1
|
Laila U, Kaur J, Sharma K, Singh J, Rasane P, Kaur S, Bhadariya V. Dandelion ( Taraxacum officinale): A Promising Source of Nutritional and Therapeutic Compounds. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2025; 16:41-56. [PMID: 38425109 DOI: 10.2174/012772574x293072240217185616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Taraxacum officinale, commonly referred to as dandelion, is a selfgrowing plant/ weed in various parts of India and the rest of the world (particularly the northern hemisphere). The plant's chemical composition, including sesquiterpene lactones, saponins, flavonoids, phenols, and many other compounds, contributes positively to the human body, promoting overall health. AIM This review aims to shed light on the therapeutic potential of dandelion by summarizing its nutritional benefits, phytochemical constituents, and effectiveness in addressing health conditions like diabetes, inflammation, and cancer. It also provides insights into the applications of this plant beyond the food industry to gain researchers' attention to unravel the unexplored aspects of this therapeutic plant. It will further help in laying specific considerations, which are required to be taken into account before the development of functional foods incorporated with dandelion. Scope and approach: Being rich in essential vitamins, minerals, and other phytoconstituents, dandelion is a natural remedy for various ailments. Whether consumed raw or cooked, the plant's inclusion in the diet poses potential therapeutic effects on conditions such as diabetes, inflammation, liver disease, and tumors. It also aids in immune system modulation and fights infections by targeting microbes at their root. Researchers have developed various value-added food products by incorporating different parts of dandelion. CONCLUSION This review highlights the therapeutic potential of dandelion, emphasizing its effectiveness against various health conditions. Insights into dosage, toxicity, and diverse applications further underscore its role as a versatile and promising natural remedy.
Collapse
Affiliation(s)
- Umi Laila
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Kartik Sharma
- Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkla 90110, Thailand
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK-74078, USA
| |
Collapse
|
2
|
Onder A. Recent progress on Prangos (Apiaceae) species used in traditional herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118480. [PMID: 38909827 DOI: 10.1016/j.jep.2024.118480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants have been used for a long time in traditional medicine to treat many diseases. The genus Prangos belongs to the Apiaceae family and has various medicinal and aromatic species. Since ancient times, Prangos species have been employed extensively in traditional medicine for different purposes and are especially popular for their aphrodisiac effects. AIM OF THE REVIEW The goal of this paper is to represent a systematic review of the species in the genus Prangos, including their botanical characteristics, uses in traditional medicine, phytochemical constituents, the composition of the essential oils produced, and the biological properties. MATERIALS AND METHODS The articles regarding traditional uses and bioactivities of Prangos species were evaluated using electronic databases such as PubMed, Google Scholar, and ScienceDirect. Use of the World Flora Online (WFO) - The Plant List, The International Plant Names Index, the World Checklist of Vascular Plants (2024), and ChemDraw Professional helped complete this compilation. RESULTS Phytochemical investigations have indicated that coumarins are characteristic constituents of Prangos species, especially prenylated simple coumarins and furanocoumarins, and also flavonoids, terpenoids, and phytosterols occur in this genus. In addition, the essential oils of these plants have been examined. The biological properties of the Prangos species seem worthy of further investigation. Also, some information about the toxicity of these species and their use as ingredients in food products is presented. CONCLUSIONS This review highlights the evaluation of traditional knowledge, phytochemical profiles, biological activities, and potential uses of Prangos species as foods and spices. Many pharmacological activities have been performed related to their traditional uses, but frequently, the exact mechanism of action remains scientifically unproven. This review has compiled data on the phytochemistry, the active secondary metabolites, the biological properties, and recent advances in Prangos species.
Collapse
Affiliation(s)
- Alev Onder
- Ankara University, Faculty of Pharmacy, Department of Pharmacognosy, 06100, Tandogan-Ankara, Türkiye.
| |
Collapse
|
3
|
Zhao X, Li Y, Huang Y, Shen J, Xu H, Li K. Integrative analysis of the metabolome and transcriptome reveals the mechanism of polyphenol biosynthesis in Taraxacum mongolicum. FRONTIERS IN PLANT SCIENCE 2024; 15:1418585. [PMID: 39220008 PMCID: PMC11361933 DOI: 10.3389/fpls.2024.1418585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Introduction Dandelion is widely used in clinical practice due to its beneficial effects. Polyphenolic compounds are considered the main anti-inflammatory active ingredient of dandelion, but the gene expression patterns of polyphenolic compounds in different dandelion tissues are still unclear. Methods In this study, we combined a nontargeted metabolome, PacBio Iso-seq transcriptome, and Illumina RNA-seq transcriptome to investigate the relationship between polyphenols and gene expression in roots, flowers, and leaves of flowering dandelion plants. Results Eighty-eight flavonoids and twenty-five phenolic acids were identified, and 64 candidate genes involved in flavonoid biosynthesis and 63 candidate genes involved in chicoric acid biosynthesis were identified. Most flavonoid and chicoric acid-related genes demonstrated the highest content in flowers. RNA-seq analysis revealed that genes involved in polyphenol biosynthesis pathways, such as CHS, CHI, F3H, F3'H, FLS, HQT, and CAS, which are crucial for the accumulation of flavonoids and chicoric acid, were upregulated in flowers. Discussion The combination of transcriptomic and metabolomic data can help us better understand the biosynthetic pathways of polyphenols in dandelion. These results provide abundant genetic resources for further studying the regulatory mechanism of dandelion polyphenol biosynthesis.
Collapse
Affiliation(s)
- Xing Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yiguo Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Plateau Characteristic Agricultural Development Office, Kunming Bureau of Agriculture and Rural Affairs, Kunming, China
| | - Yuanchong Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jun Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Mirzajani F, Rezadoost H, Zerang R, Sonboli A. Impact of ultra-high dilutions from Iranian endemic and commercial calendula on the germination and growth quality of Oryza sativa L. Heliyon 2024; 10:e34868. [PMID: 39144930 PMCID: PMC11320198 DOI: 10.1016/j.heliyon.2024.e34868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Purpose This article deals with producing ultra-diluted compounds (UHDs) prepared from Iranian calendula's characteristic and endemic species. It compares their chemical, biological and biochemical characteristics with the commercial sample of calendula species (grown in the Alps). In the following, these UHDs have been used to improve the quality of germination and growth and reduce contamination of rice (Oryza sativa) seeds in the laboratory environment. Methods High-performance thin-layer chromatography (HPTLC) is used to isolate the active compounds. On the separated results, antioxidant and antibacterial were identified directly on the plate (Bio-autographic method). Direct on the plate)DESI mass spectrometry was used to identify the active compounds. Results The HPTLC reveals that the chromatogram of native C. percica and C. officinalis extract is the most similar to the commercial compounds. The highest antioxidant activity is related to C. officinalis. The best antibacterial activity of the extracts against Staphylococcus aureus and Escherichia coli belongs to C. officinalis and C. tripterocarpa. Rutin, quercitrin, β-campstrole and di-o-caffeoylquinic acid, which are among the flavonoid and terpenoid categories were identified as active compounds. The prepared UHDs from native calendula are biologically more effective than the commercial ones in increasing seed germination efficiency, improving rooting quality and reducing contamination. Conclusion Using UHDs increases the production of photosynthetic pigments the root length and the number of lateral roots. Also, the amount of protein, gibberellic acid and abscisic acid in seedlings treated using native UHDs of C. officinalis (native or commercial) is higher than the others.
Collapse
Affiliation(s)
- Fateme Mirzajani
- Protein Research Center, Shahid Beheshti University, 1983969411, Tehran, Iran
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Reza Zerang
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Ali Sonboli
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| |
Collapse
|
5
|
Liu WY, Xu D, Hu ZY, Meng HH, Zheng Q, Wu FY, Feng X, Wang JS. Total cucurbitacins from Herpetospermum pedunculosum pericarp do better than Hu-lu-su-pian (HLSP) in its safety and hepatoprotective efficacy. Front Pharmacol 2024; 15:1344983. [PMID: 38455959 PMCID: PMC10919163 DOI: 10.3389/fphar.2024.1344983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
The pericarp of Herpetospermum pedunculosum (HPP) has traditionally been used for treating jaundice and hepatitis. However, the specific hepatoprotective components and their safety/efficacy profiles remain unclear. This study aimed to characterize the total cucurbitacins (TCs) extracted from HPP and evaluate their hepatoprotective potential. As a reference, Hu-lu-su-pian (HLSP), a known hepatoprotective drug containing cucurbitacins, was used for comparison of chemical composition, effects, and safety. Molecular networking based on UHPLC-MS/MS identified cucurbitacin B, isocucurbitacin B, and cucurbitacin E as the major components in TCs, comprising 70.3%, 26.1%, and 3.6% as determined by RP-HPLC, respectively. TCs treatment significantly reversed CCl4-induced metabolic changes associated with liver damage in a dose-dependent manner, impacting pathways including energy metabolism, oxidative stress and phenylalanine metabolism, and showed superior efficacy to HLSP. Safety evaluation also showed that TCs were safe, with higher LD50 and no observable adverse effect level (NOAEL) values than HLSP. The median lethal dose (LD50) and NOAEL values of TCs were 36.21 and 15 mg/kg body weight (BW), respectively, while the LD50 of HLSP was 14 mg/kg BW. In summary, TCs extracted from HPP demonstrated promising potential as a natural hepatoprotective agent, warranting further investigation into synergistic effects of individual cucurbitacin components.
Collapse
Affiliation(s)
- Wen-Ya Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Di Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Zi-Yun Hu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Hui-Hui Meng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Qi Zheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Feng-Ye Wu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Xin Feng
- Beijing Hospital of Tibetan Medicine, China Tibetology Research Center, Beijing, China
| | - Jun-Song Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
6
|
Hao F, Deng X, Yu X, Wang W, Yan W, Zhao X, Wang X, Bai C, Wang Z, Han L. Taraxacum: A Review of Ethnopharmacology, Phytochemistry and Pharmacological Activity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:183-215. [PMID: 38351703 DOI: 10.1142/s0192415x24500083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Taraxacum refers to the genus Taraxacum, which has a long history of use as a medicinal plant and is widely distributed around the world. There are over 2500 species in the genus Taraxacum recorded as medicinal plants in China, Central Asia, Europe, and the Americas. It has traditionally been used for detoxification, diuresis, liver protection, the treatment of various inflammations, antimicrobial properties, and so on. We used the most typically reported Taraxacum officinale as an example and assembled its chemical makeup, including sesquiterpene, triterpene, steroids, flavone, sugar and its derivatives, phenolic acids, fatty acids, and other compounds, which are also the material basis for its pharmacological effects. Pharmacological investigations have revealed that Taraxacum crude extracts and chemical compounds contain antimicrobial infection, anti-inflammatory, antitumor, anti-oxidative, liver protective, and blood sugar and blood lipid management properties. These findings adequately confirm the previously described traditional uses and aid in explaining its therapeutic applications.
Collapse
Affiliation(s)
- Fusheng Hao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xinxin Deng
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, P. R. China
| | - Xin Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Wen Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Wei Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xi Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xiaofei Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Changcai Bai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Lu Han
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| |
Collapse
|
7
|
Jamioł-Milc D, Gudan A, Kaźmierczak-Siedlecka K, Hołowko-Ziółek J, Maciejewska-Markiewicz D, Janda-Milczarek K, Stachowska E. Nutritional Support for Liver Diseases. Nutrients 2023; 15:3640. [PMID: 37630830 PMCID: PMC10459677 DOI: 10.3390/nu15163640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The liver is a key organ that is responsible for the metabolism of proteins, fats, and carbohydrates and the absorption and storage of micronutrients. Unfortunately, the prevalence of chronic liver diseases at various stages of advancement in the world population is significant. Due to the physiological function of the liver, its dysfunction can lead to malnutrition and sarcopenia, and the patient's nutritional status is an important prognostic factor. This review discusses key issues related to the diet therapy of patients with chronic liver diseases, as well as those qualified for liver transplantation and in the postoperative period.
Collapse
Affiliation(s)
- Dominika Jamioł-Milc
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Gudan
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Joanna Hołowko-Ziółek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | | | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| |
Collapse
|
8
|
EL-GUOURRAMI O, DRIOUA S, AMEGGOUZ M, SALHI N, SAYAH K, ZENGİN G, ZAHIDI A, DOUKKALI A, BENZEID H. Antioxidant activity, analgesic activity, and phytochemical analysis of Ammi majus (L.) extracts. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2023. [DOI: 10.21448/ijsm.1139246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Ammi majus (L.) is commonly used to cure many diseases in Moroccan folk medicine, especially vitiligo. This research tries to evaluate the phytochemical constituents of two aqueous extracts (E1; Maceration; 48 h) and (E2: Infusion; 1h) and three organic fractions (F1: Cyclohexane), (F2: Ethyl acetate (EtOAc)) and (F3: Ethanolic (EtOH)) of A. majus (L.) seeds, as well as to study the antioxidant and analgesic activity of the species. Phytochemical analysis, antioxidant activity (DPPH, FRAP, ABTS, and TAC tests), and analgesic activity (writhing and tail immersion were induced by Acetic acid tests) were analyzed according to the literature. A quantitative phytochemical study indicate that the E1 had the highest content of total polyphenols (26.95 ± 0.53 mg GAE/g extract) and flavonoids (37.92 ± 0.46 mg QE/g extract), while F3 showed a promising flavonol content (24.26±0.08 mg QE/g extract). Tannins were found to be high in F1 (59.27 ± 0.16 mg CE/g extract) and F2 (57.65 ± 1.18 mg CE/g extract). Antioxidant results reveals that DPPH (IC50 = 179.68 ± 0.47 μg/mL) and FRAP (EC50 = 367.03 ± 0.12 μg/mL) show to E1 a high antioxidant activity. Regarding the analgesic activity of the different studied extracts, it was found that E1 has a high peripheral analgesic effect with 62.32 % and a high central analgesic potential throughout the experimentation at 500 mg/kg. Our studies demonstrated for the first time that A. majus seeds extracts have high antioxidant and analgesic activities through different analysis techniques.
Collapse
|
9
|
Traditional Herbal Remedies in the Management of Metabolic Disorders in Ethiopia: A Systematic Review of Ethnobotanical Studies and Pharmacological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1413038. [PMID: 36686979 PMCID: PMC9851791 DOI: 10.1155/2023/1413038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023]
Abstract
Background MetS are common throughout the world, including Ethiopia. These have traditionally been treated using medicinal plants, particularly in rural areas where they are freely accessible. This systematic review tried to investigate the treatment of MetS with Ethiopian medicinal herbs and made recommendations for more validation research. A careful analysis of the literature was also conducted on the therapeutic effects of these and other Ethiopian medicinal plants with hepatoprotective and antihypertensive activities. Methods The relevant keywords "Ethnomedicinal + hypertension," "Ethnopharmacological + hypertension," "Ethnomedicinal + hepatitis, jaundices, and liver disease," "Ethnopharmacological + hepatic disorder," and "Ethnomedicinal + weight loss" were used to search for relevant articles in the major electronic scientific databases, including PubMed, Science Direct, Web of Science, and Google Scholar. The search strategy included all articles with descriptions that were accessible until April 30, 2022. The study's subjects, methods, or year of publication were no restrictions in the search. The outcomes were compiled using descriptive statistics. Results Fifty-four (54) studies were examined in the review that satisfied the inclusion and exclusion criteria for the treatment of MetS in Ethiopia. The most often used ethnobotanical plant species for the treatment of hypertension and hepatic disorders were Moringa stenopetala and Croton macrostachyus. Both hepatic and hypertensive disorders were treated more frequently with leaves (52% and 39%, respectively) than with roots (20% and 13%, respectively). Some intriguing studies came from an ethnobotanical investigation into medicinal herbs' hepatoprotective and antihypertensive properties. The most often investigated medicinal plant for its antihypertensive effects is Moringa stenopetala. Conclusion The study revealed that Ethiopians often use anti-MetS herbal remedies. We advocate the experimental validation of the commonly used medicinal plants with the identification of active compounds and the development of effective alternative drugs for the treatment of MetS.
Collapse
|
10
|
Oliveira AI, Pinho C, Vieira FQ, Silva R, Cruz A. Taraxacum spp. in vitro and in vivo anticancer activity – a review. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Yousuf S, Shabir S, Singh MP. Protection Against Drug-Induced Liver Injuries Through Nutraceuticals via Amelioration of Nrf-2 Signaling. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 42:495-515. [PMID: 35771985 DOI: 10.1080/27697061.2022.2089403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatotoxicity caused by the overdose of various medications is a leading cause of drug-induced liver injury. Overdose of drugs causes hepatocellular necrosis. Nutraceuticals are reported to prevent drug-induced liver failure. The present article aims to review the protection provided by various medicinal plants against hepatotoxic drugs. Ayurveda is considered a conventional restorative arrangement in India. It is consistently used for ages and is still used today to cure drug-induced hepatotoxicity by focusing on antioxidant stress response pathways such as the nuclear factor erythroid-2 (Nrf-2) antioxidant response element signaling pathway. Nrf-2 is a key transcription factor that entangles Kelch-like ECH-associating protein 1, a protein found in the cell cytoplasm. Some antioxidant enzymes, such as gamma glycine cysteine ligase (γ-GCL) and heme oxygenase-1 (HO-1), are expressed in Nrf-2 targeted genes. Their expression, in turn, decreases the stimulation of hepatic macrophages and induces the messenger RNA (mRNA) articulation of proinflammatory factors including tumor necrosis factor α. This review will cover various medicinal plants from a mechanistic view and how they stimulate and interact with Nrf-2, the master regulator of the antioxidant response to counterbalance oxidative stress. Interestingly, therapeutic plants have become popular in the medical sector due to safer yet effective supplementation for the prevention and treatment of new human diseases. The contemporary study is expected to collect information on a variety of therapeutic traditional herbs that have been studied in the context of drug-induced liver toxicity, as nutraceuticals are the most effective treatments for oxidative stress-induced hepatotoxicity. They are less genotoxic, have a lower cost, and are readily available. Together, nutraceuticals exert protective effects against drug-induced hepatotoxicity through the inhibition of oxidative stress, inflammation, and apoptosis. Its mechanism(s) are considered to be associated with the γ-GCL/HO-1 and Nrf-2 signaling pathways. KEY TEACHING POINTSThe liver is the most significant vital organ that carries out metabolic activities of the body such as the synthesis of glycogen, the formation of triglycerides and cholesterol, as well as the formation of bile.Acute liver failure is caused by the consumption of certain drugs; drug-induced liver injury is the major condition.The chemopreventive activity of nutraceuticals may be related to oxidative stress reduction and attenuation of biosynthetic processes involved in hepatic injury via amelioration of the nuclear factor erythroid-2 (Nrf-2) signaling pathway.Nrf-2 is a key transcription factor that is found in the cell cytoplasm resulting in the expression of various genes such as gamma glycine cysteine ligase and heme oxygenase-1.Nutraceutical-rich phytochemicals possess high antioxidant activity, which helps in the prevention of hepatic injury.
Collapse
Affiliation(s)
- Sumaira Yousuf
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mahendra P Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
12
|
Gastroprotective Effects of the Aqueous Extract from Taraxacum officinale in Rats Using Ultrasound, Histology, and Biochemical Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:8987232. [PMID: 34970327 PMCID: PMC8714386 DOI: 10.1155/2021/8987232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/16/2021] [Accepted: 12/04/2021] [Indexed: 01/14/2023]
Abstract
Taraxacum officinale F.H. Wigg. belonging to the family Asteraceae is an edible medicinal plant distributed worldwide. This study aimed to determine the gastroprotective effects of aqueous extract of T. officinale (AETo) in rats using ultrasound, histological, and biochemical analyses. In this study, gastric ulceration was induced by ethanol or piroxicam. Rats were then treated with AETo (3, 30, or 300 mg/kg). The area and histological appearance of gastric ulcers were quantified, and histochemical analysis was performed. The activity of AETo on inflammatory and oxidative stress markers was assessed in the ulcerated tissue. In addition, we investigated the thickness of the gastric wall using the ultrasound technique. Moreover, chemical analyses of AETo were performed. In rats with ethanol- or piroxicam-induced ulcers, AETo reduced the ulceration area, elevated mucin level, and the gastroprotective effect was confirmed by histological analysis. The gastroprotective effect was accompanied by increased activities of SOD, CAT, and GST, as well as an increase in GSH level and reduction in MPO activity. Furthermore, AETo reduced the thickness of the gastric wall in rats. Phytochemical analysis of AETo indicated phenolic acids and flavonoids as the main active compounds. In conclusion, the gastroprotective effect of AETo involves reduction in oxidative stress and inflammatory injury and increase in mucin content. This study advances in the elucidation of mechanisms of gastric protection of T. officinale, contributes to the prospection of new molecules gastroprotective, and proposes the ultrasonographic analyses as a new gastroprotective assessment tool in preclinical studies.
Collapse
|
13
|
Biswas S, Kar A, Sharma N, Haldar PK, Mukherjee PK. Synergistic effect of ursolic acid and piperine in CCl 4 induced hepatotoxicity. Ann Med 2021; 53:2009-2017. [PMID: 34751064 PMCID: PMC8583772 DOI: 10.1080/07853890.2021.1995625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/13/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ursolic acid (UA) is a potent plant-based hepatoprotective agent having poor bioavailability, which hampers its therapeutic efficacy. The present study tries to overcome this limitation by combining it with piperine (PIP), a proven bioenhancer and hepatoprotective agent. METHODS The type of interaction (synergism, addition, or antagonism) resulting between UA and PIP was analyzed and quantified by isobologram and combination index analysis. The hepatoprotective activity of UA and PIP was evaluated by measuring the level of hepatic marker enzymes. Pharmacokinetic analysis was carried out to ascertain the improvement of bioavailability. RESULTS The combinations significantly decrease the enzyme levels, which indicate better hepatoprotective activity compared to single drugs. The relative oral bioavailability of UA was increased about tenfold (from AUC0-t =12.78 ± 2.59 µg/h/ml to 125.15 ± 1.84 µg/h/ml) along with the improvement of plasma concentration and elimination half-life. CONCLUSIONS The findings indicated that the combination of PIP and UA is an effective strategy in enhancing the bioavailability and hepatoprotective potential of UA.KEY MESSAGESUrsolic acid in a combination with piperine provides a synergistic hepatoprotective effect in carbon tetrachloride induced liver damage in rats.Piperine improves the pharmacokinetic properties of ursolic acid when given in combination.Piperine improves the relative oral bioavailability of ursolic acid by tenfold when combined together.
Collapse
Affiliation(s)
- Sayan Biswas
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Amit Kar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Nanaocha Sharma
- Department of Biotechnology, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Pallab K. Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Pulok K. Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Department of Biotechnology, Institute of Bioresources and Sustainable Development, Imphal, India
| |
Collapse
|
14
|
Rouf R, Ghosh P, Uzzaman MR, Sarker DK, Zahura FT, Uddin SJ, Muhammad I. Hepatoprotective Plants from Bangladesh: A Biophytochemical Review and Future Prospect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1633231. [PMID: 34504532 PMCID: PMC8423546 DOI: 10.1155/2021/1633231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Liver diseases are quite prevalant in many densely populated countries, including Bangladesh. The liver and its hepatocytes are targeted by virus and microbes, as well as by chemical environmental toxicants, causing wide-spread disruption of metabolic fuctions of the human body, leading to death from end-stage liver diseases. The aim of this review is to systematically explore and record the potential of Bangladeshi ethnopharmacological plants to treat liver diseases with focus on their sources, constituents, and therapeutic uses, including mechanisms of actions (MoA). A literature survey was carried out using Pubmed, Google Scholar, ScienceDirect, and Scopus databases with articles reported until July, 2020. A total of 88 Bangladeshi hepatoprotective plants (BHPs) belonging to 47 families were listed in this review, including Euphorbiaceae, Cucurbitaceae, and Compositae families contained 20% of plants, while herbs were the most cited (51%) and leaves were the most consumed parts (23%) as surveyed. The effect of BHPs against different hepatotoxins was observed via upregulation of antioxidant systems and inhibition of lipid peroxidation which subsequently reduced the elevated liver biomarkers. Different active constituents, including phenolics, curcuminoids, cucurbitanes, terpenoids, fatty acids, carotenoids, and polysaccharides, have been reported from these plants. The hepatoameliorative effect of these constituents was mainly involved in the reduction of hepatic oxidative stress and inflammation through activation of Nrf2/HO-1 and inhibition of NF-κB signaling pathways. In summary, BHPs represent a valuable resource for hepatoprotective lead therapeutics which may offer new alternatives to treat liver diseases.
Collapse
Affiliation(s)
- Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Puja Ghosh
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Raihan Uzzaman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Fatima Tuz Zahura
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Ilias Muhammad
- National Center for Natural Products Research, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
15
|
Usmani QI, Jahan N, Aleem M, Hasan SA. Aatrilal (Ammi majus L.), an important drug of Unani system of medicine: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114144. [PMID: 33930491 DOI: 10.1016/j.jep.2021.114144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ammi majus L. (Aatrilal) a member of the family Apiaceae, is native to Egypt and widely distributed in Europe, the Mediterranean, and West Asia. It has been used for the treatment of various dermatological disorders particularly vitiligo in the Unani system of Medicine for ages. In traditional medicine, fruits are used as an emmenagogue as well as a diuretic, blood purifier and to treat leprosy, urinary and digestive disorders. AIM OF THE REVIEW This paper aims to highlight the medicinal properties of Aatrilal in view of its temperament and phytoconstituents; to signify its potential in the treatment of vitiligo and other ailments as mentioned in Unani system of medicine and also to explore its phytochemistry, pharmacological and clinical studies. MATERIALS AND METHODS Aatrilal was explored in classical Unani literature for its temperament (mizaj), medicinal properties and therapeutic uses. Published works available on PubMed, Science Direct, and Google Scholar were referred to collect all the available information regarding its phytochemicals and pharmacological studies. All relevant articles up to 2020 were referred including 15 classical Unani books, 15 English books, 72 research, and 3 review papers. The plant's scientific names were validated using 'The Plant List' (www.theplantlist.org). Standard Unani Medical Terminology published by Central Council for Research in Unani Medicine in collaboration with the World Health Organization was used to describe the appropriate Unani terminologies. Glossary of Indian Medicinal Plants and different indexed journals were consulted for botanical and English names. RESULTS Aatrilal has been used in traditional medicine for ages. Due to controversies in its identity, it was adulterated and substituted with many drugs. The real identity of Aatrilal is now established as the fruit of A. majus L. Despite having numerous pharmacological activities, it is considered the first-line drug for the treatment of vitiligo. It is a rich source of furanocoumarins (xanthotoxin, also known as 8-methoxypsoralen, bergapten, imperatorin, isopimpinellin) with other compounds viz. flavonoids, terpenoids, proteins, essential oil constituents, etc. It has been reported for anti-inflammatory, analgesic, antibacterial, antiviral, cytotoxic, and many other activities. Clinical trials have shown the therapeutic potential in vitiligo and other skin disorders. CONCLUSION Based on the available literature, it can be concluded that Aatrilal is a drug that has been effectively used in Unani system of medicine for centuries to treat the cases of vitiligo and other dermatological disorders. It has been studied extensively for its phytopharmacological properties. Raw extracts of A. majus form the crux of the main research. Many potentially bioactive compounds are included in the essential oil, but to our knowledge, no detailed studies of its biological activity are yet available. Therefore, our suggestion is to focus future research on essential oil and its ingredients.
Collapse
Affiliation(s)
- Qamrul Islam Usmani
- Dept. of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Kottigepalaya, Magadi Main Road, Bengaluru, 91, India.
| | - Nasreen Jahan
- Dept. of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Kottigepalaya, Magadi Main Road, Bengaluru, 91, India.
| | - Mohd Aleem
- Dept. of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Kottigepalaya, Magadi Main Road, Bengaluru, 91, India.
| | - Syed Ameer Hasan
- Dept. of Tahafuzi wa Samaji Tib, Preventive and Social Medicine, National Institute of Unani Medicine, Kottigepalaya, Magadi Main Road, Bengaluru, 91, India.
| |
Collapse
|
16
|
Hussain N, Chanda R, Abir RA, Mou MA, Hasan MK, Ashraf MA. MPDB 2.0: a large scale and integrated medicinal plant database of Bangladesh. BMC Res Notes 2021; 14:301. [PMID: 34362451 PMCID: PMC8344187 DOI: 10.1186/s13104-021-05721-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Objective MPDB 2.0 is built to be the continuation of MPDB 1.0, to serve as a more comprehensive data repertoire for Bangladeshi medicinal plants, and to provide a user-friendly interface for researchers, health practitioners, drug developers, and students who wish to study the various medicinal & nutritive plants scattered around Bangladesh and the underlying phytochemicals contributing to their efficacy in Bangladeshi folk medicine. Results MPDB 2.0 database (https://www.medicinalplantbd.com/) comprises a collection of more than five hundred Bangladeshi medicinal plants, alongside a record of their corresponding scientific, family, and local names together with their utilized parts, information regarding ailments, active compounds, and PubMed ID of related publications. While medicinal plants are not limited to the borders of any country, Bangladesh and its Southeast Asian neighbors do boast a huge collection of potent medicinal plants with considerable folk-medicinal history compared to most other countries in the world. Development of MPDB 2.0 has been highly focused upon human diseases, albeit many of the plants indexed here can serve in developing biofuel (e.g.: Jatropha curcas used in biofuel) or bioremediation technologies (e.g.: Amaranthus cruentus helps to reduce cadmium level in soil) or nutritive diets (Terminalia chebula can be used in nutritive diets) or cosmetics (Aloe vera used in cosmetics), etc.
Collapse
Affiliation(s)
- Nazmul Hussain
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University of Bangladesh, Gazipur, 1704, Bangladesh
| | - Rony Chanda
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University of Bangladesh, Gazipur, 1704, Bangladesh
| | | | | | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University of Bangladesh, Gazipur, 1704, Bangladesh.
| | - M Arif Ashraf
- Biology department, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
17
|
Hossain MS, Barua A, Tanim MAH, Hasan MS, Islam MJ, Hossain MR, Emon NU, Hossen SMM. Ganoderma applanatum mushroom provides new insights into the management of diabetes mellitus, hyperlipidemia, and hepatic degeneration: A comprehensive analysis. Food Sci Nutr 2021; 9:4364-4374. [PMID: 34401085 PMCID: PMC8358375 DOI: 10.1002/fsn3.2407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
This study was undertaken to evaluate the antidiabetic, hypolipidemic, and hepatoprotective effects of methanol and aqueous extracts of Ganoderma applanatum (MEGA, AEGA) in alloxan-induced diabetic rats. The antidiabetic study was implemented by the induction of alloxan to the rats. The analysis of the hypolipidemic and liver-protective effects of fungus extracts was studied by estimating the lipid profile and the liver marker enzymes. Besides, in silico screening of the compounds of Ganoderma applanatum has been incorporated thus to check the binding affinity of compounds and enzymes affinity. The Discovery Studio 2020, UCSF Chimera, and PyRx AutoDock Vina have been used to implement the docking analysis. Nine days of oral feeding of MEGA and AEGA of Ganoderma applanatum resulted in a significant (p < .001) reduction in blood glucose, lipid profile, and liver marker enzymes. Besides, Myrocin C scored the highest score in the docking study. The biological and computational approaches suggested the MEGA and AEGA could be a potential source for antidiabetic, hypolipidemic, and hepatoprotective effects.
Collapse
Affiliation(s)
| | - Anik Barua
- Department of Biochemistry and BiotechnologyUniversity of Science and Technology ChittagongChattogramBangladesh
| | | | - Mohammad Sharif Hasan
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChattogramBangladesh
| | - Mohammad Jahedul Islam
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChattogramBangladesh
| | - Md. Rabiul Hossain
- Department of PharmacyUniversity of Science and Technology ChittagongChattogramBangladesh
| | - Nazim Uddin Emon
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChattogramBangladesh
| | - S M Moazzem Hossen
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChattogramBangladesh
| |
Collapse
|
18
|
de Aragão Tannus C, de Souza Dias F, Santana FB, Dos Santos DCMB, Magalhães HIF, de Souza Dias F, de Freitas Santos Júnior A. Multielement Determination in Medicinal Plants and Herbal Medicines Containing Cynara scolymus L., Harpagophytum procumbens D.C., and Maytenus ilifolia (Mart.) ex Reiss from Brazil Using ICP OES. Biol Trace Elem Res 2021; 199:2330-2341. [PMID: 32789646 DOI: 10.1007/s12011-020-02334-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Worldwide, medicinal plants and herbal medicines are widely consumed. The aim of this study was to determine macro- (Ca, K, Mg, Na, and P) and microelements (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Si, Sn, Sr, V, and Zn) in medicinal plants and herbal medicines: "globe artichoke" - Cynara scolymus L., "devil's claw" - Harpagophytum procumbens D.C., and "espinheira santa" - Maytenus ilifolia (Mart) ex Reiss. Concentrations of 24 (essential and toxic potentially) elements in samples from Brazil were determined using a sequential optical emission spectrometer with inductively coupled plasma optical emission spectrometry (ICP OES) after acid digestion, assisted by microwave radiation. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to carry out an exploratory analysis of samples. The elements were quantified (in μg/g): Al (20.24-1261.64), Ba (18.90-63.18), Ca (2877.6-19,957.40), Cr (0.28-1.38), Cu (4.16-21.99), Fe (8.54-627.49), K (1786.12-32,297.19), Mg (505.82-6174.52), Mn (0.40-205.64), Na (1717.23-18,596.45), Ni (< LoQ-0.99), P (35.12-2899.91), Se (1.52-3.71), Sn (1.53-12.43), Sr (52.33-84.31), V (< LoQ-0.24), and Zn (2.60-30.56). As, Cd, Co, Mo, Pb, and Sb, in all the investigated samples, were found to be below the limit of detection (LoD) and quantification (LoQ) values of ICP OES. These medicinal plants and herbal medicines can be sources of Ca, K, Mg, Na, P, Cu, Fe, Mn, Se, and Zn. All samples showed considerable levels of Al. PCA and HCA showed that the samples separated into two large groups.
Collapse
Affiliation(s)
| | - Fernanda de Souza Dias
- Department of Life Sciences, Universidade do Estado da Bahia, Salvador, Bahia, 41195-001, Brazil
| | | | | | | | - Fábio de Souza Dias
- Science, Technology and Innovation Institute, Universidade Federal da Bahia, Camaçari, Bahia, 42809-000, Brazil
| | | |
Collapse
|
19
|
Olatunji TL, Odebunmi CA, Adetunji AE. Biological activities of limonoids in the Genus Khaya (Meliaceae): a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00197-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Limonoids are a class of highly oxygenated modified triterpenoids with a diverse range of biological activities. Although with restricted occurrence in the plant kingdom, these compounds are found extensively in the Meliaceae and Rutaceae families. Limonoids are of great interest in science given that the small number of plant families where they occur exhibit a broad range of medicinal properties that promote health and prevent disease.
Main text
The Meliaceae family includes the genus Khaya and comprises tree species that have been used in traditional medicine to treat several ailments. In recent years, the genus Khaya has attracted much research interest owing to the presence of limonoids in different plant parts of a few species that can serve as therapeutic molecules in the pharmaceutical industry. In this study, a literature search over the past two decades (2000–2020) was conducted on the biological activities of limonoids in the genus Khaya using different databases such as Google Scholar, PubMed, Scopus and ISI Web of Science. The taxonomy, geographical distribution and the various traditional uses of the genus are presented in detail. This study reveals that the currently documented biological activities of limonoids both in vivo and in vitro are limited to four species (K. anthotheca, K. grandifoliola, K. ivorensis and K. senegalensis) in the genus Khaya, and include anticancer, antimalarial, hepatoprotection, anti-inflammatory, neuroprotection, antimicrobial, antifungal and antifeedant. The most well-researched species, K. senegalensis, has the most notable biological activities and traditional uses in the genus Khaya.
Conclusion
The present detailed and up-to-date review of recent literature on the biological activities in the genus Khaya reveals the potentials of limonoids for drug development in managing several ailments.
Collapse
|
20
|
Valorization of unexploited artichoke leaves dust for obtaining of extracts rich in natural antioxidants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Forouzanfar F, Guest PC, Jamialahmadi T, Sahebkar A. Hepatoprotective Effect of Trehalose: Insight into Its Mechanisms of Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:489-500. [PMID: 34981500 DOI: 10.1007/978-3-030-73234-9_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Raslan MA, F. Taher R, Al-Karmalawy AA, El-Ebeedy D, Metwaly AG, Elkateeb NM, Ghanem A, Elghaish RA, Abd El Maksoud AI. Cordyline fruticosa(L.) A. Chev. leaves: isolation, HPLC/MS profiling and evaluation of nephroprotective and hepatoprotective activities supported by molecular docking. NEW J CHEM 2021; 45:22216-22233. [DOI: 10.1039/d1nj02663a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The metabolites profile ofC. fruticosa(L.) A. Chev. leaves, 12 isolates, and its nephroprotective and hepatoprotective activities are described.
Collapse
Affiliation(s)
- Mona A. Raslan
- Pharmacognosy Department, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Rehab F. Taher
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Giza, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Dalia El-Ebeedy
- Pharmaceutical Biotechnology Department, Faculty of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | | | | | - Aml Ghanem
- Faculty of biotechnology, Badr university, Cairo, Egypt
| | | | - Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
23
|
Menetrier JV, Bonkoski VR, Medeiros KA, Estevan DA, Palozi RAC, Lívero FADR, Velasquez LG, Lourenço ELB, Gasparotto Junior A. Ethnomedicinal Plants Used for the Treatment of Cardiovascular Diseases by Healers in the Southwestern State of Paraná, Brazil, and Their Validation Based on Scientific Pharmacological Data. JOURNAL OF RELIGION AND HEALTH 2020; 59:3004-3036. [PMID: 31832897 DOI: 10.1007/s10943-019-00960-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cardiovascular diseases are responsible for high morbidity and mortality rates worldwide. Among treatment options, medicinal plants are frequently used, especially in developing countries, such as Brazil. Despite social development that has been observed in the last decades, the use of medicinal plants is still driven by popular knowledge, especially by healers. The present study sought to identify medicinal species that are used for the treatment of cardiovascular diseases by healers in the microregion of Francisco Beltrão, Paraná, Brazil. The snowball technique was used to select informants, and data were collected through interviews. The research was performed in two stages: (1) a structured interview and (2) the collection and botanical identification of the species that were mentioned by the healers. Medicinal plants were classified into the following categories of cardiovascular agents: hypotensive and antihypertensive agents, lipid-lowering agents, diuretic agents, and cardiotonic agents. To analyze the data, the frequency was determined, Spearman correlations were calculated, and the informant consensus factor (ICF) and use value were obtained. Some characteristics, such as female gender and old age, were associated with knowledge about medicinal plants. Overall, 77 different species and 149 medicinal uses were cited by the healers. With regard to categories of use, the highest number of species was found among lipid-lowering plants, and the highest ICF was found for species that are used as cardiotonics. Moreover, a literature review indicated that among the cited species, several still lack studies that have proven their effects on the cardiovascular system. The traditional use of medicinal plants for the treatment of cardiovascular diseases is broad in the study regions. The present results are important for clarifying popular knowledge in this region and providing a framework for selecting species with potential for the development of new pharmacological studies.
Collapse
Affiliation(s)
| | | | | | | | - Rhanany Alan Calloi Palozi
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular - LEFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12, P.O. Box 533, Dourados, Mato Grosso do Sul, 79.804-970, Brazil
| | | | | | - Emerson Luiz Botelho Lourenço
- Laboratório de Pesquisa Pré-Clínica de Produtos Naturais e Bioativos, Universidade Paranaense, Umuarama, Paraná, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular - LEFaC, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12, P.O. Box 533, Dourados, Mato Grosso do Sul, 79.804-970, Brazil.
| |
Collapse
|
24
|
Balakrishnan R, Cho DY, Su-Kim I, Choi DK. Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology. Antioxidants (Basel) 2020; 9:antiox9100962. [PMID: 33049991 PMCID: PMC7601828 DOI: 10.3390/antiox9100962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The Dendropanax genus is a kind of flowering plant in the family of Araliaceae that encompasses approximately 91 to 95 species. Several Dendropanax species are used as traditional medicinal plants, extensively used Korea and South America and other parts of the world. Almost every part of the plant, including the leaves, bark, roots, and stems, can be used as traditional medicine for the prevention and management of a broad spectrum of health disorders. This paper sought to summarizes the ethnopharmacological benefits, biological activities, and phytochemical investigations of plants from the genus Dendropanax, and perhaps to subsequently elucidate potential new perspectives for future pharmacological research to consider. Modern scientific literature suggests that plants of the Dendropanax genus, together with active compounds isolated from it, possess a wide range of therapeutic and pharmacological applications, including antifungal, anti-complement, antioxidant, antibacterial, insect antifeedant, cytotoxic, anti-inflammatory, neuroprotective, anti-diabetic, anti-cancer, and anti-hypouricemic properties. The botanical descriptions of approximately six to 10 species are provided by different scientific web sources. However, only six species, namely, D. morbiferus, D. gonatopodus, D. dentiger, D. capillaris, D. chevalieri, and D. arboreus, were included in the present investigation to undergo phytochemical evaluation, due to the unavailability of data for the remaining species. Among these plant species, a high concentration of variable bioactive ingredients was identified. In particular, D. morbifera is a traditional medicinal plant used for the multiple treatment purposes and management of several human diseases or health conditions. Previous experimental evidence supports that the D. morbifera species could be used to treat various inflammatory disorders, diarrhea, diabetes, cancer, and some microbial infections. It has recently been reported, by our group and other researchers, that D. morbifera possesses a neuroprotective and memory-enhancing agent. A total of 259 compounds have been identified among six species, with 78 sourced from five of these species reported to be bioactive. However, there is no up-to-date information concerning the D. morbifera, its different biological properties, or its prospective benefits in the enhancement of human health. In the present study, we set out to conduct a comprehensive analysis of the botany, traditional medicinal history, and medicinal resources of species of the Dendropanax genus. In addition, we explore several phytochemical constituents identified in different species of the Dendropanax genus and their biological properties. Finally, we offer comprehensive analysis findings of the phytochemistry, medicinal uses, pharmacological actions, and a toxicity and safety evaluation of the D. morbifera species and its main bioactive ingredients for future consideration.
Collapse
|
25
|
Chabane MA, Tir Touil A, Khelladi B, Meddah B, Mokhtar M. In Vivo Toxicological and Microbiological Activity of Marrubium vulgare L. on Candida albicans Isolated from Nosocomial Infections. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Mahmoud Adel Chabane
- Laboratory of Research, Bioconversion, Microbiological Engineering and Health Safety, Faculty of Natural Sciences and Life, Mascara University-29000, Algeria
| | - Aicha Tir Touil
- Laboratory of Research, Bioconversion, Microbiological Engineering and Health Safety, Faculty of Natural Sciences and Life, Mascara University-29000, Algeria
| | - Belkacem Khelladi
- Laboratory of Histopathology, Public Hospital Establishment (PHE), Mascara-29000, Algeria
| | - Boumediene Meddah
- Laboratory of Research, Bioconversion, Microbiological Engineering and Health Safety, Faculty of Natural Sciences and Life, Mascara University-29000, Algeria
| | - Meriem Mokhtar
- Laboratory of Beneficial Microorganisms, Functional Food and Health (LMBAFS), Faculty of Natural Sciences and Life, University of Abdelhamid Ibn Badis, Mostaganem-27000, Algeria
| |
Collapse
|
26
|
Ouyang J, Hou Q, Wang M, Zhao W, Feng D, Pi Y, Sun X. Effects of dietary mulberry leaf powder on growth performance, blood metabolites, meat quality, and antioxidant enzyme-related gene expression of fattening Hu lambs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study was conducted to investigate the effects of the mulberry [Morus alba var. multicaulis (Perrott.) Loud.] leaf powder (MLP) supplementation in dietary concentrates on growth performance, blood metabolites, meat quality, and antioxidant enzyme (AOE) gene expression in fattening Hu lambs. Forty approximately 3-mo-old Hu lambs (16.5 ± 0.6 kg) were randomly allocated to five groups and fed with concentrates containing 0%, 15%, 30%, 45%, or 60% MLP (control, T15, T30, T45, and T60, respectively). The results showed that 15%–30% MLP supplementation maintained growth and carcass performance, and the weight of total stomach, especially of rumen in T15 and T30, were higher than those of the control. Dietary MLP supplementation decreased serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, cholesterol, and triglyceride levels, but increased the high-density lipoprotein levels. Moreover, MLP supplementation improved the longissimus lumborum muscle color (redness), tenderness, and water-holding capacity. It was further observed that 15% MLP supplementation enhanced all AOE mRNA levels apart from that of EPHX1. In summary, dietary MLP supplementation could partially improve the blood metabolites, meat quality, and AOE mRNA levels in the liver of fattening Hu lamb, and the level of 15% supplementation was the most promising.
Collapse
Affiliation(s)
- Jialiang Ouyang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Qirui Hou
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Weiguo Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
| | - Dan Feng
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yu Pi
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Xuezhao Sun
- The Centre for Ruminant Precision Nutrition and Smart Farming, Jilin Agricultural Science and Technology University, Jilin 132101, People’s Republic of China
| |
Collapse
|
27
|
Nunes CDR, Barreto Arantes M, Menezes de Faria Pereira S, Leandro da Cruz L, de Souza Passos M, Pereira de Moraes L, Vieira IJC, Barros de Oliveira D. Plants as Sources of Anti-Inflammatory Agents. Molecules 2020; 25:E3726. [PMID: 32824133 PMCID: PMC7465135 DOI: 10.3390/molecules25163726] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Plants represent the main source of molecules for the development of new drugs, which intensifies the interest of transnational industries in searching for substances obtained from plant sources, especially since the vast majority of species have not yet been studied chemically or biologically, particularly concerning anti-inflammatory action. Anti-inflammatory drugs can interfere in the pathophysiological process of inflammation, to minimize tissue damage and provide greater comfort to the patient. Therefore, it is important to note that due to the existence of a large number of species available for research, the successful development of new naturally occurring anti-inflammatory drugs depends mainly on a multidisciplinary effort to find new molecules. Although many review articles have been published in this regard, the majority presented the subject from a limited regional perspective. Thus, the current article presents highlights from the published literature on plants as sources of anti-inflammatory agents.
Collapse
Affiliation(s)
- Clara dos Reis Nunes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Mariana Barreto Arantes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Silvia Menezes de Faria Pereira
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Larissa Leandro da Cruz
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Michel de Souza Passos
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, UniversidadeEstadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (M.d.S.P.); (I.J.C.V.)
| | - Luana Pereira de Moraes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Ivo José Curcino Vieira
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, UniversidadeEstadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (M.d.S.P.); (I.J.C.V.)
| | - Daniela Barros de Oliveira
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| |
Collapse
|
28
|
Muluye AB, Ayicheh MW. Medicinal plants utilized for hepatic disorders in Ethiopian traditional medical practices: a review. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00195-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Ethiopia is among the top floral biodiversity rich countries in the world. More than 7000 species of plants, 15% of they are endemic, are reported in the country. Accessibility, cultural enrichment, and cheapness make 80% of the Ethiopian people used indigenous plants for various health ailments and diseases in their traditional medical practices. Therefore, the current review examined the use patterns of medicinal plants utilized for hepatic disorders in Ethiopian traditional medical practices for further scientific investigations.
Methods
Ethnobotanical and related studies on medicinal plants utilized for hepatic disorders in Ethiopia were reviewed. Ethiopian university websites, Google, Google Scholar, PubMed, Medline, and other online internet search engines were used to access literature articles. The number of plant species and families, used parts, used conditions, modes of preparation, and routes of administration were tabulated and summarized using Excel spreadsheet and descriptive statistics, respectively.
Results
The current review showed that 276 plant species belonging to 89 families were used for hepatic disorders in Ethiopian traditional medical practices. The commonly utilized plant families were Asteraceae (10.14%), Fabaceae (9.08%), Euphorbiaceae (7.61%), Laminaceae (4.35%), Solanaceae (3.99%), and Aloaceae (2.90%). Justicia schimperiana (34.34%), Croton macrostachyus, and Phytolacca dodecandra (each 20.20%), Cordia africana, Cucumis ficifolius, and Rumex abyssinica (each 10.10%) were among the most utilized plant species. They were mainly distributed in Oromo (58%), southern (36%), and Amhara (35.5%) regions. Herbs (47.10%), shrubs (26.09%) and trees (20.65%) were their primary growth forms, while leaves (34.30%) and roots (33.06%) were their commonly utilized parts. Pounding (24.59%), decoction (19.67%), powdering (9.84%), and concoction (9.13%) were their major modes of preparations. Water was the most utilized solvent (48.26%) for the remedy preparations, which were mainly administered orally (76.35%).
Conclusions
This review showed that many claimed medicinal plants were utilized for the treatment of hepatic disorders in Ethiopian traditional medical practices. Hence, further experimental investigation is recommended to standardize their quality and phytochemistry and validate their safety and efficacy. Documentation and conservation of indigenous herbal knowledge have also been strengthened.
Collapse
|
29
|
Sümer E, Senturk GE, Demirel ÖU, Yesilada E. Comparative biochemical and histopathological evaluations proved that receptacle is the most effective part of Cynara scolymus against liver and kidney damages. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112458. [PMID: 31809787 DOI: 10.1016/j.jep.2019.112458] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The liver and kidney are among the most important organs in the body, where metabolic and elimination functions take place. During this process, liver and kidneys may suffer damage due to ingestion or formation of toxic metabolites leading to organ loss and even death. Artichoke (Cynara scolymus L.) leaf has long been recognized as a popular herbal remedy in traditional medicines with beneficial effects on liver. AIM OF THE STUDY In phytotherapy leaves are the part used to support the liver functions and for treatment of damage induced by various toxins, while fleshy receptacle is cooked as meal to support liver homeostasis. However, effects of other plant parts on liver such as stems, bracts have not much attracted the attention of scientific community so far. In this study we investigated comparatively the hepatoprotective and nephroprotective effects of different plant parts of artichoke, i.e. receptacles, outer bracts, inner bracts, and stems with that of leaves upon paracetamol-induction in rats. MATERIALS AND METHODS Aqueous ethanol (80%) extracts obtained from the different parts of artichoke were administered for five consecutive days after paracetamol induction to rats. At the end of experimental period blood samples from the experimental animals were taken for biochemical tests, while livers and kidneys were removed for further histopathological evaluation. RESULTS The histopathological examinations of liver and kidney tissues revealed that the receptacle and stem extracts of the artichoke were the most effective parts by improving the experimentally induced pathology in both liver and kidney. Biochemical tests also supported the histopathological data; receptacle, stem and bract extracts reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, but not alkaline phosphatase (ALP), creatinine and blood urea nitrogen (BUN) levels. CONCLUSIONS Histopathological and biochemical studies have shown that receptacle and stem extracts of artichoke were found to exert higher protective activity on liver and kidney damage induced by paracetamol comparing to its bract and leaf extracts, the latest is officially recognized as herbal remedy.
Collapse
Affiliation(s)
- Engin Sümer
- Yeditepe University, Graduate School of Health Sciences, Department of Phytotherapy, Ataşehir, İstanbul, Turkey.
| | - Gözde Erkanli Senturk
- Istanbul University, Cerrahpasa Medical Faculty, Department of Histology and Embryology, Cerrahpaşa, İstanbul, Turkey.
| | - Özlem Unay Demirel
- Bahçeşehir University, School of Medicine, Department of Biochemistry, Kadıköy, İstanbul, Turkey.
| | - Erdem Yesilada
- Yeditepe University, Faculty of Pharmacy, Department of Pharmacognosy and Phytotherapy, Ataşehir, 34755, İstanbul, Turkey.
| |
Collapse
|
30
|
Hifnawy MS, Aboseada MA, Hassan HM, AboulMagd AM, Tohamy AF, Abdel-Kawi SH, Rateb ME, El Naggar EMB, Liu M, Quinn RJ, Alhadrami HA, Abdelmohsen UR. Testicular Caspase-3 and β-Catenin Regulators Predicted via Comparative Metabolomics and Docking Studies. Metabolites 2020; 10:metabo10010031. [PMID: 31940785 PMCID: PMC7022381 DOI: 10.3390/metabo10010031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Many routes have been explored to search for effective, safe, and affordable alternatives to hazardous female contraceptives. Herbal extracts and their secondary metabolites are some of the interesting research areas to address this growing issue. This study aims to investigate the effects of ten different plant extracts on testicular spermatogenesis. The correlation between the chemical profile of these extracts and their in vivo effect on male reproductive system was evaluated using various techniques. Approximately 10% of LD50 of hydro-methanolic extracts were orally administrated to rats for 60 days. Semen parameters, sexual organ weights, and serum levels of male sex hormones in addition to testes histopathology, were evaluated. Moreover, metabolomic analysis using (LC-HRESIMS), multivariate analysis (PCA), immunohistochemistry (caspase-3 and β-catenin), and a docking study were performed. Results indicated that three plant extracts significantly decreased epididymal sperm density and motility. Moreover, their effects on testicular cells were also assured by histopathological evaluations. Metabolomic profiling of the bioactive plant extracts showed the presence of diverse phytochemicals, mostly oleanane saponins, phenolic diterpenes, and lupane triterpenes. A docking study on caspase-3 enzyme showed that oleanane saponins possessed the highest binding affinity. An immunohistochemistry assay on β-catenin and caspase-3 indicated that Albizzia lebbeck was the most active extract for decreasing immunoexpression of β-catenin, while Rosmarinus officinalis showed the highest activity for increasing immunoexpression of caspase-3. The spermatogenesis decreasing the activity of A. lebbeck, Anagallis arvensis, and R. officinalis can be mediated via up-regulation of caspase-3 and down-regulation of β-catenin existing in testis cells.
Collapse
Affiliation(s)
- Mohammed S. Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11865, Egypt;
| | - Mahmoud A. Aboseada
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt; (H.M.H.); (M.E.R.)
| | - Asmaa M. AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Adel F. Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Cairo 11865, Egypt;
| | - Samraa H. Abdel-Kawi
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62513, Egypt;
- Department of Basic Science, Faculty of Dentistry, Nahda University, Beni-Suef 62513, Egypt
| | - Mostafa E. Rateb
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt; (H.M.H.); (M.E.R.)
- Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, UK
- School of Computing, Engineering and Physical Sciences, University of West Scotland, Paisley PA1 2BE, UK
| | | | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; (M.L.); (R.J.Q.)
| | - Ronald J. Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; (M.L.); (R.J.Q.)
| | - Hani A. Alhadrami
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, King Abdulaziz University, P. O. Box 80402, Jeddah 21589, Saudi Arabi
- King Fahd Medical Research Centre, King Abdulaziz University, P. O. Box 80402, Jeddah 21589, Saudi Arabia
- Correspondence: (H.A.A.); (U.R.A.)
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt
- Correspondence: (H.A.A.); (U.R.A.)
| |
Collapse
|
31
|
Mandal V, Misra D, Mandal M, Ghosh N. Extraction and volatile compounds profiling of the bioactive fraction of Monochoria hastata (L.) solms. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_386_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Aqueous Partition of Methanolic Extract of Dicranopteris linearis Leaves Protects against Liver Damage Induced by Paracetamol. Nutrients 2019; 11:nu11122945. [PMID: 31817058 PMCID: PMC6950669 DOI: 10.3390/nu11122945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/24/2023] Open
Abstract
This study aimed to determine the antioxidant and hepatoprotective activities of semi-purified aqueous partition obtained from the methanol extract of Dicranopteris linearis (AQDL) leaves against paracetamol (PCM)-induced liver intoxication in rats. The test solutions, AQDL (50, 250, and 500 mg/kg), were administered orally to rats (n = 6) once daily for seven consecutive days followed by the hepatotoxicity induction using 3 g/kg PCM (p.o.). Blood was collected for serum biochemical parameters analysis while the liver was collected for histopathological examination and endogenous antioxidant enzymes analysis. AQDL was also subjected to antioxidant determination and phytochemical analysis. Results obtained show that AQDL possessed high total phenolic content (TPC) value and remarkable radical scavenging activities. AQDL also significantly (p < 0.05) reduced the liver weight/body weight (LW/BW) ratio or serum level of ALT, AST, and total bilirubin while significantly (p < 0.05) increase the level of superoxide dismutase (SOD) and catalase (CAT) without affecting the malondialdehyde (MDA) in the liver indicating its hepatoprotective effect. Phytoconstituents analyses showed only the presence of saponins and triterpenes, but lack of flavonoids. In conclusion, AQDL exerts hepatoprotective activity via its high antioxidant potential and ability to modulate the endogenous enzymatic antioxidant defense system possibly via the synergistic action of saponins and triterpenes.
Collapse
|
33
|
Iahtisham-Ul-Haq, Butt MS, Randhawa MA, Shahid M. Hepatoprotective effects of red beetroot-based beverages against CCl 4 -induced hepatic stress in Sprague Dawley rats. J Food Biochem 2019; 43:e13057. [PMID: 31583751 DOI: 10.1111/jfbc.13057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022]
Abstract
Red beetroot (Beta vulgaris L.) is considered important to improve hepatic health but its use is primarily limited to fresh salads in Pakistan. This study was aimed at exploring prophylactic role of red beetroot-based beverages against carbon tetrachloride (CCl4 )-induced hepatic stress. Purposely, red beetroot-based beverages (8 ml/kg b.w. per day) were administered to normal and hepatotoxicity-induced rats for 8 weeks. The biochemical analyses revealed significantly higher levels of superoxide dismutase (25%-28%), catalase (21%-24%), and hepatic enzymes (15%-19%) alongside reduced lipid peroxidation (27%-32%) in liver tissues of hepatotoxicity-induced rats treated with beetroot-based beverages compared to control. Similarly, hepatic injury was reduced by 19%-26% as indicated by concentrations of serum hepatic health biomarkers. Moreover, histological architecture of hepatocytes also portrayed promising effects of beetroot-based beverages to preserve hepatocellular portfolio. It was concluded that red beetroot-based beverages considerably assuage negative impacts of hepatic stress. PRACTICAL APPLICATIONS: Functional foods and nutraceuticals are considered vital in controlling the oxidative stress-mediated metabolic disorders as safer alternatives to pharmaceutical agents. The current research explored the protective effects of red beetroot-based beverages which can be utilized as an effective approach to prevent liver injuries. Also, the outcomes of this research endorsed the defensive role of these beverages against oxidative stress-induced hepatic stress, so dietary supplementation of such products can be synchronized in clinical practices to alleviate oxidative stress. However, there is a need to further explore the safety aspects of such products in their long-term usage before implementing this module in humans for disease prevention/cure.
Collapse
Affiliation(s)
- Iahtisham-Ul-Haq
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Atif Randhawa
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Medicinal Biochemistry Research Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
34
|
Salehi B, Venditti A, Frezza C, Yücetepe A, Altuntaş Ü, Uluata S, Butnariu M, Sarac I, Shaheen S, A. Petropoulos S, R. Matthews K, Sibel Kılıç C, Atanassova M, Oluwaseun Adetunji C, Oluwaseun Ademiluyi A, Özçelik B, Valere Tsouh Fokou P, Martins N, C. Cho W, Sharifi-Rad J. Apium Plants: Beyond Simple Food and Phytopharmacological Applications. APPLIED SCIENCES 2019; 9:3547. [DOI: 10.3390/app9173547] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apium plants belong to the Apiaceae family and are included among plants that have been in use in traditional medicine for thousands of years worldwide, including in the Mediterranean, as well as the tropical and subtropical regions of Asia and Africa. Some highlighted medical benefits include prevention of coronary and vascular diseases. Their phytochemical constituents consist of bergapten, flavonoids, glycosides, furanocoumarins, furocoumarin, limonene, psoralen, xanthotoxin, and selinene. Some of their pharmacological properties include anticancer, antioxidant, antimicrobial, antifungal, nematocidal, anti-rheumatism, antiasthma, anti-bronchitis, hepatoprotective, appetizer, anticonvulsant, antispasmodic, breast milk inducer, anti-jaundice, antihypertensive, anti-dysmenorrhea, prevention of cardiovascular diseases, and spermatogenesis induction. The present review summarizes data on ecology, botany, cultivation, habitat, medicinal use, phytochemical composition, preclinical and clinical pharmacological efficacy of Apium plants and provides future direction on how to take full advantage of Apium plants for the optimal benefit to mankind.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Alessandro Venditti
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claudio Frezza
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aysun Yücetepe
- Department of Food Engineering, Faculty of Engineering, Aksaray University, Aksaray 68100, Turkey
| | - Ümit Altuntaş
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Sibel Uluata
- Department of Food Technology, Inonu University, Malatya 44280, Turkey
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645, Calea Aradului 119, Timis, Romania
| | - Ioan Sarac
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645, Calea Aradului 119, Timis, Romania
| | - Shabnum Shaheen
- Chemotaxonomic Lab., Lahore College for Women University, Lahore 54000, Pakistan
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, University of Thessaly, Fytokou Street, 38446 N. Ionia, Magnissia, Greece
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ceyda Sibel Kılıç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, P.O. Box 1756 Sofia, Bulgaria
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria
| | - Adedayo Oluwaseun Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure 340001, Nigeria
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer, Istanbul 34467, Turkey
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, P.O. Box. 812, Yaounde, Cameroon
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| |
Collapse
|
35
|
|
36
|
Vafaee K, Dehghani S, Tahmasvand R, Saeed Abadi F, Irian S, Salimi M. Potent antitumor property of Allium bakhtiaricum extracts. Altern Ther Health Med 2019; 19:116. [PMID: 31164129 PMCID: PMC6549325 DOI: 10.1186/s12906-019-2522-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Allium species are magnificently nutritious and are commonly used as a part of the diet in Iran. They have health enhancing benefits including anticancer properties due to the presence of numerous bioactive compounds. Herein, we investigated in vitro and in vivo anticancer properties of Allium bakhtiaricum extracts. METHODS Anti-growth activity of different fractions was explored in vitro on different cancerous cells using MTT assay, Annexin V/PI and SA-β-gal staining, Western blotting, flowcytometric and immunofluorescence microscopic evaluations. In vivo antitumor activity was investigated in BALB/c mice bearing 4 T1 mammary carcinoma cells. RESULTS We demonstrated that chloroformic and ethyl acetate fractions exert cytotoxic activity toward MDA-MB-231 cells, the most sensitive cell line, after 72 h of treatment with IC50 values of 0.005 and 0.006 mg/ml, respectively. Incubation of MDA-MB-231 cells with ¼ and ½ IC50-72h concentrations of each fraction resulted in a significant G2/M cell cycle arrest. ¼ IC50-72h concentration of the chloroform fraction led to the disruption of polymerization in mitotic microtubules. Exposure of human breast cancer cells to different concentrations of the extracts at different incubation times did not induce apoptosis, autophagy or senescence. Our in vivo study revealed that administration of the chloroform extract at a dose of 1 mg/kg/day strongly suppressed mammary tumor progression and decreased the number of proliferative cells in the lung tissues indicating its anti-metastatic effect. CONCLUSION Our findings imply that the chloroform fraction of Allium bakhtiaricum possesses the suppressive action on breast cancer through mitotic cell cycle arrest suggesting a mechanism associated with disturbing microtubule polymerization.
Collapse
|
37
|
Phenolic Compounds from Water-Ethanol Extracts of Tetrapleura tetraptera Produced in Cameroon, as Potential Protectors against In Vivo CCl 4-Induced Liver Injuries. ScientificWorldJournal 2019; 2019:5236851. [PMID: 30940993 PMCID: PMC6421029 DOI: 10.1155/2019/5236851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Liver diseases are a global health problem. Medicinal plants are being increasingly used to manage a wide variety of diseases including liver disorders. The aim of this study was to investigate the antioxidant properties and hepatoprotective activity of polyphenolic extract from the fruits of Tetrapleura tetraptera (T. tetraptera). Results The extract of T. tetraptera was administered at doses of 50 mg/kg and 100 mg/kg for 07 per os to rats before the induction of hepatotoxicity with of 2 ml/kg of 1:1 (v/v) carbon tetrachloride (CCl4) and olive oil through intraperitoneal route. The in vitro antioxidant and radical scavenging properties of T. tetraptera were conducted by the FRAP method, the phosphomolybdate method, and the inhibition potential of DPPH, ABTS, OH, and NO radicals. The extraction yield of T. tetraptera was 19.35%. This extract contains polyphenols (273.48 mg CAE/g DM), flavonoids (5.2549 mg SE/g DM), and flavonols (1.615 mg SE/g DM). This extract showed in vitro antioxidant activity, an inhibitor power of various free radicals, and radical scavenging potential dose-dependent. The fifty-percent inhibitory concentration of the extract (IC50) for the studied radical varied from 28.16 to 136 μg/L. In rats treated with the extract of T. tetraptera, in a dose-dependent manner, the levels of hepatotoxicity markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) significantly increased while the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and the level of reduced glutathione (GHS) significantly increased compared to the control group. Conclusions The extracts from the fruit of T. tetraptera demonstrate antioxidant activity and hepatoprotective effects.
Collapse
|
38
|
Kovacikova E, Kovacik A, Halenar M, Tokarova K, Chrastinova L, Ondruska L, Jurcik R, Kolesar E, Valuch J, Kolesarova A. Potential toxicity of cyanogenic glycoside amygdalin and bitter apricot seed in rabbits-Health status evaluation. J Anim Physiol Anim Nutr (Berl) 2019; 103:695-703. [PMID: 30698299 DOI: 10.1111/jpn.13055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Amygdalin is one of the most studied secondary metabolites of Prunus genus. It is a cyanogenic glycoside which was initially obtained from the bitter almonds seeds and is a major component of the seeds of plants, such as apricots, almonds, peaches, apples and other rosaceous plants. The views of scientists on the use of amygdalin have been contradictory for many years, partly because toxicokinetics and metabolism of amygdalin still have not been adequately explored. The present in vivo study was designed to reveal whether pure amygdalin intramuscularly injected or apricot seeds oral consumption induce changes in overall health status of rabbit as a biological model. A total of 60 adult rabbits were randomly divided into five groups. The control group received no amygdalin while the two experimental groups E1 and E2 received a daily intramuscular injection of amygdalin at doses 0.6 and 3.0 mg/kg bw. The experimental groups E3 and E4 were fed crushed bitter apricot seeds (Prunus armeniaca L.), at doses 60 and 300 mg/kg bw, mixed with commercial feed for rabbits. Blood collection was carried out after 14 days. Biochemical, haematological and antioxidant enzymes activity analysis were performed and statistically evaluated. A short-term amygdalin administration had negligible impact on biochemical parameters-mainly level of urea, bilirubin, cholesterol. Haematological profile of rabbits was influenced very slightly-non-significant platelet count and platelet percentage increase, erythrocytes count and haemoglobin decrease. SOD activity of rabbits decreased significantly (p > 0.05) after apricot seeds consumption (102.3 U/ml) in comparison to control (117.4 U/ml). Differences might be connected to diverse metabolism by different administration routes and at the same time by the presence of other substances in apricot seeds (phytosterols, polyphenols, fatty acids). However, a short-term consumption had only slight effect on health status of rabbits and at recommended doses did not represent risk for their health.
Collapse
Affiliation(s)
- Eva Kovacikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Anton Kovacik
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marek Halenar
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Katarina Tokarova
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Lubica Chrastinova
- Animal Production Research Centre Nitra, National Agricultural and Food Centre, Lužianky, Slovak Republic
| | - Lubomir Ondruska
- Animal Production Research Centre Nitra, National Agricultural and Food Centre, Lužianky, Slovak Republic
| | - Rastislav Jurcik
- Animal Production Research Centre Nitra, National Agricultural and Food Centre, Lužianky, Slovak Republic
| | - Eduard Kolesar
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Jozef Valuch
- Health Care Surveillance Authority, Bratislava, Slovak Republic
| | - Adriana Kolesarova
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
39
|
Mallhi TH, Qadir MI, Khan YH. Determination of phytoconstituents of n-hexane extract of leaves of Morus nigra and evaluation of their effects on biochemical and histopathological parameters in paracetamol intoxicated mice liver. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000318101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Sharifi-Rad M, Roberts TH, Matthews KR, Bezerra CF, Morais-Braga MFB, Coutinho HDM, Sharopov F, Salehi B, Yousaf Z, Sharifi-Rad M, Del Mar Contreras M, Varoni EM, Verma DR, Iriti M, Sharifi-Rad J. Ethnobotany of the genus Taraxacum-Phytochemicals and antimicrobial activity. Phytother Res 2018; 32:2131-2145. [PMID: 30039597 DOI: 10.1002/ptr.6157] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023]
Abstract
Plants belonging to the genus Taraxacum have been used in traditional healthcare to treat infectious diseases including food-borne infections. This review aims to summarize the available information on Taraxacum spp., focusing on plant cultivation, ethnomedicinal uses, bioactive phytochemicals, and antimicrobial properties. Phytochemicals present in Taraxacum spp. include sesquiterpene lactones, such as taraxacin, mongolicumin B, and taraxinic acid derivatives; triterpenoids, such as taraxasterol, taraxerol, and officinatrione; and phenolic derivatives, such as hydroxycinnamic acids (chlorogenic, chicoric, and caffeoyltartaric acids), coumarins (aesculin and cichoriin), lignans (mongolicumin A), and taraxacosides. Aqueous and organic extracts of different plant parts exhibit promising in vitro antimicrobial activity relevant for controlling fungi and Gram-positive and Gram-negative bacteria. Therefore, this genus represents a potential source of bioactive phytochemicals with broad-spectrum antimicrobial activity. However, so far, preclinical evidence for these activities has not been fully substantiated by clinical studies. Indeed, clinical evidence for the activity of Taraxacum bioactive compounds is still scant, at least for infectious diseases, and there is limited information on oral bioavailability, pharmacological activities, and safety of Taraxacum products in humans, though their traditional uses would suggest that these plants are safe.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol, Iran
| | - Thomas H Roberts
- Plant Breeding Institute, Sydney Institute of Agriculture, University of Sydney, Sydney, New South Wales, Australia
| | - Karl R Matthews
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Camila F Bezerra
- Laboratório de Microbiologia e Biologia Molecular - LMBM, Departamento de Química Biológica - DQB, Universidade Regional do Cariri - URCA, Pimenta, Crato, Brazil
| | - Maria Flaviana B Morais-Braga
- Laboratório de Microbiologia e Biologia Molecular - LMBM, Departamento de Química Biológica - DQB, Universidade Regional do Cariri - URCA, Pimenta, Crato, Brazil
| | - Henrique D M Coutinho
- Laboratório de Microbiologia e Biologia Molecular - LMBM, Departamento de Química Biológica - DQB, Universidade Regional do Cariri - URCA, Pimenta, Crato, Brazil
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zubaida Yousaf
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - María Del Mar Contreras
- Departamento de Ingeniería Química, Ambiental y de los Materiales, Universidad de Jaén, Jaén, Spain
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Deepa R Verma
- Department of Botany and Postgraduate Department, Biological Sciences, VIVA College of Arts, Science and Commerce, Virar, Maharashtra, India
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, Manitoba, Canada
| |
Collapse
|
41
|
Suke SG, Sherekar P, Kahale V, Patil S, Mundhada D, Nanoti VM. Ameliorative effect of nanoencapsulated flavonoid against chlorpyrifos-induced hepatic oxidative damage and immunotoxicity in Wistar rats. J Biochem Mol Toxicol 2018; 32:e22050. [DOI: 10.1002/jbt.22050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/25/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Sanvidhan G Suke
- Department of Biotechnology; Priyadarshini Institute of Engineering & Technology; Nagpur 440019 India
- Department of Pharmacology; Agnihotri College of Pharmacy; Wardha 442001 India
| | - Prasad Sherekar
- Department of Biotechnology; Priyadarshini Institute of Engineering & Technology; Nagpur 440019 India
| | - Vivek Kahale
- Department of Pharmacology; Agnihotri College of Pharmacy; Wardha 442001 India
- Research and Development Center; ZIM Laboratories Limited; Kalmeshwar 441501 India
| | - Shaktipal Patil
- Department of Pharmacology; Agnihotri College of Pharmacy; Wardha 442001 India
| | - Dharmendra Mundhada
- Department of Pharmacology; Agnihotri College of Pharmacy; Wardha 442001 India
| | - Vivek M Nanoti
- Department of Biotechnology; Priyadarshini Institute of Engineering & Technology; Nagpur 440019 India
| |
Collapse
|
42
|
Efficacy of Black Seed (Nigella sativa) and Lemon Balm (Melissa officinalis) on Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2018. [DOI: 10.5812/ircmj.59183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Phytochemicals and Antimicrobial Activities of Rumex nervosus Natural Populations Grown in Sarawat Mountains, Kingdom of Saudi Arabia. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3136-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Seasonal Effect on the Biological Activities of Litsea glaucescens Kunth Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2738489. [PMID: 29675051 PMCID: PMC5838430 DOI: 10.1155/2018/2738489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/14/2018] [Accepted: 01/22/2018] [Indexed: 02/02/2023]
Abstract
This study shows the seasonal effect on the antioxidant, antiproliferative, and antimicrobial activities of L. glaucescens Kunth (LG) leaves extracts. Their antioxidant activity was evaluated through the DPPH, FRAP, and ORAC assays. Their phenolic content (PC) was determined by means of the Folin-Ciocalteu method, and the main phenolic compounds were identified through a HPLC-DAD analysis. Antiproliferative activity was determined by MTT assay against HeLa, LS 180, M12.C3.F6, and ARPE cell lines. Antimicrobial potential was evaluated against Staphylococcus aureus and Escherichia coli using a microdilution method. All the LG extracts presented high antioxidant activity and PC, with quercitrin and epicatechin being the most abundant. Antioxidant activity and PC were affected by the season; particularly autumn (ALGE) and summer (SULGE) extracts exhibited the highest values (p < 0.05). All extracts presented moderate antiproliferative activity against the cell lines evaluated, HeLa being the most susceptible of them. However, ALGE and SULGE were the most active too. About antimicrobial activity, SULGE (MIC90 < 800 μg/mL; MIC50 < 400 μg/mL), and SLGE (MIC50 < 1000 μg/mL) showed a moderate inhibitory effect against S. aureus. These findings provide new information about the seasonal effect on the PC and biological properties of LG extracts. Clearly, antioxidant activity was the most important with respect to the other two.
Collapse
|
45
|
Xu GB, Xiao YH, Zhang QY, Zhou M, Liao SG. Hepatoprotective natural triterpenoids. Eur J Med Chem 2018; 145:691-716. [PMID: 29353722 DOI: 10.1016/j.ejmech.2018.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Liver diseases are one of the leading causes of death in the world. In spite of tremendous advances in modern drug research, effective and safe hepatoprotective agents are still in urgent demand. Natural products are undoubtedly valuable sources for drug leads. A number of natural triterpenoids were reported to possess pronounced hepatoprotective effects, and triterpenoids have become one of the most important classes of natural products for hepatoprotective agents. However, the significance of natural triterpenoids has been underestimated in the hepatoprotective drug discovery, with only very limited triterpenoids being covered in the reviews of hepatoprotective natural products. In this paper, ca 350 natural triterpenoids with reported hepatoprotective effects in ca 120 references between 1975 and 2016 will be reviewed, and the structure-activity relationships of certain types of natural triterpenoids, if available, will be discussed. Patents are not included.
Collapse
Affiliation(s)
- Guo-Bo Xu
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China; Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Yao-Hua Xiao
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qing-Yan Zhang
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Meng Zhou
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550004, Guizhou, China
| | - Shang-Gao Liao
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China; Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guian New District, 550025, Guizhou, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550004, Guizhou, China.
| |
Collapse
|
46
|
Sá RR, Matos RA, Silva VC, da Cruz Caldas J, da Silva Sauthier MC, dos Santos WNL, Magalhães HIF, de Freitas Santos Júnior A. Determination of bioactive phenolics in herbal medicines containing Cynara scolymus, Maytenus ilicifolia Mart ex Reiss and Ptychopetalum uncinatum by HPLC-DAD. Microchem J 2017. [DOI: 10.1016/j.microc.2017.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Jaradat N, AlMasri M, Zaid AN, Othman DG. Pharmacological and phytochemical screening of Palestinian traditional medicinal plants Erodium laciniatum and Lactuca orientalis. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 15:/j/jcim.ahead-of-print/jcim-2017-0059/jcim-2017-0059.xml. [PMID: 28865203 DOI: 10.1515/jcim-2017-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Various epidemiological studies showed that herbal remedies containing polyphenols may protect against various diseases such as cancers, vascular diseases and inflammatory pathologies. Currently, such groups of bioactive compounds have become a subject of many antimicrobials and antioxidant investigations. Accordingly, the current study aimed to conduct biological and phytochemical screening for two Palestinian traditional medicinal plants, Erodium laciniatum and Lactuca orientalis. METHODS Current plants phytoconstituents and their antioxidant activities were evaluated by using standard phytochemical methods; meanwhile, antimicrobial activities were estimated by using several types of American Type Culture Collection and multidrug resistant clinical isolates by using agar diffusion well-variant, agar diffusion disc-variant and broth microdilution methods. RESULTS Phytochemical screenings showed that L. orientalis and E. laciniatum contain mixtures of secondary and primary metabolites Moreover, total flavonoid, tannins and phenols content in E. laciniatum extract were higher than the L. orientalis extracts with almost the same antioxidant potentials. Additionally, both plants organic and aqueous extracts showed various potentials of antimicrobial activity Conclusions: Overall, the studied species have a mixture of phytochemicals, flavonoids, phenols and tannins also have antioxidant and antimicrobial activities which approved their folk uses in treatments of infectious and Alzheimer diseases and simultaneously can be used as therapeutic agents in the pharmaceutical industries.
Collapse
Affiliation(s)
- Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Motasem AlMasri
- Department of Biology and Biotechnology, Faculty of Science, An-Najah National University, Nablus, Palestine
| | - Abdel Naser Zaid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dua'a Ghazi Othman
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
48
|
Miraj S, Rafieian-Kopaei, Kiani S. Melissa officinalis L: A Review Study With an Antioxidant Prospective. J Evid Based Complementary Altern Med 2017; 22:385-394. [PMID: 27620926 PMCID: PMC5871149 DOI: 10.1177/2156587216663433] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/22/2016] [Accepted: 07/16/2016] [Indexed: 01/10/2023] Open
Abstract
Melissa officinalis is a plant cultivated in some parts of Iran. The leaves of lemon balm, Melissa officinalis L (Lamiaceae), are used in Iranian folk medicine for their digestive, carminative, antispasmodic, sedative, analgesic, tonic, and diuretic properties, as well as for functional gastrointestinal disorders. This review article was aimed not only to introduce Melissa officinalis (its growth condition, its chemical compounds, and its traditional usages) but also to overview its antioxidant properties in detail. This review was carried out by searching studies in PubMed, Medline, Web of Science, and IranMedex databases up to 2016. The search terms used were " Melissa officinalis L," "antioxidant properties," oxidative stress," "oxidative damage", "ROS." Articles whose full texts were not available were excluded from the study. In this study, firstly, traditional usage of this herb was reviewed, including antimicrobial activity (antiparasitic, antibacterial, antiviral, etc), antispasmodic, and insomnia properties. Then, its antioxidant properties were overviewed. Various studies have shown that Melissa officinalis L possesses high amount of antioxidant activity through its chemical compounds including high amount of flavonoids, rosmaric acid, gallic acid, phenolic contents. Many studies confirmed the antioxidative effects of Melissa officinalis; thus, its effect in preventing and treating oxidative stress-related diseases might be reliable.
Collapse
Affiliation(s)
- Sepide Miraj
- Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Sara Kiani
- Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
49
|
Maryam R, Faegheh S, Majid AS, Kazem NK. Effect of quercetin on secretion and gene expression of leptin in breast cancer. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30067-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, Zare Marzouni H. Effective Medicinal Plant in Cancer Treatment, Part 2: Review Study. J Evid Based Complementary Altern Med 2017; 22:982-995. [PMID: 28359161 PMCID: PMC5871268 DOI: 10.1177/2156587217696927] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer is the second cause of death after cardiovascular diseases. With due attention to rapid progress in the phytochemical study of plants, they are becoming popular because of their anticancer effects. The aim of this study was to investigate the effective medicinal plants in the treatment of cancer and study their mechanism of action. In order to gather information the keywords “traditional medicine,” “plant compounds,” “medicinal plant,” “medicinal herb,” “toxicity,” “anticancer effect,” “cell line,” and “treatment” were searched in international databases such as ScienceDirect, PubMed, and Scopus and national databases such as Magiran, Sid, and Iranmedex, and a total of 228 articles were collected. In this phase, 49 nonrelevant articles were excluded. Enhancement P53 protein expression, reducing the expression of proteins P27, P21, NFκB expression and induction of apoptosis, inhibition of the PI3K/Akt pathway, and reduction of the level of acid phosphatase and lipid peroxidation are the most effective mechanisms of herbal plants that can inhibit cell cycle and proliferation. Common treatments such as radiotherapy and chemotherapy can cause some complications. According to results of this study, herbal extracts have antioxidant compounds that can induce apoptosis and inhibit cell proliferation by the investigated mechanisms.
Collapse
Affiliation(s)
- Wesam Kooti
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karo Servatyari
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Behzadifar
- 2 Student of Health Policy, Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Asadi-Samani
- 3 Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Sadeghi
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bijan Nouri
- 4 Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hadi Zare Marzouni
- 5 Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|