1
|
Long B, Li R, Wang R, Yin A, Zhuang Z, Jing Y, E L. A computed tomography-based deep learning radiomics model for predicting the gender-age-physiology stage of patients with connective tissue disease-associated interstitial lung disease. Comput Biol Med 2025; 191:110128. [PMID: 40209580 DOI: 10.1016/j.compbiomed.2025.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
OBJECTIVES To explore the feasibility of using a diagnostic model constructed with deep learning-radiomics (DLR) features extracted from chest computed tomography (CT) images to predict the gender-age-physiology (GAP) stage of patients with connective tissue disease-associated interstitial lung disease (CTD-ILD). MATERIALS AND METHODS The data of 264 CTD-ILD patients were retrospectively collected. GAP Stage I, II, III patients are 195, 56, 13 cases respectively. The latter two stages were combined into one group. The patients were randomized into a training set and a validation set. Single-input models were separately constructed using the selected radiomics and DL features, while DLR model was constructed from both sets of features. For all models, the support vector machine (SVM) and logistic regression (LR) algorithms were used for construction. The nomogram models were generated by integrating age, gender, and DLR features. RESULTS The DLR model outperformed the radiomics and DL models in both the training set and the validation set. The predictive performance of the DLR model based on the LR algorithm was the best among all the feature-based models (AUC = 0.923). The comprehensive models had even greater performance in predicting the GAP stage of CTD-ILD patients. The comprehensive model using the SVM algorithm had the best performance of the two models (AUC = 0.951). CONCLUSION The DLR model extracted from CT images can assist in the clinical prediction of the GAP stage of CTD-ILD patients. A nomogram showed even greater performance in predicting the GAP stage of CTD-ILD patients.
Collapse
Affiliation(s)
- Bingqing Long
- Department of Radiology, People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Rui Li
- Department of Radiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China.
| | - Ronghua Wang
- Department of Radiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China.
| | - Anyu Yin
- Department of Radiology, People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Ziyi Zhuang
- Department of Radiology, People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Yang Jing
- Huiying Medical Technology Co., Ltd., Room A206, B2, Dongsheng Science and Technology Park, Haidian District, Beijing, 100192, China.
| | - Linning E
- Department of Radiology, People's Hospital of Longhua, Shenzhen, 518109, China.
| |
Collapse
|
2
|
Froom ZSCS, Callaghan NI, Davenport Huyer L. Cellular crosstalk in fibrosis: insights into macrophage and fibroblast dynamics. J Biol Chem 2025:110203. [PMID: 40334985 DOI: 10.1016/j.jbc.2025.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Pathological fibrosis, the excessive deposition of extracellular matrix and tissue stiffening that causes progressive organ dysfunction, underlies diverse chronic diseases. The fibrotic microenvironment is driven by the dynamic microenvironmental interaction between various cell types; macrophages and fibroblasts play central roles in fibrotic disease initiation, maintenance, and progression. Macrophage functional plasticity to microenvironmental stimuli modulates fibroblast functionality by releasing pro-inflammatory cytokines, growth factors, and matrix remodeling enzymes that promote fibroblast proliferation, activation, and differentiation into myofibroblasts. Activated fibroblasts and myofibroblasts serve as the fibrotic effector cells, secreting extracellular matrix components and initiating microenvironmental contracture. Fibroblasts also modulate macrophage function through the release of their own pro-inflammatory cytokines and growth factors, creating bidirectional crosstalk that reinforces the chronic fibrotic cycle. The intricate interplay between macrophages and fibroblasts, including their secretomes and signaling interactions, leads to tissue damage and pathological loss of tissue function. In this review, we examine macrophage-fibroblast reciprocal dynamic interactions in pathological fibrotic conditions. We discuss the specific lineages and functionality of macrophages and fibroblasts implicated in fibrotic progression, with focus on their signal transduction pathways and secretory signalling that enables their pro-fibrotic behaviour. We then finish with a set of recommendations for future experimentation with the goal of developing a set of potential targets for anti-fibrotic therapeutic candidates. Understanding the cellular interactions between macrophages and fibroblasts provides valuable insights into potential therapeutic strategies to mitigate fibrotic disease progression.
Collapse
Affiliation(s)
- Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Neal I Callaghan
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada; Nova Scotia Health, Halifax, NS B3S 0H6, Canada.
| |
Collapse
|
3
|
Zhang X, Yuan Z, Shi X, Yang J. Targeted therapy for idiopathic pulmonary fibrosis: a bibliometric analysis of 2004-2024. Front Med (Lausanne) 2025; 12:1543571. [PMID: 40182841 PMCID: PMC11967194 DOI: 10.3389/fmed.2025.1543571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible interstitial lung disease characterized by high mortality rates. An expanding body of evidence highlights the critical role of targeted therapies in the management of IPF. Nevertheless, there is a paucity of bibliometric studies that have comprehensively assessed this domain. This study seeks to examine global literature production and research trends related to targeted therapies for IPF. Method A literature search was conducted using the Web of Science Core Collection, encompassing publications from 2004 to 2024, focusing on targeted therapies for IPF. The bibliometric analysis utilized tools such as VOSviewer, CiteSpace, and the "bibliometrix" package in R. Results A total of 2,779 papers were included in the analysis, demonstrating a general trend of continuous growth in the number of publications over time. The United States contributed the highest number of publications, totaling 1,052, while France achieved the highest average citation rate at 75.74. The University of Michigan Medical School was the leading institution in terms of publication output, with 88 papers. Principal Investigator Naftali Kaminski was identified as the most prolific researcher in the field. The American Journal of Respiratory Cell and Molecular Biology emerged as the journal with the highest number of publications, featuring 98 articles. In recent years, the research has emerged surrounding targeted therapies for IPF, particularly focusing on agents such as TGF-β, pathogenesis, and autotaxin inhibitor. Conclusion In this bibliometric study, we systematically analyze research trends related to targeted therapies for IPF, elucidating recent research frontiers and emerging directions. The selected keywords-idiopathic pulmonary fibrosis, targeted therapy, bibliometric analysis, transforming growth factor β, and autotaxin inhibitor-capture the essential aspects of this research domain. This analysis serves as a reference point for future investigations into targeted therapies.
Collapse
Affiliation(s)
- Xinlei Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zengze Yuan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiawei Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Junchao Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Liu H, Shen J, He C. Advances in idiopathic pulmonary fibrosis diagnosis and treatment. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2025; 3:12-21. [PMID: 40226606 PMCID: PMC11993042 DOI: 10.1016/j.pccm.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Indexed: 04/15/2025]
Abstract
Significant advances have been made in diagnosing and treating idiopathic pulmonary fibrosis (IPF) in the last decade. The incidence and prevalence of IPF are increasing, and morbidity and mortality remain high despite the two Food and Drug Administration (FDA)-approved medications, pirfenidone and nintedanib. Hence, there is an urgent need to develop new diagnostic tools and effective therapeutics to improve early, accurate diagnosis of IPF and halt or reverse the progression of fibrosis with a better safety profile. New diagnostic tools such as transbronchial cryobiopsy and genomic classifier require less tissue and generally have good safety profiles, and they have been increasingly utilized in clinical practice. Advances in artificial intelligence-aided diagnostic software are promising, but challenges remain. Both pirfenidone and nintedanib focus on growth factor-activated pathways to inhibit fibroblast activation. Novel therapies targeting different pathways and cell types (immune and epithelial cells) are being investigated. Biomarker-based personalized medicine approaches are also in clinical trials. This review aims to summarize recent diagnostic and therapeutic development in IPF.
Collapse
Affiliation(s)
- Hongli Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jiaxi Shen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77024, USA
| |
Collapse
|
5
|
Hou J, Ji Q, Tang T, Xue Y, Gao L, Dai L, Xie J. CT-sensitized nanoprobe for effective early diagnosis and treatment of pulmonary fibrosis. J Nanobiotechnology 2025; 23:60. [PMID: 39881299 PMCID: PMC11776250 DOI: 10.1186/s12951-025-03128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Early diagnosis is critical for providing a timely window for effective therapy in pulmonary fibrosis (PF); however, achieving this remains a significant challenge. The distinct honeycombing patterns observed in computed tomography (CT) for the primary diagnosis of PF are typically only visible in patients with moderate to severe disease, often leading to missed opportunities for early intervention. In this study, we developed a nanoprobe designed to accumulate at fibroblastic foci and loaded with the CT sensitizer iodide to enable effective early diagnosis of PF. An antibody fragment (Fab') targeting the platelet-derived growth factor receptor-α, which specifically binds to (myo)fibroblasts, was conjugated to the nanoprobe surface to enhance targeting of fibroblastic foci. Additionally, collagenase was employed to facilitate nanoprobe penetration by degrading the local collagen fibers within these foci. This approach led to significant accumulation of the CT sensitizer iodide in fibrotic lung tissues, resulting in enhanced CT imaging for the detection of fibroblastic foci and enabling early diagnosis of PF. Moreover, a dual-drug combination of oltipraz and rosiglitazone was co-loaded into the nanoparticles for the treatment of early-diagnosed PF. Remarkable therapeutic efficacy was observed in model mice with early PF using these nanoparticles. Our findings present a promising strategy for the early diagnosis of PF, potentially offering a valuable time window for effective treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiwei Hou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
| | - Qijian Ji
- Department of Critical Care Medicine, Xuyi People's Hospital, 28 Hongwu Road, Xuyi, 211700, Jiangsu, China.
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Tianyu Tang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Yonger Xue
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lin Gao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Li Dai
- Department of cariol & endodont, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
6
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
7
|
Peng S, Liang Y, Zhu H, Wang Y, Li Y, Zhao Z, Li Y, Zhuang R, Huang L, Zhang X, Guo Z. A nitroreductase responsive probe for early diagnosis of pulmonary fibrosis disease. Redox Biol 2024; 75:103294. [PMID: 39096854 PMCID: PMC11345524 DOI: 10.1016/j.redox.2024.103294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious interstitial lung disease. However, the definitive diagnosis of IPF is impeded by the limited capabilities of current diagnostic methods, which may fail to capture the optimal timing for treatment. The main goal of this study is to determine the feasibility of a nitroreductase (NTR) responsive probe, 18F-NCRP, for early detection and deterioration monitoring of IPF. 18F-NCRP was obtained with high radiochemical purity (>95 %). BLM-injured mice were established by intratracheal instillation with bleomycin (BLM) and characterized through histological analysis. Longitudinal PET/CT imaging, biodistribution study and in vitro autoradiography were performed. The correlations between the uptake of 18F-NCRP and mean lung density (tested by CT), as well as histopathological characteristics were analyzed. In PET imaging study, 18F-NCRP exhibited promising efficacy in monitoring the progression of IPF, which was earlier than CT. The ratio of uptake in BLM-injured lung to control lung increased from 1.4-fold on D15 to 2.2-fold on D22. Biodistribution data showed a significant lung uptake of 18F-NCRP in BLM-injured mice. There was a strong positive correlation between the 18F-NCRP uptake in the BLM-injured lungs and the histopathological characteristics. Given that, 18F-NCRP PET imaging of NTR, a promising biomarker for investigating the underlying pathogenic mechanism of IPF, is attainable as well as desirable, which might lay the foundation for establishing an NTR-targeted imaging evaluation system of IPF.
Collapse
Affiliation(s)
- Shilan Peng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Yuanyuan Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Haotian Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Yike Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Yun Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Zuoquan Zhao
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China.
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China.
| |
Collapse
|
8
|
Bartold K, Iskierko Z, Sharma PS, Lin HY, Kutner W. Idiopathic pulmonary fibrosis (IPF): Diagnostic routes using novel biomarkers. Biomed J 2024; 47:100729. [PMID: 38657859 PMCID: PMC11340561 DOI: 10.1016/j.bj.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) diagnosis is still the diagnosis of exclusion. Differentiating from other forms of interstitial lung diseases (ILDs) is essential, given the various therapeutic approaches. The IPF course is now unpredictable for individual patients, although some genetic factors and several biomarkers have already been associated with various IPF prognoses. Since its early stages, IPF may be asymptomatic, leading to a delayed diagnosis. The present review critically examines the recent literature on molecular biomarkers potentially useful in IPF diagnostics. The examined biomarkers are grouped into breath and sputum biomarkers, serologically assessed extracellular matrix neoepitope markers, and oxidative stress biomarkers in lung tissue. Fibroblasts and complete blood count have also gained recent interest in that respect. Although several biomarker candidates have been profiled, there has yet to be a single biomarker that proved specific to the IPF disease. Nevertheless, various IPF biomarkers have been used in preclinical and clinical trials to verify their predictive and monitoring potential.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Taiwan
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Zhang Y, Lu YB, Zhu WJ, Gong XX, Qian R, Lu YJ, Li Y, Yao WF, Bao BH, Zhang Y, Zhang L, Cheng FF. Leech extract alleviates idiopathic pulmonary fibrosis by TGF-β1/Smad3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117737. [PMID: 38228229 DOI: 10.1016/j.jep.2024.117737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leech, as a traditional Chinese medicine for the treatment of blood circulation and blood stasis, was also widely used to cure pulmonary fibrosis in China. In clinical practice, some traditional Chinese medicine preparation such as Shui Zhi Xuan Bi Hua Xian Tang and Shui Zhi Tong Luo Capsule composed of leech, could improve the clinical symptoms and pulmonary function in patients with idiopathic pulmonary fibrosis (IPF). However, the material basis of the leech in the treatment of IPF were not yet clear. AIM OF THE STUDY Screen out the components of leech that have the anti-pulmonary fibrosis effects, and further explore the therapeutic mechanism of the active components. MATERIALS AND METHODS In this study, the different molecular weight components of leech extract samples were prepared using the semi-permeable membranes with different pore sizes. The therapeutic effects of the leech extract groups with molecular weight greater than 10 KDa (>10 KDa group), between 3 KDa and 10 KDa (3-10 KDa group), and less than 3 KDa (<3 KDa group) on pulmonary fibrosis were firstly investigated by cell proliferation and cytotoxicity assay (MTT), cell wound healing assay, immunofluorescence staining (IF) and Western blot (WB) assay through the TGF-β1-induced fibroblast cell model. Then bleomycin-induced pulmonary fibrosis (BML-induced PF) mouse model was constructed to investigate the pharmacological activities of the active component group of leech extract in vivo. Pathological changes of the mouse lung were observed by hematoxylin-eosin staining (H&E) and Masson's trichrome staining (Masson). The hydroxyproline (HYP) content of lung tissues was quantified by HYP detection kit. The levels of extracellular matrix-related fibronectin (FN) and collagen type Ⅰ (Collagen Ⅰ), pyruvate kinase M2 (PKM2) monomer and Smad7 protein were determined via WB method. PKM2 and Smad7 protein were further characterized by IF assays. RESULTS Using TGF-β1-induced HFL1 cell line as a PF cell model, the in vitro results demonstrated that the >10 KDa group could significantly inhibited the cell proliferation and migration, downregulated the expression level of cytoskeletal protein vimentin and α-smooth muscle actin (α-SMA), and reduced the deposition of FN and Collagen Ⅰ. In the BML-induced PF mouse model, the >10 KDa group significantly reduced the content of HYP, downregulated the expression levels of FN and Collagen Ⅰ in lung tissues, and delayed the pathological changes of lung tissue structure. The results of WB and IF assays further indicated that the >10 KDa group could up-regulate the expression level of PKM2 monomer and Smad7 protein in the cellular level, thereby delaying the progression of pulmonary fibrosis. CONCLUSIONS Our study revealed that the >10 KDa group was the main material basis of the leech extract that inhibited pulmonary fibrosis through TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Yin Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yong-Bo Lu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wei-Jie Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiao-Xi Gong
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Rui Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yi-Jing Lu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wei-Feng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Bei-Hua Bao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yi Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.
| | - Fang-Fang Cheng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.
| |
Collapse
|
10
|
Wu J, Chen Y, Zhang J, Cheng J, Chen Y, Wu T, Zhang M. Inhibition of bleomycin-induced pulmonary fibrosis in SD rats by sea cucumber peptides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2876-2887. [PMID: 38018265 DOI: 10.1002/jsfa.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is the terminal manifestation of a type of pulmonary disease, which seriously affects the respiratory function of the body, and with no effective cure for treatment. This study evaluated the effect of sea cucumber peptides (SCP) on bleomycin-induced SD rat PF. RESULTS SCP can inhibit the PF induced by bleomycin. PF and SCP did not affect the food intake of rats, but PF reduced the body weight of rats, and SCP could improve the weight loss. SCP reduced lung index in PF rats in a dose-dependent manner. SCP significantly reduced IL-1β, IL-6, TNF-α, α-SMA and VIM expression levels in lung tissue (P < 0.05), significantly decreased TGF-β1 expression level in serum (P < 0.01) and the LSCP group and MSCP group had better inhibitory effects on PF than the HSCP group. Histomorphological results showed that SCP could ameliorate the structural damage of lung tissue, alveolar wall rupture, inflammatory cell infiltration, fibroblast proliferation and deposition of intercellular matrix and collagen fibers caused by PF. The improvement effect of the MSCP group was the most noteworthy in histomorphology. Metabolomics results showed that SCP significantly downregulated catechol, N-acetyl-l-histidine, acetylcarnitine, stearoylcarnitine, d-mannose, l-threonine, l-alanine, glycine, 3-guanidinopropionic acid, prostaglandin D2 and embelic acid d-(-)-β-hydroxybutyric acid expression levels in lung tissue. CONCLUSION SCP ameliorate bleomycin-induced SD rat PF. KEGG pathway analysis proved that SCP intervened in PF mainly via the lysosome pathway, with d-mannose as the key factor. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianfu Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yijun Chen
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jinxuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jinghuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yongde Chen
- Research Center for Promoting Optimal Health through Nutritional Intervention, Bestlife Biological Technology Co. Ltd, Tangshan, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Tianjin Agricultural University, and China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
11
|
Yu Y, Du N, Zhang Z, Huang W, Li M. Machine Learning-Assisted Diagnosis Model for Chronic Obstructive Pulmonary Disease. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH 2023; 16:1-22. [DOI: 10.4018/ijitsa.324760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a long-term, irreversible, and progressive respiratory disease that often leads to lung function decline. Pulmonary function tests (PFTs) provide valuable information for diagnosing COPD; however, they are underutilised in clinical practice, with only a subset of test values being used for decision making. The final clinical diagnosis requires combining PFT results with patient information, symptoms, and other tests, such as imaging and blood analysis. This study aims to comprehensively utilise all the testing information in PFTs to assist in the diagnosis of COPD. Various machine learning models, such as logistic regression, support vector machine (SVM), k-nearest neighbour (KNN), random forest, decision tree, and XGBoost, have been employed to establish COPD diagnosis assistance models. The XGBoost model, trained with features extracted by the group LASSO algorithm, achieved the best performance, with an area under the receiver operating characteristic curve (ROC) of 0.90, 88.6% accuracy, and 98.5% sensitivity. This model can assist doctors in the clinical diagnosis and early prediction of COPD.
Collapse
Affiliation(s)
- Yongfu Yu
- School of Computer Science and Engineering, Central South University, China
| | - Nannan Du
- Xiangya Hospital, Central South University, China
| | | | | | - Min Li
- Xiangya Hospital, Central South University, China
| |
Collapse
|
12
|
Alsomali H, Palmer E, Aujayeb A, Funston W. Early Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis: A Narrative Review. Pulm Ther 2023; 9:177-193. [PMID: 36773130 PMCID: PMC10203082 DOI: 10.1007/s41030-023-00216-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial lung disease of unknown aetiology. Patients typically present with symptoms of chronic dyspnoea and cough over a period of months to years. IPF has a poor prognosis, with an average life expectancy of 3-5 years from diagnosis if left untreated. Two anti-fibrotic medications (nintedanib and pirfenidone) have been approved for the treatment of IPF. These drugs slow disease progression by reducing decline in lung function. Early diagnosis is crucial to ensure timely treatment selection and improve outcomes. High-resolution computed tomography (HRCT) plays a major role in the diagnosis of IPF. In this narrative review, we discuss the importance of early diagnosis, awareness among primary care physicians, lung cancer screening programmes and early IPF detection, and barriers to accessing anti-fibrotic medications.
Collapse
Affiliation(s)
- Hana Alsomali
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Evelyn Palmer
- Department of Respiratory Medicine, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, UK.
| | - Avinash Aujayeb
- Department of Respiratory Medicine, Northumbria Healthcare NHS Trust, Northumbria Way, Cramlington, NE23 6NZ, UK
| | - Wendy Funston
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.,Department of Respiratory Medicine, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, UK
| |
Collapse
|
13
|
Kashkash F, Khorri A. Observational findings of transbronchial lung biopsy in patients with interstitial lung disease: a retrospective study in Aleppo University Hospital. Ann Med Surg (Lond) 2023; 85:146-152. [PMID: 36845790 PMCID: PMC9949756 DOI: 10.1097/ms9.0000000000000180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/24/2022] [Indexed: 02/28/2023] Open
Abstract
Clinicians face a significant obstacle when attempting to diagnose interstitial lung disease (ILD) patients. However, a thorough clinical examination together with the proper imaging and diagnostic techniques may provide a reliable diagnosis of a particular kind of ILD, and invasive tests such as rigid bronchoscopy or surgical lung biopsy may not be necessary. The aim of this study is to determine the histologic outcomes of an ILD transbronchial lung biopsy (TBLB) carried out at the university hospital in Aleppo. Methods This retrospective cohort research was done between 1 January 2020 and 18 April 2022 at the pulmonary department of Aleppo University Hospital, Syria, using patient records. In our study, 174 patients were examined. We included patients over the age of 18 who were referred or admitted to our department at Aleppo University Hospital after being diagnosed with diffuse parenchymal lung disease based on high-resolution computed tomography and clinical symptoms, while excluding other respiratory diseases such as tuberculosis and coronavirus disease 2019. Results Patients in the research were 53±7.1 years old on average. Cough and dyspnea were the most common clinical complaints among the patients, which accounted for 79.12 and 78.16%, respectively. A significant fraction of ground-glass opacity was detected on the high-resolution computed tomography, amounting to 102 (58.62%) and 74 (42.53%) for the reticular lesions, respectively. As a complication there were 40 patients with bleeding, of whom 24 had moderate bleeding, and 11 had major bleeding. We also had three patients with pneumothorax. The diagnostic yield of the TBLB in our ILD patients was 66.66%. Conclusion An adequate diagnostic accuracy (66.66%) was detected in the TBLB in confirming the diagnosis of ILD; in addition, the bleeding was the most prevalent complication of this procedure. More interventional studies are needed to compare the diagnostic accuracy of this procedure with other invasive and noninvasive diagnostic methodologies of ILD.
Collapse
Affiliation(s)
- Fateh Kashkash
- Department of Pulmonology, Faculty of Medicine, Aleppo University Hospital, University of Aleppo, Aleppo, Syria
| | - Abdullah Khorri
- Department of Pulmonology, Faculty of Medicine, Aleppo University Hospital, University of Aleppo, Aleppo, Syria
| |
Collapse
|
14
|
Ahangari F, Becker C, Foster DG, Chioccioli M, Nelson M, Beke K, Wang X, Justet A, Adams T, Readhead B, Meador C, Correll K, Lili LN, Roybal HM, Rose KA, Ding S, Barnthaler T, Briones N, DeIuliis G, Schupp JC, Li Q, Omote N, Aschner Y, Sharma L, Kopf KW, Magnusson B, Hicks R, Backmark A, Dela Cruz CS, Rosas I, Cousens LP, Dudley JT, Kaminski N, Downey GP. Saracatinib, a Selective Src Kinase Inhibitor, Blocks Fibrotic Responses in Preclinical Models of Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:1463-1479. [PMID: 35998281 PMCID: PMC9757097 DOI: 10.1164/rccm.202010-3832oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-β (adenovirus transforming growth factor-β) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-β-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-β, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.
Collapse
Affiliation(s)
- Farida Ahangari
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christine Becker
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel G. Foster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Maurizio Chioccioli
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Meghan Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Keriann Beke
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Xing Wang
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aurelien Justet
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Service de Pneumologie, UNICAEN, Normandie University, Caen, France
| | - Taylor Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Benjamin Readhead
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona
| | - Carly Meador
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Kelly Correll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Loukia N. Lili
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
| | - Helen M. Roybal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Kadi-Ann Rose
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuizi Ding
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Thomas Barnthaler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Section of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Natalie Briones
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jonas C. Schupp
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Qin Li
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Norihito Omote
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Katrina W. Kopf
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Björn Magnusson
- Discovery Biology, Discovery Sciences, Research & Development, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- BioPharmaceuticals Research & Development Cell Therapy, Research, and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
| | - Anna Backmark
- Discovery Biology, Discovery Sciences, Research & Development, AstraZeneca, Gothenburg, Sweden
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ivan Rosas
- Department of Medicine, Baylor College of Medicine, Houston, Texas; and
| | - Leslie P. Cousens
- Emerging Innovations, Discovery Sciences, Research & Development, AstraZeneca, Boston, Massachusetts
| | - Joel T. Dudley
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gregory P. Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
15
|
Raman spectroscopy combined with machine learning algorithms for rapid detection Primary Sjögren's syndrome associated with interstitial lung disease. Photodiagnosis Photodyn Ther 2022; 40:103057. [PMID: 35944848 DOI: 10.1016/j.pdpdt.2022.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Interstitial lung disease (ILD) is a major complication of Primary Sjögren's syndrome (pSS) patients.It is one of the main factors leading to death. The aim of this study is to evaluate the value of serum Raman spectroscopy combined with machine learning algorithms in the discriminatory diagnosis of patients with Primary Sjögren's syndrome associated with interstitial lung disease (pSS-ILD). METHODS Raman spectroscopy was performed on the serum of 30 patients with pSS, 28 patients with pSS-ILD and 30 healthy controls (HC). First, the data were pre-processed using baseline correction, smoothing, outlier removal and normalization operations. Then principal component analysis (PCA) is used to reduce the dimension of data. Finally, support vector machine(SVM), k nearest neighbor (KNN) and random forest (RF) models are established for classification. RESULTS In this study, SVM, KNN and RF were used as classification models, where SVM chooses polynomial kernel function (poly). The average accuracy, sensitivity, and precision of the three models were obtained after dimensionality reduction. The Accuracy of SVM (poly) was 5.71% higher than KNN and 6.67% higher than RF; Sensitivity was 5.79% higher than KNN and 8.56% higher than RF; Precision was 6.19% higher than KNN and 7.45% higher than RF. It can be seen that the SVM (poly) had better discriminative effect. In summary, SVM (poly) had a fine classification effect, and the average accuracy, sensitivity and precision of this model reached 89.52%, 91.27% and 89.52%, respectively, with an AUC value of 0.921. CONCLUSIONS This study demonstrates that serum RS combined with machine learning algorithms is a valuable tool for diagnosing patients with pSS-ILD. It has promising applications.
Collapse
|
16
|
Patel H, Shah JR, Patel DR, Avanthika C, Jhaveri S, Gor K. Idiopathic pulmonary fibrosis: Diagnosis, biomarkers and newer treatment protocols. Dis Mon 2022:101484. [DOI: 10.1016/j.disamonth.2022.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Fytianos K, Schliep R, Mykoniati S, Khan P, Hostettler KE, Tamm M, Gazdhar A, Knudsen L, Geiser T. Anti-Fibrotic Effect of SDF-1β Overexpression in Bleomycin-Injured Rat Lung. Pharmaceutics 2022; 14:pharmaceutics14091803. [PMID: 36145551 PMCID: PMC9502331 DOI: 10.3390/pharmaceutics14091803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Rational: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease and is associated with high mortality due to a lack of effective treatment. Excessive deposition of the extracellular matrix by activated myofibroblasts in the alveolar space leads to scar formation that hinders gas exchange. Therefore, selectively removing activated myofibroblasts with the aim to repair and remodel fibrotic lungs is a promising approach. Stromal-derived growth factor (SDF-1) is known to stimulate cellular signals which attract stem cells to the site of injury for tissue repair and remodeling. Here, we investigate the effect of overexpression of SDF-1β on lung structure using the bleomycin-injured rat lung model. Methods: Intratracheal administration of bleomycin was performed in adult male rats (F344). Seven days later, in vivo electroporation-mediated gene transfer of either SDF-1β or the empty vector was performed. Animals were sacrificed seven days after gene transfer and histology, design-based stereology, flow cytometry, and collagen measurement were performed on the tissue collected. For in vitro experiments, lung fibroblasts obtained from IPF patients were used. Results: Seven days after SDF-1β gene transfer to bleomycin-injured rat lungs, reduced total collagen, reduced collagen fibrils, improved histology and induced apoptosis of myofibroblasts were observed. Furthermore, it was revealed that TNF-α mediates SDF-1β-induced apoptosis of myofibroblasts; moreover, SDF-1β overexpression increased alveolar epithelial cell numbers and proliferation in vivo and also induced their migration in vitro. Conclusions: Our study demonstrates a new antifibrotic mechanism of SDF-1β overexpression and suggests SDF-1β as a potential new approach for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Kleanthis Fytianos
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical research, University of Bern, 3010 Bern, Switzerland
| | - Ronja Schliep
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hanover, Germany
| | - Sofia Mykoniati
- Department of Internal Medicine, Cantonal Hospital of Jura, 2800 Delemont, Switzerland
| | - Petra Khan
- Department of Biomedical Research and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Katrin E. Hostettler
- Department of Biomedical Research and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Michael Tamm
- Department of Biomedical Research and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical research, University of Bern, 3010 Bern, Switzerland
- Correspondence: (A.G.); (T.G.)
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hanover, Germany
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical research, University of Bern, 3010 Bern, Switzerland
- Correspondence: (A.G.); (T.G.)
| |
Collapse
|
18
|
Bao H, Cheng S, Li X, Li Y, Yu C, Huang J, Zhang Z. Functional Au nanoparticles for engineering and long-term CT imaging tracking of mesenchymal stem cells in idiopathic pulmonary fibrosis treatment. Biomaterials 2022; 288:121731. [PMID: 35970616 DOI: 10.1016/j.biomaterials.2022.121731] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) therapy has always been a big and long-standing challenge in clinical practice due to the lack of miraculous medicine. Mesenchymal stem cells (MSCs)-based therapy has recently emerged as a promising candidate for redefining IPF therapy. Enhancing the therapeutic efficacy of MSCs and understanding of their growth, migration and differentiation in harsh lung microenviroments are two keys to improving the stem cell-based IPF treatment. Herein, a non-viral dual-functional nanocarrier is fabricated by a one-pot approach, using protamine sulfate stabilized Au nanoparticles (AuPS), to genetically engineer MSCs for simultaneous IPF treatment and monitoring the biological behavior of the MSCs. AuPS exhibits superior cellular uptake ability, which results in efficient genetic engineering of MSCs to overexpress hepatocyte growth factor for enhanced IPF therapy. In parallel, the intracellular accumulation of AuPS improves the CT imaging contrast of MSCs, allowing visual tracking of the therapeutic engineered MSCs up to 48 days. Overall, this work has described for the first time a novel strategy for enhanced therapeutic efficacy and long-term CT imaging tracking of transplanted MSCs in IPF therapy, providing great prospect for stem cell therapy of lung disease.
Collapse
Affiliation(s)
- Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Shengnan Cheng
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaodi Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yuxuan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
19
|
Nintedanib Inhibits Endothelial Mesenchymal Transition in Bleomycin-Induced Pulmonary Fibrosis via Focal Adhesion Kinase Activity Reduction. Int J Mol Sci 2022; 23:ijms23158193. [PMID: 35897764 PMCID: PMC9332002 DOI: 10.3390/ijms23158193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD). Pulmonary fibroblasts play an important role in the development of IPF. Emerging evidence indicates that pulmonary endothelial cells could be the source of pulmonary fibroblasts through endothelial mesenchymal transition (EndoMT), which contributes to pulmonary fibrosis. EndoMT is a complex process in which endothelial cells lose their expression of endothelial markers and give rise to the characteristics of mesenchymal cells, including morphological fibroblast-like change and the expression of mesenchymal markers, which result in cardiac, renal, and dermal fibroses. Furthermore, EndoMT inhibition attenuates pulmonary fibrosis. Herein, we demonstrate that nintedanib, a tyrosine kinase receptor inhibitor, ameliorated murine bleomycin (BLM)-induced pulmonary fibrosis and suppressed the in vivo and in vitro models of EndoMT. We demonstrated that the activity of focal adhesion kinase (FAK), a key EndoMT regulator, increased in murine lung tissues and human pulmonary microvascular endothelial cells after BLM stimulation. Nintedanib treatment inhibited BLM-induced FAK activation and thus suppressed both in vivo and in vitro BLM-induced EndoMT. Importantly, we found that the VEGF/FAK signaling pathway was involved in nintedanib regulating EndoMT. These novel findings help us understand the mechanism and signaling pathway of EndoMT to further develop more efficacious drugs for IPF treatment.
Collapse
|
20
|
Hoyer N, Prior TS, Bendstrup E, Shaker SB. Diagnostic delay in IPF impacts progression-free survival, quality of life and hospitalisation rates. BMJ Open Respir Res 2022; 9:9/1/e001276. [PMID: 35798532 PMCID: PMC9263910 DOI: 10.1136/bmjresp-2022-001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The diagnosis of idiopathic pulmonary fibrosis (IPF) is often delayed up to several years. The objective of this study was to assess the impact of the diagnostic delay on progression-free survival, quality of life and hospitalisation rates. METHODS A total of 264 incident patients with IPF were included immediately after their diagnosis and followed for up to 5 years, with regular collection of clinical data, quality-of-life questionnaires and assessment of disease progression. Hospitalisation data were extracted from electronic patient records. Analyses were performed on the entire cohort and strata according to forced vital capacity (FVC) at diagnosis. RESULTS A long diagnostic delay (>1 year) was associated with worse progression-free survival compared with a short diagnostic delay (<1 year) (HR: 1.70, 95% CI: 1.18 to 2.46, p=0.004) especially in patients with mild disease at the time of diagnosis (FVC>80% predicted). Mean total scores of the St. George's respiratory questionnaire (SGRQ), a derived IPF-specific version of the SGRQ and the chronic obstructive pulmonary disease assessment test (CAT) were consistently higher in patients with long diagnostic delays, indicating worse quality of life. Mean hospitalisation rates were higher during the first year after diagnosis (Incidence rate ratio [IRR]: 3.28, 95% CI: 1.35 to 8.55, p=0.01) and during the entire follow-up (IRR: 1.74, 95% CI: 1.01 to 3.02, p=0.04). CONCLUSION A diagnostic delay of more than 1 year negatively impacts progression-free survival, quality of life and hospitalisation rates in patients with IPF. These findings highlight the importance of an early diagnosis for proper management of IPF. TRIAL REGISTRATION NUMBER NCT02755441.
Collapse
Affiliation(s)
- Nils Hoyer
- Department of Respiratory Medicine, Gentofte University Hospital, Hellerup, Hovedstaden, Denmark
| | - Thomas Skovhus Prior
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Elisabeth Bendstrup
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Saher Burhan Shaker
- Department of Respiratory Medicine, Gentofte University Hospital, Hellerup, Hovedstaden, Denmark
| |
Collapse
|
21
|
Silbernagel E, Stacher-Priehse E, Dinkel J, Stepp H, Gesierich W, Lindner M, Behr J, Reichenberger F. Bronchoscopic Probe-Based Confocal Laser Endomicroscopy to Diagnose Diffuse Parenchymal Lung Diseases. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2022; 39:e2022016. [PMID: 36118539 PMCID: PMC9437758 DOI: 10.36141/svdld.v39i2.11280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Diagnosis of diffuse parenchymal lung disease (DPLD) is based on clinical evaluation, radiological imaging and histology. However, additional techniques are warranted to improve diagnosis. AIMS AND OBJECTIVE Probe based confocal laser endomicroscopy (pCLE) allows real time in vivo visualisation of the alveolar compartment during bronchoscopy based on autofluorescence of elastic fibres. We used pCLE (Cellvizio®, Mauna Kea Technology. Inc, Paris, France) to characterise alveolar patterns in patients with different types of DPLD. METHODS In this pilot study we included 42 therapy naive patients (13 female, age 72.6 +/- 2.3 years), who underwent bronchoscopy for workup of DPLD. pCLE images were obtained during rigid bronchoscopy in affected lung segments according to HR-CT scan, followed by cryobiopsies in the identical area. Diagnoses were made by a multidisciplinary panel. The description of pCLE patterns was based on the degree of distortion of the hexagonal alveolar pattern, the density of alveolar structures, the presence of consolidations or loaded alveolar macrophages (AM). The assessment was performed by 2 investigators blinded for the final diagnosis. RESULTS The normal lung showed a typical alveolar loop pattern. In amiodarone lung disease loaded AM were predominant. COP showed characteristic focal consolidations. IPF was characterized by significant distortion and destruction, NSIP showed significant increase in density, and chronic HP presented with consolidations, mild distortion and density. CONCLUSION pCLE shows potential as an adjunctive bronchoscopic imaging technique in the differential diagnosis of DPLD. Structured and quantitative analysis of the images is required.
Collapse
Affiliation(s)
| | | | - Julien Dinkel
- Department of Pathology, Asklepios Lung Center Munich-Gauting, Germany
- Department of Radiology, Asklepios Lung Center Munich-Gauting, Germany
| | - Herbert Stepp
- Laser Research Laboratory, LIFE-Center, Ludwig-Maximilians-University of Munich, Germany
| | | | - Michael Lindner
- Department of Thoracic Surgery, University Hospital Salzburg, Austria
| | - Juergen Behr
- Department of Pathology, Asklepios Lung Center Munich-Gauting, Germany
| | | |
Collapse
|
22
|
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Current and future treatment. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:84-96. [PMID: 35001525 PMCID: PMC9060042 DOI: 10.1111/crj.13466] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/21/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3–5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development. Data Source The data were obtained from the Randomized Controlled Trials and scientific studies published in English literature. We used search terms related to IPF, antifibrotic treatment, lung transplant, and management. Results Etiopathogenesis of IPF is not fully understood, and treatment options are limited. Pathological features of IPF include extracellular matrix remodeling, fibroblast activation and proliferation, immune dysregulation, cell senescence, and presence of aberrant basaloid cells. The mainstay therapies are the oral antifibrotic drugs pirfenidone and nintedanib, which can improve quality of life, attenuate symptoms, and slow disease progression. Unilateral or bilateral lung transplantation is the only treatment for IPF shown to increase life expectancy. Conclusion Clearly, there is an unmet need for accelerated research into IPF mechanisms so that progress can be made in therapeutics toward the goals of increasing life expectancy, alleviating symptoms, and improving well‐being.
Collapse
Affiliation(s)
- Daniel S Glass
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - David Grossfeld
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Heather A Renna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Priya Agarwala
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Peter Spiegler
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Joshua DeLeon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| |
Collapse
|
23
|
The histone methyltransferase DOT1L is a new epigenetic regulator of pulmonary fibrosis. Cell Death Dis 2022; 13:60. [PMID: 35039472 PMCID: PMC8763868 DOI: 10.1038/s41419-021-04365-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with increasing occurrence, high death rates, and unfavorable treatment regimens. The pathogenesis underlying IPF is complex and the epigenetic contributions to IPF are largely unknown. Recent studies have shown that DOT1L (Disruptor of telomeric silencing-1 like), a histone H3K79 methyltransferase, contributes to fibrosis response, but its role in IPF remains unclear. DOT1L, H3K79me3, and the profibrotic proteins levels were upregulated in the pulmonary fibrosis models both in vivo and in vitro. Lentivirus-mediated DOT1L knockdown or DOT1L-specific inhibitor EPZ5676 alleviated the pathogenesis of bleomycin-induced mouse pulmonary fibrosis. Furthermore, heterozygous DOT1L-deficient mice (Dot1l+/−) showed less sensitive to pulmonary fibrosis, as shown by decreased lung fibrosis phenotypes in vivo. Mechanically, DOT1L regulated TGF-β1-induced fibroblasts fibrosis by increasing enrichments of H3K79me3 on the promoter of Jag1 gene (encoding the Notch ligand Jagged1), enhancing the expression of Jagged1, which in turn stimulated exuberant Notch signaling and actuated the fibrosis response. In conclusion, our study confirmed DOT1L to be an epigenetic modifier in the pathogenesis of lung fibrosis, revealed a counterbalancing mechanism governing Jag1 transcription by modulating H3K79 trimethylation at the Jag1 promoter, activating the Notch signaling, and affecting the expression of profibrotic proteins to accelerate the lung fibrosis.
Collapse
|
24
|
Du W, Tang Z, Yang F, Liu X, Dong J. Icariin attenuates bleomycin-induced pulmonary fibrosis by targeting Hippo/YAP pathway. Biomed Pharmacother 2021; 143:112152. [PMID: 34536758 DOI: 10.1016/j.biopha.2021.112152] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/20/2023] Open
Abstract
Pulmonary fibrosis is a manifestation of the progression of interstitial pulmonary disease. Icariin (ICA) has been found to exhibit protective effects on multiple chronic diseases like diabetes, liver, heart, and renal fibrosis. Here, a systemic pharmacological study was designed to investigate whether ICA treatment alleviates bleomycin (BLM)-induced pulmonary fibrosis. The rat pulmonary fibrosis model was constructed by non-invasive endotracheal intubation instillation of BLM to observe the intervention effects of ICA on pulmonary fibrosis in the whole process of inflammation and fibrosis. ICA reduced the collagen deposition and inflammation induced by BLM in rat. The comparative RNA-sequencing was conducted to analyze the lung gene expression profiles in rat. KEGG analysis indicated that most of the genes were enriched in Hippo pathway, NF-κB pathway, and B-cell receptor signaling pathway, etc. Immunohistochemistry staining showed that the expression of YAP was significantly elevated in the model group and decreased in the ICA treatment group. Taken together, the anti-fibrotic effect of ICA appears to be mediated by its inhibitory of YAP, which is the core transcriptional regulator of Hippo pathway.
Collapse
Affiliation(s)
- Wenjing Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhao Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangyong Yang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xijun Liu
- Agricultural Products Quality and Safety Supervision, Inspection and Testing Center of Shantou, Shantou, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
The role of osteoprotegerin (OPG) in fibrosis: its potential as a biomarker and/or biological target for the treatment of fibrotic diseases. Pharmacol Ther 2021; 228:107941. [PMID: 34171336 DOI: 10.1016/j.pharmthera.2021.107941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined by excessive formation and accumulation of extracellular matrix proteins, produced by myofibroblasts, that supersedes normal wound healing responses to injury and results in progressive architectural remodelling. Fibrosis is often detected in advanced disease stages when an organ is already severely damaged and can no longer function properly. Therefore, there is an urgent need for reliable and easily detectable markers to identify and monitor fibrosis onset and progression as early as possible; this will greatly facilitate the development of novel therapeutic strategies. Osteoprotegerin (OPG), a well-known regulator of bone extracellular matrix and most studied for its role in regulating bone mass, is expressed in various organs and functions as a decoy for receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Recently, OPG has been linked to fibrosis and fibrogenesis, and has been included in a panel of markers to diagnose liver fibrosis. Multiple studies now suggest that OPG may be a general biomarker suitable for detection of fibrosis and/or monitoring the impact of fibrosis treatment. This review summarizes our current understanding of the role of OPG in fibrosis and will discuss its potential as a biomarker and/or novel therapeutic target for fibrosis.
Collapse
|
26
|
Skurikhin E, Madonov P, Pershina O, Ermakova N, Pakhomova A, Widera D, Pan E, Zhukova M, Sandrikina L, Artamonov A, Dygai A. Micellar Hyaluronidase and Spiperone as a Potential Treatment for Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms22115599. [PMID: 34070506 PMCID: PMC8198946 DOI: 10.3390/ijms22115599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Concentration of hyaluronic acid (HA) in the lungs increases in idiopathic pulmonary fibrosis (IPF). HA is involved in the organization of fibrin, fibronectin, and collagen. HA has been proposed to be a biomarker of fibrosis and a potential target for antifibrotic therapy. Hyaluronidase (HD) breaks down HA into fragments, but is a subject of rapid hydrolysis. A conjugate of poloxamer hyaluronidase (pHD) was prepared using protein immobilization with ionizing radiation. In a model of bleomycin-induced pulmonary fibrosis, pHD decreased the level of tissue IL-1β and TGF-β, prevented the infiltration of the lung parenchyma by CD16+ cells, and reduced perivascular and peribronchial inflammation. Simultaneously, a decrease in the concentrations of HA, hydroxyproline, collagen 1, total soluble collagen, and the area of connective tissue in the lungs was observed. The effects of pHD were significantly stronger compared to native HD which can be attributed to the higher stability of pHD. Additional spiperone administration increased the anti-inflammatory and antifibrotic effects of pHD and accelerated the regeneration of the damaged lung. The potentiating effects of spiperone can be explained by the disruption of the dopamine-induced mobilization and migration of fibroblast progenitor cells into the lungs and differentiation of lung mesenchymal stem cells (MSC) into cells of stromal lines. Thus, a combination of pHD and spiperone may represent a promising approach for the treatment of IPF and lung regeneration.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
- Correspondence: ; Tel.: +7-3822-418-375
| | - Pavel Madonov
- Limited Liability Company «Scientific Future Management», 630559 Novosibirsk, Russia; (P.M.); (A.A.)
| | - Olga Pershina
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Natalia Ermakova
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Angelina Pakhomova
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, Whiteknights Campus, School of Pharmacy, University of Reading, Reading RG6 6AP, UK;
| | - Edgar Pan
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Mariia Zhukova
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Lubov Sandrikina
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
| | - Andrey Artamonov
- Limited Liability Company «Scientific Future Management», 630559 Novosibirsk, Russia; (P.M.); (A.A.)
| | - Alexander Dygai
- Tomsk National Research Medical Centre of the Russian Academy of Sciences, Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Lenin, 3, 634028 Tomsk, Russia; (O.P.); (N.E.); (A.P.); (E.P.); (M.Z.); (L.S.); (A.D.)
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| |
Collapse
|
27
|
Development and Validation of a Clinical Diagnostic Scoring System for the Diagnosis of IPF. Ann Am Thorac Soc 2021; 18:1803-1810. [PMID: 33844935 DOI: 10.1513/annalsats.202011-1430oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Interpreting the radiological data in conjunction with an objective clinical score could help to harmonize IPF diagnostic and improve accuracy. OBJECTIVES We sought to establish and validate a multivariable objective scoring model based on clinical parameters, by stratifying the risk for patients to be diagnosed as IPF versus other forms of interstitial lung disease (ILD). METHODS A clinical score was derived from review of patients evaluated at the Inova Fairfax ILD program and validated in three distinct cohorts. Based on known IPF clinical characteristics, a multivariable model was created and assessed by receiver operator curve (ROC) characteristics. RESULTS There were 844 ILD patients diagnosed as either IPF (n=347, 41%) or non-IPF ILD (n=497, 59%). Based on calculated odds ratios, a score was assigned to each of the following clinical parameters: age, sex, smoking history, ethnicity, ILD family history, exposures, presence of CTD signs or symptoms, and Velcro crackles. The final Fairfax IPF clinical score (FICS) ranged from 1 to 25. The clinical diagnostic score system was accurate in predicting IPF, as measured by the area under the curve (AUC 0.88) in the derivation cohort with similar AUCs of 0.91, 0.81 and 0.71 in the respective validation cohorts. CONCLUSION The FICS appears to be an accurate tool for estimating the pretest probability of IPF in patients with ILD. How the FICS performs in conjunction with the various HRCT patterns remains to be determined. This model could ultimately be useful for increasing the degree of confidence in the final diagnosis and help to obviate the need for lung biopsy in cases of non-UIP patterns on HRCT.
Collapse
|
28
|
Gao J, Kalafatis D, Carlson L, Pesonen IHA, Li CX, Wheelock Å, Magnusson JM, Sköld CM. Baseline characteristics and survival of patients of idiopathic pulmonary fibrosis: a longitudinal analysis of the Swedish IPF Registry. Respir Res 2021; 22:40. [PMID: 33546682 PMCID: PMC7866760 DOI: 10.1186/s12931-021-01634-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background Observational data under real-life conditions in idiopathic pulmonary fibrosis (IPF) is scarce. We explored anti-fibrotic treatment, disease severity and phenotypes in patients with IPF from the Swedish IPF Registry (SIPFR). Methods Patients enrolled between September 2014 and April 2020 and followed ≥ 6 months were investigated. Demographics, comorbidities, lung function, composite variables, six-minute walking test (6MWT), quality of life, and anti-fibrotic therapy were evaluated. Agreements between classification of mild physiological impairment (defined as gender-age-physiology (GAP) stage 1) with physiological and composite measures of severity was assessed using kappa values and their impact on mortality with hazard ratios. The factor analysis and the two-step cluster analysis were used to identify phenotypes. Univariate and multivariable survival analyses were performed between variables or groups. Results Among 662 patients with baseline data (median age 72.7 years, 74.0% males), 480 had a follow up ≥ 6 months with a 5 year survival rate of 48%. Lung function, 6MWT, age, and BMI were predictors of survival. Patients who received anti-fibrotic treatment ≥ 6 months had better survival compared to untreated patients [p = 0.007, HR (95% CI): 1.797 (1.173–2.753)] after adjustment of age, gender, BMI, smoking status, forced vital capacity (FVC) and diffusion capacity of carbon monoxide (DLCO). Patients with mild physiological impairment (GAP stage 1, composite physiological index (CPI) ≤ 45, DLCO ≥ 55%, FVC ≥ 75%, and total lung capacity (TLC) ≥ 65%, respectively) had better survival, after adjustment for age, gender, BMI and smoking status and treatment. Patients in cluster 1 had the worst survival and consisted mainly of male patients with moderate-severe disease and an increased prevalence of heart diseases at baseline; Cluster 2 was characterized by mild disease with more than 50% females and few comorbidities, and had the best survival; Cluster 3 were younger, with moderate-severe disease and had few comorbidities. Conclusion Disease severity, phenotypes, and anti-fibrotic treatment are closely associated with the outcome in IPF, with treated patients surviving longer. Phenotypes may contribute to predicting outcomes of patients with IPF and suggest the patients’ need for special management, whereas single or composite variables have some limitations as disease predictors.
Collapse
Affiliation(s)
- Jing Gao
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Solna, Solnavägen 30, 17176, Stockholm, Sweden.
| | - Dimitrios Kalafatis
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Solna, Solnavägen 30, 17176, Stockholm, Sweden
| | - Lisa Carlson
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Ida H A Pesonen
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Solna, Solnavägen 30, 17176, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Solna, Solnavägen 30, 17176, Stockholm, Sweden
| | - Åsa Wheelock
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Solna, Solnavägen 30, 17176, Stockholm, Sweden
| | - Jesper M Magnusson
- Department of Internal Medicine/Respiratory Medicine and Allergology, Institute of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - C Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Solna, Solnavägen 30, 17176, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Löfdahl A, Tornling G, Wigén J, Larsson-Callerfelt AK, Wenglén C, Westergren-Thorsson G. Pathological Insight into 5-HT 2B Receptor Activation in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2020; 22:ijms22010225. [PMID: 33379351 PMCID: PMC7796180 DOI: 10.3390/ijms22010225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022] Open
Abstract
Interstitial lung disease (ILD) encompasses a heterogeneous group of more than 200 conditions, of which primarily idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial pneumonia, hypersensitivity pneumonitis, ILD associated with autoimmune diseases and sarcoidosis may present a progressive fibrosing (PF) phenotype. Despite different aetiology and histopathological patterns, the PF-ILDs have similarities regarding disease mechanisms with self-sustaining fibrosis, which suggests that the diseases may share common pathogenetic pathways. Previous studies show an enhanced activation of serotonergic signaling in pulmonary fibrosis, and the serotonin (5-HT)2 receptors have been implicated to have important roles in observed profibrotic actions. Our research findings in support by others, demonstrate antifibrotic effects with 5-HT2B receptor antagonists, alleviating several key events common for the fibrotic diseases such as myofibroblast differentiation and connective tissue deposition. In this review, we will address the potential role of 5-HT and in particular the 5-HT2B receptors in three PF-ILDs: ILD associated with systemic sclerosis (SSc-ILD), ILD associated with rheumatoid arthritis (RA-ILD) and IPF. Highlighting the converging pathways in these diseases discloses the 5-HT2B receptor as a potential disease target for PF-ILDs, which today have an urgent unmet need for therapeutic strategies.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
- Correspondence:
| | - Göran Tornling
- AnaMar AB, Medicon Village, Scheeletorget 1, 22381 Lund, Sweden; (C.W.); (G.T.)
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jenny Wigén
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| | - Anna-Karin Larsson-Callerfelt
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| | - Christina Wenglén
- AnaMar AB, Medicon Village, Scheeletorget 1, 22381 Lund, Sweden; (C.W.); (G.T.)
| | - Gunilla Westergren-Thorsson
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| |
Collapse
|
30
|
Zuo J, Yuan Y, Zhao M, Wang J, Chen Y, Zhu Q, Bai L. An efficient electrochemical assay for miR-3675-3p in human serum based on the nanohybrid of functionalized fullerene and metal-organic framework. Anal Chim Acta 2020; 1140:78-88. [PMID: 33218492 DOI: 10.1016/j.aca.2020.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unclear pathogenesis, for which diagnosis has been a great challenge. Recent researches have revealed that miR-3675-3p is a promising biomarker for IPF diagnosis. Herein, the present work describes a novel electrochemical microRNA biosensor for rapid and sensitive detection of miR-3675-3p based on multiple signal amplification strategies. First of all, fullerene (C60) is doped with poly(amidoamine) (PAMAM)-functionalized metal-organic framework (MOF) to form a new nanohybrid of C60@PAMAM-MOF, which exhibits more remarkable redox activity compared with the other two synthesized C60-based nanohybrids when triggered by tetraoctylammonium bromide (TOAB). C60@PAMAM-MOF also possesses a large specific surface area and abundant amino groups to anchor Au nanoparticles (AuNPs) for the immobilization of signal probe (SP) to form tracer label and enhance the electrochemical response signal. In addition, core@shell Au-Pt nanoparticles (Au@PtNPs) are absorbed on chitosan-acetylene black (CS-AB) to act as sensing platform, which can promote electron transfer and increase the loading of capture probe (CP). Under optimum conditions, the proposed biosensor displays a wide linear range for miR-3675-3p from 10 fM to 10 nM, with a limit of detection (LOD) as low as 2.99 fM. More significantly, this biosensor shows a lower LOD and wider linear range than that of qRT-PCR, and its trial application in human serum shows favorable results, which exhibits a promising prospect for IPF diagnosis.
Collapse
Affiliation(s)
- Jianli Zuo
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yonghua Yuan
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jie Wang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhan Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Qiqi Zhu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
31
|
Beck H, Thaler T, Meibom D, Meininghaus M, Jörißen H, Dietz L, Terjung C, Bairlein M, von Bühler CJ, Anlauf S, Fürstner C, Stellfeld T, Schneider D, Gericke KM, Buyck T, Lovis K, Münster U, Anlahr J, Kersten E, Levilain G, Marossek V, Kast R. Potent and Selective Human Prostaglandin F (FP) Receptor Antagonist (BAY-6672) for the Treatment of Idiopathic Pulmonary Fibrosis (IPF). J Med Chem 2020; 63:11639-11662. [PMID: 32969660 DOI: 10.1021/acs.jmedchem.0c00834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare and devastating chronic lung disease of unknown etiology. Despite the approved treatment options nintedanib and pirfenidone, the medical need for a safe and well-tolerated antifibrotic treatment of IPF remains high. The human prostaglandin F receptor (hFP-R) is widely expressed in the lung tissue and constitutes an attractive target for the treatment of fibrotic lung diseases. Herein, we present our research toward novel quinoline-based hFP-R antagonists, including synthesis and detailed structure-activity relationship (SAR). Starting from a high-throughput screening (HTS) hit of our corporate compound library, multiple parameter improvements-including increase of the relative oral bioavailability Frel from 3 to ≥100%-led to a highly potent and selective hFP-R antagonist with complete oral absorption from suspension. BAY-6672 (46) represents-to the best of our knowledge-the first reported FP-R antagonist to demonstrate in vivo efficacy in a preclinical animal model of lung fibrosis, thus paving the way for a new treatment option in IPF.
Collapse
Affiliation(s)
- Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Tobias Thaler
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Daniel Meibom
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Mark Meininghaus
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Hannah Jörißen
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Lisa Dietz
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Carsten Terjung
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Michaela Bairlein
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | | | - Sonja Anlauf
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Chantal Fürstner
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Timo Stellfeld
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Dirk Schneider
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Kersten M Gericke
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Thomas Buyck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Kai Lovis
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Uwe Münster
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Johanna Anlahr
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Elisabeth Kersten
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Guillaume Levilain
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Virginia Marossek
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Raimund Kast
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| |
Collapse
|
32
|
Razek AAKA, El Badrawy MK, Alnaghy E. Interstitial Lung Fibrosis Imaging Reporting and Data System: What Radiologist Wants to Know? J Comput Assist Tomogr 2020; 44:656-666. [PMID: 32842067 DOI: 10.1097/rct.0000000000001075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this work is to review interstitial lung fibrosis Imaging Reporting and Data System (ILF-RADS) that was designed for reporting of interstitial lung fibrosis (ILF). Findings include pulmonary and extrapulmonary findings and is subsequently designed into 4 categories. Pulmonary findings included lung volume, reticulations, traction bronchiectasis, honeycomb, nodules, cysts, ground glass, consolidation, mosaic attenuation and emphysema, and distribution of pulmonary lesions; axial (central, peripheral and diffuse), and zonal distribution (upper, middle, and lower zones). Complications in the form of acute infection, acute exacerbation, and malignancy were also assessed. Extrapulmonary findings included mediastinal, pleural, tracheal, and bone or soft tissue lesions. The lexicon of usual interstitial pneumonia (UIP) was classified into 4 categories designated as belonging in 1 of 4 categories. Lexicon of ILF-RADS-1 (typical UIP), ILF-RADS-2 (possible UIP), ILF-RADS-3 (indeterminate for UIP), and ILF-RADS-4 (inconsistent with UIP).
Collapse
|
33
|
Sun B, Xu S, Yan Y, Li Y, Li H, Zheng G, Dong T, Bai J. miR-205 Suppresses Pulmonary Fibrosis by Targeting GATA3 Through Inhibition of Endoplasmic Reticulum Stress. Curr Pharm Biotechnol 2020; 21:720-726. [PMID: 31820686 DOI: 10.2174/1389201021666191210115614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the role of miR-205 and GATA3 in Pulmonary Fibrosis (PF). METHODS Bleomycin (BLM) was used to induce PF in SD rats and in vitro PF model was established by using TGFβ1-induced RLE-6TN cells. miR-205 mimics were used for the overexpression of miR- 205. The expression of miR-205, GATA3, α-SMA, Collagen I, CHOP and GRP78 were measured using RT-qPCR or western blotting. Dual-luciferase reporter assay was used to confirm binding between GATA3 3'-UTR and miR-205. RESULTS The expression of miR-205 was significantly down-regulated, while the expression of GATA3 was remarkably up-regulated in the model rats. GATA3 levels were remarkably decreased when miR-205 was overexpressed. When miR-205 was overexpressed, the lung injury by BLM-induced fibrosis was improved. The expression of α-SMA, Collagen I, as well as GRP78 and CHOP, was significantly up-regulated in both in vivo and in vitro PF models, and overexpression of miR-205 remarkably reversed the effects. Dual-luciferase reporter assay showed that miR-205 directly targeted and negatively regulated GATA3. CONCLUSION miR-205 improved pulmonary fibrosis through inhibiting ER-stress by targeting GATA3.
Collapse
Affiliation(s)
- Bingke Sun
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Shumin Xu
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Yanli Yan
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Yusheng Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Hongqiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Guizhen Zheng
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Tiancao Dong
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| |
Collapse
|
34
|
Ramadurai D, Corder S, Churney T, Graney B, Harshman A, Meadows S, Swigris JJ. Idiopathic pulmonary fibrosis: Educational needs of health-care providers, patients, and caregivers. Chron Respir Dis 2020; 16:1479973119858961. [PMID: 31288534 PMCID: PMC6616062 DOI: 10.1177/1479973119858961] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease associated with poor
quality of life. Debilitating symptoms and the reality of shortened survival
impact patients’ physical and emotional well-being and constrain the lives of
patients’ caregivers. This study assessed the informational needs of medical
providers who care for patients with IPF, IPF patients themselves, and their
caregivers. Tailored surveys were sent electronically to providers, patients
with IPF, and caregivers of patients with IPF collected on a rolling basis in
March of 2017. Providers answered questions regarding their own informational
needs and what information they believed patients needed. Patients and
caregivers identified their own informational needs and the perceived needs for
each other. About 2636 surveys were sent to providers, including 2041 to
physicians, of whom 156 completed it. One hundred sixty patients and 29
caregivers responded to the survey via a link on a website. Eighty-six percent
of providers described themselves as physicians who diagnose and treat IPF
patients themselves. Providers ranked information on “making the diagnosis of
IPF” as their top informational need. Patients and caregivers chose “disease
progression/what to expect” as the most important informational need for
themselves and for each other. Providers want to make a correct diagnosis when
IPF is in the differential diagnosis. Patients and caregivers desire clarity
around how IPF will behave over time and what their futures with IPF will look
like. Resources for patients and their caregivers should include information on
disease natural history in empathically worded, clear, and easily accessible
formats.
Collapse
Affiliation(s)
- Deepa Ramadurai
- 1 Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephanie Corder
- 2 Office of Professional Education, National Jewish Health, Denver, CO, USA
| | - Tara Churney
- 3 Interstitial Lung Disease Program, National Jewish Health, Denver, CO, USA
| | - Bridget Graney
- 4 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea Harshman
- 2 Office of Professional Education, National Jewish Health, Denver, CO, USA
| | | | - Jeffrey J Swigris
- 3 Interstitial Lung Disease Program, National Jewish Health, Denver, CO, USA
| |
Collapse
|
35
|
Wang L, Liu H, He Q, Gan C, Li Y, Zhang Q, Yao Y, He F, Ye T, Yin W. Galangin ameliorated pulmonary fibrosis in vivo and in vitro by regulating epithelial-mesenchymal transition. Bioorg Med Chem 2020; 28:115663. [PMID: 32912432 DOI: 10.1016/j.bmc.2020.115663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Pulmonary fibrosis (PF) is a disease that is characterized by abnormal epithelial-mesenchymal transition (EMT) and persistent inflammatory injury, with high mortality and poor prognosis, but the current therapies are accompanied by certain adverse side effects. In this study, we investigated the role of galangin (GA), an anti-inflammatory and anti-tumoral phytochemical extracted from galangal, in preventing and curing bleomycin (BLM)-induced pulmonary fibrosis and the underlying mechanism. Histopathological staining confirmed that GA dramatically moderated bleomycin-induced pulmonary fibrosis in mice. Compared with the vehicle treatment, GA treatment inhibited the expression of vimentin and increased the expression of E-cadherin. The expression of α-Smooth muscle actin (α-SMA), which is a myofibroblast marker, was also suppressed. In addition, GA diminished the increase in the numbers of CD4+CD69+ and CD8+CD69+ T cells and dendritic cells induced by bleomycin, and reduced the residence of inflammatory cells in the lung tissues. Notably, GA inhibited the TGF-β1-induced EMT and fibroblast differentiation in vitro, which further confirmed the potential protective effect of GA on pulmonary fibrosis. Taken together, our results suggest that GA exerts a beneficial effect on bleomycin-induced pulmonary fibrosis by attenuating EMT and inflammatory damage and may have prevent potential of pulmonary fibrosis.
Collapse
Affiliation(s)
- Liqun Wang
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongyao Liu
- Laboratory of Liver Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Qiurong He
- West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Liver Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yali Li
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianyu Zhang
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuqin Yao
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Fang He
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tinghong Ye
- Laboratory of Liver Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Wenya Yin
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
36
|
He C, Chen Z, Liu S, Chen H, Zhang F. Prevalence and risk factors of interstitial lung disease in patients with primary Sjögren's syndrome: A systematic review and meta-analysis. Int J Rheum Dis 2020; 23:1009-1018. [PMID: 32588976 DOI: 10.1111/1756-185x.13881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To systematically review the prevalence and risk factors for interstitial lung disease (ILD) in patients with primary Sjögren's syndrome (pSS). METHODS We searched PubMed, Embase, and Cochrane Library from inception to December 2019. Two investigators reviewed records according to predefined criteria. We calculated the pooled prevalence, weighted mean differences (WMDs), odds ratio (OR) and 95% confidence intervals (CIs) using a random effects model, and performed subgroup analysis, sensitivity analysis, and Egger's test. RESULTS In 23 studies with 6157 pSS patients, the pooled prevalence of ILD in pSS patients was 13% (95% CI: 9-19). The pSS-ILD prevalence was higher in Asia (20%) than that in Europe (10%). Male gender (OR = 1.92, 95% CI: 1.26-2.95), elder age (WMD = 9.25 years, 95% CI: 2.78-15.72) and higher C-reactive protein (CRP) (WMD = 3.92 mg/L, 95% CI: 0.27-1.61) was associated with ILD in pSS patients. CONCLUSION Interstitial lung disease was prevalent in pSS patients. Elder age, male gender and higher CRP were risk factors for pSS-ILD. Our data highlighted the importance of screening for ILD in high-risk pSS patients.
Collapse
Affiliation(s)
- Chengmei He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhilei Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Suying Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
37
|
Jones MG, Hillyar CR, Nibber A, Chisholm A, Wilson A, Maher TM, Kaplan A, Price D, Walsh S, Richeldi L. Opportunities to diagnose fibrotic lung diseases in routine care: A primary care cohort study. Respirology 2020; 25:1274-1282. [DOI: 10.1111/resp.13836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/19/2020] [Accepted: 04/14/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Mark G. Jones
- National Institute for Health Research Biomedical Research Centre and Clinical and Experimental Sciences University of Southampton Southampton UK
| | | | - Anjan Nibber
- Medical Sciences Division University of Oxford Oxford UK
| | | | - Andrew Wilson
- Norwich Medical School University of East Anglia Norwich UK
| | - Toby M. Maher
- Interstitial Lung Disease Unit Royal Brompton Hospital London UK
- Fibrosis Research Group, National Heart and Lung Institute Imperial College London London UK
| | - Alan Kaplan
- Department of Family and Community Medicine University of Toronto Toronto ON Canada
| | - David Price
- Centre of Academic Primary Care, Division of Applied Health Sciences University of Aberdeen Aberdeen UK
- Observational and Pragmatic Research Institute Singapore
| | - Simon Walsh
- Fibrosis Research Group, National Heart and Lung Institute Imperial College London London UK
| | - Luca Richeldi
- National Institute for Health Research Biomedical Research Centre and Clinical and Experimental Sciences University of Southampton Southampton UK
- Unità Operativa Complessa di Pneumologia Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli Rome Italy
| | | |
Collapse
|
38
|
Bondesson D, Schneider MJ, Silbernagel E, Behr J, Reichenberger F, Dinkel J. Automated evaluation of probe-based confocal laser endomicroscopy in the lung. PLoS One 2020; 15:e0232847. [PMID: 32374768 PMCID: PMC7202624 DOI: 10.1371/journal.pone.0232847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/22/2020] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Probe-based confocal endomicroscopy provides real time videos of autoflourescent elastin structures within the alveoli. With it, multiple changes in the elastin structure due to different diffuse parenchymal lung diseases have previously been described. However, these evaluations have mainly relied on qualitative evaluation by the examiner and manually selected parts post-examination. OBJECTIVES To develop a fully automatic method for quantifying structural properties of the imaged alveoli elastin and to perform a preliminary assessment of their diagnostic potential. METHODS 46 patients underwent probe-based confocal endomicroscopy, of which 38 were divided into 4 groups categorizing different diffuse parenchymal lung diseases. 8 patients were imaged in representative healthy lung areas and used as control group. Alveolar elastin structures were automatically segmented with a trained machine learning algorithm and subsequently evaluated with two methods developed for quantifying the local thickness and structural connectivity. MEASUREMENTS AND MAIN RESULTS The automatic segmentation algorithm performed generally well and all 4 patient groups showed statistically significant differences with median elastin thickness, standard deviation of thickness and connectivity compared to the control group. CONCLUSION Alveoli elastin structures can be quantified based on their structural connectivity and thickness statistics with a fully-automated algorithm and initial results highlight its potential for distinguishing parenchymal lung diseases from normal alveoli.
Collapse
Affiliation(s)
- David Bondesson
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), University Hospital, LMU Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Moritz J. Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), University Hospital, LMU Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Edith Silbernagel
- Department of Pneumology, Asklepios Fachklinikun Munich-Gauting, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Behr
- Department of Pneumology, Asklepios Fachklinikun Munich-Gauting, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Internal Medicine V, University of Munich (LMU), Munich, Germany
| | - Frank Reichenberger
- Department of Pneumology, Asklepios Fachklinikun Munich-Gauting, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), University Hospital, LMU Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Radiology, Asklepios Lung Center Munich-Gauting, Munich, Germany
| |
Collapse
|
39
|
Flohr T, Ulzheimer S, Petersilka M, Schmidt B. Basic principles and clinical potential of photon-counting detector CT. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42058-020-00029-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Zhang J, Wang Y, Zhang S, Li J, Fang H. Effects of tetrandrine combined with acetylcysteine on exercise tolerance, pulmonary function and serum TNF-β1 and MMP-7 in silicosis patients. Exp Ther Med 2020; 19:2195-2201. [PMID: 32104284 PMCID: PMC7027229 DOI: 10.3892/etm.2020.8431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the study was to investigate the effects of tetrandrine combined with acetylcysteine on exercise tolerance, pulmonary function, transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase 7 (MMP-7) in silicosis patients. A retrospective analysis was performed on 149 silicosis patients admitted to the Maternal and Child Health Care Hospital of Zhangqiu District between August, 2015 and September, 2017. Of the 149 patients, 70 patients treated with acetylcysteine comprised the control group, and 79 treated with tetrandrine combined with acetylcysteine constituted the study group. The concentrations of serum TGF-β1 and MMP-7 before and after treatment were detected by enzyme-linked immunosorbent assay (ELISA), and the exercise tolerance and pulmonary function were compared. Chest distress, chest pain, cough, expectoration and dyspnea in the two groups were relieved after treatment, and the improvement rates of chest distress, chest pain and dyspnea in the study group were significantly higher than those in the control group (P<0.05). Before treatment, there was no significant difference in the results of the 6-minute walk test (6MWT) between the two groups (P>0.05). After treatment, the 6MWT in the two groups was significantly increased (P<0.05), and the improvement effect in the study group was more marked than that in the control group (P<0.05). There was no significant difference in the pulmonary function indexes between the two groups before treatment (P>0.05). Before treatment, there was no significant difference in serum TGF-β1 and MMP-7 expression levels between the two groups (P>0.05). By contrast, after treatment, the levels in the two groups were significantly decreased, with the levels in the study group being significantly lower than that the control group (P<0.05). In conclusion, tetrandrine combined with acetylcysteine can improve pulmonary function and exercise tolerance of patients with silicosis by inhibiting the expressions of TGF-β1 and MMP-7, thus improving clinical efficacy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Maternal and Child Health Care Hospital of Zhangqiu District, Jinan 250200, P.R. China
| | - Yingchun Wang
- Department of Pharmacy, Yantaishan Hospital, Yantai 264000, P.R. China
| | - Shujuan Zhang
- Occupational Disease Department, Branch of Tai'an City Central Hospital, Tai'an 271000, P.R. China
| | - Jing Li
- Department of Surgery, The People's Hospital of Zhangqiu Area, Jinan 250200, P.R. China
| | - Hong Fang
- Department of Hepatobiliary Surgery, Weifang Traditional Chinese Hospital, Weifang 261041, P.R. China
- Correspondence to: Dr Hong Fang, Department of Hepatobiliary Surgery, Weifang Traditional Chinese Hospital, 1055 Weizhou Road, Kuiwen, Weifang 261041, P.R. China, E-mail:
| |
Collapse
|
41
|
Possible Role of Chest Ultrasonography for the Evaluation of Peripheral Fibrotic Pulmonary Changes in Patients Affected by Idiopathic Pulmonary Fibrosis—Pilot Case Series. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lung ultrasonography (LUS) provides an estimation of peripheral airspace (PAS) geometry of the lung. Altered PAS produces sonographic interstitial syndrome (SIS). Idiopathic pulmonary fibrosis (IPF) involves peripheral lung with altered PAS. The aim of the study is to correlate echographic patterns with peripheral fibrotic changes on high-resolution Chest CT scan (HRCT). Patients underwent LUS and HRCT on the same date. Four LUS patterns were described: (1) near normal; (2) SIS with predominance of reverberant artifacts; (3) SIS with vertical predominance; (4) white lung. Four HRCT grades of peripheral fibrotic infiltrates were reported: grade 1 mild; grade 2 moderate; grade 3 severe; grade 4 massive or honeycomb. LUS pattern 1 was indicative of mild to moderate fibrotic alterations in 100% of cases. LUS pattern 2 matched with HRCT grade 2 in 24 out of 30 cases (77%). Huge discordance in four cases because of large honeycomb cysts. LUS pattern 3 was indicative of severe to massive alterations in 100% of cases. LUS pattern 4 showed a heterogeneous distribution of HRCT grades, severe changes, and ground glass opacities (GGO). This preliminary work demonstrates some level of agreement between LUS patterns and HRCT grades. Limitations and methodological issues have been shown to support subsequent studies of agreement.
Collapse
|
42
|
Prayer F, Röhrich S, Pan J, Hofmanninger J, Langs G, Prosch H. [Artificial intelligence in lung imaging]. Radiologe 2020; 60:42-47. [PMID: 31754738 DOI: 10.1007/s00117-019-00611-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CLINICAL/METHODICAL ISSUE Artificial intelligence (AI) has the potential to improve diagnostic accuracy and management in patients with lung disease through automated detection, quantification, classification, and prediction of disease progression. STANDARD RADIOLOGICAL METHODS Owing to unspecific symptoms, few well-defined CT disease patterns, and varying prognosis, interstitial lungs disease represents a focus of AI-based research. METHODICAL INNOVATIONS Supervised and unsupervised machine learning can identify CT disease patterns using features which may allow the analysis of associations with specific diseases and outcomes. PERFORMANCE Machine learning on the one hand improves computer-aided detection of pulmonary nodules. On the other hand it enables further characterization of pulmonary nodules, which may improve resource effectiveness regarding lung cancer screening programs. ACHIEVEMENTS There are several challenges regarding AI-based CT data analysis. Besides the need for powerful algorithms, expert annotations and extensive training data sets that reflect physiologic and pathologic variability are required for effective machine learning. Comparability and reproducibility of AI research deserve consideration due to a lack of standardization in this emerging field. PRACTICAL RECOMMENDATIONS This review article presents the state of the art and the challenges concerning AI in lung imaging with special consideration of interstitial lung disease, and detection and consideration of pulmonary nodules.
Collapse
Affiliation(s)
- F Prayer
- Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - S Röhrich
- Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - J Pan
- Computational Imaging and Research Lab, Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Wien, Österreich
| | - J Hofmanninger
- Computational Imaging and Research Lab, Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Wien, Österreich
| | - G Langs
- Computational Imaging and Research Lab, Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Wien, Österreich
| | - H Prosch
- Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| |
Collapse
|
43
|
Ranzieri S, Illica Magrini E, Mozzoni P, Andreoli R, Pelà G, Bertorelli G, Corradi M. Idiopathic pulmonary fibrosis and occupational risk factors. LA MEDICINA DEL LAVORO 2019; 110:407-436. [PMID: 31846447 PMCID: PMC7809935 DOI: 10.23749/mdl.v110i6.8970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare lung disease of unknown origin that rapidly leads to death. However, the rate of disease progression varies from one individual to another and is still difficult to predict. The prognosis of IPF is poor, with a median survival of three to five years after diagnosis, without curative therapies other than lung transplantation. The factors leading to disease onset and progression are not yet completely known. The current disease paradigm is that sustained alveolar epithelial micro-injury caused by environmental triggers (e.g., cigarette smoke, microaspiration of gastric content, particulate dust, viral infections or lung microbial composition) leads to alveolar damage resulting in fibrosis in genetically susceptible individuals. Numerous epidemiological studies and case reports have shown that occupational factors contribute to the risk of developing IPF. In this perspective, we briefly review the current understanding of the pathophysiology of IPF and the importance of occupational factors in the pathogenesis and prognosis of the disease. Prompt identification and elimination of occult exposure may represent a novel treatment approach in patients with IPF.
Collapse
Affiliation(s)
- Silvia Ranzieri
- Dipartimento di Medicina e Chirurgia - Università di Parma .
| | | | | | | | | | | | | |
Collapse
|
44
|
Idiopathic pulmonary fibrosis in patients with early-stage non-small-cell lung cancer after surgical resection. Radiol Oncol 2019; 53:357-361. [PMID: 31553706 PMCID: PMC6765158 DOI: 10.2478/raon-2019-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background The outcomes of patients with both lung cancer and idiopathic pulmonary fibrosis (IPF) are unfavorable. Therapeutic interventions for lung cancer such as surgery can cause acute exacerbation of IPF (aeIPF). This study aimed to assess the frequency of IPF in a group of patients with early-stage non-small-cell lung cancer (NSCLC) and to report clinical characteristics and outcomes of this cohort of patients. Patients and methods This observational cohort retrospective study analyzed 641 pathological records of patients after surgical resection of early-stage non-small-cell lung cancer (NSCLC) at University Clinic Golnik from May 2010 to April 2017. Pathological records of NSCLC with coexisting IPF were reviewed. CT scans and biopsy specimens for this group of patients were analyzed by a thoracic radiologist and pathologist, independently. We searched radiological and pathological features of usual interstitial pneumonia (UIP) pattern in this group of patients. We report the clinical characteristics and outcome of this cohort of patients. Results Out of 641 patients with early-stage NSCLC, only 13 (2.0%) had histologically and radiologically proven coexisting UIP/IPF. Squamous cell carcinoma was the most common type of lung cancer (7/13 patients). The majority of tumors were small size (all being pT1 or pT2), stage I-II (11/13 patients), located in the lower lung lobes (11/13 patients). Almost all patients were current or ex-smokers (11/13 patients). There were two pathologically confirmed fatal cases (15.4%) due to aeIPF in the first two months after radical treatment, one after adjuvant radiotherapy and the other after surgery. Out of 13 patients, one patient had a lung cancer relapse. Conclusions Frequency of UIP/IPF in surgically treated early stage NSCLC is rather low. Our observational study shows that radical treatment of lung cancer can cause aeIPF with dismal outcome in this group of patients. The standard of care in these mostly elderly patients still remains unresolved.
Collapse
|
45
|
Flores-Suárez LF, Sacoto G. Interstitial Lung Disease and ANCA-Associated Vasculitis. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2019. [DOI: 10.1007/s40674-019-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Stevenson BR, Thompson GA, Watson MC, Bundell CS, Klinken EM, John M, Lake FR, McLean-Tooke AP. Autoantibodies in interstitial lung diseases. Pathology 2019; 51:518-523. [PMID: 31230817 DOI: 10.1016/j.pathol.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 03/10/2019] [Indexed: 10/26/2022]
Abstract
The role of autoantibody testing for patients with interstitial lung disease is an evolving area. Recent guidelines recommend routine anti-nuclear antibodies, rheumatoid factor, and anti-citrullinated cyclic peptide antibody testing for patients undergoing diagnostic evaluation for interstitial lung disease, with further autoantibody testing reserved for selected cases guided by rheumatological features. Even this approach may miss patients with clinically significant autoantibodies when interstitial lung disease is the dominant or first manifestation of autoimmune disease. We retrospectively performed autoimmune serology in a clinically well characterised cohort of interstitial lung disease patients. Using stored serum, additional testing was performed to ensure all patients had complete autoantibody profiles including anti-nuclear antibodies, extractable nuclear antigen antibodies, double-stranded DNA antibodies, rheumatoid factor, anti-citrullinated cyclic peptide antibodies, anti-neutrophil cytoplasmic antibodies, and myositis antibodies. Eighty patients with interstitial lung disease, and available stored serum, were assessed. Mean age at interstitial lung disease diagnosis was 65.2 years and 42 patients were male. Positive autoimmune serology was found in 56 of 80 (70.0%) patients; the most common positive result was anti-nuclear antibodies (n=34; 42.5%). Myositis antibodies were detected in 13 of 80 (16.2%) patients. Four (5%) patients had elevated anti-citrullinated cyclic peptide antibodies, and two (2.5%) patients had detectable myeloperoxidase antibodies. Eleven (13.7%) patients with negative anti-nuclear antibodies had other significant disease associated autoantibodies. An extended panel of autoantibody testing may detect cases of connective tissue disease associated interstitial lung disease, regardless of clinical or radiological subtype, and prior to extra-pulmonary manifestations of systemic autoimmunity.
Collapse
Affiliation(s)
- Brittany R Stevenson
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia; Department of Clinical Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia.
| | - Grace A Thompson
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia; Department of Clinical Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Monalyssa C Watson
- UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Christine S Bundell
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia; School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Elizabeth M Klinken
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia; Department of Clinical Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Mina John
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia; Department of Clinical Immunology, Royal Perth Hospital, Perth, WA, Australia; Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Perth, WA, Australia
| | - Fiona R Lake
- UWA Medical School, The University of Western Australia, Perth, WA, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Andrew P McLean-Tooke
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia; Department of Clinical Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| |
Collapse
|
47
|
Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV. Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 199:1517-1536. [PMID: 30554520 PMCID: PMC6580683 DOI: 10.1164/rccm.201712-2410oc] [Citation(s) in RCA: 811] [Impact Index Per Article: 135.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/14/2019] [Indexed: 11/30/2022] Open
Abstract
Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
Collapse
Affiliation(s)
- Paul A. Reyfman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - James M. Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Nikita Joshi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | - Stephen Chiu
- Division of Thoracic Surgery, Department of Surgery
| | | | | | - Ching-I Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Rohan Verma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Kiwon Nam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Monica Chi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Satoshi Watanabe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Annette S. Flozak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | | | | | - Cara L. Hrusch
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Robert D. Guzy
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Catherine A. Bonham
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Anne I. Sperling
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Remzi Bag
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Robert B. Hamanaka
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Gökhan M. Mutlu
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | | | - Stacy A. Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Luis A. N. Amaral
- Department of Chemical and Biological Engineering, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | | | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - A. Christine Argento
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Division of Thoracic Surgery, Department of Surgery
| | - Colin T. Gillespie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Division of Thoracic Surgery, Department of Surgery
| | - Jane Dematte
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Karen M. Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Anna P. Lam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery
| | | | - Cara J. Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | |
Collapse
|
48
|
Hoyer N, Prior TS, Bendstrup E, Wilcke T, Shaker SB. Risk factors for diagnostic delay in idiopathic pulmonary fibrosis. Respir Res 2019; 20:103. [PMID: 31126287 PMCID: PMC6534848 DOI: 10.1186/s12931-019-1076-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 01/12/2023] Open
Abstract
Background Surveys and retrospective studies of patients with idiopathic pulmonary fibrosis (IPF) have shown a significant diagnostic delay. However, the causes and risk factors for this delay are not known. Methods Dates at six time points before the IPF diagnosis (onset of symptoms, first contact to a general practitioner, first hospital contact, referral to an interstitial lung disease (ILD) centre, first visit at an ILD centre, and final diagnosis) were recorded in a multicentre cohort of 204 incident IPF patients. Based on these dates, the delay was divided into specific patient-related and healthcare-related delays. Demographic and clinical data were used to determine risk factors for a prolonged delay, using multivariate negative binomial regression analysis. Results The median diagnostic delay was 2.1 years (IQR: 0.9–5.0), mainly attributable to the patients, general practitioners and community hospitals. Male sex was a risk factor for patient delay (IRR: 3.84, 95% CI: 1.17–11.36, p = 0.006) and old age was a risk factor for healthcare delay (IRR: 1.03, 95% CI: 1.01–1.06, p = 0.004). The total delay was prolonged in previous users of inhalation therapy (IRR: 1.99, 95% CI: 1.40–2.88, p < 0.0001) but not in patients with airway obstruction. Misdiagnosis of respiratory symptoms was reported by 41% of all patients. Conclusion Despite increased awareness of IPF, the diagnostic delay is still 2.1 years. Male sex, older age and treatment attempts for alternative diagnoses are risk factors for a delayed diagnosis of IPF. Efforts to reduce the diagnostic delay should focus on these risk factors. Trial registration This study was registered at http://clinicaltrials.gov (NCT02772549) on May 10, 2016. Electronic supplementary material The online version of this article (10.1186/s12931-019-1076-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nils Hoyer
- Department of Respiratory Medicine, Herlev and Gentofte Hospital, Kildegårdsvej 28, 2900, Hellerup, Denmark.
| | - Thomas Skovhus Prior
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Nørrebrogade 44, 8000, Aarhus C, Denmark
| | - Elisabeth Bendstrup
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Nørrebrogade 44, 8000, Aarhus C, Denmark
| | - Torgny Wilcke
- Department of Respiratory Medicine, Herlev and Gentofte Hospital, Kildegårdsvej 28, 2900, Hellerup, Denmark
| | - Saher Burhan Shaker
- Department of Respiratory Medicine, Herlev and Gentofte Hospital, Kildegårdsvej 28, 2900, Hellerup, Denmark
| |
Collapse
|
49
|
Fujisawa T, Mori K, Mikamo M, Ohno T, Kataoka K, Sugimoto C, Kitamura H, Enomoto N, Egashira R, Sumikawa H, Iwasawa T, Matsushita S, Sugiura H, Hashisako M, Tanaka T, Terasaki Y, Kunugi S, Kitani M, Okuda R, Horiike Y, Enomoto Y, Yasui H, Hozumi H, Suzuki Y, Nakamura Y, Fukuoka J, Johkoh T, Kondoh Y, Ogura T, Inoue Y, Hasegawa Y, Inase N, Homma S, Suda T. Nationwide cloud-based integrated database of idiopathic interstitial pneumonias for multidisciplinary discussion. Eur Respir J 2019; 53:13993003.02243-2018. [PMID: 30880283 PMCID: PMC6853800 DOI: 10.1183/13993003.02243-2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 11/18/2022]
Abstract
Multidisciplinary discussion (MDD) requiring close communication between specialists (clinicians, radiologists and pathologists) is the gold standard for the diagnosis of idiopathic interstitial pneumonias (IIPs). However, MDD by specialists is not always feasible because they are often separated by time and location. An online database would facilitate data sharing and MDD. Our aims were to develop a nationwide cloud-based integrated database containing clinical, radiological and pathological data of patients with IIPs along with a web-based MDD system, and to validate the diagnostic utility of web-based MDD in IIPs. Clinical data, high-resolution computed tomography images and lung biopsy slides from patients with IIPs were digitised and uploaded to separate servers to develop a cloud-based integrated database. Web-based MDD was performed using the database and video-conferencing to reach a diagnosis. Clinical, radiological and pathological data of 524 patients in 39 institutions were collected, uploaded and incorporated into the cloud-based integrated database. Subsequently, web-based MDDs with a pulmonologist, radiologist and pathologist using the database and video-conferencing were successfully performed for the 465 cases with adequate data. Overall, the web-based MDD changed the institutional diagnosis in 219 cases (47%). Notably, the MDD diagnosis yielded better prognostic separation among the IIPs than did the institutional diagnosis. This is the first study of developing a nationwide cloud-based integrated database containing clinical, radiological and pathological data for web-based MDD in patients with IIPs. The database and the web-based MDD system that we built made MDD more feasible in practice, potentially increasing accurate diagnosis of IIPs. Acloud-based integrated database of idiopathic interstitial pneumonias containing clinical, radiological and pathological data along with a web-based multidisciplinary discussion system can make discussions more feasible and improve disease managementhttp://ow.ly/NqqD30nYenb
Collapse
Affiliation(s)
- Tomoyuki Fujisawa
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazutaka Mori
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masashi Mikamo
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Kensuke Kataoka
- Dept of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Chikatoshi Sugimoto
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Hideya Kitamura
- Dept of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Noriyuki Enomoto
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryoko Egashira
- Dept of Radiology, Faculty of Medicine, Saga University, Saga, Japan
| | | | - Tae Iwasawa
- Dept of Radiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | - Hiroaki Sugiura
- Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Mikiko Hashisako
- Division of Diagnostic Pathology, Kyushu University Hospital, Fukuoka, Japan
| | - Tomonori Tanaka
- Dept of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasuhiro Terasaki
- Dept of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Dept of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masashi Kitani
- Dept of Pathology, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Ryo Okuda
- Dept of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Yasuoki Horiike
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasunori Enomoto
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junya Fukuoka
- Dept of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Johkoh
- Dept of Radiology, Kinki Central Hospital of Mutual Aid Association of Public-School Teachers, Itami, Japan
| | - Yasuhiro Kondoh
- Dept of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Takashi Ogura
- Dept of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Yoshinori Hasegawa
- Dept of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naohiko Inase
- Dept of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sakae Homma
- Dept of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Takafumi Suda
- Second Division, Dept of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
50
|
Han Q, Wang HY, Zhang XX, Wu LL, Wang LL, Jiang Y, Deng KM, Mao MM, Chen RC, Kolb M, Luo Q. The Role of Follow-up Evaluation in the Diagnostic Algorithm of Idiopathic Interstitial Pneumonia: A Retrospective Study. Sci Rep 2019; 9:6452. [PMID: 31015608 PMCID: PMC6478861 DOI: 10.1038/s41598-019-42813-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
We aimed to evaluate the alteration of diagnosis of individual expert and multidisciplinary discussion (MDD) team in the longitudinal diagnostic assessment of idiopathic interstitial pneumonia (IIP). The retrospective analysis included 56 patients diagnosed as IIP by The First Affiliated Hospital of Guangzhou Medical University with follow-up visits during Jan 1st to Aug 31st 2014. Each expert was provided information in a sequential manner and was asked to assign an individual diagnosis and an MDD diagnosis after group discussion. The level of agreement among individual experts and between different visits was calculated by kappa and the agreement between individual specialist and MDD team with different consensus levels was measured by weighted-kappa coefficients. Follow-up data changed the original clinical diagnosis and MDD diagnosis in 24.1% and 10.7% of all cases, respectively, and clinician and MDD consensus level in 55.4% and 25.0%, respectively. The diagnostic performance of individual clinicians or radiologist was closer to that of the MDD compared with the pathologist, and follow-up further increased the agreement. The longitudinal evaluation of patients with IIP improved the inter-observer agreement in a multidisciplinary team. The performance of individual clinicians or radiologist was approaching the accuracy of multidisciplinary team when provided with follow-up data.
Collapse
Affiliation(s)
- Qian Han
- Department of Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Hong-Yu Wang
- Department of Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China.,Department of Medicine, Pathology and Molecular Medicine, McMaster University, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Xiao-Xian Zhang
- Department of Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Lu-Lu Wu
- Department of Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Lu-Lin Wang
- Department of Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Ying Jiang
- Department of Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Kui-Miao Deng
- Department of Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Meng-Meng Mao
- Department of Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Rong-Chang Chen
- Department of Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Martin Kolb
- Department of Medicine, Pathology and Molecular Medicine, McMaster University, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada.
| | - Qun Luo
- Department of Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| |
Collapse
|