuşman A, Türk EG, Baran Z, Gönüllü I, Artar M, Munir K. Attachment Style Predicts Cortical Activity in Temporoparietal Junction (TPJ): An fNIRS Study Using a Theory of Mind (ToM) Task in Healthy University Students. J PSYCHOPHYSIOL 2021; 34:99-109. [PMID: 33840879 DOI: 10.1027/0269-8803/a000240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Results of the behavioral studies suggest that attachment styles may have an enduring effect upon theory of mind (ToM). However biological underpinnings of this relationship are unclear. Here, we compared securely and insecurely attached first grade university students (N = 56) in terms of cortical activity measured by 52 channel Functional Near Infrared Spectroscopy (fNIRS) during the Reading the Mind from the Eyes Test (RMET). The control condition involved gender identification via the same stimuli. We found that the ToM condition evoked higher activity than the control condition particularly in the right hemisphere. We observed higher activity during the ToM condition relative to the control condition in the secure group (SG), whereas the overall cortical activity evoked by the two conditions was indistinguishable in the insecure group (ISG). Higher activity was observed in channels corresponding to right superior temporal and adjacent parietal cortices in the SG relative to the ISG during the ToM condition. Dismissive attachment scores were negatively correlated with activity in channels that correspond to right superior temporal cortex. These results suggest that attachment styles do have an effect on representation of ToM in terms of cortical activity in late adolescence. Particularly, dismissive attachment is represented by lower activity in the right superior temporal cortex during ToM, which might be related to weaker social need and habitual unwillingness for closeness among this group of adolescents.
Collapse
Affiliation(s)
- Bora Baskak
- Department of Psychiatry, Ankara University Brain Research Center, School of Medicine, Ankara University, Turkey
| | - Yagmur Kir
- Department of Psychiatry, Ankara University Brain Research Center, School of Medicine, Ankara University, Turkey
| | - Nilay Sedes
- Department of Psychiatry, Yenimahalle State Hospital, Turkey
| | - Adnan Kuşman
- Department of Psychiatry, Ankara University Brain Research Center, School of Medicine, Ankara University, Turkey
| | | | - Zeynel Baran
- Department of Psychology, Experimental Psychology, Hacettepe University, Turkey
| | - Ipek Gönüllü
- Department of Medical Education and Informatics, School of Medicine, Ankara University, Turkey
| | - Müge Artar
- Faculty of Educational Sciences, Ankara University, Turkey
| | - Kerim Munir
- Developmental Medicine Center, Boston Children's Hospital, MA, USA
| |
Collapse
|
20
|
Bueno-Fernandez C, Perez-Rando M, Alcaide J, Coviello S, Sandi C, Castillo-Gómez E, Nacher J. Long term effects of peripubertal stress on excitatory and inhibitory circuits in the prefrontal cortex of male and female mice. Neurobiol Stress 2021; 14:100322. [PMID: 33869684 PMCID: PMC8045050 DOI: 10.1016/j.ynstr.2021.100322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/22/2021] [Accepted: 03/24/2021] [Indexed: 12/01/2022] Open
Abstract
The impact of stressful events is especially important during early life, because certain cortical regions, especially the prefrontal cortex (PFC), are still developing. Consequently, aversive experiences that occur during the peripubertal period can cause long-term alterations in neural connectivity, physiology and related behaviors. Although sex influences the stress response and women are more likely to develop stress-related psychiatric disorders, knowledge about the effects of stress on females is still limited. In order to analyze the long-term effects of peripubertal stress (PPS) on the excitatory and inhibitory circuitry of the adult PFC, and whether these effects are sex-dependent, we applied an unpredictable chronic PPS protocol based on psychogenic stressors. Using two strains of transgenic mice with specific fluorescent cell reporters, we studied male and diestrus females to know how PPS affects the structure and connectivity of parvalbumin expressing (PV+) interneurons and pyramidal neurons. We also studied the expression of molecules related to excitatory and inhibitory neurotransmission, as well as alterations in the expression of plasticity-related molecules. The structure of pyramidal neurons was differentially affected by PPS in male and female mice: while the former had a decreased dendritic spine density, the latter displayed an increase in this parameter. PPS affected the density of puncta expressing excitatory and inhibitory synaptic markers exclusively in the female mPFC. Similarly, only in female mice we observed an increased complexity of the dendritic tree of PV+ neurons. Regarding the perisomatic innervation on pyramidal and PV + neurons by basket cells, we found a significant increase in the density of puncta in stressed animals, with interesting differences between the sexes and the type of basket cell analyzed. Finally, the PPS protocol also altered the total number of somata expressing the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) when we analyzed both sexes together. These results highlight the strong programming effects of aversive experiences during early life for the establishment of cortical circuitry and the special impact of these stressful events on females.
Collapse
Affiliation(s)
- Clara Bueno-Fernandez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Simona Coviello
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Carmen Sandi
- Department of Life Sciences, Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Castillo-Gómez
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain.,Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain.,Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| |
Collapse
|
21
|
Wei D, Zhao Y, Zhang M, Zhu L, Wang L, Yuan X, Wu C. The Volatile Oil of Zanthoxylum bungeanum Pericarp Improved the Hypothalamic-Pituitary-Adrenal Axis and Gut Microbiota to Attenuate Chronic Unpredictable Stress-Induced Anxiety Behavior in Rats. Drug Des Devel Ther 2021; 15:769-786. [PMID: 33654382 PMCID: PMC7910097 DOI: 10.2147/dddt.s281575] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background Anxiety disorders (ADs) are the most prevalent mental disorders worldwide. Stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis and dysbiosis of gut microbiota seem to contribute to the onset of ADs. This study was designed to investigate the ameliorative effect of volatile oil of Zanthoxylum bungeanum (VOZB) on chronic unpredictable stress (CUS) induced anxiety behavior, as well as the altered HPA axis and gut microbiota. Methods Experimental rats were exposed to the CUS for 14 consecutive days. Meanwhile, VOZB was administered at doses of 50, 100 and 200 mg/kg/day for 14 days. The anxiety behavior was evaluated by elevated plus-maze (EPM) and open field (OF). The protein expressions and mRNA levels of corticotropin-releasing hormone (CRH) and glucocorticoid receptor (GR) in hypothalamus was determined, as well the hormone levels of HPA axis in serum. Furthermore, gut microbiota was detected by16S rRNA gene sequencing. The chemical constituents of VOZB were identified by GC-MS analysis. Results VOZB treatment (100 and 200 mg/kg/day) increased the ratio of open-arm entries and time in EPM test, as well as the central zone entries and time in OF test. Moreover, VOZB treatment reduced the protein expressions and mRNA levels of CRH, but elevated those of GR in hypothalamus. Similarly, the hormone levels of the HPA axis in serum were decreased by VOZB treatment. Besides, VOZB treatment restored the CUS-induced dysbiosis of gut microbiota, raising the Sobs and Chao indexes, inhibiting Lachnospiraceae, but facilitating Bacteroidales_S24-7_group, Lactobacillaceae, and Prevotellaceae. Additionally, Sobs and Chao indexes were negatively correlated to the serum corticosterone and CRH levels. Conclusion VOZB showed an ameliorative effect on CUS-induced anxiety behavior, potentially via inhibiting activation of the HPA axis and restoring the dysbiosis of gut microbiota, thus improving the stress-induced abnormality of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Daneng Wei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Yafei Zhao
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China
| | - Mengmeng Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lei Zhu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Li Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Xing Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Chunjie Wu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
22
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
23
|
Neural meaning making, prediction, and prefrontal-subcortical development following early adverse caregiving. Dev Psychopathol 2021; 32:1563-1578. [PMID: 33427163 DOI: 10.1017/s0954579420001169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Early adversities that are caregiving-related (crEAs) are associated with a significantly increased risk for mental health problems. Recent neuroscientific advances have revealed alterations in medial prefrontal cortex (mPFC)-subcortical circuitry following crEAs. While this work has identified alterations in affective operations (e.g., perceiving, reacting, controlling, learning) associated with mPFC-subcortical circuitry, this circuitry has a much broader function extending beyond operations. It plays a primary role in affective meaning making, involving conceptual-level, schematized knowledge to generate predictions about the current environment. This function of mPFC-subcortical circuitry motivates asking whether mPFC-subcortical phenotypes following crEAs support semanticized knowledge content (or the concept-level knowledge) and generate predictive models. I present a hypothesis motivated by research findings across four different lines of work that converge on mPFC-subcortical neuroanatomy, including (a) the neurobiology supporting emotion regulation processes in adulthood, (b) the neurobiology that is activated by caregiving cues during development, (c) the neurobiology that is altered by crEAs, and (d) the neurobiology of semantic-based meaning making. I hypothesize that the affective behaviors following crEAs result in part from affective semantic memory processes supported by mPFC-subcortical circuitry that over the course of development, construct affective schemas that generate meaning making and guide predictions. I use this opportunity to review some of the literature on mPFC-subcortical circuit development following crEAs to illustrate the motivation behind this hypothesis. Long recognized by clinical science and cognitive neuroscience, studying schema-based processes may be particularly helpful for understanding how affective meaning making arises from developmental trajectories of mPFC-subcortical circuitry.
Collapse
|
24
|
Blues in the Brain and Beyond: Molecular Bases of Major Depressive Disorder and Relative Pharmacological and Non-Pharmacological Treatments. Genes (Basel) 2020; 11:genes11091089. [PMID: 32961910 PMCID: PMC7564223 DOI: 10.3390/genes11091089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the extensive research conducted in recent decades, the molecular mechanisms underlying major depressive disorder (MDD) and relative evidence-based treatments remain unclear. Various hypotheses have been successively proposed, involving different biological systems. This narrative review aims to critically illustrate the main pathogenic hypotheses of MDD, ranging from the historical ones based on the monoaminergic and neurotrophic theories, through the subsequent neurodevelopmental, glutamatergic, GABAergic, inflammatory/immune and endocrine explanations, until the most recent evidence postulating a role for fatty acids and the gut microbiota. Moreover, the molecular effects of established both pharmacological and non-pharmacological approaches for MDD are also reviewed. Overall, the existing literature indicates that the molecular mechanisms described in the context of these different hypotheses, rather than representing alternative ones to each other, are likely to contribute together, often with reciprocal interactions, to the development of MDD and to the effectiveness of treatments, and points at the need for further research efforts in this field.
Collapse
|
25
|
Tenkumo C, Ohta KI, Suzuki S, Warita K, Irie K, Teradaya S, Kusaka T, Kanenishi K, Hata T, Miki T. Repeated maternal separation causes transient reduction in BDNF expression in the medial prefrontal cortex during early brain development, affecting inhibitory neuron development. Heliyon 2020; 6:e04781. [PMID: 32923721 PMCID: PMC7475105 DOI: 10.1016/j.heliyon.2020.e04781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
It is widely accepted that maternal separation (MS) induces stress in children and disrupts neural circuit formation during early brain development. Even though such disruption occurs transiently early in life, its influence persists after maturation, and could lead to various neurodevelopmental disorders. Our recent study revealed that repeated MS reduces the number of inhibitory neurons and synapses in the medial prefrontal cortex (mPFC) and causes mPFC-related social deficits after maturation. However, how MS impedes mPFC development during early brain development remains poorly understood. Here, we focused on brain-derived neurotrophic factor (BDNF) involved in the development of inhibitory neurons, and examined time-dependent BDNF expression in the mPFC during the pre-weaning period in male rats exposed to MS. Our results show that MS attenuates BDNF expression only around the end of the first postnatal week. Likewise, mRNA expression of activity-regulated cytoskeleton-associated protein (Arc), an immediate-early gene whose expression is partly regulated by BDNF, also decreased in the MS group along with the reduction in BDNF expression. On the contrary, mRNA expression of tropomyosin-related kinase B (TrkB), which is a BDNF receptor, was scarcely altered, while its protein expression decreased in the MS group only during the weaning period. In addition, MS reduced mRNA levels of glutamic acid decarboxylase (GAD) 65, a GABA synthesizing enzyme, only during the weaning period. Our results suggest that repeated MS temporarily attenuates BDNF signaling in the mPFC during early brain development. BDNF plays a crucial role in the development of inhibitory neurons; therefore, transient attenuation of BDNF signaling may cause delays in GABAergic neuron development in the mPFC.
Collapse
Affiliation(s)
- Chiaki Tenkumo
- Department of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Ken-ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Corresponding author.
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kanako Irie
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Saki Teradaya
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kenji Kanenishi
- Department of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toshiyuki Hata
- Department of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
26
|
María-Ríos CE, Morrow JD. Mechanisms of Shared Vulnerability to Post-traumatic Stress Disorder and Substance Use Disorders. Front Behav Neurosci 2020; 14:6. [PMID: 32082127 PMCID: PMC7006033 DOI: 10.3389/fnbeh.2020.00006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Psychoactive substance use is a nearly universal human behavior, but a significant minority of people who use addictive substances will go on to develop an addictive disorder. Similarly, though ~90% of people experience traumatic events in their lifetime, only ~10% ever develop post-traumatic stress disorder (PTSD). Substance use disorders (SUD) and PTSD are highly comorbid, occurring in the same individual far more often than would be predicted by chance given the respective prevalence of each disorder. Some possible reasons that have been proposed for the relationship between PTSD and SUD are self-medication of anxiety with drugs or alcohol, increased exposure to traumatic events due to activities involved in acquiring illegal substances, or addictive substances altering the brain's stress response systems to make users more vulnerable to PTSD. Yet another possibility is that some people have an intrinsic vulnerability that predisposes them to both PTSD and SUD. In this review, we integrate clinical and animal data to explore these possible etiological links between SUD and PTSD, with an emphasis on interactions between dopaminergic, adrenocorticotropic, GABAergic, and glutamatergic neurobehavioral mechanisms that underlie different emotional learning styles.
Collapse
Affiliation(s)
| | - Jonathan D. Morrow
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Honeycutt JA, Demaestri C, Peterzell S, Silveri MM, Cai X, Kulkarni P, Cunningham MG, Ferris CF, Brenhouse HC. Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity. eLife 2020; 9:52651. [PMID: 31958061 PMCID: PMC7010412 DOI: 10.7554/elife.52651] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Exposure to early-life adversity (ELA) increases the risk for psychopathologies associated with amygdala-prefrontal cortex (PFC) circuits. While sex differences in vulnerability have been identified with a clear need for individualized intervention strategies, the neurobiological substrates of ELA-attributable differences remain unknown due to a paucity of translational investigations taking both development and sex into account. Male and female rats exposed to maternal separation ELA were analyzed with anterograde tracing from basolateral amygdala (BLA) to PFC to identify sex-specific innervation trajectories through juvenility (PD28) and adolescence (PD38;PD48). Resting-state functional connectivity (rsFC) was assessed longitudinally (PD28;PD48) in a separate cohort. All measures were related to anxiety-like behavior. ELA-exposed rats showed precocial maturation of BLA-PFC innervation, with females affected earlier than males. ELA also disrupted maturation of female rsFC, with enduring relationships between rsFC and anxiety-like behavior. This study is the first providing both anatomical and functional evidence for sex- and experience-dependent corticolimbic development. Having a traumatic childhood increases the risk a person will develop anxiety disorders later in life. Early life adversity affects men and women differently, but scientists do not yet know why. Learning more could help scientists develop better ways to prevent or treat anxiety disorders in men and women who experienced childhood trauma. Anxiety occurs when threat-detecting brain circuits turn on. These circuits begin working in infancy, and during childhood and adolescence, experiences shape the brain to hone the body’s responses to perceived threats. Two areas of the brain that are important hubs for anxiety-related brain circuits include the basolateral amygdala (BLA) and the prefrontal cortex (PFC). Now, Honeycutt et al. show that rats that experience early life adversity develop stronger connections between the BLA and PFC, and these changes occur earlier in female rats. In the experiments, one group of rats was repeatedly separated from their mothers and littermates (an early life trauma), while a second group was not. Honeycutt et al. examined the connections between the BLA and PFC in the two groups at three different time periods during their development: the juvenile stage, early adolescence, and late adolescence. The experiments showed stronger connections between the BLA and PFC begin to appear earlier in juvenile traumatized female rats. But these changes did not appear in their male counterparts until adolescence. Lastly, the rats that developed these strengthened BLA-PFC connections also behaved more anxiously later in life. This may mean that the ideal timing for interventions may be different for males and females. More work is needed to see if these results translate to humans and then to find the best times and methods to help people who experienced childhood trauma.
Collapse
Affiliation(s)
- Jennifer A Honeycutt
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Camila Demaestri
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Shayna Peterzell
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Xuezhu Cai
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Miles G Cunningham
- Laboratory for Neural Reconstruction, Department of Psychiatry, McLean Hospital, Belmont, United States
| | - Craig F Ferris
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Heather C Brenhouse
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| |
Collapse
|
28
|
Ebertowska A, Ludkiewicz B, Melka N, Klejbor I, Moryś J. The influence of early postnatal chronic mild stress stimulation on the activation of amygdala in adult rat. J Chem Neuroanat 2020; 104:101743. [PMID: 31926296 DOI: 10.1016/j.jchemneu.2020.101743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 11/18/2022]
Abstract
Amygdala is a limbic structure involved in the stress response. The immunohistochemical and morphometric methods were used to examine whether the chronic mild psychological stress during the early postnatal period would change activation of amygdaloid nuclei in response to the same stressor in adult. In the study we focused on the role of neurons containing calbindin (CB), calretinin (CR), parvalbumin (PV) and nitric oxide synthase (NOS). The rats were divided into three groups: control non-stressed animals and two experimental: EI consisted of animals that were exposed to acute stress in the high-light, open-field test (HL-OF) at P90 (P - postnatal day) and EII consisted of rats that were exposed to chronic stress in HL-OF, daily during the first 21 postnatal days and then once at P90. The scheme of activation of amygdaloid nuclei under stress in EI and EII group was similar. The highest density of c-Fos-ir cells (c-Fos - a marker of neuronal activation) was demonstrated by the medial nucleus (Me) and bed nucleus of the accessory olfactory tract (BAOT). The amygdaloid nuclei diversity after HL-OF was determined by the high activation of the NOS-ir cells in the Me and NOS- and CR-ir cells in the BAOT. These are probably projection neurons involved in modulation of defensive, reproductive and autonomic behavior in stress response and creation/storage of aversive memory. However, in comparison with EI group, significant decrease in density of c-Fos-ir cells, in almost all amygdaloid nuclei of EII group was revealed. Particularly in BAOT and Me the strong decrease of activity of NOS- and CR-ir neurons was observed. It probably results in attenuation of stress responses what, depending on the circumstances, can be adaptive or maladaptive.
Collapse
Affiliation(s)
- A Ebertowska
- Department of Anatomy and Neurobiology Medical University of Gdańsk, Poland.
| | - B Ludkiewicz
- Department of Anatomy and Neurobiology Medical University of Gdańsk, Poland
| | - N Melka
- Department of Anatomy and Neurobiology Medical University of Gdańsk, Poland
| | - I Klejbor
- Department of Anatomy and Neurobiology Medical University of Gdańsk, Poland
| | - J Moryś
- Department of Anatomy and Neurobiology Medical University of Gdańsk, Poland
| |
Collapse
|
29
|
Teissier A, Le Magueresse C, Olusakin J, Andrade da Costa BLS, De Stasi AM, Bacci A, Imamura Kawasawa Y, Vaidya VA, Gaspar P. Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Mol Psychiatry 2020; 25:1159-1174. [PMID: 31439936 PMCID: PMC7244403 DOI: 10.1038/s41380-019-0493-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
Exposure to stress during early life (infancy/childhood) has long-term effects on the structure and function of the prefrontal cortex (PFC), and increases the risk for adult depression and anxiety disorders. However, little is known about the molecular and cellular mechanisms of these effects. Here, we focused on changes induced by chronic maternal separation during the first 2 weeks of postnatal life. Unbiased mRNA expression profiling in the medial PFC (mPFC) of maternally separated (MS) pups identified an increased expression of myelin-related genes and a decreased expression of immediate early genes. Oligodendrocyte lineage markers and birthdating experiments indicated a precocious oligodendrocyte differentiation in the mPFC at P15, leading to a depletion of the oligodendrocyte progenitor pool in MS adults. We tested the role of neuronal activity in oligodendrogenesis, using designed receptors exclusively activated by designed drugs (DREADDs) techniques. hM4Di or hM3Dq constructs were transfected into mPFC neurons using fast-acting AAV8 viruses. Reduction of mPFC neuron excitability during the first 2 postnatal weeks caused a premature differentiation of oligodendrocytes similar to the MS pups, while chemogenetic activation normalised it in the MS animals. Bidirectional manipulation of neuron excitability in the mPFC during the P2-P14 period had long lasting effects on adult emotional behaviours and on temporal object recognition: hM4Di mimicked MS effects, while hM3Dq prevented the pro-depressive effects and short-term memory impairment of MS. Thus, our results identify neuronal activity as a critical target of early-life stress and demonstrate its function in controlling both postnatal oligodendrogenesis and adult mPFC-related behaviours.
Collapse
Affiliation(s)
- Anne Teissier
- INSERM, Institut du Fer à Moulin, UMR-S 1270, Sorbonne Université, Paris, France. .,Sorbonne Université, Paris, France. .,Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France.
| | - Corentin Le Magueresse
- 0000 0004 0520 8345grid.462192.aINSERM, Institut du Fer à Moulin, UMR-S 1270, Sorbonne Université, Paris, France ,0000 0001 2308 1657grid.462844.8Sorbonne Université, Paris, France
| | - Jimmy Olusakin
- 0000 0004 0520 8345grid.462192.aINSERM, Institut du Fer à Moulin, UMR-S 1270, Sorbonne Université, Paris, France ,0000 0001 2308 1657grid.462844.8Sorbonne Université, Paris, France
| | - Belmira L. S. Andrade da Costa
- 0000 0001 0670 7996grid.411227.3Physiology and Pharmacology Department, Federal University of Pernambuco, Recife, Brazil
| | - Angela M. De Stasi
- 0000 0001 2308 1657grid.462844.8Sorbonne Université, Paris, France ,0000 0004 0620 5939grid.425274.2Institut du Cerveau et de la Moelle épinière, CNRS UMR 7225—Inserm U1127, Paris, France
| | - Alberto Bacci
- 0000 0001 2308 1657grid.462844.8Sorbonne Université, Paris, France ,0000 0004 0620 5939grid.425274.2Institut du Cerveau et de la Moelle épinière, CNRS UMR 7225—Inserm U1127, Paris, France
| | - Yuka Imamura Kawasawa
- 0000 0001 2097 4281grid.29857.31Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State University College of Medicine, Hershey, PA USA
| | - Vidita A. Vaidya
- 0000 0004 0502 9283grid.22401.35Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005 India
| | - Patricia Gaspar
- INSERM, Institut du Fer à Moulin, UMR-S 1270, Sorbonne Université, Paris, France. .,Sorbonne Université, Paris, France. .,Institut du Cerveau et de la Moelle épinière, CNRS UMR 7225-Inserm U1127, Paris, France.
| |
Collapse
|
30
|
The Relationship between Childhood Maltreatment and Risky Sexual Behaviors: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193666. [PMID: 31569567 PMCID: PMC6801672 DOI: 10.3390/ijerph16193666] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 01/18/2023]
Abstract
Childhood maltreatment is associated with risky sexual behaviors (RSBs). Previous systematic reviews and meta-analysis focused only on the relationship between childhood sexual abuse and RSBs, thus the association between childhood maltreatment and RSBs has yet to be systematically and quantitatively reviewed. We aimed to provide a systematic meta-analysis exploring the effect of childhood maltreatment and its subtypes on subsequent RSBs in adolescence and adulthood. PubMed, Google Scholar, EMBASE, Medline were searched for qualified articles up to April 2019. We calculated the pooled risk estimates using either the random-effect model or fixed-effect model. The potential heterogeneity moderators were identified by subgroup and sensitivity analysis. Overall, childhood maltreatment was significantly associated with an early sexual debut (odds ratio (OR) = 2.22; 95% confidence interval (CI): 1.64–3.00), multiple sexual partners (OR = 2.22; 95% CI: 1.78–2.76), transactional sex (OR = 3.05; 95% CI: 1.92–4.86) and unprotected sex (OR = 1.59; 95% CI: 1.22-2.09). Additionally, different types of childhood maltreatment were also significantly associated with higher risk of RSBs. Relevant heterogeneity moderators have been identified by subgroup analysis. Sensitivity analysis yielded consistent results. Childhood maltreatment is significantly associated with risky sexual behaviors. The current meta-analysis indicates it is vital to protect children from any types of maltreatment and provide health education and support for maltreated individuals.
Collapse
|
31
|
Abstract
The medial prefrontal cortex (mPFC) is a crucial cortical region that integrates information from numerous cortical and subcortical areas and converges updated information to output structures. It plays essential roles in the cognitive process, regulation of emotion, motivation, and sociability. Dysfunction of the mPFC has been found in various neurological and psychiatric disorders, such as depression, anxiety disorders, schizophrenia, autism spectrum disorders, Alzheimer's disease, Parkinson's disease, and addiction. In the present review, we summarize the preclinical and clinical studies to illustrate the role of the mPFC in these neurological diseases.
Collapse
Affiliation(s)
- Pan Xu
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Ai Chen
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan China
| | - Yipeng Li
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Xuezhi Xing
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Hui Lu
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| |
Collapse
|
32
|
Effects of the synthetic cannabinoid 5F-AMB on anxiety and recognition memory in mice. Psychopharmacology (Berl) 2019; 236:2235-2242. [PMID: 30868181 DOI: 10.1007/s00213-019-05222-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
RATIONALE N-[[1-(5-fluoropentyl)-1H-indazol-3-yl]carbonyl]-L-valine methyl ester (5F-AMB) is a synthetic cannabinoid that has been distributed recently. Although inhalation of 5F-AMB produces adverse effects, such as impaired memory and disturbed consciousness, in humans, the psychopharmacological effects of 5F-AMB in rodents have not been investigated. OBJECTIVES We first examined the effects of intraperitoneal and intracerebroventricular injections of 5F-AMB on anxiety-like behavior and locomotor activity in the open field (OF) test and recognition memory in the novel object recognition test (NOR) in C57BL/6J mice. We also examined whether a cannabinoid 1 (CB1) receptor antagonist AM251 blocks the effects of 5F-AMB. We next examined the effects of 5F-AMB infusion into the medial prefrontal cortex (mPFC), a brain region associated with anxiety and memory, on these tests. RESULTS Intraperitoneal injection of 5F-AMB (0.3 mg/kg) dramatically decreased locomotor activity in the OF, and this effect was partially reversed by AM251 (3 mg/kg). Intracerebroventricular infusion of 5F-AMB (10 nmol) produced an anxiolytic effect in the OF and impaired acquisition, but not retrieval, of recognition memory in the NOR, and these effects were blocked by co-infusion of AM251 (1.8 nmol). Bilateral intra-mPFC infusion of 5F-AMB (10 pmol/side) similarly produced impaired recognition memory acquisition, but no anxiolytic effect. CONCLUSIONS The results demonstrate that centrally administered 5F-AMB produces anxiolytic effect and impaired recognition memory acquisition via activation of CB1 receptors, while systemic 5F-AMB severely impaired locomotor activity. The mPFC is involved in 5F-AMB-induced impairment of recognition memory acquisition. However, other brain region(s) may contribute to the 5F-AMB-induced anxiolytic effect.
Collapse
|
33
|
Kaya S, McCabe C. What Role Does the Prefrontal Cortex Play in the Processing of Negative and Positive Stimuli in Adolescent Depression? Brain Sci 2019; 9:E104. [PMID: 31067810 PMCID: PMC6562900 DOI: 10.3390/brainsci9050104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 11/17/2022] Open
Abstract
This perspective describes the contribution of the prefrontal cortex to the symptoms of depression in adolescents and specifically the processing of positive and negative information. We also discuss how the prefrontal cortex (PFC) activity and connectivity during tasks and at rest might be a biomarker for risk for depression onset in adolescents. We include some of our recent work examining not only the anticipation and consummation of positive and negative stimuli, but also effort to gain positive and avoid negative stimuli in adolescents with depression. We find, using region of interest analyses, that the PFC is blunted in those with depression compared to controls across the different phases but in a larger sample the PFC is blunted in the anticipatory phase of the study only. Taken together, in adolescents with depression there is evidence for dysfunctional PFC activity across different studies and tasks. However, the data are limited with small sample sizes and inconsistent findings. Larger longitudinal studies with more detailed assessments of symptoms across the spectrum are needed to further evaluate the role of the PFC in adolescent depression.
Collapse
Affiliation(s)
- Siyabend Kaya
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK.
| | - Ciara McCabe
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK.
| |
Collapse
|
34
|
Palagini L, Domschke K, Benedetti F, Foster RG, Wulff K, Riemann D. Developmental pathways towards mood disorders in adult life: Is there a role for sleep disturbances? J Affect Disord 2019; 243:121-132. [PMID: 30243192 DOI: 10.1016/j.jad.2018.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/01/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mood disorders are among the most prevalent and serious mental disorders and rank high among to the leading global burdens of disease. The developmental psychopathology framework can offer a life course perspective on them thus providing a basis for early prevention and intervention. Sleep disturbances, are considered risk factors for mood disorders across childhood, adolescence and adulthood. Assuming that sleep disturbances may play a pivotal role in the pathogenesis of mood disorders from a life course point of view, we reviewed the data on developmental pathways towards mood disorders in adult life in relation to sleep disturbances. METHOD From February 2017, a systematic search was conducted in PubMed, PsycINFO and Embase electronic databases for literature on developmental pathways to mood disorders in adult life in relation to sleep disturbances and to 1) pre-natal stress, 2) early brain developmental processes, and 3) temperaments, character and attachment style. RESULTS Eleven, 54 and 15 articles were respectively selected. CONCLUSIONS Experimental and clinical studies revealed that exposure to prenatal/early life stress results in sleep disturbances such as poor sleep and altered circadian regulation phases and may predict or even precipitate mood disorders in adulthood. Chronic sleep disruption may interfere with neuronal plasticity, connectivity and the developing brain thus contributing to the development of mood disorders. In addition sleep and circadian dysregulations have been shown to be related to those temperaments, character and attachment styles which are considered precursors of mood disorders. Sleep and circadian behaviours may serve as early targets regarding mood disorders.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Italy.
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Scientific Institute Ospedale San Raffaele, Via Stamira d'Ancona 20, 20127 Milano, Italy
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience at the University of Oxford, UK
| | - Katharina Wulff
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience at the University of Oxford, UK
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
35
|
Viola TW, Wearick-Silva LE, Creutzberg KC, Kestering-Ferreira É, Orso R, Centeno-Silva A, Albrechet-Souza L, Marshall PR, Li X, Bredy TW, Riva MA, Grassi-Oliveira R. Postnatal impoverished housing impairs adolescent risk-assessment and increases risk-taking: A sex-specific effect associated with histone epigenetic regulation of Crfr1 in the medial prefrontal cortex. Psychoneuroendocrinology 2019; 99:8-19. [PMID: 30172072 DOI: 10.1016/j.psyneuen.2018.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/21/2018] [Accepted: 08/24/2018] [Indexed: 01/01/2023]
Abstract
While increasing evidence posits poor decision-making as a central feature of mental disorders, very few studies investigated the effects of early-life stress (ELS) on specific components of reward-related choice behaviors. Risk-taking (RT) involves the exposure to some danger, or negative consequences, in order to achieve a goal-directed behavior. Such behaviors are likely to be preceded by risk-assessment (RA), which is a dynamic cognitive process involving the acquisition of information in potentially dangerous situations. Here, we investigated the effects of being raised in impoverished housing conditions during early life (P2-P9) on RT, RA and dopaminergic and corticotrophinergic gene expression of adolescent male and female mice. Phenotypes were assessed by two protocols: the elevated plus-maze (EPM) and the predator-odor risk-taking (PORT). We found decreased RA in mice exposed to impoverished housing in the absence of a reward (EPM), with a more pronounced effect among females. Moreover, when exposed to a predatory olfactory cue, increased RT was observed in these females in a reward-related task (PORT), as well as decreased HPA axis responsivity. This sex-specific behavioral effect was associated with increased Crfr1 mRNA expression in the medial prefrontal cortex (mPFC) and higher levels of the histone mark H3R2me2s, a histone modification known to be involved in transcriptional activation, within the promoter of the Crfr1 gene. These findings revealed that ELS exposure can impair the acquisition of environmental information in dangerous situations and increase RT in reward-related scenarios among females, with an important role regarding epigenetic regulation of the Crfr1 gene.
Collapse
Affiliation(s)
- Thiago Wendt Viola
- Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brain Institute (InsCer), Developmental Cognitive Neuroscience Lab, Porto Alegre, RS, Brazil
| | - Luis Eduardo Wearick-Silva
- Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brain Institute (InsCer), Developmental Cognitive Neuroscience Lab, Porto Alegre, RS, Brazil
| | - Kerstin C Creutzberg
- Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brain Institute (InsCer), Developmental Cognitive Neuroscience Lab, Porto Alegre, RS, Brazil
| | - Érika Kestering-Ferreira
- Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brain Institute (InsCer), Developmental Cognitive Neuroscience Lab, Porto Alegre, RS, Brazil
| | - Rodrigo Orso
- Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brain Institute (InsCer), Developmental Cognitive Neuroscience Lab, Porto Alegre, RS, Brazil
| | - Anderson Centeno-Silva
- Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brain Institute (InsCer), Developmental Cognitive Neuroscience Lab, Porto Alegre, RS, Brazil
| | - Lucas Albrechet-Souza
- Louisiana State University, Health Sciences Center, Department of Physiology, New Orleans, United States
| | - Paul R Marshall
- University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Xiang Li
- University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Timothy W Bredy
- University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Marco A Riva
- Università degli Studi di Milano, Department of Pharmacological and Biomolecular Sciences, Milan, Italy
| | - Rodrigo Grassi-Oliveira
- Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brain Institute (InsCer), Developmental Cognitive Neuroscience Lab, Porto Alegre, RS, Brazil.
| |
Collapse
|
36
|
Maghami S, Zardooz H, Khodagholi F, Binayi F, Ranjbar Saber R, Hedayati M, Sahraei H, Ansari MA. Maternal separation blunted spatial memory formation independent of peripheral and hippocampal insulin content in young adult male rats. PLoS One 2018; 13:e0204731. [PMID: 30332425 PMCID: PMC6192583 DOI: 10.1371/journal.pone.0204731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
This study explores the effects of maternal separation as a chronic early life stress (ELS) on pancreatic islets insulin content and secretion, and their potential relationship with the hippocampus insulin content and spatial memory in young adulthood. Male rat offspring were divided into two groups: stress (STR) and non-stress (non-STR) groups. The animals of the STR group were separated from their mothers during postnatal days (PND) 1 to 21. During the weaning time, that is, PND-0 to PND-21, the body weight and length of the pups were measured. Blood samples were collected on PND-1, 21, 29 and 34 and during young adulthood (53±2 days) to determine plasma corticosterone and insulin levels. The young adult animals were also tested for spatial memory. One day after the memory test, the animals were decapitated and their pancreases were removed to measure the islets insulin content and secretion. Finally, the animals' hippocampi were isolated to determine their insulin content and insulin receptor protein amounts. During the period of weaning, the body weight and length of pups belonging to the STR group were significantly lower as compared to those in the non-STR group. Maternal separation did not change the plasma levels of insulin but increased plasma corticosterone levels from PND-21 to young adulthood and also reduced the islets insulin content but did not affect insulin secretion and the hippocampus insulin content and insulin receptor protein amount. Although, at the end of the memory tests, rats of the STR group reached the escape box at almost the same time and distance and with the same errors as rats of the non-STR group, the distance traveled to reach the escape box showed a steep reduction in the non-STR group as compared to the STR group after the first trial. Moreover, as compared to the STR group, the non-STR group showed an increasing trend for direct strategy to find the escape box. The islets insulin content and secretion, and the plasma insulin concentration were not significantly correlated with the hippocampus insulin content. From the results of the present study, it appears that the main behavioral effect of the maternal separation stress in the spatial memory task was to impair the strategy used by the animals to reach the escape box. This may indicate that maternal separation stress affects brain regions other than the hippocampus. Moreover, due to the reduction of the body weight and length of offspring belonging to the STR group, it should be further considered that both maternal separation and early life malnutrition are directly (and mechanistically) linked to cognitive alterations later in life in ways that are not dependent on peripheral and hippocampal insulin content.
Collapse
Affiliation(s)
- Soheila Maghami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail: ,
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Ranjbar Saber
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Ansari
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
37
|
Domoto M, Sasase H, Wada S, Ito S, Deyama S, Hinoi E, Kaneko S, Kaneda K. The synthetic cannabinoid 5F-AMB changes the balance between excitation and inhibition of layer V pyramidal neurons in the mouse medial prefrontal cortex. Psychopharmacology (Berl) 2018; 235:2367-2376. [PMID: 29858613 DOI: 10.1007/s00213-018-4933-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/24/2018] [Indexed: 11/30/2022]
Abstract
RATIONALE 5F-AMB is one of the synthetic cannabinoids (SCs) designed to potentiate the ability to activate cannabinoid 1 (CB1) receptors and is abused worldwide. Although inhalation of 5F-AMB elicits serious adverse effects including impaired memory and consciousness, it is not known whether and how 5F-AMB affects the activity of pyramidal neurons in the medial prefrontal cortex (mPFC), a brain region associated with higher functions such as memory and cognition. OBJECTIVES In the present study, we examined the effects of 5F-AMB on mPFC layer V (L5) pyramidal neurons using in vitro whole-cell patch-clamp recordings. RESULTS Bath application of 5F-AMB attenuated the frequency but not the amplitude of spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs). The attenuating effects of 5F-AMB were abolished by the CB1 receptor antagonist AM251. 5F-AMB also attenuated the frequency of miniature EPSCs and IPSCs recorded in the presence of tetrodotoxin. Moreover, the extent of attenuating effects of 5F-AMB on stimulus-evoked EPSCs was significantly larger than that on evoked IPSCs. CONCLUSIONS These findings suggest that 5F-AMB attenuates both excitatory and inhibitory transmission in mPFC L5 pyramidal neurons via the activation of CB1 receptors located in presynaptic terminals. Further, the net impact of 5F-AMB on L5 pyramidal neurons is inhibition due to the change in balance between excitation and inhibition. This inhibitory effect might at least partly contribute to the expression of the adverse effects induced by 5F-AMB inhalation.
Collapse
Affiliation(s)
- Masaki Domoto
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hitoki Sasase
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shintaro Wada
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shiho Ito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
38
|
Wong JYH, Choi EPH, Chan CKY, Fong DYT. Controlling Anxiety Mediates the Influence of Childhood Adversities on Risky Sexual Behaviors Among Emerging Adults. JOURNAL OF SEX RESEARCH 2017; 54:1018-1025. [PMID: 28276939 DOI: 10.1080/00224499.2017.1278569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Relatively little research has assessed the exposure-response relationship of childhood adversities on engaging in risky sexual behaviors. Also, no previous research has examined the interrelationship among childhood adversities, adult anxiety and depressive symptoms, and risky sexual behaviors. This study aimed to investigate their interrelationships. We used data from a multisite survey of emerging adults aged 18 to 29 studying at four universities in Hong Kong between September and December 2015. Structural equation modeling (SEM) was used to examine the pathways from childhood adversities to risky sexual behaviors. Participants who had higher childhood adversity scores reported more severe adult anxiety symptoms (β = 0.20, p = 0.002); and adult anxiety symptoms were associated with significantly more risky sexual behaviors (β = 0.46, p < 0.0001). The model with adult anxiety symptoms as the mediator between childhood adversities and risky sexual behaviors showed good fit (root mean square error of approximation [RMSEA] = 0.04, comparative fit index [CFI] = 0.96, Tucker-Lewis index [TLI] = 0.94 and standardized root mean square residual [SRMSR] = 0.04). However, adult depressive symptoms failed to mediate between childhood adversities and risky sexual behaviors. This study demonstrates the link between childhood adversities and risky sexual behaviors via adult anxiety but not adult depressive symptoms. It is essential to reduce anxious symptoms in dealing with emerging adults who have risky sexual behaviors to prevent sexually transmitted infections (STIs) and unintended pregnancy.
Collapse
Affiliation(s)
- Janet Yuen-Ha Wong
- a School of Nursing, Li Ka Shing Faculty of Medicine , The University of Hong Kong
| | - Edmond Pui-Hang Choi
- a School of Nursing, Li Ka Shing Faculty of Medicine , The University of Hong Kong
| | - Claudia Kor-Yee Chan
- a School of Nursing, Li Ka Shing Faculty of Medicine , The University of Hong Kong
| | - Daniel Yee-Tak Fong
- a School of Nursing, Li Ka Shing Faculty of Medicine , The University of Hong Kong
| |
Collapse
|
39
|
Hu C, Yang H, Zhao Y, Chen X, Dong Y, Li L, Dong Y, Cui J, Zhu T, Zheng P, Lin CS, Dai J. The role of inflammatory cytokines and ERK1/2 signaling in chronic prostatitis/chronic pelvic pain syndrome with related mental health disorders. Sci Rep 2016; 6:28608. [PMID: 27334333 PMCID: PMC4917855 DOI: 10.1038/srep28608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022] Open
Abstract
Mental health disorders(MHD) in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) have been widely studied. However, the underlying role of inflammatory cytokines and their associated signaling pathways have not been investigated. Here, we report the potential role of cytokines and associated signaling pathways in CP/CPPS patients with MHD and in a CP/CPPS animal model. CP/CPPS patients (n = 810) and control subjects (n = 992) were enrolled in this case-control multicenter study, and serum cytokine levels were measured. Male Sprague-Dawley rats received multiple intracutaneous injections of an immuno-agent along with a pertussis-diphtheria-tetanus triple vaccine for autoimmune CP/CPPS development. The results revealed that, in CP/CPPS patients with significant MHD, elevated IL-1α, IL-1β, IL-4, IL-13, and TNF-α serum levels were observed. The above five cytokines in CP/CPPS rats were significantly elevated in prostate tissue (p < 0.05), and IL-1β levels were elevated in serum and cerebrospinal fluid. In behavioral tests, CP/CPPS rats showed anxiety- and depression-like symptoms, and impaired spatial and associative memory performance (p < 0.05). In the CP/CPPS group, ERK1/2 phosphorylation levels were increased in the amygdala and nucleus accumbens, and decreased in the hippocampus, but not caudate nucleus. Thus, prostate-derived cytokines, especially IL-1β, cross the blood brain barrier and may lead to enhanced ERK1/2 signaling in several brain areas, possibly underlying induction of CP/CPPS-related MHD.
Collapse
Affiliation(s)
- Chao Hu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Hualan Yang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, 200032, P. R. China
| | - Yanfang Zhao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, 200032, P. R. China
| | - Xiang Chen
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Yinying Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University &Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P. R. China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yehao Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University &Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P. R. China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, 200032, P. R. China
| | - Ching-Shwun Lin
- Department of Urology, University of California, San Francisco, CA, 94143, USA
| | - Jican Dai
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| |
Collapse
|
40
|
Zhang H, Yan G, Xu H, Fang Z, Zhang J, Zhang J, Wu R, Kong J, Huang Q. The recovery trajectory of adolescent social defeat stress-induced behavioral, (1)H-MRS metabolites and myelin changes in Balb/c mice. Sci Rep 2016; 6:27906. [PMID: 27283029 PMCID: PMC4901266 DOI: 10.1038/srep27906] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
Adolescent exposure to social stress precipitates emotion-related disorders and affects the development and function of medial prefrontal cortex (mPFC). However, this adversity-induced behavioral and neurological changes remain not fully explored. Adolescent Balb/c mice were subjected to intermittent social defeat stress during postnatal days 28 to 42. Proton magnetic resonance spectroscopy (1H-MRS) measurements, behavioral tests and immunohistochemistry were performed one day or 3 weeks after the last stress episode. Defeated mice exhibited hypoactivity and social avoidance with the latter lasting into the early adulthood, while the anxiety level was unchanged. Social defeat experience lead to temporary decreases in the levels of total creatines (Cr + pCr) and Glx (Glu + Gln), but a delayed increase of N- acetylaspartate (NAA) levels. These alternations were accompanied with a persistent reduction of myelin basic protein expression although the number of mature oligodendrocyte did not change. These findings provide evidence that adolescent adverse social experience permanently impairs the emotion-related behavioral performance and induces biochemical and molecular changes in the brain which at least lasts into early adulthood, thus enhancing our understanding of the neurobiology of social defeat stress. Our finding also implicates that NAA signals on MRS may reflect myelin status.
Collapse
Affiliation(s)
- Handi Zhang
- Mental Health Center Shantou University, Shantou, China
| | - Gen Yan
- Affiliated Hospital, Jiangnan University, Wuxi, China
| | - Haiyun Xu
- Mental Health Center Shantou University, Shantou, China
| | - Zeman Fang
- Mental Health Center Shantou University, Shantou, China
| | - Jinling Zhang
- Mental Health Center Shantou University, Shantou, China
| | - Jie Zhang
- Mental Health Center Shantou University, Shantou, China
| | - Renhua Wu
- The 2nd affiliated Hospital, Shantou University, Shantou, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Qingjun Huang
- Mental Health Center Shantou University, Shantou, China
| |
Collapse
|
41
|
Sivolap YP, Portnova AA. [Childhood maltreatment and its impact on the mental health]. Zh Nevrol Psikhiatr Im S S Korsakova 2016. [PMID: 28635939 DOI: 10.17116/jnevro201611671108-112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review covers the literature of the last 25 years on the impact of childhood maltreatment on the mental health throughout the individual's life. Child abuse increases the risk of many mental disorders including depression, suicidal ideation and suicidal behavior, anxiety-related disorders, psychoses as well as alcohol and other drug abuse. The impact of child trauma on the mental health is largely due to structural and functional changes in the hippocampus, amygdala and prefrontal cortex. Early preventive interventions play a great role in the prevention of mental disorders associated with childhood adversities.
Collapse
Affiliation(s)
- Y P Sivolap
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A A Portnova
- Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Sukhareva Mental Health Research and Clinical Center for Children and Adolescents, Moscow, Russia
| |
Collapse
|
42
|
Kalpachidou T, Raftogianni A, Melissa P, Kollia AM, Stylianopoulou F, Stamatakis A. Effects of a Neonatal Experience Involving Reward Through Maternal Contact on the Noradrenergic System of the Rat Prefrontal Cortex. Cereb Cortex 2015; 26:3866-3877. [PMID: 26315690 DOI: 10.1093/cercor/bhv192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The noradrenergic system plays an important role in prefrontal cortex (PFC) function. Since early life experiences play a crucial role in programming brain function, we investigated the effects of a neonatal experience involving reward through maternal contact on the noradrenergic system of the rat PFC. Rat pups were exposed during Postnatal days (PNDs) 10-13, to a T-maze in which contact with the mother was used as a reward (RER). RER males had higher norepinephrine levels in the PFC both on PND 13 and in adulthood. The RER experience resulted in adulthood in increased levels of the active demethylase GADD45b, hypomethylation of the β1 adrenergic receptor (ADRB1) gene promoter, and consequent enhanced expression of its mRNA in the PFC. In addition, protein and binding levels of the ADRB1, as well as those of its downstream effector phosphorylated cAMP response element-binding protein were elevated in RER males. The higher activity of the PFC noradrenergic system of the RER males was reflected in their superior performance in the olfactory discrimination and the contextual fear extinction, 2 PFC noradrenergic system-dependent behavioral tasks.
Collapse
Affiliation(s)
- Theodora Kalpachidou
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| | - Androniki Raftogianni
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| | - Pelagia Melissa
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| | - Anna-Maria Kollia
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Laboratory, School of Health Sciences, University of Athens, Athens 11527, Greece
| |
Collapse
|
43
|
Lasoń W, Budziszewska B, Basta-Kaim A, Kubera M, Maes M. New trends in the neurobiology and pharmacology of affective disorders. Pharmacol Rep 2014; 65:1441-50. [PMID: 24552991 DOI: 10.1016/s1734-1140(13)71504-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/11/2013] [Indexed: 11/19/2022]
Abstract
Although depression is a common disorder that is often resistant to pharmacotherapy, its pathophysiology has remained elusive. Since the early 1950s, when the first antidepressants were introduced, i.e., the non-selective MAO inhibitors and tricyclic drugs, a number of hypotheses describing ethiopathogenesis of depression and antidepressant drug action have been formulated. The Institute of Pharmacology, the Polish Academy of Sciences has performed experimental and clinical research focused on the pathophysiology of depression and the mechanisms of action of antidepressant drugs for over 40 years. Our results from this period have significantly contributed to understanding the complex mechanisms of antidepressant drug actions and new pathways that underpin the pathophysiology of depression. Most of these theories are based on the finding that the chronic administration of antidepressants leads to adaptive changes in pre- and post-synaptic monoaminergic and glutamatergic neurotransmission as well as to alterations in gene transcription and immune-inflammatory and neurotrophic factors, resulting in neuroplastic changes in the brain. Taking into account the functional interdependence of the neuronal, hormonal and immunologic systems, we propose neurodevelopmental and neuroimmune theories for affective disorders. Moreover, commonalities have been documented for the pathomechanisms of depression and neurodegenerative and metabolic disorders as well as drug dependence. The aim of this special issue is to briefly present the major research contributions and the new research directions of the Institute of Pharmacology, the Polish Academy of Sciences with respect to the neurobiology of affective disorders and the mechanisms of action of marketed and new putative antidepressant drugs.
Collapse
Affiliation(s)
- Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
44
|
Lewis CR, Olive MF. Early-life stress interactions with the epigenome: potential mechanisms driving vulnerability toward psychiatric illness. Behav Pharmacol 2014; 25:341-51. [PMID: 25003947 PMCID: PMC4119485 DOI: 10.1097/fbp.0000000000000057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Throughout the 20th century a body of literature concerning the long-lasting effects of the early environment was produced. Adverse experiences in early life, or early-life stress (ELS), is associated with a higher risk of developing various psychiatric illnesses. The mechanisms driving the complex interplay between ELS and adult phenotype has baffled many investigators for decades. Over the last decade, the new field of neuroepigenetics has emerged as one possible mechanism by which ELS can have far-reaching effects on adult phenotype, behavior, and risk for psychiatric illness. Here we review two commonly investigated epigenetic mechanisms, histone modifications and DNA methylation, and the emerging field of neuroepigenetics as they relate to ELS. We discuss the current animal literature demonstrating ELS-induced epigenetic modulation of gene expression that results in altered adult phenotypes. We also briefly discuss other areas in which neuroepigenetics has emerged as a potential mechanism underlying environmental and genetic interactions.
Collapse
Affiliation(s)
- Candace Renee Lewis
- Arizona State University, Tempe, AZ, 930 S McAllister Ave, Tempe, AZ 85281, , Phone: (602) 680 – 8786
| | - Michael Foster Olive
- Arizona State University, Tempe, AZ, 930 S McAllister Ave, Tempe, AZ 85281, , Phone: (480) 727-9557
| |
Collapse
|
45
|
Wang J, Qiao J, Zhang Y, Wang H, Zhu S, Zhang H, Hartle K, Guo H, Guo W, He J, Kong J, Huang Q, Li XM. Desvenlafaxine prevents white matter injury and improves the decreased phosphorylation of the rate-limiting enzyme of cholesterol synthesis in a chronic mouse model of depression. J Neurochem 2014; 131:229-38. [PMID: 24934403 DOI: 10.1111/jnc.12792] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/07/2023]
Abstract
Serotonin/norepinephrine reuptake inhibitors antidepressants exert their effects by increasing serotonin and norepinephrine in the synaptic cleft. Studies show it takes 2-3 weeks for the mood-enhancing effects, which indicate other mechanisms may underlie their treatment effects. Here, we investigated the role of white matter in treatment and pathogenesis of depression using an unpredictable chronic mild stress (UCMS) mouse model. Desvenlafaxine (DVS) was orally administrated to UCMS mice at the dose of 10 mg/kg/day 1 week before they went through a 7-week stress procedure and lasted for over 8 weeks before the mice were killed. No significant changes were found for protein markers of neurons and astrocytes in UCMS mice. However, myelin and oligodendrocyte-related proteins were significantly reduced in UCMS mice. DVS prevented the stress-induced injury to white matter and the decrease of phosphorylated 5'-AMP-activated protein kinase and 3-hydroxy-3-methyl-glutaryl-CoA reductase protein expression. DVS increased open arm entries in an elevated plus-maze test, sucrose consumption in the sucrose preference test and decreased immobility in tail suspension and forced swimming tests. These findings suggest that stress induces depression-like behaviors and white matter deficits in UCMS mice. DVS may ameliorate the oligodendrocyte dysfunction by affecting cholesterol synthesis, alleviating the depression-like phenotypes in these mice. We examined the possible role of oligodendrocyte and myelin in the pathological changes of depression with an unpredictable chronic mild stress (UCMS) mouse model. Oligodendrocyte-related proteins in the mouse brain were specifically changed during the stress period. The depressive-like behaviors and oligodendrocyte deficits could be prevented by the administration of desvenlafaxine. Oligodendrocyte and myelin may be an essential target of desvenlafaxine for the treatment of depression.
Collapse
Affiliation(s)
- Junhui Wang
- Mental Health Center, Shantou University, Shantou, Guangdong, China.,Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jinping Qiao
- Mental Health Center, Shantou University, Shantou, Guangdong, China.,Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hongxing Wang
- Department of Clinical Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Shenghua Zhu
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Handi Zhang
- Mental Health Center, Shantou University, Shantou, Guangdong, China
| | - Kelly Hartle
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Huining Guo
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wei Guo
- Department of Clinical Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jue He
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingjun Huang
- Mental Health Center, Shantou University, Shantou, Guangdong, China
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|