1
|
Zalucky AA, Matthay MA, Ware LB. Biomarkers of Acute Respiratory Distress Syndrome: Current State and Future Prospects. Clin Chest Med 2024; 45:809-820. [PMID: 39442999 DOI: 10.1016/j.ccm.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Biomarkers are an important tool aiding researchers in the study of acute respiratory distress syndrome (ARDS). Mechanisms involving injury to the alveolar-capillary membrane, endothelium and epithelium resulting in lung inflammation and alterations in coagulation pathways have been validated in human trials and have been used to discover promising phenotypes that share similar characteristics and differential treatment responses. The emergence of powerful point-of-care technologies will enable the prospective study of biomarkers for future enrichment trials with the goal of transforming biomarkers into the clinical realm to inform delivery of personalized medicine at the bedside.
Collapse
Affiliation(s)
- Ann A Zalucky
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, 505 Parnassus Avenue, M-917, Box 0624, San Francisco, CA 94143-0624, USA; Department of Critical Care Medicine, Alberta Health Services and University of Calgary, Calgary, Canada.
| | - Michael A Matthay
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, 505 Parnassus Avenue, M-917, Box 0624, San Francisco, CA 94143-0624, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 777 Preston Research Building 2220, Pierce Avenue, Nashville, TN 37232-6307, USA
| |
Collapse
|
2
|
Cai J, Xu J, Tan Y, Xiang Y, Li Z, Zheng J, Li Y. Gut microbiota alteration and its association with immune function in post-COVID-19 patients. Folia Microbiol (Praha) 2024; 69:857-864. [PMID: 38177971 DOI: 10.1007/s12223-023-01118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024]
Abstract
To reveal the variation of gut microbiota and its association with immune function in cured patients with coronavirus 2019 (COVID-19) disease, gut microbiota of patients discharged from hospital for 20 ~ 23 months and healthy volunteers was analyzed by high throughput 16S rRNA sequencing. The diversity and abundance were compared, and the correlation with immunity factors was investigated, and changes in the content of 6 genera microorganisms with proportion higher than 0.1% were revealed in patients with COVID-19 disease: reduced content of Subdoligranulum, Haemophilus, Coprococcus, Eubacterium vertriosum group, and Lachnospiraceae ND3007 group and increased content of Hungatella. NK cells were negatively correlated to Subdoligranulum, while CD8 cells were positively correlated to Subdoligranulum but negative to Hungatella. IL-8 concentration was negatively correlated to Subdoligranulum, Haemophilus, Coprococcus, Eubacterium vertriosum group, and Lachnospiraceae ND3007 group but positively to Hungatella, while IL-1β concentration was negatively correlated to Haemophilus and Eubacterium ventriosum group but positively to Hungatella. The variation of probiotics and potential pathogenic bacteria implies a higher risk in diseases and inflammation, and the modulation of the gut microbiota may help the healing of COVID-19 patients.
Collapse
Affiliation(s)
- Jiaojiao Cai
- College of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Jingru Xu
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Yan Tan
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Yao Xiang
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Zhifeng Li
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Juan Zheng
- Department of Neurology, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing, 400020, China
| | - Yingli Li
- College of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Liu B, Li Y, Xiang J, Li Y, Zhou M, Ren Y, Fu Z, Ding F. Significance of Pyroptosis in Immunoregulation and Prognosis of Patients with Acute Respiratory Distress Syndrome: Evidence from RNA-Seq of Alveolar Macrophages. J Inflamm Res 2023; 16:3547-3562. [PMID: 37636276 PMCID: PMC10455887 DOI: 10.2147/jir.s422585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Objective This study aimed to investigate the role of pyroptosis in alveolar macrophages regarding the immune microenvironment of acute respiratory distress syndrome (ARDS) and its prognosis. Methods ARDS Microarray data were downloaded from Gene Expression Omnibus (GEO). Support vector machine (SVM) and random forest (RF) models were applied to identify hub pyroptosis-related genes (PRGs) with prognostic significance in ARDS. RT-PCR was used to detect the relative expression of PRGs mRNA in alveolar macrophages of ARDS mice. Consensus clustering analysis was conducted based on the expression of the PRGs to identify pyroptosis modification patterns. Bioinformatic algorithms were used to study the immune traits and biological functions of the pyroptosis patterns. Finally, protein-protein interaction (PPI) networks were established to identify hub regulatory proteins with implications for the pyroptosis patterns. Results In our study, a total of 12 PRGs with differential expression were obtained. Four hub PRGs, including GPX4, IL6, IL18 and NLRP3, were identified and proven to be predictive of ventilator-free days (VFDS) in ARDS patients. The AUC values of the 4 PRGs were 0.911 (GPX4), 0.879 (IL18), 0.851 (IL6) and 0.841 (NLRP3), respectively. In ARDS mice, GPX4 mRNA decreased significantly, while IL6, IL18, and NLRP3 mRNA increased. Functional analysis revealed that IL6 had the strongest positive correlation with the CCR pathway, while GPX4 exhibited the strongest negative correlation with the T co-inhibition pathway. Based on the expression of the 4 PRGs, three pyroptosis modification patterns representing different immune states were obtained, and pattern C might represent immune storm. Conclusion The results showed that pyroptosis plays an important regulatory role in the immune microenvironment of ARDS. This finding provides new insights into the pathogenesis, diagnosis, and treatment of ARDS.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiothoracic Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yan Li
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jinying Xiang
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yuehan Li
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mi Zhou
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinying Ren
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhou Fu
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Fengxia Ding
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Chang Y, Yoo HJ, Kim SJ, Lee K, Lim CM, Hong SB, Koh Y, Huh JW. A targeted metabolomics approach for sepsis-induced ARDS and its subphenotypes. Crit Care 2023; 27:263. [PMID: 37408042 DOI: 10.1186/s13054-023-04552-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is etiologically and clinically a heterogeneous disease. Its diagnostic characteristics and subtype classification, and the application of these features to treatment, have been of considerable interest. Metabolomics is becoming important for identifying ARDS biology and distinguishing its subtypes. This study aimed to identify metabolites that could distinguish sepsis-induced ARDS patients from non-ARDS controls, using a targeted metabolomics approach, and to identify whether sepsis-induced direct and sepsis-induced indirect ARDS are metabolically distinct groups, and if so, confirm their metabolites and associated pathways. METHODS This study retrospectively analyzed 54 samples of ARDS patients from a sepsis registry that was prospectively collected from March 2011 to February 2018, along with 30 non-ARDS controls. The cohort was divided into direct and indirect ARDS. Metabolite concentrations of five analyte classes (energy metabolism, free fatty acids, amino acids, phospholipids, sphingolipids) were measured using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry by targeted metabolomics. RESULTS In total, 186 metabolites were detected. Among them, 102 metabolites could differentiate sepsis-induced ARDS patients from the non-ARDS controls, while 14 metabolites could discriminate sepsis-induced ARDS subphenotypes. Using partial least-squares discriminant analysis, we showed that sepsis-induced ARDS patients were metabolically distinct from the non-ARDS controls. The main distinguishing metabolites were lysophosphatidylethanolamine (lysoPE) plasmalogen, PE plasmalogens, and phosphatidylcholines (PCs). Sepsis-induced direct and indirect ARDS were also metabolically distinct subgroups, with differences in lysoPCs. Glycerophospholipid and sphingolipid metabolism were the most significant metabolic pathways involved in sepsis-induced ARDS biology and in sepsis-induced direct/indirect ARDS, respectively. CONCLUSION Our study demonstrated a marked difference in metabolic patterns between sepsis-induced ARDS patients and non-ARDS controls, and between sepsis-induced direct and indirect ARDS subpheonotypes. The identified metabolites and pathways can provide clues relevant to the diagnosis and treatment of individuals with ARDS.
Collapse
Affiliation(s)
- Youjin Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kwangha Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
5
|
Rizzo AN, Schmidt EP. The role of the alveolar epithelial glycocalyx in acute respiratory distress syndrome. Am J Physiol Cell Physiol 2023; 324:C799-C806. [PMID: 36847444 PMCID: PMC10042597 DOI: 10.1152/ajpcell.00555.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
The alveolar epithelial glycocalyx is a dense anionic layer of glycosaminoglycans (GAGs) and proteoglycans that lines the apical surface of the alveolar epithelium. In contrast to the pulmonary endothelial glycocalyx, which has well-established roles in vascular homeostasis and septic organ dysfunction, the alveolar epithelial glycocalyx is less understood. Recent preclinical studies demonstrated that the epithelial glycocalyx is degraded in multiple murine models of acute respiratory distress syndrome (ARDS), particularly those that result from inhaled insults (so-called "direct" lung injury), leading to shedding of GAGs into the alveolar airspaces. Epithelial glycocalyx degradation also occurs in humans with respiratory failure, as quantified by analysis of airspace fluid obtained from ventilator heat moisture exchange (HME) filters. In patients with ARDS, GAG shedding correlates with the severity of hypoxemia and is predictive of the duration of respiratory failure. These effects may be mediated by surfactant dysfunction, as targeted degradation of the epithelial glycocalyx in mice was sufficient to cause increased alveolar surface tension, diffuse microatelectasis, and impaired lung compliance. In this review, we describe the structure of the alveolar epithelial glycocalyx and the mechanisms underlying its degradation during ARDS. We additionally review the current state of knowledge regarding the attributable effect of epithelial glycocalyx degradation in lung injury pathogenesis. Finally, we address glycocalyx degradation as a potential mediator of ARDS heterogeneity, and the subsequent value of point-of-care quantification of GAG shedding to potentially identify patients who are most likely to respond to pharmacological agents aimed at attenuating glycocalyx degradation.
Collapse
Affiliation(s)
- Alicia N Rizzo
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Hoppe K, Khan E, Meybohm P, Riese T. Mechanical power of ventilation and driving pressure: two undervalued parameters for pre extracorporeal membrane oxygenation ventilation and during daily management? Crit Care 2023; 27:111. [PMID: 36915183 PMCID: PMC10010963 DOI: 10.1186/s13054-023-04375-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/19/2023] [Indexed: 03/15/2023] Open
Abstract
The current ARDS guidelines highly recommend lung protective ventilation which include plateau pressure (Pplat < 30 cm H2O), positive end expiratory pressure (PEEP > 5 cm H2O) and tidal volume (Vt of 6 ml/kg) of predicted body weight. In contrast, the ELSO guidelines suggest the evaluation of an indication of veno-venous extracorporeal membrane oxygenation (ECMO) due to hypoxemic or hypercapnic respiratory failure or as bridge to lung transplantation. Finally, these recommendations remain a wide range of scope of interpretation. However, particularly patients with moderate-severe to severe ARDS might benefit from strict adherence to lung protective ventilation strategies. Subsequently, we discuss whether extended physiological ventilation parameter analysis might be relevant for indication of ECMO support and can be implemented during the daily routine evaluation of ARDS patients. Particularly, this viewpoint focus on driving pressure and mechanical power.
Collapse
Affiliation(s)
- K Hoppe
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - E Khan
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - P Meybohm
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - T Riese
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| |
Collapse
|
7
|
Wang J, Ren C, Bi W, Batu W. Glycyrrhizin mitigates acute lung injury by inhibiting the NLRP3 inflammasome in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115948. [PMID: 36423713 DOI: 10.1016/j.jep.2022.115948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza glabra L. is a widely used traditional Chinese medicine with antipyretic, detoxification, antibacterial and therapeutic effects against various diseases, including liver diseases. Glycyrrhizin (GL), the most significant active ingredient of Glycyrrhiza glabra L., exerts anti-inflammatory activity. However, the anti-inflammatory effect of GL remains to be determined. AIM OF THIS STUDY Consequently, this research was carried out to discover the effects and mechanism of action of GL on ALI. MATERIALS AND METHODS Cell experiments established an in vitro model of LPS-induced RAW 264.7 macrophages to verify the mechanism. The levels of NO, PEG2, and inflammatory cytokines were estimated by ELISA. The expression levels of proteins related to the NF-κB signalling pathway and NLRP3 inflammasome were determined by Western blotting. The nuclear translocation of NF-κB p65 and ASC was tested through immunofluorescence analysis. The inhibitory effect of NLRP3 inhibitor MCC950 on macrophage was evaluated. Male BALB/C mice were selected to establish the ALI model. The experiment was randomly divided into five groups: control, ALI, GLL, GLH, and DEX. Pathological alterations were explored by H&E staining. The weight ratios of lung W/D, MPO, and inflammatory cytokines were evaluated by ELISA. The expression levels of proteins related to the NF-κB signalling pathway or NLRP3 inflammasome were analysed by Western blotting. RESULTS Here, we demonstrate that GL attenuates inflammation, nitric oxide, IL-18, IL-1β, TNF-α, IL-6, and PGE2 levels and alveolar epithelial barrier permeability in macrophages and mice challenged with LPS. In addition, GL inhibits NLRP3 inflammasome initiation and activation and NF-κB signalling pathway activation. CONCLUSION This research demonstrates that GL may alleviate ALI inflammation by interfering with the NF-κB/NLRP3 inflammasome signalling pathway.
Collapse
Affiliation(s)
- JunMei Wang
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
| | - Chunxiu Ren
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
| | - WenHui Bi
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
| | - Wuliji Batu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China.
| |
Collapse
|
8
|
Jentzer JC, Rayfield C, Soussi S, Berg DD, Kennedy JN, Sinha SS, Baran DA, Brant E, Mebazaa A, Billia F, Kapur NK, Henry TD, Lawler PR. Machine Learning Approaches for Phenotyping in Cardiogenic Shock and Critical Illness: Part 2 of 2. JACC. ADVANCES 2022; 1:100126. [PMID: 38939698 PMCID: PMC11198618 DOI: 10.1016/j.jacadv.2022.100126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 06/29/2024]
Abstract
Progress in improving cardiogenic shock (CS) outcomes may have been limited by failure to embrace the heterogeneity of pathophysiologic processes driving the underlying syndrome. To better understand the variability inherent to CS populations, recent algorithms for describing underlying CS disease subphenotypes have been described and validated. These strategies hope to identify specific patient subgroups with more favorable responses to standard therapies, as well as those who require novel treatment approaches. This paper is part 2 of a 2-part state-of-the-art review. In this second article, we present machine learning-based statistical approaches to identifying subphenotypes and discuss their strengths and limitations, as well as evidence from other critical illness syndromes and emerging applications in CS. We then discuss how staging and stratification may be considered in CS clinical trials and finally consider future directions for this emerging area of research.
Collapse
Affiliation(s)
- Jacob C. Jentzer
- Department of Cardiovascular Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Corbin Rayfield
- Department of Cardiovascular Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Sabri Soussi
- Department of Anesthesiology and Critical Care, Lariboisière - Saint-Louis Hospitals, DMU Parabol, AP–HP Nord, Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France
- Interdepartmental Division of Critical Care, Faculty of Medicine, Keenan Research Centre for Biomedical Science and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - David D. Berg
- TIMI Study Group, Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jason N. Kennedy
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, Pennsylvania, USA
| | - Shashank S. Sinha
- INOVA Heart and Vascular Institute, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
| | - David A. Baran
- Cleveland Clinic Heart Vascular and Thoracic Institute, Weston, Florida, USA
| | - Emily Brant
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexandre Mebazaa
- Department of Anesthesiology and Critical Care, Lariboisière - Saint-Louis Hospitals, DMU Parabol, AP–HP Nord, Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France
| | - Filio Billia
- Peter Munk Cardiac Center and Ted Roger’s Center for Heart Research, Toronto, Ontario, Canada
| | - Navin K. Kapur
- The Cardiovascular Center, Tufts Medical Center, Boston, Massachusetts, USA
| | - Timothy D. Henry
- The Carl and Edyth Lindner Center for Research and Education at the Christ Hospital Health Network, Cincinnati, Ohio, USA
| | - Patrick R. Lawler
- Peter Munk Cardiac Center and Ted Roger’s Center for Heart Research, Toronto, Ontario, Canada
- Division of Cardiology and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Cao C, Zhang L, Liu F, Shen J. Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome: Potential Mechanisms and Challenges. J Inflamm Res 2022; 15:5235-5246. [PMID: 36120184 PMCID: PMC9473549 DOI: 10.2147/jir.s372046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) presents as a form of acute respiratory failure resulting from non-cardiogenic pulmonary edema due to excessive alveolocapillary permeability, which may be pulmonary or systemic in origin. In the last 3 years, the coronavirus disease 2019 pandemic has resulted in an increase in ARDS cases and highlighted the challenges associated with this syndrome, as well as the unacceptably high mortality rates and lack of effective treatments. Currently, clinical treatment remains primarily supportive, including mechanical ventilation and drug-based therapy. Mesenchymal stem cell (MSC) therapies are emerging as a promising intervention in patients with ARDS and have promising therapeutic effects and safety. The therapeutic mechanisms include modifying the immune response and assisting with tissue repair. This review provides an overview of the general properties of MSCs and outlines their role in mitigating lung injury and promoting tissue repair in ARDS. Finally, we summarize the current challenges in the study of translational MSC research and identify avenues by which the discipline may progress in the coming years.
Collapse
Affiliation(s)
- Chao Cao
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College Fudan University, Shanghai, People's Republic of China
| | - Lin Zhang
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Fuli Liu
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Mo W, Li Q, Zhou H, Shi X, Yang H, Xiao Z, Wei J, Lv X. Bibliometric analysis of global research trends on pyroptosis in lung disease. Front Immunol 2022; 13:978552. [PMID: 36177039 PMCID: PMC9513361 DOI: 10.3389/fimmu.2022.978552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Pyroptosis is a lytic pro-inflammatory programmed cell death mode that depends on caspase, inflammasome, and Gasdermin D (GSDMD). A growing number of studies have shown that pyroptosis is closely related to the pathophysiological mechanism of lung. The purpose of this study is to analyze the literature from Science Citation Index Expanded (SCI-expanded) of Web of Science Core Collection (WoSCC) and visualize the current trends and hotspots in the research of pyroptosis in lung disease. Methods On February 20, 2022, we retrieved all articles on pyroptosis in lung disease from SCI-expanded of WoSCC. Original articles and reviews published in English from 2007 to 2021 were included in the analysis. VOSviewer 1.6.17 and CiteSpace 5.8.R2 were used to analyze the retrieved data and visualize the results. Result 1798 qualified original articles and reviews on pyroptosis in lung disease were included in the bibliometric analysis. So far, the research in this field is still in a period of growth, and the number of global publications has increased yearly. Among the 66 countries that have published relevant articles, China ranked first in the number of publications, and the USA ranked first in the number of cited articles. Holian,A. was the author with the largest number of articles, including 21 published. The University of California System in the USA was the organization with the largest number of articles, totaling 55. Frontiers in Immunology was the journal with the most publications in pyroptosis. After bibliometric analysis, the frequently used keywords are: “NOD-like receptor3 (NLRP3) inflammasome”, “inflammation”, “oxidative stress”, and “acute lung injury (ALI)”. Conclusion The research on pyroptosis in lung disease is in its growth stage. The information released in this article may help researchers better understand the hotspots and developmental trends in this field, the cooperation network information of authors, countries, and institutions, and the citation correlation between articles. With the in-depth study of the mechanism of pyroptosis, the focus has shifted to increasing research on the connections and influences of different diseases. So far, increasing attention has been paid to the research field of the relationship between ALI and pyroptosis related to COVID-19.
Collapse
Affiliation(s)
- Wei Mo
- Graduate School, Wannan Medical College, Wuhu, China
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Xiao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xin Lv, ; Juan Wei,
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xin Lv, ; Juan Wei,
| |
Collapse
|
11
|
Price DR, Benedetti E, Hoffman KL, Gomez-Escobar L, Alvarez-Mulett S, Capili A, Sarwath H, Parkhurst CN, Lafond E, Weidman K, Ravishankar A, Cheong JG, Batra R, Büyüközkan M, Chetnik K, Easthausen I, Schenck EJ, Racanelli AC, Outtz Reed H, Laurence J, Josefowicz SZ, Lief L, Choi ME, Schmidt F, Borczuk AC, Choi AMK, Krumsiek J, Rafii S. Angiopoietin 2 Is Associated with Vascular Necroptosis Induction in Coronavirus Disease 2019 Acute Respiratory Distress Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1001-1015. [PMID: 35469796 PMCID: PMC9027298 DOI: 10.1016/j.ajpath.2022.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022]
Abstract
Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.
Collapse
Affiliation(s)
- David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Elisa Benedetti
- Institute of Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Katherine L Hoffman
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Luis Gomez-Escobar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York
| | - Sergio Alvarez-Mulett
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York
| | - Allyson Capili
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York
| | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Christopher N Parkhurst
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Elyse Lafond
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Karissa Weidman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Arjun Ravishankar
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Jin Gyu Cheong
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Richa Batra
- Institute of Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Mustafa Büyüközkan
- Institute of Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Kelsey Chetnik
- Institute of Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Imaani Easthausen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Edward J Schenck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Alexandra C Racanelli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Hasina Outtz Reed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Jeffrey Laurence
- Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Steven Z Josefowicz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Lindsay Lief
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Mary E Choi
- Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York; Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Jan Krumsiek
- Institute of Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York.
| | - Shahin Rafii
- Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York; Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
12
|
Li X, Kosanovic D, Wang XJ, Cao Y. Editorial: Progresses in the Drug Treatment of Chronic Cardiopulmonary Diseases. Front Pharmacol 2022; 13:910212. [PMID: 35662696 PMCID: PMC9160424 DOI: 10.3389/fphar.2022.910212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, China
- *Correspondence: Xiaohui Li,
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Xiao-Jian Wang
- Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
13
|
The Effect and Mechanism of Lipoxin A4 on Neutrophil Function in LPS-Induced Lung Injury. Inflammation 2022; 45:1950-1967. [PMID: 35438373 DOI: 10.1007/s10753-022-01666-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022]
Abstract
Excessive inflammatory response caused by infiltration of a large number of neutrophils is one of the important features of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Lipoxin A4 (LXA4) is an important endogenous mediator in the process of inflammation resolution, which has a strong role in promoting inflammation resolution. In this study, we examined the impact of LXA4 on the pulmonary inflammatory response and the neutrophil function in ARDS rats. Our results indicated that exogenous administration of LXA4 could reduce the degree of lung injury in ARDS rats and inhibit the release of pro-inflammatory factors TNF-α and IL-1β in lung tissue homogenate. However, LXA4 has no lung protective effect on ARDS rats of neutropenia, nor can it inhibit the levels of pro-inflammatory factors TNF-α and IL-1β in lung tissue homogenate. LXA4 can inhibit the production of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) in peripheral blood neutrophils of ARDS rats. At the same time, LXA4 can promote the phagocytosis of neutrophils in ARDS rats in vitro and can also promote the apoptosis of neutrophils in ARDS rats. In addition, the effect of LXA4 on the function of neutrophils in ARDS rats is mediated by its receptor ALX. LXA4 can inhibit the release of NE and MPO from neutrophils, thereby reducing the production of NETs. In summary, these findings indicate that LXA4 has a protective effect on LPS-induced ARDS rats by affecting the function of neutrophils.
Collapse
|
14
|
Peng J, Tang R, Qi D, Yu Q, Hu H, Tang W, He J, Wang D. Predictive Value of the Baseline and Early Changes in Blood Eosinophils for Short-Term Mortality in Patients with Acute Respiratory Distress Syndrome. J Inflamm Res 2022; 15:1845-1858. [PMID: 35313672 PMCID: PMC8933624 DOI: 10.2147/jir.s350856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Eosinophils play an essential role in the pathogenesis of acute respiratory distress syndrome (ARDS). We aimed to assess the association between the baseline blood eosinophils, eosinophil changes during the first week in the intensive care unit (ICU) and short-term patient outcomes. Methods All patients meeting the Berlin definition of ARDS from the Medical Information Mart for Intensive Care IV database were retrospectively analyzed. We used logistic regression, Kaplan–Meier survival and random forest analysis to determine the association between the baseline eosinophils and short-term mortality. Then the trends in eosinophils over time were compared between the survivors and non-survivors using a generalized additive mixed model (GAMM), which is a common approach used for analysis of repeated measurement data. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the predictive value. Results A total of 1685 patients were included, and the 30-day mortality was 25.1%. Kaplan–Meier analysis showed that patients with high baseline eosinophils (>0.3%) had lower 30-day mortality (p < 0.001). Random forest model selected the baseline eosinophils as an important factor associated with 30-day mortality. Multivariable logistic regression analysis identified high baseline eosinophils as an independent factor for 30-day mortality (OR 0.743, 95% CI 0.568–0.970). The GAMM result showed that the levels of eosinophils were increased in both survival and non-survival groups, and the between-group differences increased over time, with an average of 0.154 daily after adjusting for confounders. The AUC of changes in eosinophils within the first week was significantly higher than that of baseline eosinophils. Conclusion There is a negative association between the baseline eosinophils and short-term mortality in ARDS patients, and the differences in eosinophils increased over time between the survivors and non-survivors. Higher increase in eosinophils is associated with decreased short-term mortality, and dynamic monitoring of eosinophils could better predict the survival of ARDS patients. Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: ![]()
https://youtu.be/Xe5dqxVxw_M
Collapse
Affiliation(s)
- Junnan Peng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Rui Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qian Yu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hao Hu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wen Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Daoxin Wang; Jing He, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400010, People’s Republic of China, Email ;
| |
Collapse
|
15
|
Yao Q, Zhang X, Chen D. Emerging Roles and Mechanisms of lncRNA FOXD3-AS1 in Human Diseases. Front Oncol 2022; 12:848296. [PMID: 35280790 PMCID: PMC8914342 DOI: 10.3389/fonc.2022.848296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 01/02/2023] Open
Abstract
Numerous long noncoding RNAs (lncRNAs) have been identified as powerful regulators of human diseases. The lncRNA FOXD3-AS1 is a novel lncRNA that was recently shown to exert imperative roles in the initialization and progression of several diseases. Emerging studies have shown aberrant expression of FOXD3-AS1 and close correlation with pathophysiological traits of numerous diseases, particularly cancers. More importantly, FOXD3-AS1 was also found to ubiquitously impact a range of biological functions. This study aims to summarize the expression, associated clinicopathological features, major functions and molecular mechanisms of FOXD3-AS1 in human diseases and to explore its possible clinical applications.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Xiuyuan Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Dajin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- *Correspondence: Dajin Chen,
| |
Collapse
|
16
|
Rizzo AN, Haeger SM, Oshima K, Yang Y, Wallbank AM, Jin Y, Lettau M, McCaig LA, Wickersham NE, McNeil JB, Zakharevich I, McMurtry SA, Langouët-Astrié CJ, Kopf KW, Voelker DR, Hansen KC, Shaver CM, Kerchberger VE, Peterson RA, Kuebler WM, Ochs M, Veldhuizen RA, Smith BJ, Ware LB, Bastarache JA, Schmidt EP. Alveolar epithelial glycocalyx degradation mediates surfactant dysfunction and contributes to acute respiratory distress syndrome. JCI Insight 2022; 7:154573. [PMID: 34874923 PMCID: PMC8855818 DOI: 10.1172/jci.insight.154573] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/03/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure yet has few pharmacologic therapies, reflecting the mechanistic heterogeneity of lung injury. We hypothesized that damage to the alveolar epithelial glycocalyx, a layer of glycosaminoglycans interposed between the epithelium and surfactant, contributes to lung injury in patients with ARDS. Using mass spectrometry of airspace fluid noninvasively collected from mechanically ventilated patients, we found that airspace glycosaminoglycan shedding (an index of glycocalyx degradation) occurred predominantly in patients with direct lung injury and was associated with duration of mechanical ventilation. Male patients had increased shedding, which correlated with airspace concentrations of matrix metalloproteinases. Selective epithelial glycocalyx degradation in mice was sufficient to induce surfactant dysfunction, a key characteristic of ARDS, leading to microatelectasis and decreased lung compliance. Rapid colorimetric quantification of airspace glycosaminoglycans was feasible and could provide point-of-care prognostic information to clinicians and/or be used for predictive enrichment in clinical trials.
Collapse
Affiliation(s)
- Alicia N. Rizzo
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | - Sarah M. Haeger
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | - Yimu Yang
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | | | - Ying Jin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine,,Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Marie Lettau
- Institute of Functional Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | - Lynda A. McCaig
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Nancy E. Wickersham
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - J. Brennan McNeil
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Igor Zakharevich
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado, USA
| | - Sarah A. McMurtry
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | | | - Katrina W. Kopf
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Dennis R. Voelker
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado, USA
| | - Ciara M. Shaver
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - V. Eric Kerchberger
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ryan A. Peterson
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine,,Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, Colorado, USA
| | | | - Matthias Ochs
- Institute of Functional Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | - Ruud A.W. Veldhuizen
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Bradford J. Smith
- Department of Bioengineering, and,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Lorraine B. Ware
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Julie A. Bastarache
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine,,Department of Medicine, Denver Health Medical Center, Denver, Colorado, USA
| |
Collapse
|
17
|
Yang Q, Xu HR, Xiang SY, Zhang C, Ye Y, Shen CX, Mei HX, Zhang PH, Ma HY, Zheng SX, Smith FG, Jin SW, Wang Q. Resolvin Conjugates in Tissue Regeneration 1 Promote Alveolar Fluid Clearance by Activating Alveolar Epithelial Sodium Channels and Na, K-ATPase in Lipopolysaccharide-Induced Acute Lung Injury. J Pharmacol Exp Ther 2021; 379:156-165. [PMID: 34465632 DOI: 10.1124/jpet.121.000712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/18/2021] [Indexed: 01/09/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS), a common and fatal clinical condition, is characterized by the destruction of epithelium and augmented permeability of the alveolar-capillary barrier. Resolvin conjugates in tissue regeneration 1 (RCTR1) is an endogenous lipid mediator derived from docosahexaenoic acid , exerting proresolution effects in the process of inflammation. In our research, we evaluated the role of RCTR1 in alveolar fluid clearance (AFC) in lipopolysaccharide-induced ARDS/acute lung injury (ALI) rat model. Rats were injected with RCTR1 (5 μg/kg) via caudal veins 8 hours after lipopolysaccharide (LPS) (14 mg/kg) treatment, and then AFC was estimated after 1 hour of ventilation. Primary type II alveolar epithelial cells were incubated with LPS (1 ug/ml) with or without RCTR1 (10 nM) for 8 hours. Our results showed that RCTR1 significantly enhanced the survival rate, promoted the AFC, and alleviated LPS-induced ARDS/ALI in vivo. Furthermore, RCTR1 remarkably elevated the protein expression of sodium channels and Na, K-ATPase and the activity of Na, K-ATPase in vivo and in vitro. Additionally, RCTR1 also decreased neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) level via upregulating Ser473-phosphorylated-Akt expression. Besides this, inhibitors of receptor for lipoxin A4 (ALX), cAMP, and phosphatidylinositol 3-kinase (PI3K) (BOC-2, KH-7, and LY294002) notably inhibited the effects of RCTR1 on AFC. In summary, RCTR1 enhances the protein levels of sodium channels and Na, K-ATPase and the Na, K-ATPase activity to improve AFC in ALI through ALX/cAMP/PI3K/Nedd4-2 pathway, suggesting that RCTR1 may become a therapeutic drug for ARDS/ALI. SIGNIFICANCE STATEMENT: RCTR1, an endogenous lipid mediator, enhanced the rate of AFC to accelerate the resolution of inflammation in the LPS-induced murine lung injury model. RCTR1 upregulates the expression of epithelial sodium channels (ENaCs) and Na, K-ATPase in vivo and in vitro to accelerate the AFC. The efficacy of RCTR1 on the ENaC and Na, K-ATPase level was in an ALX/cAMP/PI3K/Nedd4-2-dependent manner.
Collapse
Affiliation(s)
- Qian Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Hao-Ran Xu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Shu-Yang Xiang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Chen Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Yang Ye
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Chen-Xi Shen
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Hong-Xia Mei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Pu-Hong Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Hong-Yu Ma
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Sheng-Xing Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Fang-Gao Smith
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| | - Qian Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (F.S.)
| |
Collapse
|
18
|
Giannini HM, Meyer NJ. Genetics of Acute Respiratory Distress Syndrome: Pathways to Precision. Crit Care Clin 2021; 37:817-834. [PMID: 34548135 DOI: 10.1016/j.ccc.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Clinical risk factors alone fail to fully explain acute respiratory distress syndrome (ARDS) risk or ARDS death, suggesting that individual risk factors contribute. The goals of genomic ARDS studies include better mechanistic understanding, identifying dysregulated pathways that may be amenable to pharmacologic targeting, using genomic causal inference techniques to find measurable traits with meaning, and deconvoluting ARDS heterogeneity by proving reproducible subpopulations that may share a unique biology. This article discusses the latest advances in ARDS genomics, provides historical perspective, and highlights some of the ways that the coronavirus disease 2019 (COVID-19) pandemic is accelerating genomic ARDS research.
Collapse
Affiliation(s)
- Heather M Giannini
- University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5038 Gates Building, Philadelphia, PA 19104, USA
| | - Nuala J Meyer
- University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5038 Gates Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Sinha P, Bos LD. Pathophysiology of the Acute Respiratory Distress Syndrome: Insights from Clinical Studies. Crit Care Clin 2021; 37:795-815. [PMID: 34548134 PMCID: PMC8149201 DOI: 10.1016/j.ccc.2021.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pratik Sinha
- Division of Clinical and Translational Research, Department of Anesthesia, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA.
| | - Lieuwe D Bos
- Department of Respiratory Medicine, Infection and Immunity, Amsterdam University Medical Center, AMC, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
20
|
Monteiro ACC, Flori H, Dahmer MK, Sim MS, Quasney MW, Curley MAQ, Matthay MA, Sapru A. Thrombomodulin is associated with increased mortality and organ failure in mechanically ventilated children with acute respiratory failure: biomarker analysis from a multicenter randomized controlled trial. Crit Care 2021; 25:271. [PMID: 34344416 PMCID: PMC8330123 DOI: 10.1186/s13054-021-03626-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute respiratory failure (ARF) can progress to acute respiratory distress syndrome and death. Biomarkers may allow for risk stratification and prognostic enrichment in ARF. Thrombomodulin (TM) is a transmembrane antithrombotic mediator expressed in endothelial cells. It is cleaved into its soluble form (sTM) during inflammation and vascular injury. Levels of sTM correlate with inflammation and end organ dysfunction. METHODS This was a prospective observational study of 432 patients aged 2 weeks-17 years requiring invasive mechanical ventilation. It was ancillary to the multicenter clinical trial, Randomized Evaluation of Sedation Titration for Respiratory Failure (RESTORE). After consent, patients had up to 3 plasma samples collected at 24-h intervals within 5 days after intubation. sTM was assayed by ELISA. The Hazard ratio (HR) for 90-day mortality was determined by Cox regression. Mixed effect models (MEM) were used to test for association with extrapulmonary multiorgan failure (MOF) and oxygenation index (OI). Age, race, sex and PRISM-III scores were used as confounding variables for multivariable analyses. RESULTS sTM values ranged from 16.6 to 670.9 ng/ml within 5 days after intubation. Higher sTM was associated with increased 90-day mortality (n = 432, adjusted HR = 1.003, p = 0.02) and worse OI in the first 5 days after intubation (n = 252, Estimate = 0.02, p < 0.01). Both initial and slope of sTM were associated with increased extrapulmonary MOF in unadjusted and adjusted analyses (Intercept, Estimate = 0.003, p < 0.0001; and slope, Estimate = 0.01, p = 0.0009, n = 386). CONCLUSIONS Plasma sTM is associated with mortality, severity of hypoxic respiratory failure and worsening extrapulmonary MOF in children with ARF. This suggests a role of vascular injury in the pathogenesis of ARF and provides potential applicability towards targeted therapies. TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT00814099 . In healthy lung endothelium, thrombomodulin (TM) recruits thrombin to activate Protein-C (PC/APC), that inhibits plasminogen activator-1 (PAI-1) and thrombosis. In inflamed and damaged endothelium, TM is cleaved into its soluble form (sTM), precluding its usual regulation of thrombosis. In this study, we measured plasma sTM levels in pediatric patients with respiratory failure and found that sTM correlated with mortality and other clinical markers of poor outcomes.
Collapse
Affiliation(s)
- Ana Carolina Costa Monteiro
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCLA Ronald Reagan Hospital, University of California, Los Angeles, 757 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Heidi Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Mary K Dahmer
- Division of Pediatric Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Myung Shin Sim
- Division of General Internal Medicine and Health Services Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael W Quasney
- Division of Pediatric Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Martha A Q Curley
- Division of Anesthesia and Critical Care Medicine (Perelman School of Medicine), Department of Family and Community Health (School of Nursing), University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Anil Sapru
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
21
|
Boutin S, Hildebrand D, Boulant S, Kreuter M, Rüter J, Pallerla SR, Velavan TP, Nurjadi D. Host factors facilitating SARS-CoV-2 virus infection and replication in the lungs. Cell Mol Life Sci 2021; 78:5953-5976. [PMID: 34223911 PMCID: PMC8256233 DOI: 10.1007/s00018-021-03889-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is the virus causing the major pandemic facing the world today. Although, SARS-CoV-2 primarily causes lung infection, a variety of symptoms have proven a systemic impact on the body. SARS-CoV-2 has spread in the community quickly infecting humans from all age, ethnicities and gender. However, fatal outcomes have been linked to specific host factors and co-morbidities such as age, hypertension, immuno-deficiencies, chronic lung diseases or metabolic disorders. A major shift in the microbiome of patients suffering of the coronavirus disease 2019 (COVID-19) have also been observed and is linked to a worst outcome of the disease. As many co-morbidities are already known to be associated with a dysbiosis of the microbiome such as hypertension, diabetes and metabolic disorders. Host factors and microbiome changes are believed to be involved as a network in the acquisition of the infection and the development of the diseases. We will review in detail in this manuscript, the immune response toward SARS-CoV-2 infection as well as the host factors involved in the facilitation and worsening of the infection. We will also address the impact of COVID-19 on the host's microbiome and secondary infection which also worsen the disease.
Collapse
Affiliation(s)
- Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Steeve Boulant
- Division of Cellular Polarity and Viral Infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Kreuter
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Jule Rüter
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Kitsios GD, Kotok D, Yang H, Finkelman MA, Zhang Y, Britton N, Li X, Levochkina MS, Wagner AK, Schaefer C, Villandre JJ, Guo R, Evankovich JW, Bain W, Shah F, Zhang Y, Methé BA, Benos PV, McVerry BJ, Morris A. Plasma 1,3-β-d-glucan levels predict adverse clinical outcomes in critical illness. JCI Insight 2021; 6:e141277. [PMID: 34128840 PMCID: PMC8410081 DOI: 10.1172/jci.insight.141277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUNDThe fungal cell wall constituent 1,3-β-d-glucan (BDG) is a pathogen-associated molecular pattern that can stimulate innate immunity. We hypothesized that BDG from colonizing fungi in critically ill patients may translocate into the systemic circulation and be associated with host inflammation and outcomes.METHODSWe enrolled 453 mechanically ventilated patients with acute respiratory failure (ARF) without invasive fungal infection and measured BDG, innate immunity, and epithelial permeability biomarkers in serially collected plasma samples.RESULTSCompared with healthy controls, patients with ARF had significantly higher BDG levels (median [IQR], 26 pg/mL [15-49 pg/mL], P < 0.001), whereas patients with ARF with high BDG levels (≥40 pg/mL, 31%) had higher odds for assignment to the prognostically adverse hyperinflammatory subphenotype (OR [CI], 2.88 [1.83-4.54], P < 0.001). Baseline BDG levels were predictive of fewer ventilator-free days and worse 30-day survival (adjusted P < 0.05). Integrative analyses of fungal colonization and epithelial barrier disruption suggested that BDG may translocate from either the lung or gut compartment. We validated the associations between plasma BDG and host inflammatory responses in 97 hospitalized patients with COVID-19.CONCLUSIONBDG measurements offered prognostic information in critically ill patients without fungal infections. Further research in the mechanisms of translocation and innate immunity recognition and stimulation may offer new therapeutic opportunities in critical illness.FUNDINGUniversity of Pittsburgh Clinical and Translational Science Institute, COVID-19 Pilot Award and NIH grants (K23 HL139987, U01 HL098962, P01 HL114453, R01 HL097376, K24 HL123342, U01 HL137159, R01 LM012087, K08HK144820, F32 HL142172, K23 GM122069).
Collapse
Affiliation(s)
- Georgios D Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Center for Medicine and the Microbiome and.,Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Kotok
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Florida, Weston Hospital, Weston, Florida, USA
| | - Haopu Yang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,School of Medicine, Tsinghua University, Beijing, China.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Yonglong Zhang
- Associates of Cape Cod Inc., East Falmouth, Massachusetts, USA
| | - Noel Britton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Center for Medicine and the Microbiome and
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marina S Levochkina
- Department of Infectious Diseases and Microbiology and.,Departments of Physical Medicine and Rehabilitation, Neuroscience, and Clinical and Translational Science, Center for Neuroscience, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Departments of Physical Medicine and Rehabilitation, Neuroscience, and Clinical and Translational Science, Center for Neuroscience, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caitlin Schaefer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John J Villandre
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Rui Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Emergency and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - John W Evankovich
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Barbara A Methé
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Center for Medicine and the Microbiome and
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Center for Medicine and the Microbiome and.,Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Center for Medicine and the Microbiome and.,Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Grunwell JR, Rad MG, Stephenson ST, Mohammad AF, Opolka C, Fitzpatrick AM, Kamaleswaran R. Machine Learning-Based Discovery of a Gene Expression Signature in Pediatric Acute Respiratory Distress Syndrome. Crit Care Explor 2021; 3:e0431. [PMID: 34151274 PMCID: PMC8208445 DOI: 10.1097/cce.0000000000000431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES To identify differentially expressed genes and networks from the airway cells within 72 hours of intubation of children with and without pediatric acute respiratory distress syndrome. To test the use of a neutrophil transcription reporter assay to identify immunogenic responses to airway fluid from children with and without pediatric acute respiratory distress syndrome. DESIGN Prospective cohort study. SETTING Thirty-six bed academic PICU. PATIENTS Fifty-four immunocompetent children, 28 with pediatric acute respiratory distress syndrome, who were between 2 days to 18 years old within 72 hours of intubation for acute hypoxemic respiratory failure. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We applied machine learning methods to a Nanostring transcriptomics on primary airway cells and a neutrophil reporter assay to discover gene networks differentiating pediatric acute respiratory distress syndrome from no pediatric acute respiratory distress syndrome. An analysis of moderate or severe pediatric acute respiratory distress syndrome versus no or mild pediatric acute respiratory distress syndrome was performed. Pathway network visualization was used to map pathways from 62 genes selected by ElasticNet associated with pediatric acute respiratory distress syndrome. The Janus kinase/signal transducer and activator of transcription pathway emerged. Support vector machine performed best for the primary airway cells and the neutrophil reporter assay using a leave-one-out cross-validation with an area under the operating curve and 95% CI of 0.75 (0.63-0.87) and 0.80 (0.70-1.0), respectively. CONCLUSIONS We identified gene networks important to the pediatric acute respiratory distress syndrome airway immune response using semitargeted transcriptomics from primary airway cells and a neutrophil reporter assay. These pathways will drive mechanistic investigations into pediatric acute respiratory distress syndrome. Further studies are needed to validate our findings and to test our models.
Collapse
Affiliation(s)
- Jocelyn R Grunwell
- Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
- Emory University School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, Atlanta, GA
| | - Milad G Rad
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Susan T Stephenson
- Emory University School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, Atlanta, GA
| | - Ahmad F Mohammad
- Emory University School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, Atlanta, GA
| | - Cydney Opolka
- Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
| | - Anne M Fitzpatrick
- Emory University School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, Atlanta, GA
| | - Rishikesan Kamaleswaran
- Emory University School of Medicine, Department of Pediatrics, Division of Critical Care Medicine, Atlanta, GA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
24
|
Peukert K, Fox M, Schulz S, Feuerborn C, Frede S, Putensen C, Wrigge H, Kümmerer BM, David S, Seeliger B, Welte T, Latz E, Klinman D, Wilhelm C, Steinhagen F, Bode C. Inhibition of Caspase-1 with Tetracycline Ameliorates Acute Lung Injury. Am J Respir Crit Care Med 2021; 204:53-63. [PMID: 33760701 DOI: 10.1164/rccm.202005-1916oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome with a mortality of up to 40%. Precision medicine approaches targeting patients on the basis of their molecular phenotypes of ARDS might help to identify effective pharmacotherapies. The inflammasome-caspase-1 pathway contributes to the development of ARDS via IL-1β and IL-18 production. Recent studies indicate that tetracycline can be used to treat inflammatory diseases mediated by IL-1β and IL-18, although the molecular mechanism by which tetracycline inhibits inflammasome-caspase-1 signaling remains unknown. Objectives: To identify patients with ARDS characterized by IL-1β and IL-18 expression and investigate the ability of tetracycline to inhibit inflammasome-caspase-1 signaling in ARDS. Methods: IL-1β and IL-18 concentrations were quantified in BAL fluid from patients with ARDS. Tetracycline's effects on lung injury and inflammation were assessed in two mouse models of direct (pulmonary) acute lung injury, and its effects on IL-1β and IL-18 production were assessed by alveolar leukocytes from patients with direct ARDS ex vivo. Murine macrophages were used to further characterize the effect of tetracycline on the inflammasome-caspase-1 pathway. Measurements and Main Results: BAL fluid concentrations of IL-1β and IL-18 are significantly higher in patients with direct ARDS than those with indirect (nonpulmonary) ARDS. In experimental acute lung injury, tetracycline significantly diminished lung injury and pulmonary inflammation by selectively inhibiting caspase-1-dependent IL-1β and IL-18 production, leading to improved survival. Tetracycline also reduced the production of IL-1β and IL-18 by alveolar leukocytes from patients with direct ARDS. Conclusions: Tetracycline may be effective in the treatment of direct ARDS in patients with elevated caspase-1 activity. Clinical Trial registered with www.clinicaltrials.gov (NCT04079426).
Collapse
Affiliation(s)
- Konrad Peukert
- Department of Anesthesiology and Intensive Care Medicine
| | - Mario Fox
- Department of Anesthesiology and Intensive Care Medicine
| | - Susanne Schulz
- Department of Anesthesiology and Intensive Care Medicine
| | | | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine
| | | | - Hermann Wrigge
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital Halle, Halle, Germany
| | | | - Sascha David
- Department of Nephrology and Hypertension and.,Institute of Intensive Care Medicine, University Hospital Zurich, Zürich, Switzerland; and
| | - Benjamin Seeliger
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | | | - Dennis Klinman
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland
| | - Christoph Wilhelm
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine
| |
Collapse
|
25
|
Wen XP, Zhang YZ, Wan QQ. Non-targeted proteomics of acute respiratory distress syndrome: clinical and research applications. Proteome Sci 2021; 19:5. [PMID: 33743690 PMCID: PMC7980750 DOI: 10.1186/s12953-021-00174-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by refractory hypoxemia caused by accumulation of pulmonary fluid with a high mortality rate, but the underlying mechanism is not yet fully understood, causing absent specific therapeutic drugs to treat with ARDS. In recent years, more and more studies have applied proteomics to ARDS. Non-targeted studies of proteomics in ARDS are just beginning and have the potential to identify novel drug targets and key pathways in this disease. This paper will provide a brief review of the recent advances in the application of non-targeted proteomics to ARDS.
Collapse
Affiliation(s)
- Xu-Peng Wen
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yue-Zhong Zhang
- Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Qi-Quan Wan
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
26
|
Ruaro B, Salton F, Braga L, Wade B, Confalonieri P, Volpe MC, Baratella E, Maiocchi S, Confalonieri M. The History and Mystery of Alveolar Epithelial Type II Cells: Focus on Their Physiologic and Pathologic Role in Lung. Int J Mol Sci 2021; 22:2566. [PMID: 33806395 PMCID: PMC7961977 DOI: 10.3390/ijms22052566] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Alveolar type II (ATII) cells are a key structure of the distal lung epithelium, where they exert their innate immune response and serve as progenitors of alveolar type I (ATI) cells, contributing to alveolar epithelial repair and regeneration. In the healthy lung, ATII cells coordinate the host defense mechanisms, not only generating a restrictive alveolar epithelial barrier, but also orchestrating host defense mechanisms and secreting surfactant proteins, which are important in lung protection against pathogen exposure. Moreover, surfactant proteins help to maintain homeostasis in the distal lung and reduce surface tension at the pulmonary air-liquid interface, thereby preventing atelectasis and reducing the work of breathing. ATII cells may also contribute to the fibroproliferative reaction by secreting growth factors and proinflammatory molecules after damage. Indeed, various acute and chronic diseases are associated with intensive inflammation. These include oedema, acute respiratory distress syndrome, fibrosis and numerous interstitial lung diseases, and are characterized by hyperplastic ATII cells which are considered an essential part of the epithelialization process and, consequently, wound healing. The aim of this review is that of revising the physiologic and pathologic role ATII cells play in pulmonary diseases, as, despite what has been learnt in the last few decades of research, the origin, phenotypic regulation and crosstalk of these cells still remain, in part, a mystery.
Collapse
Affiliation(s)
- Barbara Ruaro
- Pulmonology Department, University Hospital of Cattinara, 34128 Trieste, Italy; (F.S.); (P.C.); (M.C.)
| | - Francesco Salton
- Pulmonology Department, University Hospital of Cattinara, 34128 Trieste, Italy; (F.S.); (P.C.); (M.C.)
| | - Luca Braga
- ICGEB, Area Science Park, Padriciano, 34128 Trieste, Italy;
| | - Barbara Wade
- City of Health and Science of Turin, Department of Science of Public Health and Pediatrics, University of Torino, 34128 Trieste, Italy;
| | - Paola Confalonieri
- Pulmonology Department, University Hospital of Cattinara, 34128 Trieste, Italy; (F.S.); (P.C.); (M.C.)
| | - Maria Concetta Volpe
- Life Sciences Department, University of Trieste, 34128 Trieste, Italy; (M.C.V.); (S.M.)
| | - Elisa Baratella
- Department of Radiology, Department of Medicine, Surgery and Health Science, University of Trieste, 34128 Trieste, Italy;
| | - Serena Maiocchi
- Life Sciences Department, University of Trieste, 34128 Trieste, Italy; (M.C.V.); (S.M.)
| | - Marco Confalonieri
- Pulmonology Department, University Hospital of Cattinara, 34128 Trieste, Italy; (F.S.); (P.C.); (M.C.)
| |
Collapse
|
27
|
Bhattarai S, Gupta A, Ali E, Ali M, Riad M, Adhikari P, Mostafa JA. Can Big Data and Machine Learning Improve Our Understanding of Acute Respiratory Distress Syndrome? Cureus 2021; 13:e13529. [PMID: 33786236 PMCID: PMC7996475 DOI: 10.7759/cureus.13529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 11/05/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) accounts for 10% of all diagnoses in the Intensive Care Unit, and about 40% of the patients succumb to the disease. Clinical methods alone can result in the under-recognition of this heterogeneous syndrome. The purpose of this study is to evaluate the role that big data and machine learning (ML) have played in understanding the heterogeneity of the disease and the development of various prediction algorithms. Most of the work in the field of ML in ARDS has been in the development of prediction models that have comparable efficacies to that of traditional models. Prediction algorithms have been useful in identifying new variables that may be important to consider in the future, supplementing the unknown information with the help of available noninvasive parameters, as well as predicting mortality. Phenotype identification using an unsupervised ML algorithm has been pivotal in classifying the heterogeneous population into more homogenous classes. Big data generated from ventilators in the form of ventilator waveform analysis and images in the form of radiomics have also been leveraged for the identification of the syndrome and can be incorporated into a clinical decision support system. Although the results are promising, lack of generalizability, "black box" nature of algorithms and concerns about "alarm fatigue" should be addressed for more mainstream adoption of these models.
Collapse
Affiliation(s)
- Sanket Bhattarai
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ashish Gupta
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Eiman Ali
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Moeez Ali
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohamed Riad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prakash Adhikari
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Piedmont Athens Regional Medical Center, Athens, USA
| | - Jihan A Mostafa
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This article provides an overview of protein biomarkers for acute respiratory distress syndrome (ARDS) and their potential use in future clinical trials. RECENT FINDINGS The protein biomarkers studied as indices of biological processes involved in the pathogenesis of ARDS may have diagnostic and/or prognostic value. Recently, they also proved useful for identifying ARDS phenotypes and assessing heterogeneity of treatment effect in retrospective analyses of completed clinical trials. SUMMARY This article summarizes the current research on ARDS biomarkers and provides insights into how they should be integrated as prognostic and predictive enrichment tools in future clinical trials.
Collapse
Affiliation(s)
- Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand
- GReD, CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Raiko Blondonnet
- Department of Perioperative Medicine, CHU Clermont-Ferrand
- GReD, CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
29
|
Kitsios GD, Yang H, Yang L, Qin S, Fitch A, Wang XH, Fair K, Evankovich J, Bain W, Shah F, Li K, Methé B, Benos PV, Morris A, McVerry BJ. Respiratory Tract Dysbiosis Is Associated with Worse Outcomes in Mechanically Ventilated Patients. Am J Respir Crit Care Med 2021; 202:1666-1677. [PMID: 32717152 DOI: 10.1164/rccm.201912-2441oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rationale: Host inflammatory responses have been strongly associated with adverse outcomes in critically ill patients, but the biologic underpinnings of such heterogeneous responses have not been defined.Objectives: We examined whether respiratory tract microbiome profiles are associated with host inflammation and clinical outcomes of acute respiratory failure.Methods: We collected oral swabs, endotracheal aspirates (ETAs), and plasma samples from mechanically ventilated patients. We performed 16S ribosomal RNA gene sequencing to characterize upper and lower respiratory tract microbiota and classified patients into host-response subphenotypes on the basis of clinical variables and plasma biomarkers of innate immunity and inflammation. We derived diversity metrics and composition clusters with Dirichlet multinomial models and examined our data for associations with subphenotypes and clinical outcomes.Measurements and Main Results: Oral and ETA microbial communities from 301 mechanically ventilated subjects had substantial heterogeneity in α and β diversity. Dirichlet multinomial models revealed a cluster with low α diversity and enrichment for pathogens (e.g., high Staphylococcus or Pseudomonadaceae relative abundance) in 35% of ETA samples, associated with a hyperinflammatory subphenotype, worse 30-day survival, and longer time to liberation from mechanical ventilation (adjusted P < 0.05), compared with patients with higher α diversity and relative abundance of typical oral microbiota. Patients with evidence of dysbiosis (low α diversity and low relative abundance of "protective" oral-origin commensal bacteria) in both oral and ETA samples (17%, combined dysbiosis) had significantly worse 30-day survival and longer time to liberation from mechanical ventilation than patients without dysbiosis (55%; adjusted P < 0.05).Conclusions: Respiratory tract dysbiosis may represent an important, modifiable contributor to patient-level heterogeneity in systemic inflammatory responses and clinical outcomes.
Collapse
Affiliation(s)
- Georgios D Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center.,Center for Medicine and the Microbiome
| | - Haopu Yang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center.,Department of Computational and Systems Biology, and.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Libing Yang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center.,Center for Medicine and the Microbiome.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shulin Qin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center.,Center for Medicine and the Microbiome
| | | | - Xiao-Hong Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center
| | - Katherine Fair
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center
| | - John Evankovich
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center
| | - Faraaz Shah
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center.,School of Medicine, Tsinghua University, Beijing, China; and
| | - Kelvin Li
- Center for Medicine and the Microbiome
| | - Barbara Methé
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center.,Center for Medicine and the Microbiome
| | | | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center.,Center for Medicine and the Microbiome.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Bryan J McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine and University of Pittsburgh Medical Center.,Center for Medicine and the Microbiome
| |
Collapse
|
30
|
Batah SS, Fabro AT. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians. Respir Med 2021; 176:106239. [PMID: 33246294 PMCID: PMC7674971 DOI: 10.1016/j.rmed.2020.106239] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023]
Abstract
COVID-19 has quickly reached pandemic levels since it was first reported in December 2019. The virus responsible for the disease, named SARS-CoV-2, is enveloped positive-stranded RNA viruses. During its replication in the cytoplasm of host cells, the viral genome is transcribed into proteins, such as the structural protein spike domain S1, which is responsible for binding to the cell receptor of the host cells. Infected patients have initially flu-like symptoms, rapidly evolving to severe acute lung injury, known as acute respiratory distress syndrome (ARDS). ARDS is characterized by an acute and diffuse inflammatory damage into the alveolar-capillary barrier associated with a vascular permeability increase and reduced compliance, compromising gas exchange and causing hypoxemia. Histopathologically, this condition is known as diffuse alveolar damage which consists of permanent damage to the alveoli epithelial cells and capillary endothelial cells, with consequent hyaline membrane formation and eventually intracapillary thrombosis. All of these mechanisms associated with COVID-19 involve the phenotypic expression from different proteins transcription modulated by viral infection in specific pulmonary microenvironments. Therefore, this knowledge is fundamentally important for a better pathophysiological understanding and identification of the main molecular pathways associated with the disease evolution. Evidently, clinical findings, signs and symptoms of a patient are the phenotypic expression of these pathophysiological and molecular mechanisms of SARS-CoV-2 infection. Therefore, no findings alone, whether molecular, clinical, radiological or pathological axis are sufficient for an accurate diagnosis. However, their intersection and/or correlation are extremely critical for clinicians establish the diagnosis and new treatment perspectives.
Collapse
Affiliation(s)
- Sabrina Setembre Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| |
Collapse
|
31
|
Abstract
Acute lung injury is characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen, decreased lung compliance, and diffuse alveolar infiltrates on chest X-ray. The 1994 American-European Consensus Conference defined "acute respiratory distress syndrome, ARDS" by acute onset after a known trigger, severe hypoxemia defined by PaO2/FiO2</=200 mm Hg, bilateral infiltrates on chest X-ray, and absence of cardiogenic edema. Milder form of the syndrome with PaO2/FiO2 between 200-300 mm Hg was named "acute lung injury, ALI". Berlin Classification in 2012 defined three categories of ARDS according to hypoxemia (mild, moderate, and severe), and the term "acute lung injury" was assigned for general description or for animal models. ALI/ARDS can originate from direct lung triggers such as pneumonia or aspiration, or from extrapulmonary reasons such as sepsis or trauma. Despite growing understanding the ARDS pathophysiology, efficacy of standard treatments, such as lung protective ventilation, prone positioning, and neuromuscular blockers, is often limited. However, there is an increasing evidence that direct and indirect forms of ARDS may differ not only in the manifestations of alterations, but also in the response to treatment. Thus, individualized treatment according to ARDS subtypes may enhance the efficacy of given treatment and improve the survival of patients.
Collapse
Affiliation(s)
- D Mokrá
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| |
Collapse
|
32
|
Bime C, Camp SM, Casanova N, Oita RC, Ndukum J, Lynn H, Garcia JGN. The acute respiratory distress syndrome biomarker pipeline: crippling gaps between discovery and clinical utility. Transl Res 2020; 226:105-115. [PMID: 32599095 PMCID: PMC7319618 DOI: 10.1016/j.trsl.2020.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Recent innovations in translational research have ushered an exponential increase in the discovery of novel biomarkers, thereby elevating the hope for deeper insights into "personalized" medicine approaches to disease phenotyping and care. However, a critical gap exists between the fast pace of biomarker discovery and the successful translation to clinical use. This gap underscores the fundamental biomarker conundrum across various acute and chronic disorders: how does a biomarker address a specific unmet need? Additionally, the gap highlights the need to shift the paradigm from a focus on biomarker discovery to greater translational impact and the need for a more streamlined drug approval process. The unmet need for biomarkers in acute respiratory distress syndrome (ARDS) is for reliable and validated biomarkers that minimize heterogeneity and allow for stratification of subject selection for enrollment in clinical trials of tailored therapies. This unmet need is particularly highlighted by the ongoing SARS-CoV-2/COVID-19 pandemic. The unprecedented numbers of COVID-19-induced ARDS cases has strained health care systems across the world and exposed the need for biomarkers that would accelerate drug development and the successful phenotyping of COVID-19-infected patients at risk for development of ARDS and ARDS mortality. Accordingly, this review discusses the current state of ARDS biomarkers in the context of the drug development pipeline and highlight gaps between biomarker discovery and clinical implementation while proposing potential paths forward. We discuss potential ARDS biomarkers by category and by context of use, highlighting progress in the development continuum. We conclude by discussing challenges to successful translation of biomarker candidates to clinical impact and proposing possible novel strategies.
Collapse
Affiliation(s)
- Christian Bime
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona.
| | - Sara M Camp
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Nancy Casanova
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Radu C Oita
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Juliet Ndukum
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Heather Lynn
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
33
|
Matera MG, Rogliani P, Bianco A, Cazzola M. Pharmacological management of adult patients with acute respiratory distress syndrome. Expert Opin Pharmacother 2020; 21:2169-2183. [PMID: 32783481 DOI: 10.1080/14656566.2020.1801636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION There is still no definite drug for acute respiratory distress syndrome (ARDS) that is capable of reducing either short-term or long-term mortality. Therefore, great efforts are being made to identify a pharmacological approach that can be really effective. AREAS COVERED This review focuses on current challenges and future directions in the pharmacological management of ARDS, regardless of anti-infective treatments. The authors have excluded small randomized controlled trials (RCTs) with less than 60 patients because those studies do not have statistical power for outcome data, and also anecdotal trials but have considered the last meta-analysis on any drug. EXPERT OPINION There has been substantial progress in our knowledge of ARDS over the past two decades and many drugs have been used in its treatment. Nevertheless, effective targeted pharmacological treatments for ARDS are still lacking. The likely reason why a pharmacological approach is beneficial for some patients, but harmful for others is that ARDS is an extremely heterogeneous syndrome. To overcome this issue, a precision approach for ARDS, whereby therapies are specifically targeted to patients most likely to benefit, has been proposed. At present, however, the application of this approach seems to be a difficult task.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli"/Monaldi Hospital , Naples, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome, Italy
| |
Collapse
|
34
|
He Y, Wang J, Li F, Shi Y. Main Clinical Features of COVID-19 and Potential Prognostic and Therapeutic Value of the Microbiota in SARS-CoV-2 Infections. Front Microbiol 2020; 11:1302. [PMID: 32582134 PMCID: PMC7291771 DOI: 10.3389/fmicb.2020.01302] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has become a pandemic, infecting more than 4,000,000 people worldwide. This review describes the main clinical features of COVID-19 and potential role of microbiota in COVID-19. SARS-CoV and SARS-CoV-2 have 79.5% nucleotide sequence identity and use angiotensin-converting enzyme 2 (ACE2) receptors to enter host cells. The distribution of ACE2 may determine how SARS-CoV-2 infects the respiratory and digestive tract. SARS and COVID-19 share similar clinical features, although the estimated fatality rate of COVID-19 is much lower. The communication between the microbiota and SARS-CoV-2 and the role of this association in diagnosis and treatment are unclear. Changes in the lung microbiota were identified in COVID-19 patients, and the enrichment of the lung microbiota with bacteria found in the intestinal tract is correlated with the onset of acute respiratory distress syndrome and long-term outcomes. ACE2 regulates the gut microbiota by indirectly controlling the secretion of antimicrobial peptides. Moreover, the gut microbiota enhances antiviral immunity by increasing the number and function of immune cells, decreasing immunopathology, and stimulating interferon production. In turn, respiratory viruses are known to influence microbial composition in the lung and intestine. Therefore, the analysis of changes in the microbiota during SARS-CoV-2 infection may help predict patient outcomes and allow the development of microbiota-based therapies.
Collapse
Affiliation(s)
- Yu He
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jianhui Wang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fang Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
35
|
Carla A, Pereira B, Boukail H, Audard J, Pinol-Domenech N, De Carvalho M, Blondonnet R, Zhai R, Morand D, Lambert C, Sapin V, Ware LB, Calfee CS, Bastarache JA, Laffey JG, Juffermans NP, Bos LD, Artigas A, Rocco PRM, Matthay MA, McAuley DF, Constantin JM, Jabaudon M. Acute respiratory distress syndrome subphenotypes and therapy responsive traits among preclinical models: protocol for a systematic review and meta-analysis. Respir Res 2020; 21:81. [PMID: 32264897 PMCID: PMC7137453 DOI: 10.1186/s12931-020-01337-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Subphenotypes were recently reported within clinical acute respiratory distress syndrome (ARDS), with distinct outcomes and therapeutic responses. Experimental models have long been used to mimic features of ARDS pathophysiology, but the presence of distinct subphenotypes among preclinical ARDS remains unknown. This review will investigate whether: 1) subphenotypes can be identified among preclinical ARDS models; 2) such subphenotypes can identify some responsive traits. METHODS We will include comparative preclinical (in vivo and ex vivo) ARDS studies published between 2009 and 2019 in which pre-specified therapies were assessed (interleukin (IL)-10, IL-2, stem cells, beta-agonists, corticosteroids, fibroblast growth factors, modulators of the receptor for advanced glycation end-products pathway, anticoagulants, and halogenated agents) and outcomes compared to a control condition. The primary outcome will be a composite of the four key features of preclinical ARDS as per the American Thoracic Society consensus conference (histologic evidence of lung injury, altered alveolar-capillary barrier, lung inflammatory response, and physiological dysfunction). Secondary outcomes will include the single components of the primary composite outcome, net alveolar fluid clearance, and death. MEDLINE, Embase, and Cochrane databases will be searched electronically and data from eligible studies will be extracted, pooled, and analyzed using random-effects models. Individual study reporting will be assessed according to the Animal Research: Reporting of In Vivo Experiments guidelines. Meta-regressions will be performed to identify subphenotypes prior to comparing outcomes across subphenotypes and treatment effects. DISCUSSION This study will inform on the presence and underlying pathophysiological features of subphenotypes among preclinical models of ARDS and should help to determine whether sufficient evidence exists to perform preclinical trials of subphenotype-targeted therapies, prior to potential clinical translation. SYSTEMATIC REVIEW REGISTRATION PROSPERO (ID: CRD42019157236).
Collapse
Affiliation(s)
- Adrien Carla
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Hanifa Boukail
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jules Audard
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | - Raiko Blondonnet
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ruoyang Zhai
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Dominique Morand
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Céline Lambert
- Biostatistics Unit, Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Carolyn S. Calfee
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA USA
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN USA
| | - John G. Laffey
- Keenan Research Centre for Biomedical Science, Hospital for Sick Children, Departments of Anesthesia and Critical Care Medicine, St. Michael’s Hospital, Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, Toronto, Canada
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Nicole P. Juffermans
- Department of Intensive Care Medicine, Department of Respiratory Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lieuwe D. Bos
- Department of Intensive Care Medicine, Department of Respiratory Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Antonio Artigas
- Corporació Sanitaria Parc Tauli, CIBER de Enfermedades Respiratorias, Autonomous University of Barcelona, Barcelona, Spain
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael A. Matthay
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA USA
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast and Regional Intensive Care Unit, Belfast Health and Social Care Trust, Belfast, UK
| | - Jean-Michel Constantin
- Department of Anesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière Hospital, Paris, France
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - for the ESICM Translational Biology Group of the Acute Respiratory Failure section
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Biostatistics Unit, Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
- Université Clermont Auvergne, Health Library, Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN USA
- Keenan Research Centre for Biomedical Science, Hospital for Sick Children, Departments of Anesthesia and Critical Care Medicine, St. Michael’s Hospital, Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, Toronto, Canada
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Department of Intensive Care Medicine, Department of Respiratory Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Corporació Sanitaria Parc Tauli, CIBER de Enfermedades Respiratorias, Autonomous University of Barcelona, Barcelona, Spain
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast and Regional Intensive Care Unit, Belfast Health and Social Care Trust, Belfast, UK
- Department of Anesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
36
|
|
37
|
Sanchez E, Price DR, Chung KP, Oromendia C, Choi AMK, Schenck EJ, Siempos II. Persistent severe acute respiratory distress syndrome for the prognostic enrichment of trials. PLoS One 2020; 15:e0227346. [PMID: 31986174 PMCID: PMC6984692 DOI: 10.1371/journal.pone.0227346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is heterogeneous. As an indication of the heterogeneity of ARDS, there are patients whose syndrome improves rapidly (i.e., within 24 hours), others whose hypoxemia improves gradually and still others whose severe hypoxemia persists for several days. The latter group of patients with persistent severe ARDS poses challenges to clinicians. We attempted to assess the baseline characteristics and outcomes of persistent severe ARDS and to identify which variables are useful to predict it. METHODS A secondary analysis of patient-level data from the ALTA, EDEN and SAILS ARDSNet clinical trials was conducted. We defined persistent severe ARDS as a partial pressure of arterial oxygen to fraction of inspired oxygen ratio (PaO2:FiO2) of equal to or less than 100 mmHg on the second study day following enrollment. Regularized logistic regression with an L1 penalty [Least Absolute Shrinkage and Selection Operator (LASSO)] techniques were used to identify predictive variables of persistent severe ARDS. RESULTS Of the 1531 individuals with ARDS alive on the second study day after enrollment, 232 (15%) had persistent severe ARDS. Of the latter, 100 (43%) individuals had mild or moderate hypoxemia at baseline. Usage of vasopressors was greater [144/232 (62%) versus 623/1299 (48%); p<0.001] and baseline severity of illness was higher in patients with versus without persistent severe ARDS. Mortality at 60 days [95/232 (41%) versus 233/1299 (18%); p<0.001] was higher, and ventilator-free (p<0.001), intensive care unit-free [0 (0-14) versus 19 (7-23); p<0.001] and non-pulmonary organ failure-free [3 (0-21) versus 20 (1-26); p<0.001] days were fewer in patients with versus without persistent severe ARDS. PaO2:FiO2, FiO2, hepatic failure and positive end-expiratory pressure at enrollment were useful predictive variables. CONCLUSIONS Patients with persistent severe ARDS have distinct baseline characteristics and poor prognosis. Identifying such patients at enrollment may be useful for the prognostic enrichment of trials.
Collapse
Affiliation(s)
- Elizabeth Sanchez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States of America
| | - David R. Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Kuei-Pin Chung
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Clara Oromendia
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York, United States of America
| | - Augustine M. K. Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Edward J. Schenck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Ilias I. Siempos
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States of America
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, University of Athens Medical School, Athens, Greece
- * E-mail:
| |
Collapse
|
38
|
Jones TK, Feng R, Kerchberger VE, Reilly JP, Anderson BJ, Shashaty MGS, Wang F, Dunn TG, Riley TR, Abbott J, Ittner CAG, Christiani DC, Mikacenic C, Wurfel MM, Ware LB, Calfee CS, Matthay MA, Christie JD, Meyer NJ. Plasma sRAGE Acts as a Genetically Regulated Causal Intermediate in Sepsis-associated Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2020; 201:47-56. [PMID: 31487195 PMCID: PMC6938154 DOI: 10.1164/rccm.201810-2033oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Rationale: Acute respiratory distress syndrome (ARDS) lacks known causal biomarkers. Plasma concentrations of sRAGE (soluble receptor for advanced glycation end products) strongly associate with ARDS risk. However, whether plasma sRAGE contributes causally to ARDS remains unknown.Objectives: Evaluate plasma sRAGE as a causal intermediate in ARDS by Mendelian randomization (MR), a statistical method to infer causality using observational data.Methods: We measured early plasma sRAGE in two critically ill populations with sepsis. The cohorts were whole-genome genotyped and phenotyped for ARDS. To select validated genetic instruments for MR, we regressed plasma sRAGE on genome-wide genotypes in both cohorts. The causal effect of plasma sRAGE on ARDS was inferred using the top variants with significant associations in both populations (P < 0.01, R2 > 0.02). We applied the inverse variance-weighted method to obtain consistent estimates of the causal effect of plasma sRAGE on ARDS risk.Measurements and Main Results: There were 393 European and 266 African ancestry patients in the first cohort and 843 European ancestry patients in the second cohort. Plasma sRAGE was strongly associated with ARDS risk in both populations (odds ratio, 1.86; 95% confidence interval [1.54-2.25]; 2.56 [2.14-3.06] per log increase). Using genetic instruments common to both populations, plasma sRAGE had a consistent causal effect on ARDS risk with a β estimate of 0.50 (95% confidence interval [0.09-0.91] per log increase).Conclusions: Plasma sRAGE is genetically regulated during sepsis, and MR analysis indicates that increased plasma sRAGE leads to increased ARDS risk, suggesting plasma sRAGE acts as a causal intermediate in sepsis-related ARDS.
Collapse
Affiliation(s)
- Tiffanie K. Jones
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rui Feng
- Department of Biostatistics, Center for Clinical Epidemiology and Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - V. Eric Kerchberger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John P. Reilly
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Brian J. Anderson
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael G. S. Shashaty
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Biostatistics, Center for Clinical Epidemiology and Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fan Wang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Thomas G. Dunn
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Thomas R. Riley
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jason Abbott
- Department of Anesthesia, Cardiovascular Research Institute, and
| | - Caroline A. G. Ittner
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - David C. Christiani
- Harvard School of Public Health, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carolyn S. Calfee
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, California
| | - Michael A. Matthay
- Department of Anesthesia, Cardiovascular Research Institute, and
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, California
| | - Jason D. Christie
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Biostatistics, Center for Clinical Epidemiology and Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nuala J. Meyer
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Tim-3 Regulates Tregs' Ability to Resolve the Inflammation and Proliferation of Acute Lung Injury by Modulating Macrophages Polarization. Shock 2019; 50:455-464. [PMID: 29194342 DOI: 10.1097/shk.0000000000001070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We recently reported that CD4CD25 regulatory T cells (Tregs) contributed to the recovery of patients with acute lung injury (ALI) by upregulating T cell immunoglobulin and mucin-domain containing-3 (Tim-3). However, the molecular mechanism by which Tim-3 regulates Tregs' function in the resolution and fibroproliferation after ALI remains unknown. In this study, we adoptively transferred Tim-3Tregs or Tim-3Tregs into lipopolysaccharide -induced ALI mice model. Data demonstrated that Tim-3Tregs not only decreased indices of lung inflammation and injury but also mitigated lung fibrosis after ALI. Furthermore, we observed that the transfer of Tim-3Tregs led to M2-like macrophage differentiation as demonstrated by significantly upregulated levels of M2-associated phenotypic markers as well as downregulated expressions of M1-related markers in both the profibrotic lung tissue and sorted pulmonary monocytes after ALI. In addition, cytokines such as interleukin (IL)-10 and IL-4 were also upregulated in lung tissues after Tim-3Tregs transferring. In vitro experiments further demonstrated that cell-contact cocultures with Tregs lacking Tim-3 presented decreased polarization of M2-like macrophages partially mediated by a decreased expression and function of STAT-3. Therefore, these data demonstrate a previously unrecognized function of Tim-3 on Tregs in their ability to repress the fibroproliferation of ALI by inducing alternative macrophages polarization. Moreover, the data highlight that Tim-3Tregs-mediated induction of M2-like macrophages may be a novel treatment modality with transitional potential.
Collapse
|
40
|
Gotts JE, Bernard O, Chun L, Croze RH, Ross JT, Nesseler N, Wu X, Abbott J, Fang X, Calfee CS, Matthay MA. Clinically relevant model of pneumococcal pneumonia, ARDS, and nonpulmonary organ dysfunction in mice. Am J Physiol Lung Cell Mol Physiol 2019; 317:L717-L736. [PMID: 31509438 DOI: 10.1152/ajplung.00132.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pneumonia is responsible for more deaths in the United States than any other infectious disease. Severe pneumonia is a common cause of acute respiratory failure and acute respiratory distress syndrome (ARDS). Despite the introduction of effective antibiotics and intensive supportive care in the 20th century, death rates from community-acquired pneumonia among patients in the intensive care unit remain as high as 35%. Beyond antimicrobial treatment, no targeted molecular therapies have yet proven effective, highlighting the need for additional research. Despite some limitations, small animal models of pneumonia and the mechanistic insights they produce are likely to continue to play an important role in generating new therapeutic targets. Here we describe the development of an innovative mouse model of pneumococcal pneumonia developed for enhanced clinical relevance. We first reviewed the literature of small animal models of bacterial pneumonia that incorporated antibiotics. We then did a series of experiments in mice in which we systematically varied the pneumococcal inoculum and the timing of antibiotics while measuring systemic and lung-specific end points, producing a range of models that mirrors the spectrum of pneumococcal lung disease in patients, from mild self-resolving infection to severe pneumonia refractory to antibiotics. A delay in antibiotic treatment resulted in ongoing inflammation and renal and hepatic dysfunction despite effective bacterial killing. The addition of fluid resuscitation to the model improved renal function but worsened the severity of lung injury based on direct measurements of pulmonary edema and lung compliance, analogous to patients with pneumonia and sepsis who develop ARDS following fluid administration.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Olivier Bernard
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Lauren Chun
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | | | - James T Ross
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Nicolas Nesseler
- Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, Rennes, France
| | - Xueling Wu
- Shanghai Jiaotong University, Respiratory Medicine, Renji Hospital, Shanghai, China
| | - Jason Abbott
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Xiaohui Fang
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Carolyn S Calfee
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| |
Collapse
|
41
|
Hernández-Beeftink T, Guillen-Guio B, Villar J, Flores C. Genomics and the Acute Respiratory Distress Syndrome: Current and Future Directions. Int J Mol Sci 2019; 20:E4004. [PMID: 31426444 PMCID: PMC6721149 DOI: 10.3390/ijms20164004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022] Open
Abstract
The excessive hospital mortality associated with acute respiratory distress syndrome (ARDS) in adults mandates an urgent need for developing new therapies and tools for the early risk assessment of these patients. ARDS is a heterogeneous syndrome with multiple different pathogenetic processes contributing differently in different patients depending on clinical as well as genetic factors. Identifying genetic-based biomarkers holds the promise for establishing effective predictive and prognostic stratification methods and for targeting new therapies to improve ARDS outcomes. Here we provide an updated review of the available evidence supporting the presence of genetic factors that are predictive of ARDS development and of fatal outcomes in adult critically ill patients and that have been identified by applying different genomic and genetic approaches. We also introduce other incipient genomics approximations, such as admixture mapping, metagenomics and genome sequencing, among others, that will allow to boost this knowledge and likely reveal new genetic predictors of ARDS susceptibility and prognosis among critically ill patients.
Collapse
Affiliation(s)
- Tamara Hernández-Beeftink
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria 35010, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain
| | - Jesús Villar
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria 35010, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain.
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife 38600, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife 38200, Spain.
| |
Collapse
|
42
|
Murray DD, Itenov TS, Sivapalan P, Eklöf JV, Holm FS, Schuetz P, Jensen JU. Biomarkers of Acute Lung Injury The Individualized Approach: for Phenotyping, Risk Stratification and Treatment Surveillance. J Clin Med 2019; 8:jcm8081163. [PMID: 31382587 PMCID: PMC6722821 DOI: 10.3390/jcm8081163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Do we need biomarkers of lung damage and infection: For what purpose and how should they be used properly? Biomarkers of lung damage can be used for diagnosis, risk stratification/prediction, treatment surveillance and adjustment of targeted therapy. Additionally, novel "omics" methods may offer a completely different and effective way of improving the understanding of pathogenesis of lung damage and a way to develop new candidate lung damage biomarkers. In the current review, we give an overview within the field of acute lung damage of (i) disease mechanism biomarkers, (ii) of "ready to use" evidence-based biomarker-guided lung infection management, (iii) of novel strategies of inflammatory phenotyping and how this can be used to tailor corticosteroid treatment, (iv) a future perspective of where "omics" technologies and mindsets may become increasingly important in developing new strategies for treatment and for understanding the development of acute lung damage.
Collapse
Affiliation(s)
- Daniel D Murray
- PERSIMUNE, Department of Infectious Diseases, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | - Pradeesh Sivapalan
- Respiratory Medicine Section, Department of Internal Medicine, Herlev-Gentofte Hospital, DK-2900 Hellerup, Denmark
| | - Josefin Viktoria Eklöf
- Respiratory Medicine Section, Department of Internal Medicine, Herlev-Gentofte Hospital, DK-2900 Hellerup, Denmark
| | - Freja Stæhr Holm
- Respiratory Medicine Section, Department of Internal Medicine, Herlev-Gentofte Hospital, DK-2900 Hellerup, Denmark
| | - Philipp Schuetz
- Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Jens Ulrik Jensen
- PERSIMUNE, Department of Infectious Diseases, Rigshospitalet, DK-2100 Copenhagen, Denmark.
- Respiratory Medicine Section, Department of Internal Medicine, Herlev-Gentofte Hospital, DK-2900 Hellerup, Denmark.
| |
Collapse
|
43
|
Bennett TD, Callahan TJ, Feinstein JA, Ghosh D, Lakhani SA, Spaeder MC, Szefler SJ, Kahn MG. Data Science for Child Health. J Pediatr 2019; 208:12-22. [PMID: 30686480 PMCID: PMC6486872 DOI: 10.1016/j.jpeds.2018.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tellen D Bennett
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; CU Data Science to Patient Value (D2V), University of Colorado School of Medicine, Aurora, CO; Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO; Adult and Child Consortium for Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO; Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO.
| | - Tiffany J Callahan
- Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - James A Feinstein
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; Adult and Child Consortium for Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Debashis Ghosh
- CU Data Science to Patient Value (D2V), University of Colorado School of Medicine, Aurora, CO; Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO; Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Michael C Spaeder
- Pediatric Critical Care, University of Virginia School of Medicine, Charlottesville, VA
| | - Stanley J Szefler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; Adult and Child Consortium for Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Michael G Kahn
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
44
|
Wang Y, Wang H, Zhang C, Zhang C, Yang H, Gao R, Tong Z. Lung fluid biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:43. [PMID: 30755248 PMCID: PMC6373030 DOI: 10.1186/s13054-019-2336-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/28/2019] [Indexed: 01/11/2023]
Abstract
Background With the development of new techniques to easily obtain lower respiratory tract specimens, bronchoalveolar lavage fluid and other lung fluids are gaining importance in pulmonary disease diagnosis. We aimed to review and summarize lung fluid biomarkers associated with acute respiratory distress syndrome diagnosis and mortality. Methods After searching PubMed, Embase, Web of Science, and the Cochrane Library for articles published prior to January 11, 2018, we performed a meta-analysis on biomarkers for acute respiratory distress syndrome diagnosis in at-risk patients and those related to disease mortality. From the included studies, we then extracted the mean and standard deviation of the biomarker concentrations measured in the lung fluid, acute respiratory distress syndrome etiologies, sample size, demographic variables, diagnostic criteria, mortality, and protocol for obtaining the lung fluid. The effect size was measured by the ratio of means, which was then synthesized by the inverse-variance method using its natural logarithm form and transformed to obtain a pooled ratio and 95% confidence interval. Results In total, 1156 articles were identified, and 49 studies were included. Increases in total phospholipases A2 activity, total protein, albumin, plasminogen activator inhibitor-1, soluble receptor for advanced glycation end products, and platelet activating factor-acetyl choline were most strongly associated with acute respiratory distress syndrome diagnosis. As for biomarkers associated with acute respiratory distress syndrome mortality, interleukin-1β, interleukin-6, interleukin-8, Kerbs von Lungren-6, and plasminogen activator inhibitor-1 were significantly increased in the lung fluid of patients who died. Decreased levels of Club cell protein and matrix metalloproteinases-9 were associated with increased odds for acute respiratory distress syndrome diagnosis, whereas decreased levels of Club cell protein and interleukin-2 were associated with increased odds for acute respiratory distress syndrome mortality. Conclusions This meta-analysis provides a ranking system for lung fluid biomarkers, according to their association with diagnosis or mortality of acute respiratory distress syndrome. The performance of biomarkers among studies shown in this article may help to improve acute respiratory distress syndrome diagnosis and outcome prediction. Electronic supplementary material The online version of this article (10.1186/s13054-019-2336-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yishan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Huijuan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Chunfang Zhang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, 100012, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Ruiyue Gao
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China.
| |
Collapse
|
45
|
Yang Y, Hu L, Xia H, Chen L, Cui S, Wang Y, Zhou T, Xiong W, Song L, Li S, Pan S, Xu J, Liu M, Xiao H, Qin L, Shang Y, Yao S. Resolvin D1 attenuates mechanical stretch-induced pulmonary fibrosis via epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1013-L1024. [PMID: 30724098 DOI: 10.1152/ajplung.00415.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mechanical ventilation-induced pulmonary fibrosis plays an important role in the high mortality rate of acute respiratory distress syndrome (ARDS). Resolvin D1 (RvD1) displays potent proresolving activities. Epithelial-mesenchymal transition (EMT) has been proved to be an important pathological feature of lung fibrosis. This study aimed to investigate whether RvD1 can attenuate mechanical ventilation-induced lung fibrosis. Human lung epithelial (BEAS-2B) cells were pretreated with RvD1 for 30 min and exposed to acid for 10 min before being subjected to mechanical stretch for 48 h. C57BL/6 mice were subjected to intratracheal acid aspiration followed by mechanical ventilation 24 h later (peak inspiratory pressure 22 cmH2O, positive end-expiratory pressure 2 cmH2O, and respiratory rate 120 breaths/min for 2 h). RvD1 was injected into mice for 5 consecutive days after mechanical ventilation. Treatment with RvD1 significantly inhibited mechanical stretch-induced mesenchymal markers (vimentin and α-smooth muscle actin) and stimulated epithelial markers (E-cadherin). Tert-butyloxycarbonyl 2 (BOC-2), a lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) antagonist, is known to inhibit ALX/FPR2 function. BOC-2 could reverse the beneficial effects of RvD1. The antifibrotic effect of RvD1 was associated with the suppression of Smad2/3 phosphorylation. This study demonstrated that mechanical stretch could induce EMT and pulmonary fibrosis and that treatment with RvD1 could attenuate mechanical ventilation-induced lung fibrosis, thus highlighting RvD1 as an effective therapeutic agent against pulmonary fibrosis associated with mechanical ventilation.
Collapse
Affiliation(s)
- Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lisha Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lin Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shunan Cui
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Wei Xiong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shengnan Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Jiqian Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Min Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Hairong Xiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| |
Collapse
|
46
|
Spadaro S, Park M, Turrini C, Tunstall T, Thwaites R, Mauri T, Ragazzi R, Ruggeri P, Hansel TT, Caramori G, Volta CA. Biomarkers for Acute Respiratory Distress syndrome and prospects for personalised medicine. JOURNAL OF INFLAMMATION-LONDON 2019; 16:1. [PMID: 30675131 PMCID: PMC6332898 DOI: 10.1186/s12950-018-0202-y] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) affects over 10% of patients hospitalised in critical care, with acute respiratory distress syndrome (ARDS) being the most severe form of ALI and having a mortality rate in the region of 40%. There has been slow but incremental progress in identification of biomarkers that contribute to the pathophysiology of ARDS, have utility in diagnosis and monitoring, and that are potential therapeutic targets (Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA, Thompson T, Ware LB, Matthay MA, Lancet Respir Med 2014, 2:611–-620). However, a major issue is that ARDS is such a heterogeneous, multi-factorial, end-stage condition that the strategies for “lumping and splitting” are critical (Prescott HC, Calfee CS, Thompson BT, Angus DC, Liu VX, Am J Respir Crit Care Med 2016, 194:147–-155). Nevertheless, sequencing of the human genome, the availability of improved methods for analysis of transcription to mRNA (gene expression), and development of sensitive immunoassays has allowed the application of network biology to ARDS, with these biomarkers offering potential for personalised or precision medicine (Sweeney TE, Khatri P, Toward precision medicine Crit Care Med; 2017 45:934-939). Biomarker panels have potential applications in molecular phenotyping for identifying patients at risk of developing ARDS, diagnosis of ARDS, risk stratification and monitoring. Two subphenotypes of ARDS have been identified on the basis of blood biomarkers: hypo-inflammatory and hyper-inflammatory. The hyper-inflammatory subphenotype is associated with shock, metabolic acidosis and worst clinical outcomes. Biomarkers of particular interest have included interleukins (IL-6 and IL-8), interferon gamma (IFN-γ), surfactant proteins (SPD and SPB), von Willebrand factor antigen, angiopoietin 1/2 and plasminogen activator inhibitor-1 (PAI-1). In terms of gene expression (mRNA) in blood there have been found to be increases in neutrophil-related genes in sepsis-induced and influenza-induced ARDS, but whole blood expression does not give a robust diagnostic test for ARDS. Despite improvements in management of ARDS on the critical care unit, this complex disease continues to be a major life-threatening event. Clinical trials of β2-agonists, statins, surfactants and keratinocyte growth factor (KGF) have been disappointing. In addition, monoclonal antibodies (anti-TNF) and TNFR fusion protein have also been unconvincing. However, there have been major advances in methods of mechanical ventilation, a neuromuscular blocker (cisatracurium besilate) has shown some benefit, and stem cell therapy is being developed. In the future, by understanding the role of biomarkers in the pathophysiology of ARDS and lung injury, it is hoped that this will provide rational therapeutic targets and ultimately improve clinical care (Seymour CW, Gomez H, Chang CH, Clermont G, Kellum JA, Kennedy J, Yende S, Angus DC, Crit Care 2017, 21:257).
Collapse
Affiliation(s)
- Savino Spadaro
- 1Department of Morphology, Surgery and Experimental Medicine, Intensive Care Section, University of Ferrara, 44121 Ferrara, Italy
| | - Mirae Park
- 2Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Cecilia Turrini
- 1Department of Morphology, Surgery and Experimental Medicine, Intensive Care Section, University of Ferrara, 44121 Ferrara, Italy
| | - Tanushree Tunstall
- 2Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ryan Thwaites
- 2Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Tommaso Mauri
- 3Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Ragazzi
- 1Department of Morphology, Surgery and Experimental Medicine, Intensive Care Section, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Ruggeri
- 4Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Trevor T Hansel
- 2Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- 4Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Carlo Alberto Volta
- 1Department of Morphology, Surgery and Experimental Medicine, Intensive Care Section, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
47
|
Abstract
The acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients and is defined by the acute onset of noncardiogenic pulmonary oedema, hypoxaemia and the need for mechanical ventilation. ARDS occurs most often in the setting of pneumonia, sepsis, aspiration of gastric contents or severe trauma and is present in ~10% of all patients in intensive care units worldwide. Despite some improvements, mortality remains high at 30-40% in most studies. Pathological specimens from patients with ARDS frequently reveal diffuse alveolar damage, and laboratory studies have demonstrated both alveolar epithelial and lung endothelial injury, resulting in accumulation of protein-rich inflammatory oedematous fluid in the alveolar space. Diagnosis is based on consensus syndromic criteria, with modifications for under-resourced settings and in paediatric patients. Treatment focuses on lung-protective ventilation; no specific pharmacotherapies have been identified. Long-term outcomes of patients with ARDS are increasingly recognized as important research targets, as many patients survive ARDS only to have ongoing functional and/or psychological sequelae. Future directions include efforts to facilitate earlier recognition of ARDS, identifying responsive subsets of patients and ongoing efforts to understand fundamental mechanisms of lung injury to design specific treatments.
Collapse
|
48
|
Reilly JP, Wang F, Jones TK, Palakshappa JA, Anderson BJ, Shashaty MGS, Dunn TG, Johansson ED, Riley TR, Lim B, Abbott J, Ittner CAG, Cantu E, Lin X, Mikacenic C, Wurfel MM, Christiani DC, Calfee CS, Matthay MA, Christie JD, Feng R, Meyer NJ. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med 2018; 44:1849-1858. [PMID: 30343317 PMCID: PMC6697901 DOI: 10.1007/s00134-018-5328-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE A causal biomarker for acute respiratory distress syndrome (ARDS) could fuel precision therapy options. Plasma angiopoietin-2 (ANG2), a vascular permeability marker, is a strong candidate on the basis of experimental and observational evidence. We used genetic causal inference methods-Mendelian randomization and mediation-to infer potential effects of plasma ANG2. METHODS We genotyped 703 septic subjects, measured ICU admission plasma ANG2, and performed a quantitative trait loci (QTL) analysis to determine variants in the ANGPT2 gene associated with plasma ANG2 (p < 0.005). We then used linear regression and post-estimation analysis to genetically predict plasma ANG2 and tested genetically predicted ANG2 for ARDS association using logistic regression. We estimated the proportion of the genetic effect explained by plasma ANG2 using mediation analysis. RESULTS Plasma ANG2 was strongly associated with ARDS (OR 1.59 (95% CI 1.35, 1.88) per log). Five ANGPT2 variants were associated with ANG2 in European ancestry subjects (n = 404). Rs2442608C, the most extreme cis QTL (coefficient 0.22, 95% CI 0.09-0.36, p = 0.001), was associated with higher ARDS risk: adjusted OR 1.38 (95% CI 1.01, 1.87), p = 0.042. No significant QTL were identified in African ancestry subjects. Genetically predicted plasma ANG2 was associated with ARDS risk: adjusted OR 2.25 (95% CI 1.06-4.78), p = 0.035. Plasma ANG2 mediated 34% of the rs2442608C-related ARDS risk. CONCLUSIONS In septic European ancestry subjects, the strongest ANG2-determining ANGPT2 genetic variant is associated with higher ARDS risk. Plasma ANG2 may be a causal factor in ARDS development. Strategies to reduce plasma ANG2 warrant testing to prevent or treat sepsis-associated ARDS.
Collapse
Affiliation(s)
- John P Reilly
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Fan Wang
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, USA
| | - Tiffanie K Jones
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Jessica A Palakshappa
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| | - Brian J Anderson
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Michael G S Shashaty
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Thomas G Dunn
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Erik D Johansson
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Thomas R Riley
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Brian Lim
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Jason Abbott
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA
| | - Caroline A G Ittner
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Edward Cantu
- Divison of Cardiothoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Xihong Lin
- Harvard University T.H. Chan School of Public Health, Boston, USA
| | - Carmen Mikacenic
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, USA
| | - Mark M Wurfel
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, USA
| | - David C Christiani
- Harvard University T.H. Chan School of Public Health, Boston, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, USA
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA
| | - Jason D Christie
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Nuala J Meyer
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Tai W, Zhou Z, Zheng B, Li J, Ding J, Wu H, Gao L, Dong Z. Inhibitory effect of circulating fibrocytes on injury repair in acute lung injury/acute respiratory distress syndrome mice model. J Cell Biochem 2018; 119:7982-7990. [PMID: 29323734 DOI: 10.1002/jcb.26664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/09/2018] [Indexed: 11/06/2022]
Abstract
The study was aimed to explore the functions of circulating fibrocytes (CFs) on injury repair in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) mice model and its clinical value as a biomarker for ALI/ARDS. ALI/ARDS mice model was established by intratracheal instillation of lipopolysaccharide (LPS). Mononuclear cells were isolated from peripheral blood of ALI/ARDS model and flow cytometry was used to measure CFs defined as cells positive for CD45 and collagen-1. Histological changes of lung tissues were evaluated by H&E staining and Masson's trichrome staining. The correlations of CFs counts with damnification of lung tissue and the severity of pulmonary fibrosis were evaluated by Pearson correlation analyses. Western blot was used to detect the protein expression of collagen-1. ELISA was applied to determine cytokine CXCL12 concentration. Clinical relevance between CFs and ALI/ARDS was investigated. The greater number of CFs in the ALI/ARDS group implied higher degree of lung injury and more severe pulmonary fibrosis. The protein expression of collagen-1 and concentration of cytokine CXCL12 in ALI/ARDS group were higher than that in control group. Clinical and prognostic analysis revealed the higher injury degree and death rates in ALI/ARDS group than those in control group, and identified a greater severity and mortality for patients with ARDS than those with ALI. ROC curve analysis indicated the counts of CFs greater than 5.85% can predict death rates with AUC = 0.928. CFs had an inhibitory effect on injury repair in ALI/ARDS mice model. This might be unfavorable as a clinical marker for progression of ALI/ARDS.
Collapse
Affiliation(s)
- Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zeping Zhou
- Department of Hematology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Boyang Zheng
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jinyu Li
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiawei Ding
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hanxin Wu
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Gao
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhaoxing Dong
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
50
|
Chen G, Xue WD, Zhu J. Full genetic analysis for genome-wide association study of Fangji: a powerful approach for effectively dissecting the molecular architecture of personalized traditional Chinese medicine. Acta Pharmacol Sin 2018; 39:906-911. [PMID: 29417942 DOI: 10.1038/aps.2017.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022]
Abstract
Elucidation of the systems biology foundation underlying the effect of Fangji, which are multi-herbal traditional Chinese medicine (TCM) formulas, is one of the major aims in the field. The numerous bioactive ingredients of a Fangji deal with the multiple targets of a complex disease, which is influenced by a number of genes and their interactions with the environment. Genome-wide association study (GWAS) is an unbiased approach for dissecting the genetic variants underlying complex diseases and individual response to a given treatment. GWAS has great potential for the study of systems biology from the point of view of genomics, but the capacity using current analysis models is largely handicapped, as evidenced by missing heritability. Recent development of a full genetic model, in which gene-gene interactions (dominance and epistasis) and gene-environment interactions are all considered, has addressed these problems. This approach has been demonstrated to substantially increase model power, remarkably improving the detection of association of GWAS and the construction of the molecular architecture. This analysis does not require a very large sample size, which is often difficult to meet for a GWAS of treatment response. Furthermore, this analysis can integrate other omic information and allow for variations of Fangji, which is very promising for Fangjiomic study and detection of the sophisticated molecular architecture of the function of Fangji, as well as for the delineation of the systems biology of personalized medicine in TCM in an unbiased and comprehensive manner.
Collapse
|