1
|
Qiao X, Guo S, Meng Z, Gan H, Wu Z, Sun Y, Liu S, Dou G, Gu R. Advances in the study of death receptor 5. Front Pharmacol 2025; 16:1549808. [PMID: 40144653 PMCID: PMC11936945 DOI: 10.3389/fphar.2025.1549808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
DR5, a receptor with the highest affinity for TRAIL under physiological conditions, selectively induces apoptosis in specific target cells such as tumor and aberrant immune cells, while minimally affecting normal cells. The TRAIL-DR5 signaling pathway is a crucial regulatory mechanism when the body responds to various exogenous interference factors, including viruses, chemicals, and radiation. This pathway plays a vital role in maintaining physiological homeostasis and in the pathological development of various diseases. Different modulations of DR5, such as upregulation, activation, and antagonism, hold significant potential for therapeutic applications in tumors, cardiovascular diseases, autoimmune diseases, viral infections, and radiation injuries. This article provides an overview of the current research progress on DR5, including the status and prospects of its clinical applications.
Collapse
Affiliation(s)
- Xuan Qiao
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Guo
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
2
|
Virchea LI, Frum A, Georgescu C, Pecsenye B, Máthé E, Mironescu M, Crăciunaș MT, Totan M, Tănăsescu C, Gligor FG. An Overview of the Bioactivity of Spontaneous Medicinal Plants Suitable for the Improvement of Lung Cancer Therapies. Pharmaceutics 2025; 17:336. [PMID: 40143000 PMCID: PMC11945085 DOI: 10.3390/pharmaceutics17030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Lung cancer is the second cause of death in the world, being the most common type of cancer. Conventional therapies are not always recommended due to the particularities of patients. Thus, there is a need to develop new anticancer therapeutic agents. Medicinal plants constitute a source of bioactive compounds with therapeutic potential in lung cancer. The purpose of our narrative review is to evaluate and summarize the main studies on the cytotoxic effects of ten medicinal plants and their extracts, volatile oils, and bioactive compounds. We have also included studies that reported protective effects of these natural products against chemotherapy-induced toxicity. Studies were identified by assessing five databases using specific keywords. The investigated natural products possess cytotoxic effects on lung cancer cell cultures. Several mechanisms of action have been proposed including cell death by apoptosis, necrosis or autophagy, cell cycle arrest, the modulation of signaling pathways (PI3K/Akt and MAPK), the inhibition of migration, invasion and metastasis, antiangiogenesis, and targeting inflammation. Different bioactive compounds exhibit protective effects against chemotherapy-induced toxicity. Studies have shown promising results. To develop new therapeutic agents useful in treating lung cancer, the plants included in this review should be more deeply investigated to reveal their molecular mechanisms of action.
Collapse
Affiliation(s)
- Lidia-Ioana Virchea
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Adina Frum
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Cecilia Georgescu
- Faculty of Agriculture Sciences, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, Dr. Ion Rațiu Str. 7-9, 550012 Sibiu, Romania; (C.G.); (M.M.)
| | - Bence Pecsenye
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary; (B.P.); (E.M.)
| | - Endre Máthé
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary; (B.P.); (E.M.)
- Department of Life Sciences, Faculty of Medicine, Vasile Goldis, Western University from Arad, L. Rebreanu Str. 86, 310414 Arad, Romania
| | - Monica Mironescu
- Faculty of Agriculture Sciences, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, Dr. Ion Rațiu Str. 7-9, 550012 Sibiu, Romania; (C.G.); (M.M.)
| | - Mihai-Tudor Crăciunaș
- Faculty of Sciences, “Lucian Blaga” University of Sibiu, Dr. Ion Rațiu Str. 5-7, 550012 Sibiu, Romania;
| | - Maria Totan
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Ciprian Tănăsescu
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Felicia-Gabriela Gligor
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| |
Collapse
|
3
|
Jiwa H, Xie Z, Qu X, Xu J, Huang Y, Huang X, Zhang J, Wang N, Li N, Luo J, Luo X. Casticin induces ferroptosis in human osteosarcoma cells through Fe 2+ overload and ROS production mediated by HMOX1 and LC3-NCOA4. Biochem Pharmacol 2024; 226:116346. [PMID: 38852641 DOI: 10.1016/j.bcp.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Osteosarcoma is a primary solid bone malignancy, and surgery + chemotherapy is the most commonly used treatment. However, chemotherapeutic drugs can cause a range of side effects. Casticin, a polymethoxyflavonoid, has anti-tumor therapeutic effects. This study is aim to investigate the anti-osteosarcoma activity of casticin and explore the mechanism. Crystal violet staining, MTT assay, colony formation assay, wound healing assay, transwell assay, hoechst 33,258 staining, and flow cytometry analysis were used to investigate the effects of casticin on proliferation, migration, invasion, and apoptosis of osteosarcoma cells in vitro. The intracellular Fe2+, ROS, MDA, GSH/GSSG content changes were detected using the corresponding assay kits. The mRNA sequencing + bioinformatics analysis and western blot were used to detect the possible mechanism. We found that casticin caused G2/M phase cell cycle arrest in human osteosarcoma cells, inhibited the migration and invasion, and induced cell apoptosis and ferroptosis. Mechanistic studies showed the ferroptosis pathway was enriched stronger than apoptosis. Casticin up-regulated the expression of HMOX1, LC3 and NCOA4, meanwhile it activated MAPK signaling pathways. Animal experiments proved that casticin also inhibited the growth and metastasis of osteosarcoma cell xenograft tumor in vivo. In conclusion, casticin can induce ferroptosis in osteosarcoma cells through Fe2+ overload and ROS production mediated by HMOX1 and LC3-NCOA4. This provides a new strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Habu Jiwa
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhou Xie
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiao Qu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiongjie Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Nan Wang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ningdao Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Yang X, Liu Z, Xu X, He M, Xiong H, Liu L. Casticin induces apoptosis and cytoprotective autophagy while inhibiting stemness involving Akt/mTOR and JAK2/STAT3 pathways in glioblastoma. Phytother Res 2024; 38:305-320. [PMID: 37869765 DOI: 10.1002/ptr.8048] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
Glioblastoma (GBM) is the most common malignant glioma. However, the current systemic drugs cannot completely cure GBM. Casticin is a methoxylated flavonol compound isolated from a traditional Chinese medicine Vitex rotundifolia L.f. and exhibits a strong antitumor activity in multiple human malignancies. This study was aimed to explore the effects and underlying mechanisms of casticin in GBM. The MTT assay and colony formation was used to evaluate the casticin-induced cell viability in GBM cells. Apoptosis was assessed by ANNEXIV/PI staining assay. Autophagy was analyzed by transmission electron microscopy and immunofluorescence assays. GBM stem cell (GSC) was analyzed by tumor-sphere formation assay and ALDEFLUOR assay. The anti-GBM effect of casticin was also determined by the U87MG xenograft model. Casticin inhibited tumor cell growth in vitro and in vivo, as well as significantly induced apoptosis and autophagy. Autophagy inhibition augmented casticin-induced apoptosis. Casticin also reduced the GSC population by suppressing Oct4, Nanog, and Sox2. Mechanistically, casticin inhibited Akt/mTOR and JAK2/STAT3 signal pathways. The antitumor effect of casticin in GBM was demonstrated by inducing apoptosis, autophagy, and reducing population of GSCs; thus, it may be a potential GBM therapeutic agent for future clinical usage.
Collapse
Affiliation(s)
- Xun Yang
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
- Department of Spine Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zeyuan Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Xu Xu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Meng He
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Hongtao Xiong
- Department of Hand & Microvascular Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lijun Liu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| |
Collapse
|
5
|
Carbone K, Gervasi F, Kozhamzharova L, Altybaeva N, Sönmez Gürer E, Sharifi-Rad J, Hano C, Calina D. Casticin as potential anticancer agent: recent advancements in multi-mechanistic approaches. Front Mol Biosci 2023; 10:1157558. [PMID: 37304067 PMCID: PMC10250667 DOI: 10.3389/fmolb.2023.1157558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Plants, with their range of pharmacologically active molecules, represent the most promising source for the production of new anticancer drugs and for the formulation of adjuvants in chemotherapy treatments to reduce drug content and/or counteract the side effects of chemotherapy. Casticin is a major bioactive flavonoid isolated from several plants, mainly from the Vitex species. This compound is well known for its anti-inflammatory and antioxidant properties, which are mainly exploited in traditional medicine. Recently, the antineoplastic potential of casticin has attracted the attention of the scientific community for its ability to target multiple cancer pathways. The purpose of this review is, therefore, to present and critically analyze the antineoplastic potential of casticin, highlighting the molecular pathways underlying its antitumor effects. Bibliometric data were extracted from the Scopus database using the search strings "casticin" and "cancer" and analyzed using VOSviewer software to generate network maps to visualize the results. Overall, more than 50% of the articles were published since 2018 and even more recent studies have expanded the knowledge of casticin's antitumor activity by adding interesting new mechanisms of action as a topoisomerase IIα inhibitor, DNA methylase 1 inhibitor, and an upregulator of the onco-suppressive miR-338-3p. Casticin counteracts cancer progression through the induction of apoptosis, cell cycle arrest, and metastasis arrest, acting on several pathways that are generally dysregulated in different types of cancer. In addition, they highlight that casticin can be considered as a promising epigenetic drug candidate to target not only cancer cells but also cancer stem-like cells.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Fabio Gervasi
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Latipa Kozhamzharova
- Department of Scientific Works and International Relations, International Taraz Innovative Institute Named After Sherkhan Murtaza, Taraz, Kazakhstan
| | - Nazgul Altybaeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-frabi, Kazakhstan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | | | - Christophe Hano
- Department of Biological Chemistry, Université ď Orléans, Orléans, France
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
6
|
Vysotskaya IV, Kim EA, Kirsanov VY, Polikarpova SB, Ponomarev VE. Molecular effects of Mastodynon: realities and prospects for cancer prevention. TUMORS OF FEMALE REPRODUCTIVE SYSTEM 2022. [DOI: 10.17650/1994-4098-2022-18-3-107-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The article presents updated data concerning the molecular mechanisms of influence of the well-known in clinical practice drug Mastodynon. The paper provides evidence of a significant effect of the compounds containing in its composition on the cell lines of a number of malignant neoplasms: breast cancer, hepatocellular carcinoma, leukemia and others. The data obtained are extremely attractive in the perspective of using the drug as a preventive agent.
Collapse
Affiliation(s)
- I. V. Vysotskaya
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. A. Kim
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - V. Yu. Kirsanov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - S. B. Polikarpova
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - V. E. Ponomarev
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| |
Collapse
|
7
|
Bcl-2 Modulation in p53 Signaling Pathway by Flavonoids: A Potential Strategy towards the Treatment of Cancer. Int J Mol Sci 2021; 22:ijms222111315. [PMID: 34768743 PMCID: PMC8582810 DOI: 10.3390/ijms222111315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer is a major cause of death, affecting human life in both developed and developing countries. Numerous antitumor agents exist but their toxicity and low efficacy limits their utility. Furthermore, the complex pathophysiological mechanisms of cancer, serious side effects and poor prognosis restrict the administration of available cancer therapies. Thus, developing novel therapeutic agents are required towards a simultaneous targeting of major dysregulated signaling mediators in cancer etiology, while possessing lower side effects. In this line, the plant kingdom is introduced as a rich source of active phytochemicals. The secondary metabolites produced by plants could potentially regulate several dysregulated pathways in cancer. Among the secondary metabolites, flavonoids are hopeful phytochemicals with established biological activities and minimal side effects. Flavonoids inhibit B-cell lymphoma 2 (Bcl-2) via the p53 signaling pathway, which is a significant apoptotic target in many cancer types, hence suppressing a major dysregulated pathway in cancer. To date, there have been no studies reported which extensively highlight the role of flavonoids and especially the different classes of flavonoids in the modulation of Bcl-2 in the P53 signaling pathway. Herein, we discuss the modulation of Bcl-2 in the p53 signaling pathway by different classes of flavonoids and highlight different mechanisms through which this modulation can occur. This study will provide a rationale for the use of flavonoids against different cancers paving a new mechanistic-based approach to cancer therapy.
Collapse
|
8
|
Chrysosplenol D Triggers Apoptosis through Heme Oxygenase-1 and Mitogen-Activated Protein Kinase Signaling in Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13174327. [PMID: 34503136 PMCID: PMC8430639 DOI: 10.3390/cancers13174327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Oral squamous cell carcinoma (OSCC) accounts for the most malignancies. A GLO-BOCAN 2020 report estimated 377,713 new cases of oral cancer and 177,757 deaths due to oral cancer in 2020. Chrysosplenol D, a flavonol isolated from Artemisia annua L., can exert an-ticancer effects. This study investigated the anticancer property of chrysosplenol D and its un-derlying mechanism in oral squamous cell carcinoma. We observed that chrysosplenol D reduced cell viability, cell cycle arrest, apoptosis and autophagy in OSCC. Moreover, the upregulation of heme oxygenase-1 (HO-1) was found to be critical for chrysosplenol D-induced apoptotic cell death that patients with head and neck cancer had lower HO-1 expression. The findings of the present study indicated that chrysosplenol D exerts anticancer effects on OSCC by suppressing the MAPK pathway and activating HO-1 expression. Suggest that chrysosplenol D might be a potential anticancer agent for treating OSCC. Abstract Chrysosplenol D, a flavonol isolated from Artemisia annua L., can exert anticancer effects. This study investigated the anticancer property of chrysosplenol D and its underlying mechanism in oral squamous cell carcinoma (OSCC). We observed that chrysosplenol D reduced cell viability and caused cell cycle arrest in the G2/M phase. The findings of annexin V/propidium iodide staining, chromatin condensation, and apoptotic-related protein expression revealed that chrysosplenol D regulated apoptosis in OSCC. Furthermore, chrysosplenol D altered the expression of the autophagy marker LC3 and other autophagy-related proteins. Phosphatidylinositol 3-kinase/protein kinase B, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase (MAPK) were downregulated by chrysosplenol D, and the inhibition of these pathways significantly enhanced chrysosplenol D-induced cleaved poly (ADP-ribose) polymerase activation. Moreover, the upregulation of heme oxygenase-1 (HO-1) was found to be critical for chrysosplenol D-induced apoptotic cell death. The analysis of clinical data from The Cancer Genome Atlas and Gene Expression Omnibus datasets revealed that patients with head and neck cancer had lower HO-1 expression than did those with no head and neck cancer. The findings of the present study indicated that chrysosplenol D exerts anticancer effects on OSCC by suppressing the MAPK pathway and activating HO-1 expression.
Collapse
|
9
|
An Overview of the Potential Antineoplastic Effects of Casticin. Molecules 2020; 25:molecules25061287. [PMID: 32178324 PMCID: PMC7144019 DOI: 10.3390/molecules25061287] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer persists as one of the leading causes of deaths worldwide, contributing to approximately 9.6 million deaths per annum in recent years. Despite the numerous advancements in cancer treatment, there is still abundant scope to mitigate recurrence, adverse side effects and toxicities caused by existing pharmaceutical drugs. To achieve this, many phytochemicals from plants and natural products have been tested against cancer cell lines in vivo and in vitro. Likewise, casticin, a flavonoid extracted from the Vitex species, has been isolated from the leaves and seeds of V. trifolia and V. agnus-castus. Casticin possesses a wide range of therapeutic properties, including analgesic, anti-inflammatory, antiangiogenic, antiasthmatic and antineoplastic activities. Several studies have been conducted on the anticancer effects of casticin against cancers, including breast, bladder, oral, lung, leukemia and hepatocellular carcinomas. The compound inhibits invasion, migration and proliferation and induces apoptosis (casticin-induced, ROS-mediated and mitochondrial-dependent) and cell cycle arrest (G0/G1, G2/M, etc.) through different signaling pathways, namely the PI3K/Akt, NF-κB, STAT3 and FOXO3a/FoxM1 pathways. This review summarizes the chemo-preventive ability of casticin as an antineoplastic agent against several malignancies.
Collapse
|
10
|
Cheng ZY, Hsiao YT, Huang YP, Peng SF, Huang WW, Liu KC, Hsia TC, Way TD, Chung JG. Casticin Induces DNA Damage and Affects DNA Repair Associated Protein Expression in Human Lung Cancer A549 Cells (Running Title: Casticin Induces DNA Damage in Lung Cancer Cells). Molecules 2020; 25:E341. [PMID: 31952105 PMCID: PMC7024307 DOI: 10.3390/molecules25020341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Casticin was obtained from natural plants, and it has been shown to exert biological functions; however, no report concerns the induction of DNA damage and repair in human lung cancer cells. The objective of this study was to investigate the effects and molecular mechanism of casticin on DNA damage and repair in human lung cancer A549 cells. Cell viability was determined by flow cytometric assay. The DNA damage was evaluated by 4',6-diamidino-2-phenylindole (DAPI) staining and electrophoresis which included comet assay and DNA gel electrophoresis. The protein levels associated with DNA damage and repair were analyzed by western blotting. The expression and translocation of p-H2A.X were observed by confocal laser microscopy. Casticin reduced total viable cell number and induced DNA condensation, fragmentation, and damage in A549 cells. Furthermore, casticin increased p-ATM at 6 h and increased p-ATR and BRCA1 at 6-24 h treatment but decreased p-ATM at 24-48 h, as well as decreased p-ATR and BRCA1 at 48 h. Furthermore, casticin decreased p-p53 at 6-24 h but increased at 48 h. Casticin increased p-H2A.X and MDC1 at 6-48 h treatment. In addition, casticin increased PARP (cleavage) at 6, 24, and 48 h treatment, DNA-PKcs and MGMT at 48 h in A549 cells. Casticin induced the expressions and nuclear translocation of p-H2AX in A549 cells by confocal laser microscopy. Casticin reduced cell number through DNA damage and condensation in human lung cancer A549 cells.
Collapse
Affiliation(s)
- Zheng-Yu Cheng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan;
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| |
Collapse
|
11
|
Chaudhry GES, Jan R, Zafar MN, Mohammad H, Muhammad TST. Vitex Rotundifolia Fractions Induced Apoptosis in Human Breast Cancer T-47D Cell Line via Activation of Extrinsic and Intrinsic Pathway. Asian Pac J Cancer Prev 2019; 20:3555-3562. [PMID: 31870094 PMCID: PMC7173364 DOI: 10.31557/apjcp.2019.20.12.3555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/29/2019] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Breast cancer is the most frequently diagnosed cancer worldwide. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the extract and fractions of Vitex rotundifolia (leaves) in breast cancer cell line, T-47D. METHODS The cytotoxicity activity was measured using MTS assay. The mode of cell death was analysed by early (phosphatidylserine externalization) and late apoptosis (DNA fragmentation). The caspases 8, 9, 3/7 and apoptotic proteins bax, bcl-2 study were done by western blot and ELISA method. RESULTS The methanol extract was found to inhibit 50% growth of T-47D cells at the concentration of 79.43µg/ml respectively after 72hr. From seven fractions, fraction F1, F2 and F3 produced cytotoxicity effects in T-47D cell line with IC50 (72hr) < 30µg/ml. The results obtained by Annexin V/PI apoptosis detection assay and TUNEL assay suggest that active fractions of Vitex rotundifolia induced early and late apoptosis (DNA fragmentation) in T-47D cell line. Moreover, western blot analysis and Caspase GloTM luminescent assay demonstrated that fractions F2 and F3 triggered apoptotic cell death via activation of caspases -8, -9 and -3/7 and up-regulation of Bax and down-regulation of Bcl-2 protein. Furthermore, chemical profiling confirms the presence of potential metabolites (vitexicarpin) in fractions of Vitex rotundifolia. CONCLUSION Thus, the present study suggests the remarkable potential of active metabolites in fractions of Vitex rotundifolia as future cancer therapeutic agent for the treatment of breast cancer. .
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia,
| | - Rehmat Jan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia,
| | | | - Habsah Mohammad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia,
| | | |
Collapse
|
12
|
Lin CC, Chen KB, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Peng SF, Chung JG. Casticin inhibits human prostate cancer DU 145 cell migration and invasion via Ras/Akt/NF-κB signaling pathways. J Food Biochem 2019; 43:e12902. [PMID: 31353708 DOI: 10.1111/jfbc.12902] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 05/04/2019] [Indexed: 12/29/2022]
Abstract
Casticin, a polymethoxyflavone derived from natural plants, has biological activities including induction of cell apoptosis. In this study, we showed the beneficial effects of casticin on the inhibition of prostate cancer cell metastasis. Casticin reduced total viable cell number, thus, we selected low doses of casticin for following experiments. Casticin decreased cell mobility, suppressed cell migration and invasion, and reduced cell gelatinolytic activities of MMP-2/-9. Furthermore, casticin inhibited the protein levels of AKT, GSK3 αβ, Snail, and MMPs (MMP-2, -9, -13, and -7) at 24 and 48 hr treatment. Casticin diminished the expressions of NF-κB p65, GRB2, SOS-1, MEK, p-ERK1/2, and p-JNK1/2 at 48 hr treatment only. However, casticin reduced the level of E-cadherin at 24 hr treatment but elevated at 48 hr. The novel findings suggest that casticin may represent a new and promising therapeutic agent for the metastatic prostate cancer. PRACTICAL APPLICATIONS: Casticin derived from natural plants had been used for Chinese medicine in Chinese population for thousands of years. In the present study, casticin attenuated metastatic effects, including decreasing viable cell number, inhibiting the migration, invasion, and adhesion, and reducing matrix metalloproteinases activity on human prostate DU 145 cancer cells. In addition, the results also provided possible pathways involved in casticin anti-metastasis mechanism. We conclude that casticin may be an aptitude anticancer agent or adjuvant for the metastatic prostate cancer in the future.
Collapse
Affiliation(s)
- Chia-Chang Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
13
|
Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D. Flavonoids in Cancer and Apoptosis. Cancers (Basel) 2018; 11:cancers11010028. [PMID: 30597838 PMCID: PMC6357032 DOI: 10.3390/cancers11010028] [Citation(s) in RCA: 416] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer is the second leading cause of death globally. Although, there are many different approaches to cancer treatment, they are often painful due to adverse side effects and are sometimes ineffective due to increasing resistance to classical anti-cancer drugs or radiation therapy. Targeting delayed/inhibited apoptosis is a major approach in cancer treatment and a highly active area of research. Plant derived natural compounds are of major interest due to their high bioavailability, safety, minimal side effects and, most importantly, cost effectiveness. Flavonoids have gained importance as anti-cancer agents and have shown great potential as cytotoxic anti-cancer agents promoting apoptosis in cancer cells. In this review, a summary of flavonoids and their effectiveness in cancer treatment targeting apoptosis has been discussed.
Collapse
Affiliation(s)
- Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Sharon Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| |
Collapse
|
14
|
Casticin inhibits breast cancer cell migration and invasion by down-regulation of PI3K/Akt signaling pathway. Biosci Rep 2018; 38:BSR20180738. [PMID: 30401729 PMCID: PMC6265615 DOI: 10.1042/bsr20180738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Casticin is one of the major active components isolated from Fructus viticis Increasing studies have revealed that casticin has potential anticancer activity in various cancer cells, but its effects on breast cancer cell migration and invasion are still not well known. Therefore, the ability of cell migration and invasion in the breast cancer MDA-MB-231 and 4T1 cells treated by casticin was investigated. The results indicated that casticin significantly inhibited cell migration and invasion in the cells exposed to 0.25 and 0.50 µM of casticin for 24 h. Casticin treatment reduced matrix metalloproteinase (MMP) 9 (MMP-9) activity and down-regulated MMP-9 mRNA and protein expression, but not MMP-2. Casticin treatment suppressed the nuclear translocation of transcription factors c-Jun and c-Fos, but not nuclear factor-κB (NF-κB), and decreased the phosphorylated level of Akt (p-Akt). Additionally, the transfection of Akt overexpression vector to MDA-MB-231 and 4T1 cells could up-regulate MMP-9 expression concomitantly with a marked increase in cell invasion, but casticin treatment reduced Akt, p-Akt, and MMP-9 protein levels and inhibited the ability of cell invasion in breast cancer cells. Additionally, casticin attenuated lung metastasis of mouse 4T1 breast cancer cells in the mice and down-regulated MMP-9 expression in the lung tissues of mice treated by casticin. These findings suggest that MMP-9 expression suppression by casticin may act through inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which in turn results in the inhibitory effects of casticin on cell migration and invasion in breast cancer cells. Therefore, casticin may have potential for use in the treatment of breast cancer invasion and metastasis.
Collapse
|
15
|
Chan EWC, Wong SK, Chan HT. Casticin from Vitex species: a short review on its anticancer and anti-inflammatory properties. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:147-152. [PMID: 29559215 DOI: 10.1016/j.joim.2018.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/18/2018] [Indexed: 01/04/2023]
Abstract
This short review provides an update of the anticancer and anti-inflammatory properties of casticin from Vitex species. Casticin is a polymethylflavone with three rings, an orthocatechol moiety, a double bond, two hydroxyl groups and four methoxyl groups. Casticin has been isolated from various tissues of plants in the Vitex genus: fruits and leaves of V. trifolia, aerial parts and seeds of V. agnus-castus and leaves of V. negundo. Studies have reported the antiproliferative and apoptotic activities of casticin from Vitex species. The compound is effective against many cancer cell lines via different molecular mechanisms. Studies have also affirmed the anti-inflammatory properties of casticin, with several molecular mechanisms identified. Other pharmacological properties include anti-asthmatic, tracheospasmolytic, analgesic, antihyperprolactinemia, immunomodulatory, opioidergic, oestrogenic, anti-angiogenic, antiglioma, lung injury protection, rheumatoid arthritis amelioration and liver fibrosis attenuation activities. Clinical trials and commercial use of the casticin-rich fruit extract of V. agnus-castus among women with premenstrual syndrome were briefly discussed.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Siu Kuin Wong
- School of Science, Monash University, Petaling Jaya, Selangor 46150, Malaysia
| | - Hung Tuck Chan
- Secretariat of International Society for Mangrove Ecosystems, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan
| |
Collapse
|
16
|
Chou GL, Peng SF, Liao CL, Ho HC, Lu KW, Lien JC, Fan MJ, La KC, Chung JG. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:127-141. [PMID: 29098808 DOI: 10.1002/tox.22497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/26/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca2+ production, levels of ΔΨm and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca2+ productions, decreases the levels of ΔΨm , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells.
Collapse
Affiliation(s)
- Guan-Ling Chou
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Heng-Chien Ho
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Kuang-Chi La
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
17
|
Kang TH, Yoon G, Kang IA, Oh HN, Chae JI, Shim JH. Natural Compound Licochalcone B Induced Extrinsic and Intrinsic Apoptosis in Human Skin Melanoma (A375) and Squamous Cell Carcinoma (A431) Cells. Phytother Res 2017; 31:1858-1867. [PMID: 29027311 DOI: 10.1002/ptr.5928] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
Abstract
Licochalcone B (Lico B), which is normally isolated from the roots of Glycyrrhiza inflata (Chinese Licorice), generally classified into organic compounds including retrochalcones. Potential pharmacological properties of Lico B include anti-inflammatory, anti-bacterial, anti-oxidant, and anti-cancer activities. However, its biological effects on melanoma and squamous cell carcinoma (SCC) are unknown. Based on these known facts, this study investigated the role of Lico B in apoptosis, through the extrinsic and intrinsic pathways and additional regulation of specificity protein 1 in human skin cancer cell lines. Annexin V/7-aminoactinomycin D staining, western blot analysis, mitochondrial membrane potential assay, and an anchorage-independent cell transformation assay demonstrated that Lico B treatment of human melanoma and SCC cells significantly inhibited cell proliferation and induced apoptotic cell death. More specifically, Lico B induced apoptosis through the regulation of specificity protein 1 and apoptosis-related proteins including CCAAT/enhancer-binding protein homologous protein, death receptors, and poly (ADP-ribose) polymerase. These results indicate that Lico B has apoptotic effect on A375 and A431 skin cancer cells, suggesting the potential value of Lico B for the treatment of human melanoma and SCC. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tae-Ho Kang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - In-A Kang
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Kim A, Im M, Ma JY. SRVF, a novel herbal formula including Scrophulariae Radix and Viticis Fructus, disrupts focal adhesion and causes detachment-induced apoptosis in malignant cancer cells. Sci Rep 2017; 7:12756. [PMID: 29038437 PMCID: PMC5643381 DOI: 10.1038/s41598-017-12934-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
When cells lose adhesion, they undergo detachment-induced apoptosis, known as anoikis. In contrast, tumor cells acquire resistance to anoikis, enabling them to survive, even after separating from neighboring cells or the ECM. Therefore, agents that restore anoikis sensitivity may serve as anti-cancer candidates. In this study, we constructed a novel herbal formula, SRVF, which contains Scrophulariae Radix (SR) and Viticis Fructus (VF). SRVF rapidly decreased cell adhesion, altered the cell morphology to round, and induced cell death; however, SR, VF, or their co-treatment did not. SRVF arrested HT1080 cells in G2/M phase, increased the levels of pro-apoptotic proteins, and decreased the levels of anti-apoptotic proteins. Furthermore, SRVF efficiently reduced cell-cell and cell-ECM interactions by disrupting the F-actin cytoskeleton and down-regulating the levels of focal adhesion-related proteins, suggesting that SRVF efficiently triggers detachment-induced apoptosis (i.e., anoikis) in malignant cancer cells. In xenograft mouse models, daily oral administration of 50 or 100 mg/kg SRVF retarded tumor growth in vivo, and repeated administration of SRVF did not cause systemic toxicity in normal mice. These data collectively indicate that SRVF induces cancer cell death by restoring anoikis sensitivity via disrupting focal adhesion. Therefore, SRVF may be a safe and potent anti-cancer herbal decoction.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Chumdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Minju Im
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Chumdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Chumdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
19
|
Shang HS, Liu JY, Lu HF, Chiang HS, Lin CH, Chen A, Lin YF, Chung JG. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2041-2052. [PMID: 27862857 DOI: 10.1002/tox.22381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca2+ productions, level of mitochondria membrane potential (ΔΨm ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨm , and Ca2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells.
Collapse
Affiliation(s)
- Hung-Sheng Shang
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei city, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Basic Medicine, Fu-Jen Catholic University, New Taipei city, Taiwan
| | - Chia-Hain Lin
- Department of Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Ann Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Jiang XW, Qiao L, Feng XX, Liu L, Wei QW, Wang XW, Yu WH. Rotenone induces nephrotoxicity in rats: oxidative damage and apoptosis. Toxicol Mech Methods 2017; 27:528-536. [DOI: 10.1080/15376516.2017.1333553] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xiao-Wen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Lu Qiao
- Department of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Xin-xin Feng
- Department of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Lin Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Qing-Wei Wei
- Department of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Xue-Wei Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Wen-Hui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin, China
| |
Collapse
|
21
|
Song HM, Park GH, Koo JS, Jeong HJ, Jeong JB. Vitex rotundifolia Fruit Extract Induces Apoptosis Through the Downregulation of ATF3-Mediated Bcl-2 Expression in Human Colorectal Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:901-915. [DOI: 10.1142/s0192415x17500483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fruit from Vitex rotundifolia L. (VF) has been reported to initiate apoptosis in human colorectal cancer cells through the accumulation of reactive oxygen species. Since various regulatory factors are involved in the apoptotic pathway, further study of the potential mechanisms of VF associated with the induction of apoptosis may be important despite the fact that the molecular target of VF for apoptosis has already been elucidated. In this study, we showed a new potential mechanism for the relationship between VF-mediated ATF3 expression and apoptosis to better understand the apoptotic mechanism of VF in human colorectal cancer cells. VF reduced the cell viability and induced apoptosis in human colorectal cancer cells. VF treatment increased both the protein and mRNA level of ATF3 and upregulated ATF3 promoter activity. The cis-element responsible for ATF3 transcriptional activation by VF was CREB which is located between [Formula: see text]147 to [Formula: see text]85 of ATF3 promoter. Inhibitions of ERK1/2, p38, JNK and GSK3[Formula: see text] blocked VF-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of PARP by VF, while ATF3 overexpression increased VF-mediated cleaved PARP. ATF3 knockdown also attenuated VF-mediated cell viability and cell death. In addition, VF downregulated Bcl-2 expression at both protein and mRNA level. ATF3 knockdown by ATF3 siRNA blocked VF-mediated downregulation of Bcl-2. In conclusion, VF may activate ATF3 expression through transcriptional regulation and subsequently suppress Bcl-2 expression as an anti-apoptotic protein, which may result in the induction of apoptosis in human colorectal cancer cells.
Collapse
Affiliation(s)
- Hun Min Song
- Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
| | - Gwang Hun Park
- Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Jin Suk Koo
- Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
- Insititute of Agricultural Science and Technology, Andong National University, Andong 36729, Republic of Korea
| | - Hyung Jin Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
- Insititute of Agricultural Science and Technology, Andong National University, Andong 36729, Republic of Korea
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
- Insititute of Agricultural Science and Technology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
22
|
Shih YL, Chou J, Yeh MY, Chou HM, Chou HC, Lu HF, Shang HS, Chueh FS, Chu YL, Hsueh SC, Chung JG. Casticin induces DNA damage and inhibits DNA repair-associated protein expression in B16F10 mouse melanoma cancer cells. Oncol Rep 2016; 36:2094-100. [DOI: 10.3892/or.2016.5027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 11/06/2022] Open
|
23
|
Elumalai P, Arunakaran J. Review on molecular and chemopreventive potential of nimbolide in cancer. Genomics Inform 2014; 12:156-64. [PMID: 25705153 PMCID: PMC4330249 DOI: 10.5808/gi.2014.12.4.156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/09/2014] [Accepted: 11/09/2014] [Indexed: 12/16/2022] Open
Abstract
Cancer is the most dreaded disease in human and also major health problem worldwide. Despite its high occurrence, the exact molecular mechanisms of the development and progression are not fully understood. The existing cancer therapy based on allopathic medicine is expensive, exhibits side effects; and may also alter the normal functioning of genes. Thus, a non-toxic and effective mode of treatment is needed to control cancer development and progression. Some medicinal plants offer a safe, effective and affordable remedy to control the cancer progression. Nimbolide, a limnoid derived from the neem (Azadirachta indica) leaves and flowers of neem, is widely used in traditional medical practices for treating various human diseases. Nimbolide exhibits several pharmacological effects among which its anticancer activity is the most promising. The previous studies carried out over the decades have shown that nimbolide inhibits cell proliferation and metastasis of cancer cells. This review highlights the current knowledge on the molecular targets that contribute to the observed anticancer activity of nimbolide related to induction of apoptosis and cell cycle arrest; and inhibition of signaling pathways related to cancer progression.
Collapse
Affiliation(s)
- Perumal Elumalai
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India
| | - Jagadeesan Arunakaran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India
| |
Collapse
|
24
|
Rasul A, Zhao BJ, Liu J, Liu B, Sun JX, Li J, Li XM. Molecular Mechanisms of Casticin Action: an Update on its Antitumor Functions. Asian Pac J Cancer Prev 2014; 15:9049-58. [DOI: 10.7314/apjcp.2014.15.21.9049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Millimouno FM, Dong J, Yang L, Li J, Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 2014; 7:1081-107. [PMID: 25161295 DOI: 10.1158/1940-6207.capr-14-0136] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the incidences are increasing day after day, scientists and researchers taken individually or by research group are trying to fight against cancer by several ways and also by different approaches and techniques. Sesquiterpenes, flavonoids, alkaloids, diterpenoids, and polyphenolic represent a large and diverse group of naturally occurring compounds found in a variety of fruits, vegetables, and medicinal plants with various anticancer properties. In this review, our aim is to give our perspective on the current status of the natural compounds belonging to these groups and discuss their natural sources, their anticancer activity, their molecular targets, and their mechanism of actions with specific emphasis on apoptosis pathways, which may help the further design and conduct of preclinical and clinical trials. Unlike pharmaceutical drugs, the selected natural compounds induce apoptosis by targeting multiple cellular signaling pathways including transcription factors, growth factors, tumor cell survival factors, inflammatory cytokines, protein kinases, and angiogenesis that are frequently deregulated in cancers and suggest that their simultaneous targeting by these compounds could result in efficacious and selective killing of cancer cells. This review suggests that they provide a novel opportunity for treatment of cancer, but clinical trials are still required to further validate them in cancer chemotherapy.
Collapse
Affiliation(s)
- Faya M Millimouno
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China. Dental Hospital, Jilin University, Changchun, China. Higher Institute of Science and Veterinary Medicine of Dalaba, Dalaba, Guinea
| | - Jia Dong
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liu Yang
- Dental Hospital, Jilin University, Changchun, China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun, China.
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| |
Collapse
|
26
|
Wei G, Wang S, Cui S, Guo J, Liu Y, Liu Y, Cheng M. Synthesis and evaluation of the anticancer activity of albiziabioside A and its analogues as apoptosis inducers against human melanoma cells. Org Biomol Chem 2014; 12:5928-35. [DOI: 10.1039/c4ob00874j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
He M, Cao XC, He GC, Sheng XF, Ai XH, Wu YH. Casticin inhibits epithelial-mesenchymal transition of liver cancer stem cells of the SMMC-7721 cell line through downregulating Twist. Oncol Lett 2014; 7:1625-1631. [PMID: 24765190 PMCID: PMC3997701 DOI: 10.3892/ol.2014.1899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022] Open
Abstract
The existence of cancer stem cells (CSCs) is central to the pathogenesis and therapeutic target of human hepatocellular carcinoma. The aim of this study was to investigate the effects of casticin on epithelial-mesenchymal transition (EMT) of liver cancer stem cells (LCSCs) derived from the SMMC-7721 cell line. Our results demonstrated that CD133+ sphere-forming cells (SFCs) sorted from the SMMC-7721 cell line not only possessed a higher capacity to form tumor spheroids in vitro, but also had a greater potential to form tumors when implanted in Balb/c-nu mice, indicating that CD133+ SFCs possessed similar traits to LCSCs. Casticin increased the expression levels of E-cadherin and decreased those of N-cadherin in LCSCs. Treatment of LCSCs with casticin for 48 h also decreased the levels of the EMT-associated transcription factor, Twist. Overexpression of Twist attenuated the casticin-induced regulation of E-cadherin and N-cadherin protein expression, as well as the EMT capacity of LCSCs. In conclusion, CD133+ SFCs of the SMMC-7721 cell line may represent a subpopulation of LCSCs with the characteristics of EMT. Furthermore, casticin targeted LCSCs through the inhibition of EMT by downregulating Twist.
Collapse
Affiliation(s)
- Meng He
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Cheng Cao
- Laboratory of Medicine Engineering, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Gui-Cheng He
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi-Feng Sheng
- Laboratory of Medicine Engineering, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xiao-Hong Ai
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - You-Hua Wu
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
28
|
Kma L. Synergistic Effect of Resveratrol and Radiotherapy in Control of Cancers. Asian Pac J Cancer Prev 2013; 14:6197-208. [DOI: 10.7314/apjcp.2013.14.11.6197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Yin HT, Tian QZ, Guan L, Zhou Y, Huang XE, Zhang H. In vitro and in vivo Evaluation of the Antitumor Efficiency of Resveratrol Against Lung Cancer. Asian Pac J Cancer Prev 2013; 14:1703-6. [DOI: 10.7314/apjcp.2013.14.3.1703] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|