1
|
Basurto‐Islas G, Diaz MC, Ocampo LMZ, Martínez‐Herrera M, López‐Camacho PY. Natural products against tau hyperphosphorylation-induced aggregates: Potential therapies for Alzheimer's disease. Arch Pharm (Weinheim) 2025; 358:e2400721. [PMID: 39888017 PMCID: PMC11781347 DOI: 10.1002/ardp.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory impairments and is considered the most prevalent form of dementia. Among the contributing factors to AD lies the hyperphosphorylation of the microtubule-associated protein tau. Phosphorylated tau reduces its affinity for microtubules and triggers other posttranslational modifications that result in its aggregation and assembly into filaments. These structures progressively accumulate within neurons leading to neurodegeneration. While current AD medications often involve undesirable side effects, the exploration of natural products as a potential therapeutic alternative has gained considerable attention. Numerous compounds have shown potential capacity for reducing tau pathology through different mechanisms, such as inhibiting kinases to reduce tau hyperphosphorylation, enhancing phosphatase activity, and blocking fibril formation. Since tau hyperphosphorylation-induced aggregation is pivotal in AD onset, this review aims to elucidate the potential of natural products in modulating this crucial molecular mechanism.
Collapse
Affiliation(s)
| | | | | | - Melchor Martínez‐Herrera
- Departamento de Ciencias NaturalesUniversidad Autónoma Metropolitana CuajimalpaCiudad de MéxicoMexico
| | - Perla Y. López‐Camacho
- Departamento de Ciencias NaturalesUniversidad Autónoma Metropolitana CuajimalpaCiudad de MéxicoMexico
| |
Collapse
|
2
|
Lv MT, Wang HC, Meng XW, Shi YT, Zhang YM, Shan LL, Shi RL, Ni TJ, Duan YC, Yang ZJ, Zhang W. In silico and in vitro analyses of a novel FoxO1 agonist reducing Aβ levels via downregulation of BACE1. CNS Neurosci Ther 2024; 30:e14140. [PMID: 36892036 PMCID: PMC10915984 DOI: 10.1111/cns.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
AIMS FoxO1 is an important target in the treatment of Alzheimer's disease (AD). However, FoxO1-specific agonists and their effects on AD have not yet been reported. This study aimed to identify small molecules that upregulate the activity of FoxO1 to attenuate the symptoms of AD. METHODS FoxO1 agonists were identified by in silico screening and molecular dynamics simulation. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were used to assess protein and gene expression levels of P21, BIM, and PPARγ downstream of FoxO1 in SH-SY5Y cells, respectively. Western blotting and enzyme-linked immunoassays were performed to explore the effect of FoxO1 agonists on APP metabolism. RESULTS N-(3-methylisothiazol-5-yl)-2-(2-oxobenzo[d]oxazol-3(2H)-yl) acetamide (compound D) had the highest affinity for FoxO1. Compound D activated FoxO1 and regulated the expression of its downstream target genes, P21, BIM, and PPARγ. In SH-SY5Y cells treated with compound D, BACE1 expression levels were downregulated, and the levels of Aβ1-40 and Aβ1-42 were also reduced. CONCLUSIONS We present a novel small-molecule FoxO1 agonist with good anti-AD effects. This study highlights a promising strategy for new drug discovery for AD.
Collapse
Affiliation(s)
- Ming-Ti Lv
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - He-Cheng Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiao-Wen Meng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ya-Ting Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yi-Min Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lin-Lin Shan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ru-Ling Shi
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Jun Ni
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Zhi-Jun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Wei Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Teng Y, Gao J, Tan T, Zhang X, Wang Y, Zhang J, Ni L. Chemical components and against alzheimer's disease effects of the calyxes of Physalis alkekengi L. var. franchetii (Mast.) Makino. J Chem Neuroanat 2024; 136:102390. [PMID: 38228242 DOI: 10.1016/j.jchemneu.2024.102390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Physalis alkekengi L. var. franchetii (Mast.) Makino (PA), a traditional Chinese medicine, is utilised for treating dermatitis, sore throat, dysuria, and cough. This research aimed to identify the main constituents in the four extracted portions from the calyces of PA (PAC) utilising ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The Alzheimer's disease (AD) mice model was induced by D-galactose (D-gal) combined with aluminium chloride (AlCl3). Subsequent investigation into the underlying mechanisms involved behavioural and histopathological observations. The results demonstrated that four extracted portions of PAC (PACE) significantly enhanced memory and learning abilities in the Morris water maze. The concentrations of Aβ, tau and p-tau in brain tissue exhibited a significant decrease relative to the model group. Moreover, the four PACE treatment groups increased the glutathione (GSH) and superoxide dismutase (SOD) levels, while concurrently reducing malondialdehyde (MDA), interleukin-1β (IL-1β) and interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) levels. In summary, the current study demonstrates that the four PACE formulations exhibit beneficial anti-AD properties, with the most pronounced efficacy observed in the EA group. Additionally, PAC shows potential in mitigating neuroinflammation and oxidative damage by inhibiting the TLR4/NF-κB signalling pathway. This research lays a theoretical groundwork for the future clinical development and utilisation of PAC in treating AD.
Collapse
Affiliation(s)
- Yang Teng
- Department of Pharmacy, Jiamusi University, Jiamusi, China; Department of Vocational Education Group, Jiamusi, China
| | - Jia Gao
- Department of Pharmacy, Jiamusi University, Jiamusi, China
| | - Tian Tan
- Department of Vocational Education Group, Jiamusi, China
| | | | - Yuliang Wang
- Department of Pharmacy, Jiamusi University, Jiamusi, China
| | - Jiaguang Zhang
- Department of Vocational Education Group, Jiamusi, China
| | - Lei Ni
- Department of Clinical Medicine, Jiamusi University, Jiamusi, China.
| |
Collapse
|
4
|
Zhang JF, Wu SF, Zhu L, Cai YX, Yu ZP, Kong LY, Luo JG. Withanolides from Physalis angulata var. villosa and the Relative Configurational Revision of Some Known Analogs. JOURNAL OF NATURAL PRODUCTS 2024; 87:38-49. [PMID: 38207331 DOI: 10.1021/acs.jnatprod.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Physalis angulata var. villosa is a plant possessing abundant withanolides, but in-depth research is lacking. In our ongoing study of P. angulata var. villosa, 15 previously undescribed withanolides (1-15), along with 21 known analogs (16-36), were isolated from the whole plant. The structures of the withanolides (1-15) were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and ECD data. Additionally, the application of γ-gauche effects with the help of ROESY correlations led to the formulation of empirical rules for withanolides with 14-OH/15-OAc to rapidly determine the 14-OH orientations, making it possible to propose configurational revisions of 19 previously reported analogs (1'-19'). Withanolides 1, 4-6, and 10 showed potent cytotoxic activities against three human cancer cell lines (HCT-116, MDA-MB-231, and A549).
Collapse
Affiliation(s)
- Jian-Fei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Si-Fang Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yu-Xing Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhan-Peng Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
5
|
Zhang W, Zhang L, Lv M, Fu Y, Meng X, Wang M, Wang H. Advances in Developing Small Molecule Drugs for Alzheimer's Disease. Curr Alzheimer Res 2024; 21:221-231. [PMID: 39136501 DOI: 10.2174/0115672050329828240805074938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia among middle-aged and elderly individuals. Accelerating the prevention and treatment of AD has become an urgent problem. New technology including Computer-aided drug design (CADD) can effectively reduce the medication cost for patients with AD, reduce the cost of living, and improve the quality of life of patients, providing new ideas for treating AD. This paper reviews the pathogenesis of AD, the latest developments in CADD and other small-molecule docking technologies for drug discovery and development; the current research status of small-molecule compounds for AD at home and abroad from the perspective of drug action targets; the future of AD drug development.
Collapse
Affiliation(s)
- Wei Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Liujie Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Mingti Lv
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Yun Fu
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Xiaowen Meng
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Mingyong Wang
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
- Department of Medical Technology, Shangqiu Medical College, Shangqiu, Henan, China
| | - Hecheng Wang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- School of Life and Pharmaceutical Science, Dalin University of Technology, Panjin, China
| |
Collapse
|
6
|
Teaney NA, Cyr NE. FoxO1 as a tissue-specific therapeutic target for type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1286838. [PMID: 37941908 PMCID: PMC10629996 DOI: 10.3389/fendo.2023.1286838] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Forkhead box O (FoxO) proteins are transcription factors that mediate many aspects of physiology and thus have been targeted as therapeutics for several diseases including metabolic disorders such as type 2 diabetes mellitus (T2D). The role of FoxO1 in metabolism has been well studied, but recently FoxO1's potential for diabetes prevention and therapy has been debated. For example, studies have shown that increased FoxO1 activity in certain tissue types contributes to T2D pathology, symptoms, and comorbidities, yet in other tissue types elevated FoxO1 has been reported to alleviate symptoms associated with diabetes. Furthermore, studies have reported opposite effects of active FoxO1 in the same tissue type. For example, in the liver, FoxO1 contributes to T2D by increasing hepatic glucose production. However, FoxO1 has been shown to either increase or decrease hepatic lipogenesis as well as adipogenesis in white adipose tissue. In skeletal muscle, FoxO1 reduces glucose uptake and oxidation, promotes lipid uptake and oxidation, and increases muscle atrophy. While many studies show that FoxO1 lowers pancreatic insulin production and secretion, others show the opposite, especially in response to oxidative stress and inflammation. Elevated FoxO1 in the hypothalamus increases the risk of developing T2D. However, increased FoxO1 may mitigate Alzheimer's disease, a neurodegenerative disease strongly associated with T2D. Conversely, accumulating evidence implicates increased FoxO1 with Parkinson's disease pathogenesis. Here we review FoxO1's actions in T2D conditions in metabolic tissues that abundantly express FoxO1 and highlight some of the current studies targeting FoxO1 for T2D treatment.
Collapse
Affiliation(s)
- Nicole A. Teaney
- Stonehill College, Neuroscience Program, Easton, MA, United States
| | - Nicole E. Cyr
- Stonehill College, Neuroscience Program, Easton, MA, United States
- Stonehill College, Department of Biology, Easton, MA, United States
| |
Collapse
|
7
|
Teng Y, Yuan Q, Wu Y, Wu S, Su J, Zhang P, Zhang Y. Research on the Chemical Constituents against Alzheimer's Disease of the Fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino. Chem Biodivers 2023; 20:e202301075. [PMID: 37505462 DOI: 10.1002/cbdv.202301075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
Physalis alkekengi L. var. franchetii (Mast.) Makino (PA) is a natural plant which is utilised as a traditional herbal medicine. It has properties that make it effective against inflammation and free radical damage. In the present study, the major constituents of four extraction parts of the fruits of PA (PAF) were investigated by combining ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The mice model of Alzheimer's disease (AD) induced by aluminum chloride (AlCl3 ) combined with D-galactose (D-gal) was established to comprehend the mechanism behind PAF's anti-AD activity from both behavioural and pathological perspectives. The results showed that four extraction parts of PAF (PAFE) had favorable anti-AD effects and the ethyl acetate (EA) group showed the best activity. UPLC-Q-TOF-MS analysis identified Physalin B, Nobiletin and Caffeic acid as the main anti-AD active constituents in EA extract. This study reveals that PAF can reduce neuroinflammatory damage by inhibiting p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway, which is the theoretical basis for clinical development and utilization of PAF in AD therapy.
Collapse
Affiliation(s)
- Yang Teng
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| | - Qi Yuan
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - You Wu
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Shuang Wu
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| | - Pengxia Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| |
Collapse
|
8
|
Yuan-Ce L, Yu-Yan P, Qi Z, Hong-Yang Z, Yan-Wen W, Yu-Mei S, Guang-Zhi Z, Jun-Lin Y. Physalis pubescens L. branch and leaf extracts inhibit lymphoma proliferation by inducing apoptosis and cell cycle arrest. Front Pharmacol 2023; 14:1192225. [PMID: 37554986 PMCID: PMC10404818 DOI: 10.3389/fphar.2023.1192225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Physalis pubescens L. is an annual or perennial plant in the family Solanaceae It is used in traditional medicine for treating sore throats, coughs, urinary discomfort, and astringent pain, and externally for pemphigus and eczema in northern China. The proliferation inhibitory activity and mechanisms of the ethyl acetate extract (PHY-EA) from the leaves of Physalis pubescens were investigated. High performance liquid chromatography was used to identify the chemical composition of PHY-EA; sulforhodamine B was used to detect the proliferation inhibitory effect of PHY-EA on MCF-7, CA-46, Hela, HepG2, B16, and other tumor cells; flow cytometry was used to detect the effect of PHY-EA on the lymphoma cell cycle and apoptosis; Western blot was used to detect the expression of the cycle- and apoptosis-related proteins. The expression of Ki-67 and cleaved caspase 3 was detected by immunohistochemistry. The results showed that PHY-EA contained physalin B, physalin O, and physalin L. PHY-EA blocked the cell cycle of G2/M→G0/G1 in lymphoma cells and induced apoptosis in tumor cells. Mouse transplantation tumor experiments showed that PHY-EA had a significant inhibitory effect on mouse transplantation tumors, and the tumor volume and weight were significantly reduced. In conclusion, PHY-EA has a good antiproliferative effect on Burkkit lymphoma, indicating its potential medicinal value.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zeng Guang-Zhi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Yin Jun-Lin
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| |
Collapse
|
9
|
Xu M, Huang J, Zhu F, Shen K, Liu F, Deng X. FOXO1 inhibits FSL-1 regulation of integrin β6 by blocking STAT3 binding to the integrin β6 gene promoter. Front Cell Infect Microbiol 2022; 12:998693. [PMID: 36299623 PMCID: PMC9589051 DOI: 10.3389/fcimb.2022.998693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Integrin β6 (ITGB6), an epithelial-specific receptor, is downregulated in the gingival epithelium of periodontitis and is associated with inflammation response and periodontitis development. However, the transcriptional regulatory mechanism of ITGB6 downregulation in the human gingival epithelium remains unclear. Fibroblast-stimulating lipopeptide-1 (FSL-1), an oral biofilm component, promotes an epithelial cell-driven proinflammatory response in periodontitis partially by suppressing ITGB6 expression. The aim of the current study was to investigate the transcriptional regulatory mechanism of ITGB6 inhibition by FSL-1 in human epithelial cells (HaCaT and primary human gingival epithelial cells), and to delineate the transcriptional mechanism of ITGB6 suppression in periodontitis. We found that FSL-1 inhibited ITGB6 transcription through increasing forkhead box protein O1 (FOXO1) expression and inhibiting signal transducer and activator of transcription 3 (STAT3) activation. Furthermore, FOXO1 bound to STAT3 directly, leading to decreased STAT3 phosphorylation induced by FSL-1. Consequently, the binding of phosphorylated STAT3 to the ITGB6 promoter was decreased, and ITGB6 transcription was therefore downregulated following FSL-1 stimulation. The reciprocal action of STAT3 and FOXO1 on ITGB6 downregulation was also confirmed by the immunostaining of the inflammatory epithelium associated with periodontitis. Our findings suggest that the interaction of FOXO1-STAT3 may be a useful signal target for the treatment of periodontitis.
Collapse
Affiliation(s)
- Mingyan Xu
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Department of Implantology, Stomatological Hospital of Xiamen Medical College, Xiamen, China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Department of Stomatology, Xiamen Medical College, Xiamen, China
- School of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jie Huang
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, China
| | - Feixiang Zhu
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, China
| | - Kailun Shen
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Department of Implantology, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Fan Liu
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoling Deng
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Yang J, Sun Y, Cao F, Yang B, Kuang H. Natural Products from Physalis alkekengi L. var. franchetii (Mast.) Makino: A Review on Their Structural Analysis, Quality Control, Pharmacology, and Pharmacokinetics. Molecules 2022; 27:molecules27030695. [PMID: 35163960 PMCID: PMC8840080 DOI: 10.3390/molecules27030695] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
The calyxes and fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino (P. alkekengi), a medicinal and edible plant, are frequently used as heat-clearing and detoxifying agents in thousands of Chinese medicine prescriptions. For thousands of years in China, they have been widely used in clinical practice to treat throat disease, hepatitis, and bacillary dysentery. This systematic review summarizes their structural analysis, quality control, pharmacology, and pharmacokinetics. Furthermore, the possible development trends and perspectives for future research studies on this medicinal plant are discussed. Relevant information on the calyxes and fruits of P. alkekengi was collected from electronic databases, Chinese herbal classics, and Chinese Pharmacopoeia. Moreover, information was collected from ancient documents in China. The components isolated and identified in P. alkekengi include steroids, flavonoids, phenylpropanoids, alkaloids, nucleosides, terpenoids, megastigmane, aliphatic derivatives, organic acids, coumarins, and sucrose esters. Steroids, particularly physalins and flavonoids, are the major characteristic and bioactive ingredients in P. alkekengi. According to the literature, physalins are synthesized by the mevalonate and 2-C-methyl-d-erythritol-4-phosphate pathways, and flavonoids are synthesized by the phenylpropanoid pathway. Since the chemical components and pharmacological effects of P. alkekengi are complex and varied, there are different standards for the evaluation of its quality and efficacy. In most cases, the analysis was performed using high-performance liquid chromatography coupled with ultraviolet detection. A pharmacological study showed that the crude extracts and isolated compounds from P. alkekengi had extensive in vitro and in vivo biological activities (e.g., anti-inflammatory, anti-tumor, immunosuppressive, antibacterial, anti-leishmanial, anti-asthmatic, anti-diabetic, anti-oxidative, anti-malarial, anti-Alzheimer's disease, and vasodilatory). Moreover, the relevant anti-inflammatory and anti-tumor mechanisms were elucidated. The reported activities indicate the great pharmacological potential of P. alkekengi. Similarly, studies on the pharmacokinetics of specific compounds will also contribute to the progress of clinical research in this setting.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Feng Cao
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
- Correspondence: ; Tel.: +86-0451-82197188
| |
Collapse
|