1
|
Zhang Y, Geng Y, Zhang Y, Ma Y, Yin X, Chen Z, Mu X, Gao R, Chen X, Li F, He J. Dicyclohexyl phthalate derails trophoblast function and lipid metabolism through NDRG1 by targeting PPARα:RXRα. Toxicology 2025; 514:154124. [PMID: 40157530 DOI: 10.1016/j.tox.2025.154124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Phthalates (PAEs) can impair trophoblast cell and subsequent placental development, adversely affecting pregnancy. The effects of dicyclohexyl phthalate (DCHP), the main PAE homologue in urban household dust, on trophoblast function and placental development are unknown. In this study, we investigated the effects and potential mechanisms of DCHP on trophoblast function and placental development by constructing in vitro trophoblast (10, 20, 30 μM) and in vivo mouse pregnancy (25, 50, 100 mg/kg bw) exposure models. We found that exposure to DCHP during pregnancy led to the accumulation of placental lipid droplets and foetal weight gain. Consistently, DCHP induced the uptake of fatty acids by HTR-8/SVneo cells, leading to intracellular lipid droplet accumulation and mitochondrial dysfunction while inhibiting cell migration and invasion. This suggests that metabolic processes can serve as important links for environmental pollutants to interfere with bodily functions. Knocking down N-myc Downstream-Regulated Gene 1 (NDRG1) can alleviate lipid metabolism abnormalities caused by DCHP exposure while restoring cell migration and invasion abilities. Further research has found that the enhanced transcriptional activity of PPARα:RXRα is an important molecular initiating event for the role of DCHP, which promotes the transcription of downstream target gene NDRG1 by binding to PPARα:RXRα. These findings fill the research gap regarding the effects and related mechanisms of DCHP exposure on the placenta, help explore prevention and treatment strategies for DCHP reproductive toxicity, and provide new insights into toxicological research on environmental pollutants.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Zhang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yidan Ma
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Yin
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhuxiu Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
2
|
Petrarca MH, Tfouni SAV. Endocrine-disrupting pesticides in infant formulas marketed in Brazil: Interference-free GC-MS analysis and early-life dietary exposure assessment. Food Res Int 2025; 208:116172. [PMID: 40263836 DOI: 10.1016/j.foodres.2025.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Endocrine-disrupting compounds (EDCs) include ubiquitous and persistent environmental contaminants that interfere with the endocrine system's functions. Many of these compounds are used as acaricides, fungicides, herbicides, and insecticides in agricultural fields worldwide. Considering the serious implications of exposure to EDCs in the first months of life and the few works on pesticide residues in infant formulas, the present research focused exclusively on endocrine-disrupting pesticides in infant formulas intended for babies below 1 year old available in the Brazilian market. An accurate, sensitive, and selective gas chromatography-mass spectrometry (GC-MS) method was successfully validated, and then, applied to infant formula samples. The limits of detection and quantification were low enough to meet the maximum residue level (MRL) of 10.0 μg/kg established for infant formula. Recoveries varied from 86.3 to 119.8 % and precision values, under repeatability and within-laboratory reproducibility, were ≤ 19.7 %. Another unique feature of the study was the detection and strategies to remove a potential matrix-interfering compound, which shared the same ions monitored for malathion in GC-MS analysis, thus preventing false positives. Among the 60 infant formula samples analysed, dimethoate, an organophosphate insecticide, was detected in five samples, with one soy-based infant formula exceeding the MRL. Based on a deterministic approach, the estimated daily intakes were within the acceptable daily intake (ADI) values and below the acute reference dose (ARfD), indicating no major health concerns.
Collapse
Affiliation(s)
- Mateus Henrique Petrarca
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos - ITAL, Avenida Brasil n 2880, 13070-178, Campinas, SP, Brazil.
| | - Silvia Amelia Verdiani Tfouni
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos - ITAL, Avenida Brasil n 2880, 13070-178, Campinas, SP, Brazil
| |
Collapse
|
3
|
Zhou X, Wei C, Liu X, Zhang Z, Wu Y, Zeng B, Jin Y, Shi Y, Mo Z, Cheng J, Zou X, Wei Q, Yang L, Qiu S. Revealing the role of bisphenol A on prostate cancer progression and identifying potential targets: A comprehensive analysis from population cohort to molecular mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118209. [PMID: 40249974 DOI: 10.1016/j.ecoenv.2025.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Bisphenol A (BPA) is a widespread environmental pollutant whose exact effects on prostate cancer (PCa) progression remain understudied. This study aims to investigate the effect and underlying molecular mechanisms between BPA exposure and PCa in a comprehensive approach. The multicenter cohort study found that BPA exposure plays an important role in promoting biochemical recurrence and death of PCa. BPA exposure significantly promoted PCa progression in both the animal model and in vitro experiments. RNA sequencing revealed a disruption of mitochondrial energy homeostasis in BPA-treated cells. In multiple datasets, 17 prognostic genes such as PFKFB4 were obtained to construct and verify a mitochondrial energy metabolism Score system. Based on network toxicology methods and transcriptome sequencing data, ESR1 was identified as a potential transcription factor targeting glycolytic enzyme PFKFB4 under BPA exposure. With the support of lncRNA and circRNA sequencing data, a molecular regulatory network of BPA promoting prostate cancer through mitochondrial energy metabolism reprogramming was constructed. Further molecular docking revealed that BPA has higher binding free energy to ERα than its natural ligand estradiol. Given the widespread presence of BPA in the environment, minimizing exposure to this chemical could represent a feasible approach in improving clinical outcomes.
Collapse
Affiliation(s)
- Xianghong Zhou
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chuzhong Wei
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing Liu
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; The First People's Hospital of Mianyang, Mianyang, Sichuan Province 621000, China
| | - Zilong Zhang
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwei Wu
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Zeng
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yumin Jin
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yixiao Shi
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi collaborative innovation center for genomic and personalized medicine, Guangxi key laboratory for genomic and personalized medicine, Guangxi key laboratory of colleges and universities, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiwen Cheng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi collaborative innovation center for genomic and personalized medicine, Guangxi key laboratory for genomic and personalized medicine, Guangxi key laboratory of colleges and universities, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoli Zou
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Shi Qiu
- Department of Urology and Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Yang S, Dong H, Gou X, Chen L, Zhang Y, Wu J. Exposure to Per- and Polyfluoroalkyl Substances and the Risk of Prostate and Ovarian Cancer: An Epidemiologic Meta-Analysis. Am J Ind Med 2025; 68:399-412. [PMID: 40045703 DOI: 10.1002/ajim.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants. Previous research has linked PFAS exposure to prostate and ovarian cancer risk, however, the conclusions have been inconsistent. This research purpose was to determine the relationship between PFAS exposure and prostate and ovarian cancer at the population level. METHODS We systematically reviewed three databases-PubMed, Web of Science, and Embase-for research from when these databases were established to April 15, 2024. The quality of the retrieved research was evaluated using the Newcastle-Ottawa Scale (NOS) quality measurement tool. Meta-analysis of the extracted data was conducted using Stata 18. We also conducted sensitivity and subgroup analyses, as well as Begg's and Egger's tests. RESULTS Twelve publications were involved in the analysis for prostate cancer, and six were included for ovary cancer. The outcomes indicated that PFOS exposure was positively related to prostate cancer (OR: 1.13, 95% CI: 1.00-1.28), while mixed PFAS exposure was positively related to ovarian cancer (OR: 1.63, 95% CI: 1.49-1.78). The source of heterogeneity identified in the subgroup analysis was primarily attributable to variations in study design. No significant study bias was detected in the analysis. CONCLUSION The study demonstrated an association between PFAS exposure and both prostate and ovarian cancers. Further investigation is required to clarify the underlying mechanisms and potential associations.
Collapse
Affiliation(s)
- Shenglan Yang
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Dong
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Gou
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Limei Chen
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wu
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Guo Z, Tan Y, Lin C, Li H, Xie Q, Lai Z, Liang X, Tan L, Jing C. Unraveling the connection between endocrine-disrupting chemicals and anxiety: An integrative epidemiological and bioinformatic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118188. [PMID: 40267882 DOI: 10.1016/j.ecoenv.2025.118188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND The evidence linking endocrine-disrupting chemicals (EDCs) to anxiety in adults is currently sparse, while the effects of various categories of EDCs on the risk of anxiety, along with the underlying mechanisms, remain poorly understood. METHODS Four EDCs-polycyclic aromatic hydrocarbons (PAHs), phenols, pesticides, and phthalates-were quantified in 3927 adults from the National Health and Nutrition Examination Survey (NHANES) (2007-2012). We employed five statistical models to assess the individual and joint impacts of EDCs on anxiety risk. Causal mediation analysis frameworks were constructed to explore the mediating role of oxidative stress (OS). We identified potential biological mechanisms linking analytes to outcomes using the Comparative Toxicogenomics Database (CTD), MalaCards, and Open Targets, followed by enrichment analyses with Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS In individual chemical analyses, nine PAHs were significantly associated with increased anxiety risk (P < 0.05). Mixed-effects analyses showed that co-exposure to EDCs positively correlated with anxiety, primarily due to 2-hydroxyfluorene (2-FLU) and 3-hydroxyfluorene (3-FLU). Bilirubin mediated 5.42 % of the anxiety linked to the PAH mixture. The inflammatory genes TNF and IL-6 were identified as key biological stressors, with enrichment analysis indicating significant involvement in reactive oxygen species metabolic processes and the AGE-RAGE signaling pathway. CONCLUSION This study highlights the association between EDCs and anxiety in a representative U.S. population, indicating that exposure to PAHs may elevate anxiety risk through OS, inflammation, and the AGE-RAGE signaling pathway. Further longitudinal study were merited to support our results.
Collapse
Affiliation(s)
- Ziang Guo
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangzhou Center for Disease Control and Prevention, No.1 Qide Road, Guangzhou , Guangdong 510440, China
| | - Yuxuan Tan
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, China
| | - Chuhang Lin
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China
| | - Haiying Li
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China
| | - Qianqian Xie
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China
| | - Zhengtian Lai
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China
| | - Xiao Liang
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, No.1 Qide Road, Guangzhou , Guangdong 510440, China.
| | - Chunxia Jing
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
6
|
Blaauwendraad SM, Boxem AJ, Gaillard R, Kahn LG, Lakuleswaran M, Sakhi AK, Bekkers EL, Mo Z, Spadacini L, Thomsen C, Steegers EA, Mulders AG, Jaddoe VW, Trasande L. Periconception bisphenol and phthalate concentrations in women and men, time to pregnancy, and risk of miscarriage. ENVIRONMENTAL RESEARCH 2025; 278:121712. [PMID: 40311909 DOI: 10.1016/j.envres.2025.121712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals such as bisphenols and phthalates might lead to adverse fertility and early pregnancy outcomes. METHODS This study was embedded in the Generation R Next Study, a population-based cohort study from preconception onwards. Urinary phthalate and bisphenol concentrations were assessed in the preconception period (938 women), defined as the period in which couples were actively trying to conceive, and early pregnancy (1,366 women and 1,202 men, mean gestational age at sampling 8·6 weeks). Time to pregnancy and miscarriage were assessed using questionnaires and ultrasounds. Subfertility was defined as the inability to conceive within 12 months or need for assisted reproductive technologies. FINDINGS Higher preconception urinary bisphenol S (BPS) and cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl ester (mCOCH) concentrations in women were associated with longer time to pregnancy. Higher preconception mono-[(2-carboxymethyl)hexyl] phthalate, mono-2-ethyl-5-oxohexyl phthalate (mEOHP), mono-(7-carboxy-n-heptyl)phthalate (mCHpP), and mono benzyl phthalate (mBzBP) were associated with shorter time to pregnancy, and higher mono-2-ethyl-5-hydroxyhexyl phthalate (mEHHP), mEOHP, and mBzBP with lower odds of subfertility. In men, higher early pregnancy BPS, mCHpP, mono-4-methyl-7-hydroxyoctyl phthalate, mono-4-methyl-7-oxooctyl phthalate, and mono-ethyl phthalate were associated with shorter time to pregnancy or lower odds of subfertility. Higher preconception or early pregnancy BPS, phthalic acid, and mCHpP in women were associated with lower odds of miscarriage, whereas higher mono-carboxy-isoctyl phthalate, mCOCH, and mono-2-(propyl-6-carboxy-hexyl)-phthalate (cxmPHxP) with higher odds of miscarriage (all p-values <0·05). INTERPRETATION Preconception and early pregnancy exposure to bisphenols and phthalates may affect couple fertility. Our results should be considered as hypothesis generating and replicated in future studies, possibly including repeated chemical measurements and mixture analysis.
Collapse
Affiliation(s)
- Sophia M Blaauwendraad
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Aline J Boxem
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Linda G Kahn
- Departments of Pediatrics and Population Health, New York University School of Medicine, New York, NY, United States
| | - Mathusa Lakuleswaran
- Departments of Pediatrics and Population Health, New York University School of Medicine, New York, NY, United States
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, Norway
| | - Eline L Bekkers
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Zixuan Mo
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Larry Spadacini
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, Norway
| | - Eric Ap Steegers
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Annemarie Gmgj Mulders
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States; New York University Wagner School of Public Service, New York City, NY, United States
| |
Collapse
|
7
|
Hyman S, Acevedo J, Giannarelli C, Trasande L. Phthalate exposure from plastics and cardiovascular disease: global estimates of attributable mortality and years life lost. EBioMedicine 2025:105730. [PMID: 40307157 DOI: 10.1016/j.ebiom.2025.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/07/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND New evidence has emerged that plastic polymers and their chemical additives, particularly di-2-ethylhexylphthalate (DEHP), contribute to cardiovascular disease (CVD). Phthalates are commonly used in the production of plastic materials and have been linked to increased oxidative stress, metabolic dysfunction, and cardiovascular disease. Estimates of phthalate-attributable cardiovascular mortality have been made for the US, but global estimates are needed to inform ongoing negotiations of a Global Plastics Treaty. METHODS Cardiovascular mortality data from the Institute for Health Metrics and Evaluation (IHME) and regional DEHP exposure estimates from several sources were used to estimate burden. Hazard ratios of CV mortality were calculated using published exposure estimates, and country-level cardiovascular mortality rates were used to calculate excess deaths and years of life lost (YLL) due to DEHP exposure. FINDINGS In 2018, an estimated 356,238 deaths globally were attributed to DEHP exposure, representing 13.497% of all cardiovascular deaths among individuals aged 55-64. Of these, 349,113 were attributed to the use of plastics. Geographic disparities were evident, with South Asia and the Middle East suffering the greatest percentage of cardiovascular deaths attributable to DEHP exposure (16.807%). The Middle East, South Asia, East Asia, and the Pacific accounted for the largest shares of DEHP-attributable CVD deaths (73.163%). Globally, DEHP resulted in 10.473 million YLL. INTERPRETATION Plastics pose a significant risk to increased cardiovascular mortality, disproportionately impacting regions which have developing plastic production sectors. The findings underscore the need for urgent global and local regulatory interventions to kerb mortality from DEHP exposure. FUNDING Bloomberg Philanthropies and the National Institutes of Health.
Collapse
Affiliation(s)
- Sara Hyman
- Department of Paediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Jonathan Acevedo
- Department of Paediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Chiara Giannarelli
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Leonardo Trasande
- Department of Paediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Wagner School of Public Service, New York University, New York, NY, USA.
| |
Collapse
|
8
|
Li X, Qiu J, Gan Z, Li S, Zeng X. Associations between organophosphate flame retardants metabolites in follicular fluid and reproductive outcomes among women undergoing IVF/ICSI treatment in Southwest China. Reprod Biol Endocrinol 2025; 23:54. [PMID: 40200288 PMCID: PMC11977869 DOI: 10.1186/s12958-025-01390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Previous studies suggest organophosphate flame retardants (OPFRs) negatively affect fertility, but limited research explores their metabolites in follicular fluid and reproductive outcomes. OBJECTIVES To investigate the associations between concentrations of OPFRs metabolites in follicular fluid and the outcomes of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) among women undergoing treatment. METHODS Women who underwent IVF/ICSI treatment at the Reproductive Center of West China Second University Hospital, Sichuan University, China, from 2017 to 2020 were recruited. The levels of seven OPFRs metabolites were quantified in follicular fluid collected on the day of oocyte retrieval. Reproductive outcomes were assessed, including key IVF/ICSI outcomes. RESULTS This study included 401 women. After adjusting for relevant confounders, elevated concentrations of BBOEP (β = -0.08, 95% CI: -0.12 to 0 0.05), BEHP (β = -0.11, 95% CI: -0.17 to 0.05), DnBP (β = -0.23, 95% CI: -0.37 to 0.08), and DPhP (β = -0.12, 95% CI: -0.18 to 0.06) in follicular fluid were inversely associated with the number of good embryos on day 3. Elevated BEHP concentrations were negatively associated with the total number of oocytes (β = -0.04, 95% CI: -0.07 to 0.01). In comparison with the lowest tertile, the highest tertile of DnBP was associated with a 42% reduction in biochemical pregnancy (p-trend = 0.05). Furthermore, the BKMR models revealed inverse associations between OPFRs metabolites mixtures and the number of good embryos. CONCLUSION Findings suggest OPFRs may negatively affect IVF/ICSI outcomes, warranting further study on environmental impacts on fertility.
Collapse
Affiliation(s)
- Xiaohong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology & Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiahui Qiu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology & Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Shangwei Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology & Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xun Zeng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology & Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Guo P, Warren JL, Deziel NC, Liew Z. Exposure range matters: considering nonlinear associations in the meta-analysis of environmental pollutant exposure using examples of per- and polyfluoroalkyl substances and birth outcomes. Am J Epidemiol 2025; 194:1043-1051. [PMID: 39227151 DOI: 10.1093/aje/kwae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 06/04/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Meta-analysis is a powerful analytic method for summarizing effect estimates across studies. However, conventional meta-analysis often assumes a linear exposure-outcome relationship and does not account for variability over the exposure ranges. In this work, we first used simulation techniques to illustrate that the linear-based meta-analytical approach may result in oversimplistic effect estimation based on 3 plausible nonlinear exposure-outcome curves (S-shape, inverted U-shape, and M-shape). We showed that subgroup meta-analysis that stratifies on exposure levels can investigate nonlinearity and identify the consistency of effect magnitudes in these simulated examples. Next, we examined the heterogeneity of effect estimates across exposure ranges in 2 published linear-based meta-analyses of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on changes in mean birth weight or risk of preterm birth. The reanalysis found some varying effect sizes and potential heterogeneity when restricting to different PFAS exposure ranges, but findings were sensitive to the cut-off choices used to rank the exposure levels. Finally, we discussed methodological challenges and recommendations for detecting and interpreting potential nonlinear associations in meta-analysis. Using meta-analysis without accounting for exposure range could contribute to literature inconsistency for exposure-induced health effects and impede evidence-based policymaking. Therefore, investigating result heterogeneity by exposure range is recommended. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Joshua L Warren
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
| |
Collapse
|
10
|
Rajagopalan S, Brook RD, Münzel T. Environmental Hypertensionology and the Mosaic Theory of Hypertension. Hypertension 2025; 82:561-572. [PMID: 39968647 PMCID: PMC11975430 DOI: 10.1161/hypertensionaha.124.18733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Hypertension is a multifactorial condition influenced by the intricate interplay of biological and genetic determinants. The growing field of Environmental Hypertensionology endorses the outsized role of environmental factors in the pathogenesis and exacerbation of hypertension. It provides a clinical approach to address these factors at the individual and societal levels. Environmental stressors contributing to blood pressure levels can be viewed within the mosaic model of hypertension, which offers a comprehensive framework for understanding blood pressure regulation through its connection with multiple other nodes causally related to the pathogenesis of hypertension. This review synthesizes growing evidence supporting the impact of several factors in the physical environment and adverse stressors embedded in key provisioning systems, including air, noise, and chemical pollution, along with aspects of the built environment, green spaces, food systems, on the global burden of hypertension. Although many factors may not be directly in the causal cascade of hypertension, the web of connections between many behooves an understanding of the important nodes for intervention. Public health strategies emphasizing the redesign of environments present an unprecedented opportunity to enhance global hypertension control rates. Future research should thus focus on integrating environmental risk assessment and interventions into clinical practice, optimizing urban planning, and public policy to achieve meaningful reductions in the global burden of hypertension. By understanding hypertension as a mosaic of interconnected causes, healthcare professionals are better equipped to individualize treatment, combining lifestyle interventions and multiple drug classes to target environmental and genetic factors driving high blood pressure.
Collapse
Affiliation(s)
- Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, United States
| | - Robert D. Brook
- Division of Cardiovascular Diseases, Department of Internal Medicine, Wayne State University, Detroit, MI, United States
| | - Thomas Münzel
- Department of Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Zheng WR, Li YZ, Xu J, Liu KX, Liu FH, Xing WY, Liu JX, Wu L, Li XY, Huang DH, Gong TT, Wu QJ. Urinary concentrations of phthalate metabolites and the survival of high-grade serous ovarian cancer with advanced stage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125895. [PMID: 39984016 DOI: 10.1016/j.envpol.2025.125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Phthalates have been reported to increase the risk of various hormone-dependent cancers. However, there is still a lack of evidence regarding the association between phthalates and overall survival (OS) in advanced high-grade serous ovarian cancer (HGSOC). This study investigated the relationship between urinary phthalate metabolites and OS in patients with HGSOC using a nested case-control study within the Ovarian Cancer Follow-Up Study. We matched 159 deceased patients with HGSOC to 159 survivors by age at diagnosis, body mass index, and sampling date. Spot urine samples were analyzed for ten phthalate metabolites and five classes of phthalate molar sums via mass spectrometry. Conditional logistic regression models were employed to calculate odds ratios (ORs) and 95% confidence intervals (CIs), comparing the highest tertile with the lowest. We found that the highest tertiles of mono-2-ethyl-5-oxohexyl phthalates and monoethyl phthalates were associated with poorer OS, with ORs (95%CIs) being 4.24 (1.46, 12.32) and 3.28 (1.16, 9.22), respectively. Additionally, the highest tertiles of the sum of di(2-ethylhexyl) phthalate metabolites, the sum of high-molar-weight phthalate metabolites, and the sum of 10 phthalate metabolites, were associated with worse OS, with ORs (95%CIs) were 18.4 (4.14, 81.87), 9.28 (2.87, 30.08), and 5.94 (2.00, 17.64), respectively. Our study suggests that exposure to high levels of phthalates may be associated with poorer OS in patients with advanced HGSOC, particularly exposure to di(2-ethylhexyl) phthalates. Since it is widely used in personal care products, avoiding the use of these products may improve the OS of patients with HGSOC.
Collapse
Affiliation(s)
- Wen-Rui Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ke-Xin Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei-Yi Xing
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Xin Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
12
|
Burdeau JA, Stephenson BJ, Aris IM, Mahalingaiah S, Chavarro JE, Preston EV, Hivert MF, Oken E, Calafat AM, Rifas-Shiman SL, Zota AR, James-Todd T. Early-pregnancy per- and polyfluoroalkyl substances and maternal post-pregnancy weight trajectory. Obesity (Silver Spring) 2025; 33:807-816. [PMID: 40074682 PMCID: PMC11975446 DOI: 10.1002/oby.24250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVE The objective of this study was to evaluate associations of early-pregnancy plasma per- and polyfluoroalkyl substances (PFAS) with maternal post-pregnancy weight trajectory parameters. METHODS We studied 1106 Project Viva participants with measures of early-pregnancy plasma concentrations of eight PFAS. We measured weight at in-person visits at 6 months and 3, 7, and 12 years after pregnancy and collected self-reported weight via annual questionnaires up to 17 years after pregnancy. Weight trajectory parameters were estimated via the Superimposition by Translation and Rotation model. We assessed individual and joint effects of PFAS with trajectory parameters using linear regression and Bayesian kernel machine regression (BKMR). RESULTS Perfluorooctane sulfonate (PFOS) concentrations were positively associated with weight trajectory magnitude in both linear regression (0.8 kg [95% CI: 0.1 to 1.4] per doubling of PFOS) and BKMR analyses (2.6 kg [95% CI: 1.4 to 3.8] per increase from 25th to 75th percentile of PFOS concentrations). Conversely, in BKMR analyses, perfluorononanoate was negatively associated with trajectory magnitude (-2.0 kg [95% CI: -2.9 to -1.1]). In stratified linear regression, older-aged participants had more pronounced positive associations of PFOS, perfluorooctanoate, and 2-(N-ethyl-perfluorooctane sulfonamido) acetate with weight trajectory velocity. No associations were observed with the overall PFAS mixture. CONCLUSIONS Select PFAS, assessed in pregnancy, may affect maternal weight trajectories spanning 17 years after pregnancy, especially for older-aged individuals.
Collapse
Affiliation(s)
- Jordan A. Burdeau
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Izzuddin M. Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Shruthi Mahalingaiah
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge E. Chavarro
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Emma V. Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ami R. Zota
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tamarra James-Todd
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Alcover KC, McAdam J, Denic-Roberts H, Byrne C, Sjodin A, Davis M, Jones R, Zhang Y, Rusiecki JA. Serum concentrations of persistent endocrine-disrupting chemicals in U.S. military personnel: A comparison by race/ethnicity and sex. Int J Hyg Environ Health 2025; 265:114540. [PMID: 39978232 PMCID: PMC11884994 DOI: 10.1016/j.ijheh.2025.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVES/BACKGROUND We evaluated patterns of serum concentrations of endocrine disrupting chemicals (EDCs), namely polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs), in a U.S. military sample by race/ethnicity (R/E) and sex. METHODS Twenty-three EDCs were measured in stored serum samples obtained between 1995 and 2010 for 708 service members from the Department of Defense Serum Repository. For each EDC, geometric means (GM) were estimated using log-transformed concentrations in a linear regression model, for eight combined R/E/sex groups: non-Hispanic White (NHW), non-Hispanic Black (NHB), non-Hispanic Asian (NHA), and Hispanic men and women, adjusted for age and service branch and stratified by age tertile ("younger age": 17-23, "middle age": 24-30, and "older age": 31-52 years). Comparisons were made between our military sample and the National Health and Nutrition Examination Survey (NHANES) 2003-2004 data for NHW and NHB groups. RESULTS Within our military sample, the highest PCB concentrations were among older age NHB men and women and highest OCP concentrations among older age NHB women and NHA men. PBDE concentrations were generally highest in middle age Hispanic women and NHA men, though based on small sample size. Generally, NHB men and women had higher concentrations of EDCs in both the military and NHANES. CONCLUSIONS We found patterns of elevated EDC concentrations among NHB, NHA, and Hispanic groups in the military sample and for NHB men and women in NHANES. There were no consistent patterns of higher or lower EDCs comparing the military to NHANES. Future studies of EDCs and health outcomes should stratify by R/E/sex to account for potential disparities in EDC concentrations.
Collapse
Affiliation(s)
- Karl C Alcover
- Department of Medicine, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Rd, Bethesda, MD, USA
| | - Jordan McAdam
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr, Bethesda, MD, USA; Department of Preventive Medicine and Biostatistics, USUHS, 4301 Jones Bridge Rd, Bethesda, MD, USA
| | - Hristina Denic-Roberts
- Department of Preventive Medicine and Biostatistics, USUHS, 4301 Jones Bridge Rd, Bethesda, MD, USA; Oak Ridge Institute for Science and Education (ORISE), 4692 Millenium Dr, Belcamp, MD, USA
| | - Celia Byrne
- Department of Preventive Medicine and Biostatistics, USUHS, 4301 Jones Bridge Rd, Bethesda, MD, USA
| | - Andreas Sjodin
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd N E, Atlanta, GA, USA
| | - Mark Davis
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd N E, Atlanta, GA, USA
| | - Richard Jones
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd N E, Atlanta, GA, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, USA; Department of Cancer Prevention and Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, USUHS, 4301 Jones Bridge Rd, Bethesda, MD, USA.
| |
Collapse
|
14
|
Li T, Liu Y, Cao J, Lu X, Lu Y, Wang Y, Zhang C, Wu M, Deng S, Li L, Shi M. Triphenyl phosphate induces lipid metabolism disorder and promotes obesity through PI3K/AKT signaling pathway. ENVIRONMENT INTERNATIONAL 2025; 198:109428. [PMID: 40199182 DOI: 10.1016/j.envint.2025.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Triphenyl phosphate (TPHP) is a widely used organic phosphate flame retardant that has been reported as a potential environmental obesogen. However, the potential impact and mechanism of action of TPHP on adipose tissue are still unclear. This study investigates the potential impact of TPHP on lipid metabolism disorders through in vivo and in vitro experiments. Male and female BALB/c mice were exposed to TPHP (0, 1, 10, and 150 mg/kg/day) for 60 days, and 3T3-L1 preadipocytes were treated with concentrations of TPHP (0, 0.1, 1, 10 μM) during differentiation. The results showed that exposure to TPHP could cause gender specific dyslipidemia, with male mice exhibiting dose-dependent increases in inguinal adipose tissue coefficient, adipocyte hypertrophy, and upregulation of adipose differentiation and adipogenesis-related genes. In contrast, female mice did not show significant changes in tissue morphology. This suggested that TPHP might promote the potential occurrence of adiposity by disrupting the lipid metabolism homeostasis of male adipose tissue. During the differentiation and maturation process of 3T3-L1 preadipocytes, exposure to TPHP led to increased lipid accumulation and disrupted lipid homeostasis by simultaneous activation adipogenesis and lipolysis. Multiple omics data showed that the activation of the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway and fatty acid metabolism was the core mechanism of TPHP induced metabolic dysfunction. Further research showed that TPHP activated the PI3K/AKT pathway, and PI3K inhibitor (LY294002) could rescue TPHP induced lipid droplet formation and normalize the expression of adipogenic markers. These findings confirm that TPHP is a potential environmental obesogen that can disrupt the metabolic homeostasis of white adipose tissue through the PPARγ and PI3K/AKT signaling pathways, with higher susceptibility in males. This study provides compelling evidence for the obesogenic effects of TPHP and information for risk assessment of organophosphorus flame retardants.
Collapse
Affiliation(s)
- Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Jingyi Cao
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yinghan Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Meifen Wu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Song Deng
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China.
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China.
| |
Collapse
|
15
|
Münzel T, Kuntic M, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. The links between soil and water pollution and cardiovascular disease. Atherosclerosis 2025; 403:119160. [PMID: 40074641 DOI: 10.1016/j.atherosclerosis.2025.119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Soil and water pollution represent significant threats to global health, ecosystems, and biodiversity. Healthy soils underpin terrestrial ecosystems, supporting food production, biodiversity, water retention, and carbon sequestration. However, soil degradation jeopardizes the health of 3.2 billion people, while over 2 billion live in water-stressed regions. Pollution of soil, air, and water is a leading environmental cause of disease, contributing to over 9 million premature deaths annually. Soil contamination stems from heavy metals, synthetic chemicals, pesticides, and plastics, driven by industrial activity, agriculture, and waste mismanagement. These pollutants induce oxidative stress, inflammation, and hormonal disruption, significantly increasing risks for non-communicable diseases (NCDs) such as cardiovascular disease (CVD). Emerging contaminants like micro- and nanoplastics amplify health risks through cellular damage, oxidative stress, and cardiovascular dysfunction. Urbanization and climate change exacerbate soil degradation through deforestation, overfertilization, and pollution, further threatening ecosystem sustainability and human health. Mitigation efforts, such as reducing chemical exposure, adopting sustainable land-use practices, and advancing urban planning, have shown promise in lowering pollution-related health impacts. Public health initiatives, stricter pollution controls, and lifestyle interventions, including antioxidant-rich diets, can also mitigate risks. Pollution remains preventable, as demonstrated by high-income nations implementing cost-effective solutions. Policies like the European Commission's Zero-Pollution Vision aim to reduce pollution to safe levels by 2050, promoting sustainable ecosystems and public health. Addressing soil pollution is critical to combating the global burden of NCDs, particularly CVDs, and fostering a healthier environment for future generations.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany.
| | - Marin Kuntic
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Molecular Pharmacology, Albert Einstein College of Medicine, United States
| | - Mark J Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, USA; Centre Scientifique de Monaco, MC, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany
| |
Collapse
|
16
|
Clark SN, Anenberg SC, Brauer M. Global Burden of Disease from Environmental Factors. Annu Rev Public Health 2025; 46:233-251. [PMID: 39689276 DOI: 10.1146/annurev-publhealth-071823-105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Estimation of the disease burden attributable to environmental factors is a powerful tool for prioritizing environmental and pollution management and public health actions around the world. The World Health Organization (WHO) began estimating the environmental disease burden in 2000, which has formed the basis for the modern estimation approach conducted in the Global Burden of Disease, Injuries, and Risk Factor (GBD) study. In 2021, environmental and occupational risk factors in the GBD were responsible for 18.9% (12.8 million) of global deaths and 14.4% of all disability-adjusted life years (DALYs), led by ambient PM2.5 air pollution (4.2% DALYs, 4.7 million deaths) and household air pollution from the use of solid fuels for cooking (3.9% DALYs, 3.1 million deaths). Climate change exacerbates many environmental hazards, leading to increased disease burdens from heat, air pollution, vector-borne diseases, storms, and flooding. Other environmental risk factors not included in the GBD, such as poor indoor air quality, various chemical exposures, and environmental noise pollution, also significantly contribute to disease burden in many countries, though more efforts are needed to generate and integrate data resources for inclusion in global estimations.
Collapse
Affiliation(s)
- Sierra N Clark
- School of Health & Medical Sciences, City St George's, University of London, London, United Kingdom
| | - Susan C Anenberg
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada;
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
17
|
Darwish SF, Moustafa YM, Abdel Mageed SS, Hassan GS, Mangoura SA, Aly SH, Mansour MA, Raouf AA, Sallam AAM, Fawzi SF, Atta AM, Elazazy O, El-Dakroury WA, El-Demerdash AA, Esmat EZM, Elrebehy MA, Doghish AS. Insecticides and testicular health: mechanisms of injury and protective natural products. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04016-y. [PMID: 40137965 DOI: 10.1007/s00210-025-04016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
In agriculture and public health, insecticides are vital chemicals that help manage diseases and control pests. However, their extensive use has raised concerns about their negative consequences on both humans and animals. Pesticide exposure impacts numerous human organs, including the reproductive system. Infertility is caused by reproductive system disorders, which is why they have received a lot of attention in recent decades. According to what is currently known, insecticides are among the substances that may lower the quality of the semen produced by exposed workers. The mechanisms of this action are still unclear, even though numerous underlying mechanisms have been suggested. With an emphasis on the harmful effects of insecticides on male reproductive processes, this review provides a thorough analysis of the toxicity profile of these substances. To reduce insecticides' negative impacts on human and animal health and to direct future research initiatives, it is essential to comprehend their harmful consequences.
Collapse
Affiliation(s)
- Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, 11829, Egypt
| | - Mai A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sylvia F Fawzi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Asmaa M Atta
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - El-Zahra M Esmat
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
18
|
Yang L, Liu Y, Zhang H, Zhao Y, Zhang G, Cai Y, Yang L, Xi J, Wang Z, Liang H, Miao M, Zhang T, Xue J. Interpretable machine learning-based insights into early-life endocrine disruptor exposure and small vulnerable newborns. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138067. [PMID: 40158502 DOI: 10.1016/j.jhazmat.2025.138067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Early-life exposure to endocrine-disrupting chemicals (EDCs) may contribute to small vulnerable newborns, including conditions such as being small for gestational age (SGA) and preterm birth (PTB), yet evidence remains limited. This study, which is based on 739 mother-infant pairs in the Chinese Jiashan Birth Cohort (2016-2018), including 39 SGA and 38 PTB cases, employed interpretable machine learning to elucidate the isolated effects of 34 EDCs on SGA and PTB risk and sex interactions in a multi-substance exposure context. Extra Trees and CatBoost classifiers performed best for SGA and PTB, respectively, achieving sensitivities of 0.60 and 0.73 and specificities of 0.82 and 0.97. For SGA, key predictors included bisphenol A (2,3-dihydroxypropyl) glycidyl ether (BADGE-H2O), benzophenone (bZp), bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE-2H2O), propyl paraben (PrP), and 2-methylthio-benzothiazole (2-Me-S-BTH). Lower exposures to BADGE-H2O, bZp, and BADGE-2H2O (concentrations below 0.21, 4.22, and 0.93 μg·g-1 creatinine, respectively) and higher exposure to 2-Me-S-BTH (above 0.15 μg·g-1 creatinine) were both associated with increased SGA risk. Notably, BADGE-H2O, BADGE-2H2O, and PrP showed significant interactions with fetal sex. For PTB, key predictors included ethyl paraben (EtP), methyl paraben (MeP), bZp, BADGE-H2O, and 1H-benzotriazole (1-H-BTR). Lower BADGE-H2O and higher EtP and bZp exposures increased PTB risk (< 0.10 and > 0.01 and 0.60 μg·g-1 creatinine, respectively). Male fetuses appeared more susceptible to EtP and MeP, and female fetuses were more susceptible to 1-H-BTR. Bayesian kernel machine regression was performed to compare the results. This study demonstrated the potential of interpretable machine learning in environmental epidemiology.
Collapse
Affiliation(s)
- Luhan Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanan Zhao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanglan Zhang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lan Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Lao Humin Road, Shanghai 200237, China
| | - Jianya Xi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Lao Humin Road, Shanghai 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Lao Humin Road, Shanghai 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Lao Humin Road, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Lao Humin Road, Shanghai 200237, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Observation and Research Station for Social-Natural Complex Ecosystems in Haizhu Wetlands, Guangzhou 510006, China.
| |
Collapse
|
19
|
Fu J, Yao Y, Huang Z, Guo Z, Tang X, Chen X, Li X, Ge Y, Lu B, Sha Y, Lu S. Gestational Exposure to Endocrine-Disrupting Chemicals of Emerging Concern and the Risk of Developing Gestational Diabetes Mellitus: A Comprehensive Investigation of Sex-Specific and Trimester-Specific Associations. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:271-281. [PMID: 40144318 PMCID: PMC11934205 DOI: 10.1021/envhealth.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 03/28/2025]
Abstract
Gestational diabetes mellitus (GDM) is a type of diabetes that arises during pregnancy, leading to long-term adverse consequences for maternal health and fetal development. However, the specific role of endocrine-disrupting chemicals (EDCs) in the pathogenesis of GDM remains controversial. This prospective cohort study sought to investigate how coexposure to bisphenols, parabens, triclosan (TCS), benzophenone-type UV filters, and neonicotinoids (NEOs) affects the odds of GDM. Quantile-based g-computation and Bayesian kernel machine regression showed a significant inverse relationship between EDC mixtures and the reduced risk of GDM (OR = 0.34, 95% CI: 0.13-0.87), which was mainly explained by bisphenol (OR = 0.49, 95% CI: 0.29-0.80) and paraben (OR = 0.60, 95% CI: 0.40-0.91) exposure. Bisphenol S (BPS), bisphenol Z (BPZ), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were identified as key contributors to the joint effect. In addition, subgroup analyses suggested that the bisphenols-GDM association was more pronounced in younger/normal-weight participants. The sex-specific impact of exposure to bisphenols on the development of GDM was observed, whereas the second trimester represented a critical window for EDC exposure. Continued research efforts, focusing on causal pathways and nonmonotonic relationships, will be crucial to elucidate the complex influence of EDC exposure on the development of GDM.
Collapse
Affiliation(s)
- Jinfeng Fu
- School
of Public Health (Shenzhen), Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518107, China
| | - Yao Yao
- Longgang
Maternity and Child Institute of Shantou University Medical College
(Longgang District Maternity & Child Healthcare Hospital of Shenzhen
City), Shenzhen 518172, China
| | - Zhihong Huang
- School
of Public Health (Shenzhen), Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhihui Guo
- School
of Public Health (Shenzhen), Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinxin Tang
- School
of Public Health (Shenzhen), Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518107, China
| | - Xulong Chen
- School
of Public Health (Shenzhen), Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinjie Li
- School
of Public Health (Shenzhen), Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518107, China
| | - Yiming Ge
- School
of Public Health (Shenzhen), Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518107, China
| | - Bingjun Lu
- School
of Public Health (Shenzhen), Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518107, China
| | - Yujie Sha
- School
of Public Health (Shenzhen), Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School
of Public Health (Shenzhen), Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
20
|
Cheng L, Li F, Luo Y, Shi C, Cao R, Huang C, Zhang Y, Gao Y, Zhang H, Geng N, Chen J. Medium-Chain Chlorinated Paraffins Induced Reproductive Toxicity in Female Rats by Interfering with Oocyte Meiosis and Triggering DNA Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40080447 DOI: 10.1021/acs.est.4c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Medium-chain chlorinated paraffins (MCCPs) are among the most prevalent chemicals detected in human serum. As an emerging persistent organic pollutant, their toxicity mechanisms, particularly concerning the female reproductive system, remain poorly understood. In this study, we present both in vivo and in vitro evidence of ovarian toxicity induced by MCCPs and insights into their underlying molecular mechanisms. MCCP exposure induced chromatin condensation in the nucleus and mitochondria vacuolization of ovarian granulosa cells in rats and significantly increased the levels of serum gonadotropins and sex hormones, while reducing gonadotropin-releasing hormone levels. Transcriptomics analysis of ovaries revealed a predominant effect of MCCPs on the cell cycle, oocyte meiosis, and DNA damage repair pathways. Moreover, dual-omics integrative analysis indicated significant disturbance of steroid hormone biosynthesis caused by MCCPs, as well as amino acid metabolism related to TCA cycle. Furthermore, in vitro assays demonstrated that MCCP exposure disrupts intracellular Ca2+ homeostasis and generates reactive oxygen species, ultimately leading to DNA damage. In conclusion, this study revealed potential mechanisms by which MCCPs affect ovary function. These findings can provide valuable insights for the mechanism-based risk assessment of MCCPs on female reproduction.
Collapse
Affiliation(s)
- Lin Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Fang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yun Luo
- College of Medicine, Linyi University, Linyi, Shandong 276005, China
| | - Chengcheng Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Chenhao Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yichi Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
21
|
Chen Z, Chen Z, Mo J, Chen Y, Chen L, Deng C. m6A RNA methylation modulates autophagy by targeting Map1lc3b in bisphenol A induced Leydig cell dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136748. [PMID: 39662354 DOI: 10.1016/j.jhazmat.2024.136748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Bisphenol A (BPA) exposure can affect testicular Leydig cells (LCs), potentially causing male infertility. Research suggests that RNA epigenetic response to environmental exposure may impact LCs function and testosterone production, but the role of N6-methyladenosine (m6A) RNA methylation in mediating BPA exposure and its regulatory mechanisms remain unknown. Here, we demonstrate that BPA exposure significantly reduces testosterone biosynthesis and upregulates m6A modification in LCs using both in vivo and in vitro models. The involvement of the m6A "writer" METTL3 and the "eraser" ALKBH5 in regulating LCs m6A levels during BPA exposure was discovered, highlighting their central role. Manipulating these factors to reduce m6A methylation levels demonstrated potential for alleviating BPA-induced damage to LCs. Furthermore, integrated analysis of transcriptomic and MeRIP sequencing data reveals that the upregulation of m6A levels induced by BPA specifically targets the Map1lc3b mRNA, a pivotal regulator of autophagy, thereby exerting suppressive effects on autophagic processes. In conclusion, our findings suggest that targeting m6A RNA methylation could be a potential therapeutic approach to mitigate BPA-induced reproductive toxicity, offering novel insights into the epigenetic regulation of male reproductive health.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zixin Chen
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jiahui Mo
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yufan Chen
- Department of Microsurgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Liqian Chen
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
22
|
Bonilla-Enriquez G, Caballero-Morales SO. Analyzing exposure risks in warehousing due to the presence of phthalate contamination. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2025:1-8. [PMID: 40028764 DOI: 10.1080/10803548.2024.2444141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Phthalate esters (PAEs) are widely used in plastic consumer products and many studies published to date have associated these chemicals with severe human health problems. Particularly, the risks within warehouses, which involve large quantities of PAE sources stored in closed spaces, have not been addressed. This article presents an integrated inventory control model to determine the periods within the supply cycle where concentrations of PAEs are likely to represent a risk for the warehouse personnel. This model considers the dynamic aspect of the warehouse supply and consumption mechanisms, and links it to the release patterns of PAEs in closed environments which depend on the type of materials, temperature and time. Numerical analysis corroborates that, in certain periods of time, concentrations of PAEs in the warehouse can exceed permissible levels for humans, and thus the use of appropriate protective wear and decontamination procedures should be established.
Collapse
Affiliation(s)
- Gladys Bonilla-Enriquez
- Department of Logistics, National Technological Institute of Mexico - Puebla Institute of Technology (TecNM - ITP), Mexico
| | | |
Collapse
|
23
|
Zhang J, Jiang W, Tao F, Ding G, Li F, Tian Y, Tao S. Children-specific environmental protection strategies are needed in China. ECO-ENVIRONMENT & HEALTH 2025; 4:100132. [PMID: 40017903 PMCID: PMC11867267 DOI: 10.1016/j.eehl.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 01/06/2025] [Indexed: 03/01/2025]
Abstract
China, home to over 250 million children, has witnessed remarkable economic development in recent decades, successfully addressing many issues related to basic hygiene and sanitation in children, thereby altering the childhood disease spectrum. However, the emergence of environment-related disorders among children has become a significant concern. Despite the rapid accumulation of scientific knowledge on the adverse effects of environmental pollution on child health, the availability of children-specific protective strategies and actions remains alarmingly low. This commentary synthesizes the information and viewpoints presented and discussed by experts at the International Forum on Children's Environmental Health in China. It summarizes the strategies and actions proposed to reduce adverse environmental exposure and protect children's short- and long-term health and a call for more children-centered evidence-action transformation. The following four specific actions were proposed: (1) strengthen health education in parents, caregivers, and children, and personal protection for children; (2) monitor child exposure and environment-related health status; (3) set up child-specific interventions and regulations; and (4) conduct more research on environment exposures and child health.
Collapse
Affiliation(s)
- Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Guodong Ding
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fei Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Palmer G, Herring AH, Dunson DB. LOW-RANK LONGITUDINAL FACTOR REGRESSION WITH APPLICATION TO CHEMICAL MIXTURES. Ann Appl Stat 2025; 19:769-797. [PMID: 40264590 PMCID: PMC12013532 DOI: 10.1214/24-aoas1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Developmental epidemiology commonly focuses on assessing the association between multiple early life exposures and childhood health. Statistical analyses of data from such studies focus on inferring the contributions of individual exposures, while also characterizing time-varying and interacting effects. Such inferences are made more challenging by correlations among exposures, nonlinearity, and the curse of dimensionality. Motivated by studying the effects of prenatal bisphenol A (BPA) and phthalate exposures on glucose metabolism in adolescence using data from the ELEMENT study, we propose a low-rank longitudinal factor regression (LowFR) model for tractable inference on flexible longitudinal exposure effects. LowFR handles highly-correlated exposures using a Bayesian dynamic factor model, which is fit jointly with a health outcome via a novel factor regression approach. The model collapses on simpler and intuitive submodels when appropriate, while expanding to allow considerable flexibility in time-varying and interaction effects when supported by the data. After demonstrating LowFR's effectiveness in simulations, we use it to analyze the ELEMENT data and find that diethyl and dibutyl phthalate metabolite levels in trimesters 1 and 2 are associated with altered glucose metabolism in adolescence.
Collapse
Affiliation(s)
- Glenn Palmer
- Department of Statistical Science, Duke University
| | | | | |
Collapse
|
25
|
Gaillard L, Barouki R, Blanc E, Coumoul X, Andréau K. Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts. Trends Endocrinol Metab 2025; 36:249-261. [PMID: 39181731 DOI: 10.1016/j.tem.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The widespread use of per- and polyfluoroalkyl substances (PFASs), and their resistance to degradation, renders human exposure to them inevitable. PFAS exposure disturbs endocrine function, potentially affecting cognitive development in newborns through thyroid dysfunction during pregnancy. Recent studies reveal varying male and female reproductive toxicity across PFAS classes, with alternative analogs affecting sperm parameters and legacy PFASs correlating with conditions like endometriosis. Metabolically, PFASs exposure is linked to metabolic disorders, including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and liver toxicity, particularly in early childhood. This review focuses on the endocrine-disrupting impact of PFASs, particularly on fertility, thyroid, and metabolic functions. We highlight the complexity of the PFAS issue, given the large number of molecules and their extremely diverse mixed effects.
Collapse
Affiliation(s)
- Lucas Gaillard
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Robert Barouki
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Etienne Blanc
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Xavier Coumoul
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France.
| | - Karine Andréau
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| |
Collapse
|
26
|
Heralde FM, Martin ZT, Cagayan MSFS, Uy EV, Ubial PJR, Velarde MC, Llamas-Clark EF. UPLC-QTOF Mass Spectrometry Detection of Four Endocrine Disrupting Chemicals (Methyl Paraben, 2,4-Dichlorophenoxyacetic acid, Monobutyl Phthalate, and Bisphenol A) in Urine of Filipino Women. ACTA MEDICA PHILIPPINA 2025; 59:70-79. [PMID: 40151222 PMCID: PMC11936769 DOI: 10.47895/amp.vi0.9007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Background and Objective Endocrine Disrupting Chemicals (EDCs) are ubiquitously found as low-level contaminants and pose serious threat to women's health. EDCs may result in various reproductive disorders, fetal birth and developmental abnormalities, and endocrine and metabolic disorders. EDCs can be detected in body fluids of exposed individuals including blood and urine. This study aimed to detect four EDCs - Methyl Paraben (MP), 2,4-Dichlorophenoxyacetic acid (2,4-D), Monobutyl Phthalate (MBP), and Bisphenol A (BPA) in urine samples of women using Ultra-Performance Liquid Chromatography - Quadrupole Time-of-Flight (UPLC-QTOF) mass spectrometry. Methods Sequential steps of enzymatic deconjugation, liquid-liquid extraction, solid phase extraction, and liquid chromatography separation and mass spectrometry detection were optimized in urine samples. The method was used to analyze 70 urine samples from women of reproductive age. Results The sample preparation method showed a recovery ranging from 86.6% (MBP) to 100 % (2,4-D). The method demonstrated limits of quantitation ranging from 1.52 ng/m(MP) to 6.46 ng/mL(2,4D). Intra-day precisions expressed as relative standard deviation were all below 15% while accuracy was shown to range from 67.10% (2,4-D) to 102.39% (MBP). MP was detected in nine samples (12.86%) with a geometric mean value of 10.15 ng/ml (range: 3.62-52.39 ng/ml). MBP was detected in 68 samples (97.14%) with a geometric mean value of 97.62 ng/ml (range: 15.32-698.18 ng/ml). BPA was detected only once (9.58 ng/ml) while 2, 4-D was not detected in all samples. Conclusion A UPLC-QTOF mass spectrometry method to detect four EDCs at parts per billion level (ng/ml) was adapted and applied for analysis of urine samples. This method can find applicability in routine testing of clinical specimens as well as surveillance and other epidemiological studies.
Collapse
Affiliation(s)
- Francisco M. Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila
| | - Zaidy T. Martin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila
| | | | - Esterlita V. Uy
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila
| | | | - Michael C. Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman
| | - Erlidia F. Llamas-Clark
- Department of Obstetrics and Gynecology, Philippine General Hospital, University of the Philippines Manila
| |
Collapse
|
27
|
Li Z, Robaire B. Effects of Endocrine-Disrupting Chemicals on Adrenal Function. Endocrinology 2025; 166:bqaf045. [PMID: 40048632 PMCID: PMC11907101 DOI: 10.1210/endocr/bqaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Indexed: 03/15/2025]
Abstract
The adrenal glands play crucial roles in regulating metabolism, blood pressure, immune system function, and response to stress through the secretion of hormones. Despite their critical functions, the adrenal glands are often overlooked in studies on the effects of potential toxicants. Research across human, animal, and in vitro studies has identified more than 60 compounds that can induce adrenocortical toxicity. These compounds, known as endocrine-disrupting chemicals (EDCs), are natural or synthetic substances that interfere with the endocrine system. This review aims to provide an overview of the effects of 4 major families of EDCs-flame retardants, bisphenols, phthalates, and microplastics-on the function of the adrenal glands. The PubMed database was searched for studies reporting the effects of the chemicals in these 4 families on the adrenal glands. There is clear evidence that the morphology and function of the adrenal gland are affected, particularly through disrupting the steroidogenic pathway. Additionally, some EDCs have been shown to exert transgenerational effects, raising further concerns about their long-term effect. However, most EDCs have not been thoroughly evaluated for their effects on the function of the adrenal glands, especially in human studies. Thus, developing regulatory testing guideline to include the adrenal glands in the screening of EDCs is urgently needed.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
28
|
Welch BM, Bommarito PA, Cantonwine DE, Milne GL, Stevens DR, Edin ML, Zeldin DC, Meeker JD, McElrath TF, Ferguson KK. Consumer Product Chemical Mixtures and Oxylipin-Mediated Inflammation and Oxidative Stress during Early Pregnancy: Findings from a Large US Pregnancy Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2987-2999. [PMID: 39913660 DOI: 10.1021/acs.est.4c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Consumer product chemicals pose an environmental risk to public health. Exposure during pregnancy to consumer product chemicals, particularly phthalates and phenols, may increase the susceptibility to pregnancy disorders by dysregulating inflammation and oxidative stress. However, existing studies rely on downstream and nonmodifiable markers of these processes. Oxylipins are oxidized lipids that act as key upstream drivers of inflammation and oxidative stress. Importantly, oxylipins are responsive to therapeutic interventions and thus potentially modifiable. Using recent advances in lipidomics and statistical approaches to address both individual chemical biomarkers and their mixtures, we determined associations between early pregnancy biomarkers of consumer product chemical exposure and oxylipins in a large prospective cohort. Overall, our results revealed associations among oxylipins produced across several biosynthetic pathways, suggesting a pattern indicative of dysregulated inflammation and elevated levels of oxidative stress. Phthalate metabolites were the primary drivers of associations, particularly for metabolites of low molecular weight phthalates, often used in personal care products. However, we found similar associations for a biomarker of a phthalate replacement that is increasingly used in consumer products. Our study provides observational evidence of specific physiological pathways that may be dysregulated by exposure to consumer product chemicals, including legacy phthalates and phthalate replacements.
Collapse
Affiliation(s)
- Barrett M Welch
- School of Public Health, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Durham, North Carolina 27709, United States
| | - Paige A Bommarito
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Durham, North Carolina 27709, United States
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ginger L Milne
- Department of Medicine, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Danielle R Stevens
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Durham, North Carolina 27709, United States
| | - Matthew L Edin
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Durham, North Carolina 27709, United States
| | - Darryl C Zeldin
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Durham, North Carolina 27709, United States
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 6635 SPH Tower, 109 S. Observatory Street, Ann Arbor, Michigan 48109, United States
| | - Thomas F McElrath
- Department of Medicine, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Durham, North Carolina 27709, United States
| |
Collapse
|
29
|
Abdul-Nabi SS, Al Karaki V, Khalil A, El Zahran T. Climate change and its environmental and health effects from 2015 to 2022: A scoping review. Heliyon 2025; 11:e42315. [PMID: 39975822 PMCID: PMC11835584 DOI: 10.1016/j.heliyon.2025.e42315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025] Open
Abstract
Background The rise in environmental pollutants has become a pressing global concern of international magnitude. Substantial evidence now demonstrates that escalating global temperatures and rising sea levels might exacerbate release of chemical pollutants into the environment which amplifies their toxicity. Existing research underscores the linkage between climate change and air pollution as driving forces, with increased mortality and morbidity. Purpose of review This review explores the reciprocal relationship between climate change and its impact on health, as well as the environment. We conducted an in-depth analysis of all relevant published studies, encompassing studies conducted across various regions worldwide, including the Eastern Mediterranean Regional Office (EMRO)1 region. Summary The environmental consequences of climate change have widespread impacts on various health systems and populations. Knowledge gaps remain in understanding the full scope of climate change effects, particularly through environmental pollution. The findings of this review highlight the need for global strategies to mitigate diverse health risks to protect from the growing threats of climate change.
Collapse
Affiliation(s)
- Sarah S. Abdul-Nabi
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Victoria Al Karaki
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Aline Khalil
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tharwat El Zahran
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
30
|
Colombini M, Heude B, Lyon-Caen S, Thomsen C, Sakhi AK, Valmary-Degano S, Bayat S, Slama R, Philippat C, Ouidir M. Early-life exposures to phenols, parabens and phthalates and fat mass at 3 years of age in the SEPAGES cohort. ENVIRONMENTAL RESEARCH 2025; 267:120555. [PMID: 39672490 DOI: 10.1016/j.envres.2024.120555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Early-life exposure to short half-life chemicals may influence adiposity growth, a precursor to obesity. Previous studies often relied on limited urine samples that inadequately represent exposure during pregnancy or infancy. Additionally, childhood adiposity is commonly estimated using body mass index, which does not accurately reflect body composition. We aimed to investigate associations between early-life exposures to phenols, parabens, phthalates and fat mass percent at 3 years of age among 341 mother-child couple from the SEPAGES cohort. We further assessed potential effect modification by sex. METHODS We measured 8 phenols, 4 parabens, 13 phthalates and 2 non-phthalate plasticizer metabolites from weekly pooled urine sample collected from mothers during pregnancy (three urine samples a day, median 18 and 34 gestational weeks), and from their infant (one urine sample a day, at 2 and 12 months). Clinical examinations at 3 years included standardized skinfold thickness measurements and bioelectrical impedance analysis to calculate fat mass percentage. RESULTS Positive associations were identified between prenatal exposures to bisphenol S, mono-benzyl phthalate (MBzP), monoethyl phthalate (MEP), and mono-n-butyl phthalate and fat mass percentage at 3 years, while triclosan showed a negative association. MBzP and MEP showed effect modification by sex, with stronger associations among females. No significant associations were detected for postnatal exposures. CONCLUSION This study suggests associations between prenatal exposures to short half-life chemicals and percent fat mass in preschool children. Furthermore, this study is the first investigating the impact of prenatal bisphenol S exposure, highlighting the need for investigation of this overlooked compound.
Collapse
Affiliation(s)
- Maude Colombini
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Amrit K Sakhi
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Séverine Valmary-Degano
- BB-0033-00069 (Biobank of Grenoble), Univ. Grenoble-Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, CHU Grenoble-Alpes, F-38000, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, Grenoble University Hospital, La Tronche, France; Synchrotron Radiation for Biomedicine Laboratory (STROBE), Inserm UA07, Grenoble Alpes University, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Marion Ouidir
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
31
|
Huntsman DD, Bulaj G. Home Environment as a Therapeutic Target for Prevention and Treatment of Chronic Diseases: Delivering Restorative Living Spaces, Patient Education and Self-Care by Bridging Biophilic Design, E-Commerce and Digital Health Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:225. [PMID: 40003451 PMCID: PMC11855921 DOI: 10.3390/ijerph22020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/25/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
A high prevalence of chronic diseases exposes diverse healthcare pain points due to the limited effectiveness of pharmaceutical drugs and biologics, sedentary lifestyles, insufficient health literacy, chronic stress, unsatisfactory patient experience, environmental pollution and competition with commercial determinants of health. To improve patient care and long-term outcomes, the impact of the home environment is overlooked and underutilized by healthcare. This cross-disciplinary work describes perspectives on (1) the home environment as a therapeutic target for the prevention and treatment of chronic diseases and (2) transforming health-centric household goods e-commerce platforms into digital health interventions. We provide a rationale for creating therapeutic home environments grounded in biophilic design (multisensory, environmental enrichment) and supporting physical activities, quality sleep, nutrition, music, stress reduction, self-efficacy, social support and health education, hence providing clinical benefits through the modulation of the autonomic nervous system, neuroplasticity and behavior change. These pleiotropic "active non-pharmacological ingredients" can be personalized for people living with depression, anxiety, migraine, chronic pain, cancer, cardiovascular and other conditions. We discuss prospects for integrating e-commerce with digital health platforms to create "therapeutic home environment" interventions delivered through digital therapeutics and their combinations with prescription drugs. This multimodal approach can enhance patient engagement while bridging consumer spending with healthcare outcomes.
Collapse
Affiliation(s)
| | - Grzegorz Bulaj
- OMNI Self-Care, LLC, Salt Lake City, UT 84106, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
32
|
Mu Q, Hu F, Shen Y, Zheng Y, Ye X, Liu Y. Association between phthalate exposure and rash eczema disease: based on NHANES 2005-2006. Arch Dermatol Res 2025; 317:338. [PMID: 39899160 DOI: 10.1007/s00403-025-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/04/2025]
Abstract
Phthalates are commonly found in plastic products, personal care products, and food packaging. In recent years, the relationship between phthalates and skin diseases such as eczema has been gaining attention. As endocrine disruptors, phthalates may increase the risk of eczema by affecting the immune system or skin barrier function. This study used a cross-sectional design based on data from the 2005-2006 National Health and Nutrition Examination Survey to assess the association between phthalate exposure and eczema in adults using generalized linear models, restricted cubic spline plots and weighted quantile sum regression. Eczema diagnosis was determined by participants' self-report of whether they had ever been diagnosed with eczema by doctors. Phthalate exposure was assessed by urinary concentrations of phthalates. A total of 1203 subjects, aged 18 years and over, were recruited for the study, comprising 627 males and 576 females. We found that females had significantly higher phthalate exposure concentrations than males. There was a significant positive correlation between monoisononyl phthalate (MiNP) and eczema. Mixture analysis similarly found a positive correlation between phthalates and rash eczema, and MiNP was the main contributor. Further sex-stratified analyses showed that this association occurred predominantly in females, while no significant association was found in the male population. Phthalates may have adverse effects on skin health, particularly in women. Future studies should further investigate the mechanisms of this association and focus on other types of phthalates and their effects on skin health.
Collapse
Affiliation(s)
- Qiming Mu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Fan Hu
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yingying Shen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yong Zheng
- Department of Central Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiao Ye
- Children's Rehabilitation Center, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yufang Liu
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Maojian District, Shiyan, 442000, China.
| |
Collapse
|
33
|
Xiong Y, Li Z, Xiong X, Luo Z, Zhong K, Hu J, Sun S, Chen C. Associations between phenol and paraben exposure and the risk of developing breast cancer in adult women: a cross-sectional study. Sci Rep 2025; 15:4038. [PMID: 39900803 PMCID: PMC11791042 DOI: 10.1038/s41598-025-88765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Increasing evidence suggests that endocrine-disrupting chemicals (EDCs) have adverse effects on breast cancer (BC). The aim of this study was to assess the association between exposure to prevalent EDCs-phenols and parabens-and the risk of developing BC. Data on urinary bisphenol A (BPA), triclosan (TRS), benzophenone-3 (BP3), methyl paraben (MPB), ethyl paraben (EPB), propyl paraben (PPB), and butyl paraben (BUP) were obtained from the 2005-2014 National Health and Nutrition Examination Survey. A total of 4455 subjects were included in this cross-sectional study. The results from the weighted multivariable regression models indicated that exposure to elevated concentrations of TRS increased the risk of developing BC by 2.33 (Q2: 95% CI = 1.45-3.75, p < 0.001) and 1.94 times (Q3: 95% CI = 1.21-3.09, p = 0.006), respectively. The nonlinear association between TRS concentrations and the risk of developing BC was statistically significant (P nonlinear = 0.007), with the restricted cubic splines (RCS) curve exhibiting an inverted U shape. The association between TRS concentrations and the risk of developing BC was more pronounced among overweight individuals (BMI ≥ 25 kg/m2), those aged < 60 years, and white individuals. Weighted quantile sum (WQS) and Bayesian Kernel Machine Regression (BKMR) analysis revealed no significant overall association between mixtures of urinary phenol and paraben metabolites and BC risk. However, TRS exposure was the most influential, with higher TRS concentrations (both continuous and categorical) significantly associated with an increased BC risk, particularly in overweight individuals (BMI ≥ 25 kg/m2), those aged < 60 years, and white individuals.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Xiong Xiong
- Department of Information, Electronic and Bioengineering, Politecnico Di Milano., Piazza Leonardo da Vinci, 32, 20133, Milano, MI, Italy
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Kaixin Zhong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China.
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
34
|
Xing WY, Liu FH, Wang DD, Liu JM, Zheng WR, Liu JX, Wu L, Zhao YY, Xu HL, Li YZ, Wei YF, Huang DH, Li XY, Gao S, Ma QP, Gong TT, Wu QJ. Association between plasma perfluoroalkyl substances and high-grade serous ovarian cancer overall survival: A nested case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117825. [PMID: 39884014 DOI: 10.1016/j.ecoenv.2025.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Although evidence suggests that perfluoroalkyl and polyfluoroalkyl substances (PFASs) are positively correlated to several disease risks, no studies have proven if plasma PFASs are related to ovarian cancer survival. OBJECTIVE To explore the association between plasma PFASs and high-grade serous ovarian cancer (HGSOC) overall survival (OS) in the population who did not smoke. METHODS We conducted a nested case-control study within the Ovarian Cancer Follow-Up Study, matching 159 dead patients and 159 survival ones based on body mass index, sample date, and age at diagnosis. Nine plasma PFASs were extracted by solid phase extraction and measured using a liquid chromatography system coupled with tandem mass spectrometry. Baseline plasma concentrations of perfluorinated carboxylic acids (PFCAs) [perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroheptanoic acid (PFHpA)] and perfluorinated sulfonic acids (PFSAs) [perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)] were calculated. Odds ratios (ORs) and corresponding 95 % confidence intervals (CIs) were calculated via conditional logistic regression models. To elucidate the combined effects, Bayesian kernel machine (BKMR), and regression quantile g-computation (QGC) models were utilized. RESULT In full-adjusted model, significant differences were observed between HGSOC survival and perfluorobutane sulfonic acid, PFHpA, PFHxS, PFOS, PFCA, and PFSA. ORs and 95 %CIs were 2.74 (1.41-5.31), 1.97 (1.03-3.76), 2.13 (1.15-3.95), 2.28 (1.16-4.47), 3.74 (1.78-7.85), and 2.56 (1.31-5.01), respectively for the highest tertile compared with the lowest tertile. The QGC and BKMR models indicated that elevated concentrations of PFAS mixtures were associated with poor OS in HGSOC. CONCLUSIONS Both individual and mixed plasma PFASs may relate to poor OS of HGSOC. Further research is necessary to establish causality, and it is recommended to reinforce environmental risk mitigation strategies to minimize PFAS exposure.
Collapse
Affiliation(s)
- Wei-Yi Xing
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Dong Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Ming Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wen-Rui Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Xin Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yue-Yang Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Peng Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
35
|
Song N, Xi X, Yang K, Pei C, Zhao L. Effects of endocrine disrupting chemicals, blood metabolome, and epigenetics on breast cancer risk: A multi-dimensional mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117791. [PMID: 39904262 DOI: 10.1016/j.ecoenv.2025.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Current research on the relationship between environmental endocrine disrupting chemicals (EDCs) and breast cancer remains insufficient, with limited evidence and inconsistent conclusions. Mendelian randomization (MR) is a robust method for establishing causality, as it reduces biases from confounding factors and reverse causation. This study uses MR to investigate the effects of three types of EDCs, including bisphenols, parabens, and phthalates, on the risk of overall breast cancer and its subtypes-Luminal A, Luminal B, triple negative, human epidermal growth factor receptor 2-enriched, and estrogen receptor-positive/negative. The study also examines the 1400 blood metabolome as potential mediators and explores EDCs-associated DNA methylation changes as potential factors, with a focus on European populations. Our results shows that n-butyl paraben (n-BuP) is positively associated with Luminal A, mono-methyl phthalate is negatively associated with Luminal B, and mono-iso-butyl phthalate (MiBP) is positively associated with triple negative breast cancer (TNBC). Mediation analysis reveals that blood metabolites, such as caffeic acid sulfate and the caffeine-to-paraxanthine ratio, mediate the effect of n-BuP on Luminal A, while methylsuccinate mediate the effect of MiBP on TNBC. Epigenetic analysis shows associations between EDCs exposure-related DNA methylation changes at specific CpG sites (cg26325335, cg08537847, cg27454300) and different breast cancer risks. These findings not only suggest potential biomarkers for early detection and intervention but also underscore the imperative for further research to rigorously validate these associations.
Collapse
Affiliation(s)
- Ningning Song
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui 230022, PR China
| | - Xinquan Xi
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui 230022, PR China
| | - Kuan Yang
- Department of Cardiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin 300052, PR China.
| | - Chongzhe Pei
- Department of Cardiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin 300052, PR China.
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
36
|
Ji H, Zhu H, Wang Z, Liang H, Chen Y, Liu X, Yuan W, Wu Q, Yuan Z, Miao M. Prenatal bisphenol analogs exposure and placental DNA hypomethylation of genes in the PPAR signaling pathway: Insights for bisphenol analogs' effects on infant anthropometry. ENVIRONMENTAL RESEARCH 2025; 266:120476. [PMID: 39613017 DOI: 10.1016/j.envres.2024.120476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Prenatal exposure to bisphenol analogs (BPs) may pose hazards to offspring's health; however, their underlying mechanisms remain to be elucidated. DNA methylation, a major epigenetic mechanism, may be involved in early programming following environmental disturbances. In this prospective study, we investigated associations between prenatal BPs exposure and the placental DNA methylation levels of 14 candidate genes in the peroxisome proliferator-activated receptor (PPAR) signaling pathway among 205 mother-infant pairs and explored the potential mediating role of the DNA methylation in the association of prenatal BPs exposure with anthropometric measurements of infants aged 1 year. We observed a general pattern that prenatal BPs exposure was associated with the DNA hypomethylation of candidate genes, with associations consistently and notably observed for PPAR α (PPARA), retinoid X receptor α (RXRA), acetyl-CoA acyltransferase 1, and acyl-CoA dehydrogenase medium chain (ACADM) in linear regression and Bayesian kernel machine regression. Both models identified bisphenol F (BPF) as the predominant compound. We found inverse associations between the placental DNA methylation levels of most candidate genes, such as PPARA, RXRA, ACADM, and nuclear receptor subfamily 1 group H member 3 (NR1H3), and the length-for-age z-score, arm circumference-for-age z-score, subscapular skinfold-for-age z-score, and abdominal skinfold thickness of the infants. The DNA methylation levels of RXRA and NR1H3 could mediate the associations between prenatal BPF exposure and increased infant anthropometric measurements, with mediating portions ranging from 23.02% to 30.53%. Our findings shed light on the potential mechanisms underlying the effects of prenatal BPs exposure on infant growth and call for urgent actions for risk assessment and regulation of BPF. Future cohort studies with larger sample sizes are warranted to confirm our findings.
Collapse
Affiliation(s)
- Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Haijun Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Xiao Liu
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Zhengwei Yuan
- NHC Key Laboratory of Congenital Malformation (Key Laboratory of Health Ministry for Congenital Malformation), Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| |
Collapse
|
37
|
Cai W, Yan Q, Deng Y, Guo Y. The correlation of bisphenol A exposure on inflammatory cytokines in preschool children. Cytokine 2025; 186:156835. [PMID: 39689452 DOI: 10.1016/j.cyto.2024.156835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE Based on current evidence suggesting that bisphenol A (BPA) may contribute to obesity through the modulation of inflammatory markers, this study aims to investigate the correlation between BPA exposure and cellular inflammatory factors in preschool children. METHODS A total of 155 preschool children aged 4-6 years were included. Urine and blood samples were collected. BPA exposure was detected by liquid chromatography-tandem mass spectrometry through urine samples. The levels of six inflammatory cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ) were determined by flow fluorescence technique. The correlation between urinary BPA exposure and cellular inflammatory factors was analyzed using Spearman's correlation and respectively stratified by gender and BMI. RESULTS The detection rate of BPA in urine samples was 100 %. The median urinary BPA concentration was 0.48 μg/L(IQR:0.25-1.02 μg/L), and the creatinine-adjusted BPA concentration was 0.94 μg/g(IQR:0.57-1.66 μg/g). BPA level was negatively correlated with IL-10 (r = -0.172, P < 0.05). After stratification by gender, the negative association between BPA exposure and IL-10 was found in females (r = -0.257, P < 0.05), while no association was found in males. According to BMI stratification, BPA exposure in overweight/obese children was positively correlated with IL-6 (r = 0.354, P < 0.05). CONCLUSIONS Our study demonstrated that BPA exposure in preschool children was correlated with a decrease in levels of IL-10, and this effect was significantly expressed in girls. In addition, BPA exposure in overweight/obese children was correlated with increased levels of IL-6. However, the mechanism between BPA and inflammatory factors remains to be further explored.
Collapse
Affiliation(s)
- Wenya Cai
- Department of Public Health, Guangzhou Medical University, Guangzhou 511436, China; Department of Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Qingshan Yan
- Department of Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China; Department of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China
| | - Yuhong Deng
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Yong Guo
- Department of Public Health, Guangzhou Medical University, Guangzhou 511436, China; Department of Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China
| |
Collapse
|
38
|
Gan H, Lu M, Tong J, Li H, Zhou Q, Han F, Wang X, Yan S, Huang K, Wang Q, Wu X, Zhu B, Gao H, Tao F. Sex- and trimester-specific impact of gestational co-exposure to organophosphate esters and phthalates on insulin action among preschoolers: Findings from the Ma'anshan birth cohort. ENVIRONMENT INTERNATIONAL 2025; 196:109287. [PMID: 39848094 DOI: 10.1016/j.envint.2025.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
INTRODUCTION Prenatal exposure to organophosphate esters (OPEs) and phthalic acid esters (PAEs) is ubiquitous among pregnant individuals. However, research exploring the relationship between prenatal co-exposure to OPEs and PAEs and childhood insulin function remains limited. METHODS In this study, utilizing data from 2,246 maternal-fetal dyads in the Ma'anshan Birth Cohort, associations between co-exposure to OPEs and PAEs and insulin action were analyzed. Repeated measures of tris (2-chloroethyl) phosphate, six OPE metabolites, and seven PAE metabolites were collected from maternal urine. Homeostasis model assessment of insulin resistance (HOMA-IR) and the insulin action index (IAI) served as outcome measures. After adjusting for potential confounders, the effects of repeated exposure on insulin action were evaluated using generalized estimating equations, while mixture effects were assessed through BayesianKernel Machine Regression and Quantile-Based G-Computation. RESULTS The average age of the children at the time of the study was 5.33 years. Repeated measures analysis revealed that prenatal exposure to MEP was positively associated with increased HOMA-IR (β, 0.027; 95 % CI: 0.002, 0.053), while IAI was inversely correlated with rising MEP levels (β, 0.025; 95 % CI: -0.046, -0.004) and MEHHP exposure (β, -0.128; 95 % CI: -0.218, -0.037). Mixed exposure modeling further indicated that co-exposure to OPEs and PAEs was positively linked to HOMA-IR (β, 0.058; 95 % CI: 0.001, 0.114) and negatively correlated with IAI (β, -0.054; 95 % CI: -0.097, -0.010), with stronger effects observed during the second trimester. Notably, the association was more pronounced in female children compared to males. CONCLUSIONS This study provides the first epidemiological evidence highlighting the pregnancy- and sex-specific links between prenatal co-exposure to OPEs and PAEs and childhood insulin action.
Collapse
Affiliation(s)
- Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Huijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Qiong Zhou
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Feifei Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Xiaorui Wang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Qunan Wang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Beibei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China.
| | - Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China.
| |
Collapse
|
39
|
Blaauwendraad S, Gaillard R, Gonçalves R, Rivadeneira F, Dohle G, Oei E, Mulders A, Jansen P, Jaddoe V. Associations of fetal and infant growth with pubertal timing. Arch Dis Child 2025:archdischild-2024-327060. [PMID: 39880593 DOI: 10.1136/archdischild-2024-327060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 01/05/2025] [Indexed: 01/31/2025]
Abstract
OBJECTIVE Impaired fetal and infant growth may cause alterations in developmental programming of the hypothalamic-pituitary-gonadal axis and subsequently pubertal development. We aimed to assess associations between fetal and infant growth and pubertal development. DESIGN Population-based prospective birth cohort. SETTING Rotterdam, the Netherlands. PATIENTS 5830 singleton born children. INTERVENTIONS We estimated fetal weight in second and third trimester by ultrasound. Infant growth measures were gestational age and weight at birth and infant weight at 6, 12 and 24 months. MAIN OUTCOME MEASURES Pubertal timing outcomes included difference between chronological and skeletal age assessed using dual-energy X-ray absorptiometry, testicular or ovarian volumes assessed using MRI at 10 years, age at menarche and Tanner staging at 13 years. RESULTS Among girls, 1-SD scores birth weight increase was associated with larger ovarian volume at 10 years (0.07 SD (95% CI 0.02 to 0.12) and later age at menarche (0.06 (0.02 to 0.11)). Among girls, increased infant growth was associated with an older skeletal age at 10 years (difference 2.67 (95% CI 2.26 to 3.08) months), earlier menarche (difference 0.10 (95% CI -0.14 to -0.06) years) and more advance breast and pubic hair development at 13 years (difference in Tanner stages 0.09 (0.05 to 0.13) and 0.07 (0.03 to 0.12)). In boys, increased infant growth was associated with an older skeletal age (3.13 (95% CI 2.58 to 3.69) months) and a larger testicular volume (0.07 (95% 0.02 to 0.12) SD) at 10 years, and with more advance pubic hair development (0.09 (95% CI 0.05 to 0.14) at 13 years). CONCLUSION Birth anthropometrics and early-life growth patterns are associated with altered pubertal development in a sex-specific manner.
Collapse
Affiliation(s)
- Sophia Blaauwendraad
- Pediatrics, Erasmus MC, Rotterdam, Netherlands
- The Generation R Study Group, Erasmus MC, Rotterdam, Netherlands
| | - Romy Gaillard
- Pediatrics, Erasmus MC, Rotterdam, Netherlands
- The Generation R Study Group, Erasmus MC, Rotterdam, Netherlands
| | - Romy Gonçalves
- Pediatrics, Erasmus MC, Rotterdam, Netherlands
- The Generation R Study Group, Erasmus MC, Rotterdam, Netherlands
| | | | - Gert Dohle
- Urology, Erasmus MC, Rotterdam, Netherlands
| | - Edwin Oei
- Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | - Pauline Jansen
- The Generation R Study Group, Erasmus MC, Rotterdam, Netherlands
- Psychology, Education, and Child Studies, Erasmus University, Rotterdam, Netherlands
- Yulius Center for Child and Adolescent Psychiatry, Parnassia Group, Rotterdam, Netherlands
| | - Vincent Jaddoe
- Pediatrics, Erasmus MC, Rotterdam, Netherlands
- The Generation R Study Group, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
40
|
Akhatova A, Jones C, Coward K, Yeste M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin Epigenetics 2025; 17:7. [PMID: 39819375 PMCID: PMC11740528 DOI: 10.1186/s13148-025-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm. Metabolic changes, such as high blood glucose levels and increased body weight, are commonly observed in the offspring of fathers subjected to chronic stress, in addition to an enhanced risk of depressive-like behaviour and increased sensitivity to stress in both the F0 and F1 generations. DNA methylation is correlated with alterations in sperm quality and the ability to fertilise oocytes, possibly via a differentially regulated MAKP81IP3 signalling pathway. Paternal exposure to toxic endocrine-disrupting chemicals (EDCs) is also linked to the transgenerational transmission of increased predisposition to disease, infertility, testicular disorders, obesity, and polycystic ovarian syndrome (PCOS) in females through epigenetic changes during gametogenesis. As the success of assisted reproductive technology (ART) is also affected by paternal diet, BMI, and alcohol consumption, its outcomes could be improved by modifying factors that are dependent on male lifestyle choices and environmental factors. This review discusses the importance of epigenetic signatures in sperm-including DNA methylation, histone retention, and sncRNA-for sperm functionality, early embryo development, and offspring health. We also discuss the mechanisms by which paternal lifestyle and environmental factors (obesity, smoking, EDCs, and stress) may impact the sperm epigenome.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- School of Medicine, Nazarbayev University, Zhanybek-Kerey Khan Street 5/1, 010000, Astana, Kazakhstan
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
41
|
Zhang Y, Zhao H, Feng Q, Guo R, Zhong L, Liang S. Effects of benzotriazoles UV-328, UV-329, and UV-P on the self-renewal and adipo-osteogenic differentiation of human mesenchymal stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117765. [PMID: 39847882 DOI: 10.1016/j.ecoenv.2025.117765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are pervasive environmental contaminants that pose significant risks to human health. This study evaluated the effects of three typical BUVSs (UV-328, UV-329, and UV-P) on human mesenchymal stem cells (hMSCs), which play crucial roles in tissue maintenance and repair. hMSCs were exposed to BUVSs across a range of concentrations, and their maintenance and differentiation capacities were assessed. At concentrations below 50 μM, no significant cytotoxicity was observed. However, at non-cytotoxic doses, UV-P exhibited stronger effects on the differentiation of hMSCs compared to UV-328 and UV-329, significantly inhibiting adipogenesis and enhancing osteogenesis. Mechanistically, UV-P was found to significantly enrich the PPAR signaling pathway during both differentiation processes. Dual-luciferase reporter assays confirmed UV-P's interaction with PPARγ_LBD at an alternate binding site outside the canonical pocket. These findings raise concerns about the health impacts of BUVSs, particularly UV-P, and underscore the need for further investigation into their toxicological profiles.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China
| | - Hui Zhao
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China
| | - Qianxi Feng
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China
| | - Rui Guo
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China
| | - Li Zhong
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; Western University of Health Sciences, Pomona, CA 91766, USA.
| | - Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
42
|
Gao H, Zhang X, Liu Z, Yang X, Li Y, Cui M, Wang H, Chen X, Zhang W, Liu Z, Yu Y, Chen L, Li D, Xiao Y, Chen W, Wang Q. Discovery of phloridzin as a new antagonist for Di(2-ethylhexyl) phthalate-induced male reproductive toxicity based on the adverse outcome pathway network and drug-target gene set enrichment analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117740. [PMID: 39818139 DOI: 10.1016/j.ecoenv.2025.117740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widespread ubiquitous phthalate environmental contaminant. The male reproductive toxicity (MRT) from exposure to DEHP and its main metabolite, mono(2-ethylhexyl) phthalate (MEHP), has been well documented. Fully elucidating its toxic mechanism and discovering effective antagonists are desirable means to reduce the health risks of DEHP. In this study, 552 genes related to MRT induced by DEHP/MEHP were screened out from the Comparative Toxicogenomics Database (CTD) and DisGeNET database. Next, we developed a global adverse outcome pathway (AOP) network based on the existed AOP-wiki. After functional enrichment analyses and mapping to the global AOP network, we found that the increased ROS level, cell cycle arrest, and increased apoptosis are key events (KEs) involved in DEHP-mediated MRT, which was validated in TM3 Leydig cell model. Among them, cellular apoptosis is the core KE in DEHP-induced MRT via network topological analysis. Eventually, we developed a novel in silico antagonist screening platform (http://43.136.69.224:3838/wlab/) based on drug-target gene set enrichment analysis (dtGSEA version 2.0). Several potential candidates that mitigate DEHP-mediated cellular apoptosis have been screened out, including quercetin, taurine, methionine, and phloridzin. Further experimental results demonstrated that phloridzin provided the most effective protection against MEHP-induced apoptosis in TM3 cells probably through the p53 and MAPK signaling pathways. Molecular docking and molecular dynamics simulations suggest that STAT3 and RUNX1 may be important targets for phloridzin to antagonize MEHP-induced MRT. Our study provides a new approach to discover the antagonists for the toxicity of environmental contaminants based on AOP network and dtGSEA methods.
Collapse
Affiliation(s)
- Huan Gao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoge Yang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yajie Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Han Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyu Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiying Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihan Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongjiang Yu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
43
|
Fénichel P, Todaka E, Etzel RA, Chan CC, Barouki R, Chevalier N, Fini JB, Poore KR, Sakabe K, Siroux V, Yamamoto M, Mori C. Call to introduce environmental preventive medicine courses to the medical curriculum. An initial experience of an education program at the Faculty of Medicine of Nice, University of Côte d'Azur. Front Med (Lausanne) 2025; 11:1412674. [PMID: 39850103 PMCID: PMC11755413 DOI: 10.3389/fmed.2024.1412674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/12/2024] [Indexed: 01/25/2025] Open
Affiliation(s)
- Patrick Fénichel
- Department of Endocrinology, Diabetology and Reproduction, University of Côte d'Azur, Nice, France
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Ruth A. Etzel
- Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Chang-Chuan Chan
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | - Nicolas Chevalier
- Department of Endocrinology, Diabetology and Reproduction, University of Côte d'Azur, Nice, France
| | | | - Kirsten R. Poore
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kou Sakabe
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Valerie Siroux
- Inserm U1209 CNRS UMR 5309 Team of Environmental Epidemiology Applied to the Development and Respiratory, Health Institute for Advanced Biosciences, Université Grenoble Alpes, La Tronche, France
| | - Midori Yamamoto
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
44
|
Lin KX, Wu ZY, Qin ML, Zeng HC. Bisphenol S Induces Lipid Metabolism Disorders in HepG2 and SK-Hep-1 Cells via Oxidative Stress. TOXICS 2025; 13:44. [PMID: 39853042 PMCID: PMC11769282 DOI: 10.3390/toxics13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Bisphenol S (BPS) is a typical endocrine disruptor associated with obesity. To observe BPS effects on lipid metabolism in HepG2 and SK-Hep-1 human HCC cells, a CCK-8 assay was used to assess cell proliferation in response to BPS, and the optimal concentration of BPS was selected. Biochemical indices such as triglyceride (TG) and total cholesterol (T-CHO), and oxidative stress indices such as malondialdehyde (MDA) and catalase (CAT) were measured. ROS and MDA levels were significantly increased after BPS treatment for 24 h and 48 h (p < 0.05), indicating an oxidative stress response. Alanine aminotransferase (ALT), T-CHO, and low-density lipoprotein cholesterol (LDL-C) levels also increased significantly after 24 or 48 h BPS treatments (p < 0.05). RT-PCR and Western blot analyses detected mRNA or protein expression levels of peroxisome proliferator-activated receptor α (PPARα) and sterol regulatory element-binding protein 1c (SREBP1C). The results indicated that BPS could inhibit the mRNA expression of PPARα and carnitine palmitoyl transferase 1B (CPT1B), reduce lipid metabolism, promote mRNA or protein expression of SREBP1C and fatty acid synthase (FASN), and increase lipid synthesis. Increased lipid droplets were observed using morphological Oil Red O staining. Our study demonstrates that BPS may cause lipid accumulation by increasing oxidative stress and perturbing cellular lipid metabolism.
Collapse
Affiliation(s)
- Kai-Xing Lin
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (K.-X.L.); (Z.-Y.W.); (M.-L.Q.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Zi-Yao Wu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (K.-X.L.); (Z.-Y.W.); (M.-L.Q.)
| | - Mei-Lin Qin
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (K.-X.L.); (Z.-Y.W.); (M.-L.Q.)
| | - Huai-Cai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (K.-X.L.); (Z.-Y.W.); (M.-L.Q.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
45
|
Acevedo JM, Kahn LG, Pierce KA, Carrasco A, Rosenberg MS, Trasande L. Temporal and geographic variability of bisphenol levels in humans: A systematic review and meta-analysis of international biomonitoring data. ENVIRONMENTAL RESEARCH 2025; 264:120341. [PMID: 39522874 PMCID: PMC11863187 DOI: 10.1016/j.envres.2024.120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Bisphenols are endocrine-disrupting chemicals known to contribute to chronic disease across the lifespan. With increased awareness of their health effects, changes in regulation and health behaviors have contributed to reductions in urinary bisphenol A (BPA) levels in the United States, Canada, and Europe. However, global trends in bisphenols outside these regions, especially bisphenol S (BPS) exposure, have been less studied. AIM We examine trends in urinary BPA and BPS concentration in non-occupationally exposed populations, where representative data at a country level is unavailable. METHODS We systematically reviewed studies published between 2000 and 2023 that included urinary bisphenol concentrations. We examined BPA and BPS concentration changes by sampling year, controlling for region, age, and pregnancy status, with and without a quadratic term and geometric mean, via mixed-effects meta-regression models with a random intercept and sensitivity analysis. We identified heterogeneity using Cochran's Q-statistic, I2 index, and funnel plots. RESULTS The final analytic sample consisted of 164 studies. We observed positive non-linear associations between time and BPA concentration internationally (beta: 0.02 ng/mL/year2, 95% CI: [0.01, 0.03]) and in Eastern and Pacific Asia (beta: 0.03 ng/mL/year2, 95% CI: [0.02, 0.05]). We also observed non-linear associations of time with both BPA and BPS concentrations in the Middle East and South Asia (beta: 0.13 ng/mL/year2, 95% CI: [0.01, 0.25] and beta: 0.29 ng/mL/year2, 95% CI: [-0.50, -0.08], respectively). In the sensitivity analyses excluding studies with geometric or arithmetic mean values, each displayed significant shifts from the main findings with some consistent outcomes occurring internationally and/or in specific regions. Heterogeneity was high across studies, suggesting possible bias in our estimations. CONCLUSIONS Our findings provide evidence for concern about increasing population exposure to BPA and BPS. Further studies estimating attributable disease burden and costs at regional and global levels are warranted to show these chemicals' impact on population health and economies.
Collapse
Affiliation(s)
- Jonathan M Acevedo
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristyn A Pierce
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna Carrasco
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Wagner School of Public Service, New York University, New York, NY, USA
| |
Collapse
|
46
|
Merret PE, Sparfel L, Lavau C, Lagadic-Gossmann D, Martin-Chouly C. Extracellular vesicles as a potential source of biomarkers for endocrine disruptors in MASLD: A short review on the case of DEHP. Biochimie 2025; 228:127-137. [PMID: 39307409 DOI: 10.1016/j.biochi.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic disease with increasing prevalence and for which non-invasive biomarkers are needed. Environmental endocrine disruptors (EDs) are known to be involved in the onset and progression of MASLD and assays to monitor their impact on the liver are being developed. Extracellular vesicles (EVs) mediate cell communication and their content reflects the pathophysiological state of the cells from which they are released. They can thus serve as biomarkers of the pathological state of the liver and of exposure to EDs. In this review, we present the relationships between DEHP (Di(2-ethylhexyl) phthalate) and MASLD and highlight the potential of EVs as biomarkers of DEHP exposure and the resulting progression of MASLD.
Collapse
Affiliation(s)
- Pierre-Etienne Merret
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Catherine Lavau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
47
|
Trasande L. The role of plastics in allergy, immunology, and human health: What the clinician needs to know and can do about it. Ann Allergy Asthma Immunol 2025; 134:46-52. [PMID: 38945394 DOI: 10.1016/j.anai.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The effects of plastics on human health include allergy, atopy, asthma, and immune disruption, but the consequences of chemicals used in plastic materials span nearly every organ system and age group as well. Behavioral interventions to reduce plastic chemical exposures have reduced exposure in low- and high-income populations, yet health care providers know little about plastic chemical effects and seldom offer steps to patients to limit exposure. Health care facilities also use many products that increase the risk of chemical exposures, particularly for at-risk populations such as children in neonatal intensive care units. Given that disparities in plastic chemical exposure are well documented, collaborative efforts are needed between scientists and health care organizations, to develop products that improve provider knowledge about chemicals used in plastic materials and support the use of safer alternatives in medical devices and other equipment.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, New York; Department of Population Health, NYU Grossman School of Medicine, New York, New York; NYU Wagner Graduate School of Public Service, New York, New York.
| |
Collapse
|
48
|
Moon JH, Roh HS, Park YJ, Song HH, Choi J, Jung DW, Park SJ, Park HJ, Park SH, Kim DE, Kim G, Auh JH, Bhang DH, Lee HJ, Lee DY. A three-dimensional mouse liver organoid platform for assessing EDCs metabolites simulating liver metabolism. ENVIRONMENT INTERNATIONAL 2025; 195:109184. [PMID: 39798515 DOI: 10.1016/j.envint.2024.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025]
Abstract
Hepatic metabolism is an important process for evaluate the potential activity and toxicity of endocrine disrupting chemicals (EDCs) metabolites. Organization for Economic Co-operation and Development (OECD) has advocated the development of in vitro assays that mimic in vivo hepatic metabolism to eventually replace classical animal tests. In response to this need, we established a 3D mouse liver organoid (mLO) platform that mimics the animal model and is distinct from existing models. We evaluated the effects the activity of EDC metabolites generated through mLOs based on human cell-based reporter gene assays in addition to existing models. This study emphasizes the importance of hepatic ex-vivo and suggests the need a new metabolic model through a 3D mLOs platform. These results indicate that mLOs provides a novel biological method to screen for potential endocrine-disrupting activities of EDC metabolites.
Collapse
Affiliation(s)
- Ji Hyun Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Young Jae Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Hyun Ho Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Da Woon Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ho Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - So-Hyeon Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Da-Eun Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Gahee Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Joong-Hyuck Auh
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Dong Ha Bhang
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea; Department of Food and Animal Biotechnology, Seoul National University, Seoul 00826, Republic of Korea; Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 00826, Republic of Korea; Green Bio Science & Technology, Bio-Food Industrialization, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
49
|
Ding Z, Chen H, Cheng H, Wu C, Ruan H, Zhu B, Zhou P, Xu Z, Xiang H. BPZ inhibits early mouse embryonic development by disrupting maternal-to-zygotic transition and mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117693. [PMID: 39788034 DOI: 10.1016/j.ecoenv.2025.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
The use of Bisphenol A (BPA) has been widely restricted due to its adverse health effects. Bisphenol Z (BPZ) is used as an alternative to BPA, and humans are widely exposed to BPZ through various routes. Recent studies have shown that BPZ exposure adversely affects mouse oocyte meiotic maturation. This study investigates the impact of BPZ exposure on early mouse embryonic development alongside an exploration of the underlying mechanisms. The findings reveal that exposure to BPZ leads to a reduction in early embryo quality and hinders developmental progression. RNA sequencing analysis has identified 593 differentially expressed genes as a result of BPZ exposure, highlighting considerable changes in early embryonic gene expression. Mechanistically, BPZ exposure inhibits the activation of the zygotic genome and impedes maternal mRNA degradation, thereby interfering with maternal-to-zygotic transition (MZT). Further analysis indicates compromised mitochondrial function, as evidenced by abnormal distribution, diminished membrane potential, and lower ATP levels. Consequently, BPZ-exposed embryos exhibit elevated levels of reactive oxygen species, superoxide anions, and oxidative DNA damage. Moreover, BPZ exposure is associated with an increase in γ-H2A.X expression. Additionally, BPZ exposure alters the expression levels of histone modifications, including H3K27me2, H3K27me3, H3K9me3, and H3K27ac, in early embryos. Collectively, BPZ exposure significantly impairs early embryo quality by disrupting mitochondrial function, inducing oxidative stress and DNA damage, altering histone modifications, and inhibiting MZT, ultimately resulting in hindered blastocyst formation. These findings underscore the profound adverse effects of BPZ on early embryonic development, indicating the need for caution when considering it as a safe alternative to BPA.
Collapse
Affiliation(s)
- Zhiming Ding
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Huilei Chen
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Huiru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Caiyun Wu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Hongzhen Ruan
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Bingjing Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Ping Zhou
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| | - Zuying Xu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| | - Huifen Xiang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| |
Collapse
|
50
|
Wu Y, Li H, Fan Y, Cohen Hubal EA, Little JC, Eichler CMA, Bi C, Song Z, Qiu S, Xu Y. Quantifying EDC Emissions from Consumer Products: A Novel Rapid Method and Its Application for Systematic Evaluation of Health Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22700-22713. [PMID: 39628321 DOI: 10.1021/acs.est.4c09466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are widely used in consumer products and have been associated with adverse public health outcomes and significant economic costs. We developed a rapid chamber method for measuring EDC emissions from consumer products, significantly reducing the time to reach steady state from weeks or months to minutes or hours. Using this method, we quantified EDC emissions from a wide range of products, determined the emission-control parameters, and established their relationship with the EDC content (Wf) and physicochemical properties. By incorporating Wf data from consumer product databases and applying stochastic models, we systematically estimated emissions for 400 EDC-product combinations and assessed the associated exposure and disease burden for the U.S. population. Our results suggest that more than 60% of these combinations could result in carcinogenic disability-adjusted life years (DALYs) above the acceptable threshold. The overall disease burden caused by EDCs in consumer products can be substantial, with DALYs exceeding those associated with other pollutants, such as particulate matter, in a worst-case scenario. This study provides a valuable tool for prioritizing hazardous EDCs in consumer products, evaluating safer alternatives, and formulating effective intervention strategies, thereby supporting policymakers and manufacturers in making informed, sustainable decisions.
Collapse
Affiliation(s)
- Yili Wu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Hongwan Li
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Yujie Fan
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Elaine A Cohen Hubal
- Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27709, United States
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Clara M A Eichler
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chenyang Bi
- Aerodyne Research Inc, Billerica, Massachusetts 01821, United States
| | - Zidong Song
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Shuolin Qiu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|