1
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
2
|
Meeroekyai S, Jaimalai T, Suree N, Prangkio P. CD4 + T cell-targeting immunoliposomes for treatment of latent HIV reservoir. Eur J Pharm Biopharm 2024; 195:114166. [PMID: 38110161 DOI: 10.1016/j.ejpb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Active targeting nano-delivery is a promising approach to enhance therapeutic efficacy and specificity to the target cells. Liposomes (LPs) have been widely studied for the active targeting delivery due to their low toxicity, biodegradability, biocompatibility, and feasibility of surface medication to provide the interactions with cell receptors. One of the strategies is to functionalize the surface of LPs with monoclonal antibodies (mAbs) to obtain immunoliposomes (imLPs) that recognize specific receptors on target cells. Among several target cells, CD4+ T cells are known for playing a pivotal role in controlling the immune system in several diseases, including cancers, inflammatory diseases, and viral infections, particularly HIV-1. Here, we demonstrate two methods for conjugating αCD4 mAb with imLPs for specific targeting of CD4+ T cells that can harbor viral genome and serve as a predominant latent HIV reservoir. LPs conjugated with αCD4 mAb via neutravidin-biotin linkage were used for selectively targeting CD4+ J-Lat 10.6 cells. We demonstrate, via flow cytometry, the importance of the conjugation step, mAb density, and the presence of polyethylene glycol (PEG) for effective drug delivery to CD4+ T cells. The cellular uptake of imLPs is substantially higher if the imLPs are functionalized with the pre-conjugated αCD4 mAb-neutravidin complex. Furthermore, imLPs loaded with HIV-1 latency reversing agent, suberoylanilide hydroxamic acid (SAHA), could reactivate the J-Lat 10.6 cells, suggesting that the αCD4-imLPs could be potentially used as a targeted drug delivery system for HIV-1 latency reactivation or other CD4-targeted immunotherapies.
Collapse
Affiliation(s)
- Suthasinee Meeroekyai
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Suthep, Mueang, Chiang Mai 50200, Thailand; Institute of Chemistry, Academia Sinica, No.128, Sec.2, Academia Road, Nangang, Taipei 11529, Taiwan
| | - Thanapak Jaimalai
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Nuttee Suree
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Suthep, Mueang, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Panchika Prangkio
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Suthep, Mueang, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Suthep, Mueang, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Rahbari R, Francis L, Guy OJ, Sharma S, Von Ruhland C, Xia Z. Microneedle-Assisted Transfersomes as a Transdermal Delivery System for Aspirin. Pharmaceutics 2023; 16:57. [PMID: 38258069 PMCID: PMC10819469 DOI: 10.3390/pharmaceutics16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Transdermal drug delivery systems offer several advantages over conventional oral or hypodermic administration due to the avoidance of first-pass drug metabolism and gastrointestinal degradation as well as patients' convenience due to a minimally invasive and painless approach. A novel transdermal drug delivery system, comprising a combination of transfersomes with either solid silicon or solid polycarbonate microneedles has been developed for the transdermal delivery of aspirin. Aspirin was encapsulated inside transfersomes using a "thin-film hydration sonication" technique, yielding an encapsulation efficiency of approximately 67.5%. The fabricated transfersomes have been optimised and fully characterised in terms of average size distribution and uniformity, surface charge and stability (shelf-life). Transdermal delivery, enhanced by microneedle penetration, allows the superior permeation of transfersomes into perforated porcine skin and has been extensively characterised using optical coherence tomography (OCT) and transmission electron microscopy (TEM). In vitro permeation studies revealed that transfersomes enhanced the permeability of aspirin by more than four times in comparison to the delivery of unencapsulated "free" aspirin. The microneedle-assisted delivery of transfersomes encapsulating aspirin yielded 13-fold and 10-fold increases in permeation using silicon and polycarbonate microneedles, respectively, in comparison with delivery using only transfersomes. The cytotoxicity of different dose regimens of transfersomes encapsulating aspirin showed that encapsulated aspirin became cytotoxic at concentrations of ≥100 μg/mL. The results presented demonstrate that the transfersomes could resolve the solubility issues of low-water-soluble drugs and enable their slow and controlled release. Microneedles enhance the delivery of transfersomes into deeper skin layers, providing a very effective system for the systemic delivery of drugs. This combined drug delivery system can potentially be utilised for numerous drug treatments.
Collapse
Affiliation(s)
- Raha Rahbari
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Lewis Francis
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Owen J. Guy
- Department of Chemistry, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK;
| | - Sanjiv Sharma
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Christopher Von Ruhland
- Electron Microscopy Unit, Central Biotechnology Services, Institute for Translation, Innovation, Methodology and Engagement, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK;
| | - Zhidao Xia
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| |
Collapse
|
4
|
Wang X, Jiao M, Tian F, Lu X, Xiong H, Liu F, Wan Y, Zhang X, Wan H. A Biomimetic Nanoplatform with Improved Inflammatory Targeting Behavior for ROS Scavenging-Based Treatment of Ulcerative Colitis. Adv Healthc Mater 2023; 12:e2301450. [PMID: 37537878 DOI: 10.1002/adhm.202301450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Ulcerative colitis (UC), a refractory disease, has become a global problem. Herein, a biomimetic nanoplatform (AU-LIP-CM) comprising Au cluster enzymes (AU)-loaded liposomes (AU-LIP) camouflaged with the fusion membrane (CM) consisting of neutrophil (NC) and red blood cell (RBC) membrane is designed for the treatment of UC. Briefly, revealed by second near-infrared (NIR-II) imaging through collection of fluorescence emitting >1200 nm from AU, the improved inflammatory targeting behavior contributed by CM cloaking, which inherits abilities of inflammatory targeting and immune escape from NC and RBC, respectively, promotes specific accumulation of AU within inflammatory intestines with up to ≈11.5 times higher than that of bare AU. Afterward, AU possessing superoxide dismutase- and catalase-like activities realizes high-efficiency scavenging of reactive oxygen species (ROS), leading to repair of intestinal barriers, regulation of the immune system, and modulation of gut microbiota, which surpass first-line UC drug. In addition, study of underlying therapeutic mechanism demonstrated that the treatment with AU-LIP-CM can alter the gene signature associated with response to ROS for UC mice to a profile similar to that of healthy mice, deciphering related signal pathways. The strategy developed here provides insights of learning from properties of natural bio-substances to empower biomimetic nanoplatform to confront diseases.
Collapse
Affiliation(s)
- Xiaofen Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Menglu Jiao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xuan Lu
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Huihuang Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Fan Liu
- Center of Analysis and Testing, Nanchang University, Nanchang, 330047, China
| | - Yiqun Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiaodong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Hao Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
5
|
Lin Y, Cheng Q, Wei T. Surface engineering of lipid nanoparticles: targeted nucleic acid delivery and beyond. BIOPHYSICS REPORTS 2023; 9:255-278. [PMID: 38516300 PMCID: PMC10951480 DOI: 10.52601/bpr.2023.230022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 03/23/2024] Open
Abstract
Harnessing surface engineering strategies to functionalize nucleic acid-lipid nanoparticles (LNPs) for improved performance has been a hot research topic since the approval of the first siRNA drug, patisiran, and two mRNA-based COVID-19 vaccines, BNT162b2 and mRNA-1273. Currently, efforts have been mainly made to construct targeted LNPs for organ- or cell-type-specific delivery of nucleic acid drugs by conjugation with various types of ligands. In this review, we describe the surface engineering strategies for nucleic acid-LNPs, considering ligand types, conjugation chemistries, and incorporation methods. We then outline the general purification and characterization techniques that are frequently used following the engineering step and emphasize the specific techniques for certain types of ligands. Next, we comprehensively summarize the currently accessible organs and cell types, as well as the other applications of the engineered LNPs. Finally, we provide considerations for formulating targeted LNPs and discuss the challenges of successfully translating the "proof of concept" from the laboratory into the clinic. We believe that addressing these challenges could accelerate the development of surface-engineered LNPs for targeted nucleic acid delivery and beyond.
Collapse
Affiliation(s)
- Yi Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Luo Y, Vivaldi Marrero E, Choudhary V, Bollag WB. Phosphatidylglycerol to Treat Chronic Skin Wounds in Diabetes. Pharmaceutics 2023; 15:1497. [PMID: 37242739 PMCID: PMC10222993 DOI: 10.3390/pharmaceutics15051497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review proposes the use of dioleoylphosphatidylglycerol (DOPG) to enhance diabetic wound healing. Initially, the characteristics of diabetic wounds are examined, focusing on the epidermis. Hyperglycemia accompanying diabetes results in enhanced inflammation and oxidative stress in part through the generation of advanced glycation end-products (AGEs), in which glucose is conjugated to macromolecules. These AGEs activate inflammatory pathways; oxidative stress results from increased reactive oxygen species generation by mitochondria rendered dysfunctional by hyperglycemia. These factors work together to reduce the ability of keratinocytes to restore epidermal integrity, contributing to chronic diabetic wounds. DOPG has a pro-proliferative action on keratinocytes (through an unclear mechanism) and exerts an anti-inflammatory effect on keratinocytes and the innate immune system by inhibiting the activation of Toll-like receptors. DOPG has also been found to enhance macrophage mitochondrial function. Since these DOPG effects would be expected to counteract the increased oxidative stress (attributable in part to mitochondrial dysfunction), decreased keratinocyte proliferation, and enhanced inflammation that characterize chronic diabetic wounds, DOPG may be useful in stimulating wound healing. To date, efficacious therapies to promote the healing of chronic diabetic wounds are largely lacking; thus, DOPG may be added to the armamentarium of drugs to enhance diabetic wound healing.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Edymarie Vivaldi Marrero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Mateos-Maroto A, Gai M, Brückner M, da Costa Marques R, Harley I, Simon J, Mailänder V, Morsbach S, Landfester K. Systematic modulation of the lipid composition enables the tuning of liposome cellular uptake. Acta Biomater 2023; 158:463-474. [PMID: 36599401 DOI: 10.1016/j.actbio.2022.12.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
As liposomes have been widely explored as drug delivery carriers over the past decades, they are one of the most promising platforms due to their biocompatibility and versatility for surface functionalization. However, to improve the specific design of liposomes for future biomedical applications such as nanovaccines, it is necessary to understand how these systems interact with cell membranes, as most of their potential applications require them to be internalized by cells. Even though several investigations on the cellular uptake of liposomes were conducted, the effect of the liposome membrane properties on internalization in different cell lines remains unclear. Here, we demonstrate how the cellular uptake behavior of liposomes can be driven towards preferential interaction with dendritic cells (DC2.4) as compared to macrophages (RAW264.7) by tuning the lipid composition with varied molar ratios of the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Cellular internalization efficiency was analyzed by flow cytometry, as well as liposome-cell membrane co-localization by confocal laser scanning microscopy. The corresponding proteomic analysis of the protein corona was performed in order to unravel the possible effect on the internalization. The obtained results of this work reveal that it is possible to modulate the cellular uptake towards enhanced internalization by dendritic cells just by modifying the applied lipids and, thus, mainly the physico-chemical properties of the liposomes. STATEMENT OF SIGNIFICANCE: In the field of nanomedicine, it is of key importance to develop new specific and efficient drug carriers. In this sense, liposomes are one of the most widely known carrier types and used in clinics with good results. However, the exact interaction mechanisms of liposomes with cells remain unclear, which is of great importance for the design of new drug delivery platforms. Therefore, in this work we demonstrate that cellular uptake depends on the lipid composition. We are able to enhance the uptake in a specific cell type just by tuning the content of a lipid in the liposome membrane. This finding could be a step towards the selective design of liposomes to be internalized by specific cells with promising applications in biomedicine.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meiyu Gai
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maximilian Brückner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Richard da Costa Marques
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Iain Harley
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
8
|
Coating Materials to Increase the Stability of Liposomes. Polymers (Basel) 2023; 15:polym15030782. [PMID: 36772080 PMCID: PMC10004256 DOI: 10.3390/polym15030782] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Liposomes carry various compounds with applications in pharmaceutical, food, and cosmetic fields, and the administration route is especially parenteral, oral, or transdermal. Liposomes are used to preserve and release the internal components, thus maintaining the properties of the compounds, the stability and shelf life of the encapsulated products, and their functional benefits. The main problem in obtaining liposomes at the industrial level is their low stability due to fragile phospholipid membranes. To increase the stability of liposomes, phospholipid bilayers have been modified or different coating materials have been developed and studied, both for liposomes with applications in the pharmaceutical field and liposomes in the food field. In the cosmetic field, liposomes need no additional coating because the liposomal formulation is intended to have a fast penetration into the skin. The aim of this review is to provide current knowledge regarding physical and chemical factors that influence stability, coating materials for liposomes with applications in the pharmaceutical and food fields to increase the stability of liposomes containing various sensitive compounds, and absorption of the liposomes and commercial liposomal products obtained through various technologies available on the market.
Collapse
|
9
|
Sheikholeslami B, Lam NW, Dua K, Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci 2022; 300:120574. [DOI: 10.1016/j.lfs.2022.120574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
|
10
|
coupled Hydrodynamic Flow Focusing (cHFF) to Engineer Lipid–Polymer Nanoparticles (LiPoNs) for Multimodal Imaging and Theranostic Applications. Biomedicines 2022; 10:biomedicines10020438. [PMID: 35203647 PMCID: PMC8962394 DOI: 10.3390/biomedicines10020438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
An optimal design of nanocarriers is required to overcome the gap between synthetic and biological identity, improving the clinical translation of nanomedicine. A new generation of hybrid vehicles based on lipid–polymer coupling, obtained by Microfluidics, is proposed and validated for theranostics and multimodal imaging applications. A coupled Hydrodynamic Flow Focusing (cHFF) is exploited to control the time scales of solvent exchange and the coupling of the polymer nanoprecipitation with the lipid self-assembly simultaneously, guiding the formation of Lipid–Polymer NPs (LiPoNs). This hybrid lipid–polymeric tool is made up of core–shell structure, where a polymeric chitosan core is enveloped in a lipid bilayer, capable of co-encapsulating simultaneously Gd-DTPA and Irinotecan/Atto 633 compounds. As a result, a monodisperse population of hybrid NPs with an average size of 77 nm, with preserved structural integrity in different environmental conditions and high biocompatibility, can be used for MRI and Optical applications. Furthermore, preliminary results show the enhanced delivery and therapeutic efficacy of Irinotecan-loaded hybrid formulation against U87 MG cancers cells.
Collapse
|
11
|
Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor. Int J Pharm 2021; 605:120819. [PMID: 34166727 DOI: 10.1016/j.ijpharm.2021.120819] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Targeted delivery of chemotherapeutic agents is considered a prominent strategy for the treatment of cancer due to its site-specific delivery, augmented penetration, bioavailability, and improved therapeutic efficiency. In the present study, we employed UniPR126 as a carrier in a mixed nanomicellar delivery system to target and deliver anticancer drug NIC specifically to cancer cells via EphA2 receptors as these receptors are overexpressed in cancer cells but not in normal cells. The specificity of the carrier was confirmed from the significant enhancement in the uptake of coumarin-6 loaded mixed nanomicelle by EphA2 highly expressed PC-3 cells compared to EphA2 low expressed H4 cells. Further, niclosamide-loaded lithocholic acid tryptophan conjugate-based mixed nanomicelle has shown significant synergistic cytotoxicity in PC-3 but not in H4 cells. In vivo anticancer efficacy data in PC-3 xenograft revealed a significant reduction in the tumor volume (66.87%) with niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle, where pure niclosamide showed just half of the activity. Molecular signaling data by western blotting also indicated that niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle interfered with the EphA2 receptor signaling and inhibition of the Wnt/beta-catenin pathway and resulted in the synergistic anticancer activity compared to niclosamide pure drug.
Collapse
|
12
|
Cauzzo J, Jayakumar N, Ahluwalia BS, Ahmad A, Škalko-Basnet N. Characterization of Liposomes Using Quantitative Phase Microscopy (QPM). Pharmaceutics 2021; 13:pharmaceutics13050590. [PMID: 33919040 PMCID: PMC8142990 DOI: 10.3390/pharmaceutics13050590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid development of nanomedicine and drug delivery systems calls for new and effective characterization techniques that can accurately characterize both the properties and the behavior of nanosystems. Standard methods such as dynamic light scattering (DLS) and fluorescent-based assays present challenges in terms of system's instability, machine sensitivity, and loss of tracking ability, among others. In this study, we explore some of the downsides of batch-mode analyses and fluorescent labeling, while introducing quantitative phase microscopy (QPM) as a label-free complimentary characterization technique. Liposomes were used as a model nanocarrier for their therapeutic relevance and structural versatility. A successful immobilization of liposomes in a non-dried setup allowed for static imaging conditions in an off-axis phase microscope. Image reconstruction was then performed with a phase-shifting algorithm providing high spatial resolution. Our results show the potential of QPM to localize subdiffraction-limited liposomes, estimate their size, and track their integrity over time. Moreover, QPM full-field-of-view images enable the estimation of a single-particle-based size distribution, providing an alternative to the batch mode approach. QPM thus overcomes some of the drawbacks of the conventional methods, serving as a relevant complimentary technique in the characterization of nanosystems.
Collapse
Affiliation(s)
- Jennifer Cauzzo
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Nikhil Jayakumar
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Balpreet Singh Ahluwalia
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Azeem Ahmad
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway;
- Correspondence: ; Tel.: +47-776-46-640
| |
Collapse
|
13
|
Thorn CR, Thomas N, Boyd BJ, Prestidge CA. Nano-fats for bugs: the benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv Transl Res 2021; 11:1598-1624. [PMID: 33675007 DOI: 10.1007/s13346-021-00921-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
Bacterial infections are an imminent global healthcare threat evolving from rapidly advancing bacterial defence mechanisms that antibiotics fail to overcome. Antibiotics have been designed for systemic administration to target planktonic bacteria, leading to difficulties in reaching the site of localized bacterial infection and an inability to overcome the biological, chemical and physical barriers of bacteria, including biofilms, intracellular infections and antimicrobial resistance. The amphiphilic, biomimetic and antimicrobial properties of lipids provide a promising toolbox to innovate and advance antimicrobial therapies, overcoming the barriers presented by bacteria in order to directly and effectively treat recalcitrant infections. Nanoparticulate lipid-based drug delivery systems can enhance antibiotic permeation through the chemical and physical barriers of bacterial infections, as well as fuse with bacterial cell membranes, release antibiotics in response to bacteria and act synergistically with loaded antibiotics to enhance the total antimicrobial efficacy. This review explores the barriers presented by bacterial infections that pose bio-pharmaceutical challenges to antibiotics and how different structural and functional mechanisms of lipids can enhance antimicrobial therapies. Different nanoparticulate lipid-based systems are presented as valuable drug delivery systems to advance the efficacy of antibiotics, including liposomes, liquid crystalline nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers and lipid nanocarriers. In summary, liquid crystalline nanoparticles are emerging with the greatest potential for clinical applications and commercial success as an "all-rounder" advanced lipid-based antimicrobial therapy that overcomes the multiple biological, chemical and physical barriers of bacteria.
Collapse
Affiliation(s)
- Chelsea R Thorn
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia.,The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia
| | - Nicky Thomas
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia.,The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia
| | - Ben J Boyd
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia.,Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
| | - Clive A Prestidge
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia.
| |
Collapse
|
14
|
Wongkhieo S, Numdee K, Lam EWF, Choowongkomon K, Kongsema M, Khongkow M. Liposomal Thiostrepton Formulation and Its Effect on Breast Cancer Growth Inhibition. J Pharm Sci 2021; 110:2508-2516. [PMID: 33515584 DOI: 10.1016/j.xphs.2021.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
Forkhead box M1 (FOXM1) is known to play a role in breast cancer progression. FOXM1 inhibition becomes one of the strategies in developing the novel cancer therapy. Recently, thiostrepton has been recognized as a potent FOXM1 inhibitor. To improve its potential, we aimed to develop a nanodelivery system for thiostrepton. Here, liposome-encapsulated thiostrepton (TSLP) was developed. Physiochemical properties were characterized by TEM and dynamic light scattering technique. The biological activities were also evaluated, by cellular internalization, MTT assay, spheroid formation assay and RT-PCR. The result showed that the range sizes of TSLP were 152 ± 2 nm, polydispersity index (PdI) of 0.23 ± 0.02 and zeta potential of -20.2 ± 0.1 mV. As expected, TSLP showed a higher potential in reducing FOXM1 levels in MCF-7 cells than free thiostrepton. Additionally, TSLP significantly improved the efficiently and specificity of thiostrepton in reducing cell viability of MCF-7, but not of the fibroblast (HDFn) cells. Interestingly, TSLP had an ability to induce MCF-7 cell death in both 2D monolayer and 3D spheroid culture. In conclusions, TSLP could possibly be one of the potential developments using nano-delivery system to improve abilities and specificity of thiostrepton in breast cancer cell inhibition and death inducing, with decreasing non-specific toxicity.
Collapse
Affiliation(s)
- Sudtirak Wongkhieo
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Katawut Numdee
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Eric W F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Mesayamas Kongsema
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand.
| |
Collapse
|
15
|
Cauzzo J, Nystad M, Holsæter AM, Basnet P, Škalko-Basnet N. Following the Fate of Dye-Containing Liposomes In Vitro. Int J Mol Sci 2020; 21:ijms21144847. [PMID: 32659908 PMCID: PMC7402323 DOI: 10.3390/ijms21144847] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The rather limited success of translation from basic research to clinical application has been highlighted as a major issue in the nanomedicine field. To identify the factors influencing the applicability of nanosystems as drug carriers and potential nanomedicine, we focused on following their fate through fluorescence-based assays, namely flow cytometry and imaging. These methods are often used to follow the nanocarrier internalization and targeting; however, the validity of the obtained results strictly depends on how much the nanosystem’s fate can be inferred from the fate of fluorescent dyes. To evaluate the parameters that affect the physicochemical and biological stability of the labeled nanosystems, we studied the versatility of two lipid dyes, TopFluor®-PC and Cy5-DSPE, in conventional liposomes utilizing well-defined in vitro assays. Our results suggest that the dye can affect the major characteristics of the system, such as vesicle size and zeta-potential. However, a nanocarrier can also affect the dye properties. Medium, temperature, time, fluorophore localization and its concentration, as well as their interplay, affect the outcome of tracing experiments. Therefore, an in-depth characterization of the labeled nanosystem should be fundamental to understand the conditions that validate the results within the screening process in optimization of nanocarrier.
Collapse
Affiliation(s)
- Jennifer Cauzzo
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (J.C.); (A.M.H.)
| | - Mona Nystad
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (M.N.); (P.B.)
- Department of Medical Genetics, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Ann Mari Holsæter
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (J.C.); (A.M.H.)
| | - Purusotam Basnet
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (M.N.); (P.B.)
- Department of Obstetrics and Gynecology, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (J.C.); (A.M.H.)
- Correspondence:
| |
Collapse
|
16
|
N-Alkylisatin-Loaded Liposomes Target the Urokinase Plasminogen Activator System in Breast Cancer. Pharmaceutics 2020; 12:pharmaceutics12070641. [PMID: 32645963 PMCID: PMC7408009 DOI: 10.3390/pharmaceutics12070641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
The urokinase plasminogen activator and its receptor (uPA/uPAR) are biomarkers for metastasis, especially in triple-negative breast cancer. We prepared anti-mitotic N-alkylisatin (N-AI)-loaded liposomes functionalized with the uPA/uPAR targeting ligand, plasminogen activator inhibitor type 2 (PAI-2/SerpinB2), and assessed liposome uptake in vitro and in vivo. Receptor-dependent uptake of PAI-2-functionalized liposomes was significantly higher in the uPA/uPAR overexpressing MDA-MB-231 breast cancer cell line relative to the low uPAR/uPAR expressing MCF-7 breast cancer cell line. Furthermore, N-AI cytotoxicity was enhanced in a receptor-dependent manner. In vivo, PAI-2 N-AI liposomes had a plasma half-life of 5.82 h and showed an increased accumulation at the primary tumor site in an orthotopic MDA-MB-231 BALB/c-Fox1nu/Ausb xenograft mouse model, relative to the non-functionalized liposomes, up to 6 h post-injection. These findings support the further development of N-AI-loaded PAI-2-functionalized liposomes for uPA/uPAR-positive breast cancer, especially against triple-negative breast cancer, for which the prognosis is poor and treatment is limited.
Collapse
|
17
|
Eslami M, Zeglio E, Alosaimi G, Yan Y, Ruprai H, Macmillan A, Seidel J, Lauto A, Joukhdar H, Rnjak-Kovacina J, Mawad D. A One Step Procedure toward Conductive Suspensions of Liposome-Polyaniline Complexes. Macromol Biosci 2020; 20:e2000103. [PMID: 32537900 DOI: 10.1002/mabi.202000103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/21/2020] [Indexed: 11/07/2022]
Abstract
Interaction of conjugated polymers with liposomes is an attractive approach that benefits from both systems' characteristics such as electroactivity and enhanced interaction with cells. Conjugated polymer-liposome complexes have been investigated for bioimaging, drug delivery, and photothermal therapy. Their fabrication has largely been achieved by multistep procedures that require first the synthesis and processing of the conjugated polymer. Here, a new one step fabrication approach is reported based on in situ polymerization of a conjugated monomer precursor around liposomes. Polyaniline (PANI) doped with phytic acid is synthesized via oxidative polymerization in the presence of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) vesicles to produce a conductive aqueous suspension of Liposome-PANI complexes. PANI interacts with liposomes without disrupting the bilayer as shown using differential scanning calorimetry and fluorescence quenching studies of the hydrophobic Nile red probe. The electronic conductivity of the Liposome-PANI complexes, which stems from the doped PANI accessible on the liposome surface, is confirmed using conductive atomic force microscopy and electrochemical impedance spectroscopy. Further, short-term in vitro cell studies show that the complexes colocalize with the cell membrane without reducing cell proliferation. This study presents a novel fabrication route to conductive suspensions of conjugated polymer-liposome complexes suitable for potential applications at the biointerface.
Collapse
Affiliation(s)
- Minoo Eslami
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Centre for Advanced Macromolecular Design, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Erica Zeglio
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Centre for Advanced Macromolecular Design, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Ghaida Alosaimi
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- School of Chemistry, Taif University, Taif, 26571, Kingdom of Saudi Arabia
| | - Yihan Yan
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Centre for Advanced Macromolecular Design, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Herleen Ruprai
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alexander Macmillan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Jan Seidel
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Habib Joukhdar
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Centre for Advanced Macromolecular Design, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Australian Centre for Nano Medicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
18
|
Saroj S, Janni DS, Ummadi CR, Kannoth Manheri M. Functionalizable oxanorbornane-based head-group in the design of new Non-ionic amphiphiles and their drug delivery properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110857. [PMID: 32409031 DOI: 10.1016/j.msec.2020.110857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 11/20/2022]
Abstract
A new group of non-ionic amphiphiles with short alkyl chains and functionalizable oxanorbornane-based head group for drug delivery application are presented. They can be prepared through a sequence that starts with cycloaddition of Boc-protected furfuryl amine with maleic anhydride and reduction of the resulting adduct with LiAlH4 to get a diol intermediate. Introduction of alkyl chains through these primary hydroxyl groups and subsequent head-group modification via cis-hydroxylation resulted in a number of new amphiphiles in good yields. They were characterized by various spectro-analytical techniques and then subjected to drug-delivery studies using ibuprofen as a model drug. Functionalization of the head group through the amine functionality was also done with an intention to improve lipid packing to get better drug-loading and release properties. Irrespective of the nature of groups attached through this amine unit, all amphiphiles with short alkyl chains were found to assemble into spherical aggregates when drop-casted from various organic solvents. The same assembly preference prevailed in their formulations containing lipid-cholesterol-drug in 1: 0.5:1 ratio as well, and these particles had diameters <300 nm. Apart from good drug-loading efficiencies, these amphiphiles exhibited controlled release properties and did not show any indication of toxicity when assayed against NIH3T3 cells. The formulation based on lipid having a phenylalanine unit on the head group (1.10c) turned out to be the best in this series which showed a loading efficiency of 57.6% with a controlled release of ~42% by end of 24 h. Because of efficient layering that is facilitated by hydrogen bonding involving well-directed hydroxyl groups on the head group, amphiphiles with alkyl chains as short as C5 are able to act as efficient drug delivery systems, which is one of the highlights of this work.
Collapse
Affiliation(s)
- Soumya Saroj
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Devi Sirisha Janni
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | | |
Collapse
|
19
|
Bollag WB, Olala LO, Xie D, Lu X, Qin H, Choudhary V, Patel R, Bogorad D, Estes A, Watsky M. Dioleoylphosphatidylglycerol Accelerates Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci 2020; 61:29. [PMID: 32186673 PMCID: PMC7401755 DOI: 10.1167/iovs.61.3.29] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose In contact with the external environment, the cornea can easily be injured. Although corneal wounds generally heal rapidly, the pain and increased risk of infection associated with a damaged cornea, as well as the impaired healing observed in some individuals, emphasize the need for novel treatments to accelerate corneal healing. We previously demonstrated in epidermal keratinocytes that the glycerol channel aquaporin-3 (AQP3) interacts with phospholipase D2 (PLD2) to produce the signaling phospholipid phosphatidylglycerol (PG), which has been shown to accelerate skin wound healing in vivo. We hypothesized that the same signaling pathway might be operational in corneal epithelial cells. Methods We used co-immunoprecipitation, immunohistochemistry, scratch wound healing assays in vitro, and corneal epithelial wound healing assays in vivo to determine the role of the AQP3/PLD2/PG signaling pathway in corneal epithelium. Results AQP3 was present in human corneas in situ, and AQP3 and PLD2 were co-immunoprecipitated from corneal epithelial cell lysates. The two proteins could also be co-immunoprecipitated from insect cells simultaneously infected with AQP3- and PLD2-expressing baculoviruses, suggesting a likely direct interaction. A particular PG, dioleoylphosphatidylglycerol (DOPG), enhanced scratch wound healing of a corneal epithelial monolayer in vitro. DOPG also accelerated corneal epithelial wound healing in vivo, both in wild-type mice and in a mouse model exhibiting impaired corneal wound healing (AQP3 knockout mice). Conclusions These results indicate the importance of the AQP3/PLD2/PG signaling pathway in corneal epithelial cells and suggest the possibility of developing DOPG as a pharmacologic therapy to enhance corneal wound healing in patients.
Collapse
Affiliation(s)
- Wendy B. Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Lawrence O. Olala
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Ding Xie
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Haixia Qin
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Vivek Choudhary
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Rachana Patel
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - David Bogorad
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Amy Estes
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Mitchell Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
20
|
Kuhn J, Smirnov A, Criss AK, Columbus L. Quantifying Carcinoembryonic Antigen-like Cell Adhesion Molecule-Targeted Liposome Delivery Using Imaging Flow Cytometry. Mol Pharm 2019; 16:2354-2363. [PMID: 30995063 DOI: 10.1021/acs.molpharmaceut.8b01274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Carcinoembryonic antigen-like cell adhesion molecules (CEACAMs) are human cell-surface proteins that can exhibit increased expression on tumor cells and are thus a potential target for novel tumor-seeking therapeutic delivery methods. We hypothesize that engineered nanoparticles containing a known interaction partner of CEACAM, Neisseria gonorrhoeae outer membrane protein Opa, can be used to deliver cargo to specific cellular targets. In this study, the cell association and uptake of protein-free liposomes and Opa proteoliposomes into CEACAM-expressing cells were measured using imaging flow cytometry. A size-dependent internalization of liposomes into HeLa cells was observed through endocytic pathways. Opa-dependent, CEACAM1-mediated uptake of liposomes into HeLa cells was observed, with limited colocalization with endosomal and lysosomal trafficking compartments. Given the overexpression of CEACAM1 on several distinct cancers and interest in using CEACAM1 as a component in treatment strategies, these results support further pursuit of investigating Opa-dependent specificity and the internalization mechanism for therapeutic delivery.
Collapse
|
21
|
Münter R, Kristensen K, Pedersbæk D, Larsen JB, Simonsen JB, Andresen TL. Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies. NANOSCALE 2018; 10:22720-22724. [PMID: 30488936 DOI: 10.1039/c8nr07755j] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Within nanomedicine, liposomes are investigated for their ability to deliver drug cargoes specifically into subcellular compartments of target cells. Such studies are often based on flow cytometry or microscopy, where researchers rely on fluorescently labeled lipids (FLLs) incorporated into the liposomal membrane to determine the localization of the liposomes within cells. These studies assume that the FLLs stay embedded in the liposomal membrane throughout the duration of the experiment. Here, we used size exclusion chromatography (SEC) to investigate the validity of this assumption by quantitatively determining the propensity of various widely used FLLs to dissociate from liposomes during incubation in human plasma. For certain commonly used off-the-shelf FLLs, up to 75% of the dye dissociated from the liposomes, while others dissociated less than 10%. To investigate the implications of this finding, we measured the peripheral blood leukocyte uptake of liposomes formulated with different FLLs using flow cytometry, and observed a significant difference in uptake correlating with the FLL's dissociation tendencies. Consequently, the choice of FLL can dramatically influence the conclusions drawn from liposome uptake and localization studies due to uptake of dissociated FLLs. The varying dissociation propensities for the FLLs were not reflected when incubating in buffer, showing that non-biological environments are unsuitable to mimic liposomal stability in a drug delivery context. Overall, our findings suggest that it is crucial for researchers to evaluate the stability of their FLL-labeled liposomes in biological environments, and the simplicity of the SEC assay put forward here makes it very applicable for the purpose.
Collapse
Affiliation(s)
- Rasmus Münter
- Department of Micro- and Nanotechnology (DTU Nanotech), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
22
|
Patel J, Amrutiya J, Bhatt P, Javia A, Jain M, Misra A. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul 2018. [DOI: 10.1080/02652048.2018.1453560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Jitendra Amrutiya
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Priyanka Bhatt
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ankit Javia
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Mukul Jain
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| | - Ambikanandan Misra
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
23
|
Han SM, Na YG, Lee HS, Son GH, Jeon SH, Bang KH, Kim SJ, Lee HJ, Cho CW. Improvement of cellular uptake of hydrophilic molecule, calcein, formulated by liposome. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0358-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Peng L, Xiong W, Cai Y, Chen Y, He Y, Yang J, Jin J, Li H. A simple, rapid method for evaluation of transfection efficiency based on fluorescent dye. Bioengineered 2017; 8:225-231. [PMID: 27676288 PMCID: PMC5470522 DOI: 10.1080/21655979.2016.1222995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/05/2016] [Accepted: 08/07/2016] [Indexed: 12/13/2022] Open
Abstract
Enhanced transfection efficiency of transient gene expression (TGE) and electroporation is a useful approach for improvement of recombinant therapeutic proteins in mammalian cells. A novel method is described here in which CHO cells expressing recombinant FVII (rFVII) were labeled with fluorescent dye and analyzed by confocal microscopy. Cells with or without rFVII encoding gene were detectable by flow cytometry. Thus, we were able to distinguish positive cells (with rFVII encoding gene) and quantify their percentages. We evaluated the effects of varying electroporation conditions (voltage, number of repetitions, plasmid amount, carrier DNA) in order to optimize transfection efficiency. The highest transfection efficiency achieved was ∼86%. The method described here allows rapid evaluation of transfection efficiency without co-expression of reporter genes. In combination with appropriate antibodies, the method can be extended to evaluation of transfection efficiency in cells expressing other recombinant proteins.
Collapse
Affiliation(s)
- Lin Peng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wendian Xiong
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yanfei Cai
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yun Chen
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yang He
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianfeng Yang
- Cyrus Tang Hematology Center and Ministry of Education Engineering Center of Hematological Disease, Soochow University, Suzhou, China
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Huazhong Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Noyhouzer T, L'Homme C, Beaulieu I, Mazurkiewicz S, Kuss S, Kraatz HB, Canesi S, Mauzeroll J. Ferrocene-Modified Phospholipid: An Innovative Precursor for Redox-Triggered Drug Delivery Vesicles Selective to Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4169-4178. [PMID: 26987014 DOI: 10.1021/acs.langmuir.6b00511] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Controlled payload release is one of the key elements in the creation of a reliable drug delivery system. We report the discovery of a drug delivery vessel able to transport chemotherapeutic agents to target cancer cells and selectively trigger their release using the electrochemical activity of a ferrocene-modified phospholipid. Supported by in vitro assays, the competitive advantages of this discovery are (i) the simple one step scalability of the synthetic process, (ii) the stable encapsulation of toxic drugs (doxorubicin) during transport, and (iii) the selective redox triggering of the liposomes to harness their cytotoxic payload at the cancer site. Specifically, the redox-modified giant unilamellar vesicle and liposomes were characterized using advanced methods such as scanning electrochemical microscopy (SECM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and fluorescent imaging.
Collapse
Affiliation(s)
- Tomer Noyhouzer
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A OB8
| | - Chloé L'Homme
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal , C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
| | - Isabelle Beaulieu
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A OB8
| | - Stephanie Mazurkiewicz
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A OB8
| | - Sabine Kuss
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A OB8
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, Ontario M1C 1A4, Canada
| | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal , C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A OB8
| |
Collapse
|