1
|
Romani FE, Luvira V, Chancharoenthana W, Albanese M, Maddaloni L, Branda F, D'Amelio S, Gabrielli S, Scagnolari C, Mastroianni CM, Ceccarelli G, d'Ettorre G. Human microbiota in dengue infection: A narrative review. Microb Pathog 2025; 205:107643. [PMID: 40306589 DOI: 10.1016/j.micpath.2025.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Dengue fever, a widespread mosquito-borne viral infection in tropical regions, typically manifests fever and gastrointestinal symptoms, including nausea, vomiting, and diarrhea. However, the human gut microbiota's role in dengue pathogenesis remains incompletely understood. Studies have demonstrated dysbiosis during dengue virus infection, characterized by increased abundance of potentially pathogenic bacteria like Bacteroidaceae and Proteobacteria, particularly during the critical phase. Furthermore, microbial translocation and leaky gut syndrome, characterized by the translocation of intestinal microbial products, have been observed in dengue patients and are associated with hypercytokinemia, plasma leakage, and disease severity. These findings underscore the necessity for an in-depth investigation into the role of human intestinal microbiota as a potential contributing factor in the pathogenesis and progression of dengue. Further research focusing on human intestinal microbiota, leaky gut syndrome, and the potential implications of treatment with oral bacteriotherapy, as previously observed in other viral diseases, is essential to clarify dengue pathology and evaluate new therapeutic strategies.
Collapse
Affiliation(s)
- Francesco Eugenio Romani
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Viravarn Luvira
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Mattia Albanese
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128, Rome, Italy
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy
| | - Simona Gabrielli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, University of Rome Sapienza, Rome, Italy
| | | | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy; Azienda Ospedaliero Universitaria Policlinico Umberto I, Rome, Italy; Migrant and Global Health Research Organization (Mi-HeRO), Rome, Italy.
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
2
|
Hicks R, Gozal D, Ahmed S, Khalyfa A. Interplay between gut microbiota and exosome dynamics in sleep apnea. Sleep Med 2025; 131:106493. [PMID: 40203611 DOI: 10.1016/j.sleep.2025.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Sleep-disordered breathing (SDB) is characterized by recurrent reductions or interruptions in airflow during sleep, termed hypopneas and apneas, respectively. SDB impairs sleep quality and is linked to substantive health issues including cardiovascular and metabolic disorders, as well as cognitive decline. Recent evidence suggests a link between gut microbiota (GM) composition and sleep apnea. Indeed, GM, a community of microorganisms residing in the gut, has emerged as a potential player in various diseases, and several studies have identified associations between sleep apnea and GM diversity along with shifts in bacterial populations. Additionally, the concept of "leaky gut," a compromised intestinal barrier with potentially increased inflammation, has emerged as another key player in the potential bidirectional relationship between GM and sleep apnea. One of the potential effectors could be extracellular vesicles (EVs) underlying gut-brain communication pathways that are relevant to sleep regulation and function. Thus, therapeutic implications afforded by targeting the GM or exosomes for sleep apnea management have surfaced as promising areas of research. This review explores current understanding of the relationship between GM, exosomes and sleep apnea, highlighting key research dynamics and potential mechanisms. A comprehensive review of the literature was conducted, focusing on studies investigating GM composition, intestinal barrier function and gut-brain communication in relation to sleep apnea.
Collapse
Affiliation(s)
- Rebecca Hicks
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Sarfraz Ahmed
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
3
|
Bai XJ, Mei YC, Zhao JT, Chen ZR, Yang CX, Dong XJ, Yu JW, Xiang LB, Zhou EZ, Chen Y, Hao JY, Zhang ZJ, Liuyang YX, Ren L, Yao YM, Zhang L, Lv Y, Lu Q. Changes in microbiome composition after fecal microbiota transplantation via oral gavage and magnetic navigation technology-assisted proximal colon/cecum enema in antibiotic knock-down rats: a comparative experimental study. BMC Microbiol 2025; 25:295. [PMID: 40375187 PMCID: PMC12079824 DOI: 10.1186/s12866-025-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 05/05/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) transfers fecal matter from a donor into the gastrointestinal tract of a recipient to induce changes to the gut microbiota for therapeutic benefit; however, differences in the composition of gut microbiota after FMT via different donor material delivery routes are poorly understood. In this study, we first developed a novel technique for FMT, magnetic navigation technology(MAT)-assisted proximal colon enemas, in healthy Sprague-Dawley rats. Besides, the difference in fecal microbiota composition after FMT via oral gavage and proximal colon/cecum enemas was determined in antibiotic knock-down rats, in addition to the impact on intestinal barrier function. METHODS A device consisting of an external magnet and a magnet-tipped 6 Fr tube was used in the MAT group (n = 6), and the control group (n = 6) where fecal matter was delivered without magnetic navigation. The feasibility and safety of this method were assessed by angiography and histology. Next, the fecal microbiota of donor rats was transplanted into antibiotic knock-down rats via oral gavage (n = 6) and MAT-assisted proximal colon/cecum enema (n = 6) for a week. Analysis of fecal 16 S rRNA was conducted to determine differences in the composition of gut microbiota between different groups. The rat intestinal barrier integrity were evaulated by H&E and ZO-1/MUC2 immunofluorescence staining. RESULTS The end of the fecal tube could be placed in the cecum or proximal colon of rats in MAT group; however, this was rarely achieved in the control group. No colon perforation or bleeding was detected in either group. After fecal microbiota transplantation, the microbiota α-diversity and β-diversity were comparable among the different delivery routes.At the family level, the relative abundances of Muribaculaceae, Oscillospiraceae, and Erysipelotrichaceae were higher in the gavage treatment group, whereas Lactobacillaceae and Saccharimonadaceae were higher in the enema treatment group (all p < 0.05). FMT by enema was superior to gavage in maintaining the integrity of the rat intestinal barrier, as assessed by an elevation in the density of goblet cells and increased expression of mucin-2. CONCLUSIONS Fecal microbiota tube placement using magnetic navigation was safe and feasible in rats.Different delivery route for FMT affects the gut microbiota composition and the integrity of the rat intestinal barrier. Future experimental designs should consider the colonization outcomes of critical microbial taxa to determine the optimal FMT delivery routes in scientific research as well as clinical practise.
Collapse
Affiliation(s)
- Xian-Jie Bai
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu-Chen Mei
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jia-Tong Zhao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhi-Ren Chen
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chen-Xi Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiao-Juan Dong
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jia-Wei Yu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lin-Biao Xiang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Er-Zheng Zhou
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yong Chen
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jia-Yi Hao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhi-Jie Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu-Xuan Liuyang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lu Ren
- Department of International Medical Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ying-Min Yao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Qiang Lu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
4
|
Karimianghadim R, Satokari R, Yeo S, Arkkila P, Kao D, Pakpour S. Prolonged effect of antibiotic therapy on the gut microbiota composition, functionality, and antibiotic resistance genes' profiles in healthy stool donors. Front Microbiol 2025; 16:1589704. [PMID: 40415928 PMCID: PMC12098650 DOI: 10.3389/fmicb.2025.1589704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/22/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Fecal microbiota transplantation (FMT) is highly effective in preventing Clostridioides difficile recurrence by restoring gut microbiota composition and function. However, the impact of recent antibiotic use, a key exclusion criterion for stool donors, on gut microbiota recovery is poorly understood. Methods We investigated microbial recovery dynamics following antibiotic use in three long-term stool donors from Canada and Finland. Using longitudinal stool sampling, metagenomic sequencing, and qPCR, we assessed changes in bacterial diversity, community composition, microbial functions, the gut phageome, and the risk of transmitting antibiotic-resistant genes (ARGs). Results Antibiotics caused lasting disruption to bacterial communities, significantly reducing important taxa like Bifidobacterium bifidum, Blautia wexlerae, Akkermansia muciniphila, Eubacterium sp. CAG 180, and Eubacterium hallii, with effects persisting for months. Functional analyses revealed alterations in housekeeping genes critical for energy production and biosynthesis, with no direct links to key health-related pathways. Antibiotics also disrupted viral populations, decreasing diversity and increasing crAssphage abundance, reflecting disrupted host-bacteriophage dynamics. No significant increase in clinically important ARGs was detected. Discussion These findings highlight the unpredictable and complex recovery of gut microbiota post-antibiotics. Individualized suspension periods in donor programs, guided by metagenomic analyses, are recommended to optimize FMT outcomes in various indications by considering antibiotic spectrum, duration, and host-specific factors.
Collapse
Affiliation(s)
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sam Yeo
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Perttu Arkkila
- Department of Gastroenterology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
5
|
Li N, Li Y, Huang Z, Cao Z, Cao C, Gao X, Zuo T. Faecal phageome transplantation alleviates intermittent intestinal inflammation in IBD and the timing of transplantation matters: a preclinical proof-of-concept study in mice. Gut 2025; 74:868-870. [PMID: 39562050 DOI: 10.1136/gutjnl-2024-333598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Affiliation(s)
- Nengneng Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyu Huang
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirui Cao
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cha Cao
- College of Life Science and Technology, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Xiang Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Zhang Y, Wang L, Peng L. The Role of Intestinal Fungi in the Pathogenesis and Treatment of Ulcerative Colitis. Microorganisms 2025; 13:794. [PMID: 40284630 PMCID: PMC12029736 DOI: 10.3390/microorganisms13040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease closely associated with dysbiosis of the gut microbiome, encompassing not only bacterial communities but also fungal populations. Despite the growing recognition of the gut microbiome's role in UC pathogenesis, the contribution of intestinal fungi has only recently garnered significant attention. In this review, we comprehensively examine the characteristics of intestinal fungi in both healthy individuals and UC patients, elucidating their role in disease pathogenesis and their interactions with bacterial communities. Additionally, we explore the impact of intestinal fungi on disease severity and therapeutic responses in UC. Furthermore, we evaluate the therapeutic potential of antifungal agents, probiotics, and fecal microbiota transplantation (FMT) in UC management, emphasizing the critical role of fungi in these treatment modalities. Future research should prioritize elucidating the multifunctional roles of fungi in UC pathogenesis and their implications for treatment strategies. Moreover, the identification of fungal biomarkers associated with FMT efficacy could pave the way for precision medicine approaches in FMT, offering novel insights into personalized therapeutic interventions for UC.
Collapse
Affiliation(s)
- Yujing Zhang
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Lin Wang
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Lihua Peng
- Microbiota Laboratory, Clinical Division of Microbiota, Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (Y.Z.); (L.W.)
| |
Collapse
|
7
|
Wang X, Zhao D, Bi D, Li L, Tian H, Yin F, Zuo T, Ianiro G, Li N, Chen Q, Qin H. Fecal microbiota transplantation: transitioning from chaos and controversial realm to scientific precision era. Sci Bull (Beijing) 2025; 70:970-985. [PMID: 39855927 DOI: 10.1016/j.scib.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025]
Abstract
With the popularization of modern lifestyles, the spectrum of intestinal diseases has become increasingly diverse, presenting significant challenges in its management. Traditional pharmaceutical interventions have struggled to keep pace with these changes, leaving many patients refractory to conventional pharmaceutical treatments. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for enterogenic diseases. Still, controversies persist regarding its active constituents, mechanism of action, scheme of treatment evaluation, indications, and contraindications. In this review, we investigated the efficacy of FMT in addressing gastrointestinal and extraintestinal conditions, drawing from follow-up data on over 8000 patients. We systematically addressed the controversies surrounding FMT's clinical application. We delved into key issues such as its technical nature, evaluation methods, microbial restoration mechanisms, and impact on the host-microbiota interactions. Additionally, we explored the potential colonization patterns of FMT-engrafted new microbiota throughout the entire intestine and elucidated the specific pathways through which the new microbiota modulates host immunity, metabolism, and genome.
Collapse
Affiliation(s)
- Xinjun Wang
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China.
| | - Di Zhao
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Dexi Bi
- Department of Pathology, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Long Li
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongliang Tian
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Fang Yin
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510655, China
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato, Rome, 00168, Italy
| | - Ning Li
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiyi Chen
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China.
| | - Huanlong Qin
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
8
|
Chen S, Yi M, Yi X, Zhou Y, Song H, Zeng M. Unveiling the fungal frontier: mycological insights into inflammatory bowel disease. Front Immunol 2025; 16:1551289. [PMID: 40207229 PMCID: PMC11979276 DOI: 10.3389/fimmu.2025.1551289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal disease that seriously affects the quality of life of patients around the world. It is characterized by recurrent abdominal pain, diarrhea, and mucous bloody stools. There is an urgent need for more accurate diagnosis and effective treatment of IBD. Accumulated evidence suggests that gut microbiota plays an important role in the occurrence and development of gut inflammation. However, most studies on the role of gut microbiota in IBD have focused on bacteria, while fungal microorganisms have been neglected. Fungal dysbiosis can activate the host protective immune pathway related to the integrity of the epithelial barrier and release a variety of pro-inflammatory cytokines to trigger the inflammatory response. Dectin-1, CARD9, and IL-17 signaling pathways may be immune drivers of fungal dysbacteriosis in the development of IBD. In addition, fungal-bacterial interactions and fungal-derived metabolites also play an important role. Based on this information, we explored new strategies for IBD treatment targeting the intestinal fungal group and its metabolites, such as fungal probiotics, antifungal drugs, diet therapy, and fecal microbiota transplantation (FMT). This review aims to summarize the fungal dysbiosis and pathogenesis of IBD, and provide new insights and directions for further research in this emerging field.
Collapse
Affiliation(s)
- Silan Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meijing Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinying Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuxuan Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Houpan Song
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
9
|
Su R, Wen W, Jin Y, Cao Z, Feng Z, Chen J, Lu Y, Zhou G, Dong C, Gao S, Li X, Zhang H, Chao K, Lan P, Wu X, Philips A, Li K, Gao X, Zhang F, Zuo T. Dietary whey protein protects against Crohn's disease by orchestrating cross-kingdom interaction between the gut phageome and bacteriome. Gut 2025:gutjnl-2024-334516. [PMID: 40122597 DOI: 10.1136/gutjnl-2024-334516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The gut microbiome and diet are important factors in the pathogenesis and management of Crohn's disease (CD). However, the role of the gut phageome under dietary influences is unknown. OBJECTIVE We aim to explore the effect of diet on the gut phageome-bacteriome interaction linking to CD protection. DESIGN We recruited CD patients and healthy subjects (n=140) and conducted a multiomics investigation, including paired ileal mucosa phageome and bacteriome profiling, dietary survey and phenome interrogation. We screened for the effect of diet on the gut phageome and bacteriome, as well as its epidemiological association with CD risks. The underlying mechanisms were explored in target phage-bacteria monocultures and cocultures in vitro and in two mouse models in vivo. RESULTS On dietary screening in humans, whey protein (WP) consumption was found to profoundly impact the gut phageome and bacteriome (more pronounced on the phageome) and was associated with a lower CD risk. Indeed, the WP reshaped gut phageome can causally attenuate intestinal inflammation, as shown by faecal phageome versus bacteriome transplantation from WP-consuming versus WP-non-consuming mice to recipient mice. Mechanistically, WP induced phage (a newly isolated phage AkkZT003P herein) lysis of the mucin-foraging bacterium Akkermansia muciniphila, which unleashed the symbiotic bacterium Streptococcus thermophilus to counteract intestinal inflammation. CONCLUSION Our study charted the importance of cross-kingdom interaction between gut phage and bacteria in mediating the dietary effect on CD protection. Importantly, we uncovered a beneficial dietary WP, a keystone phage AkkZT003P, and a probiotic S. thermophilus that can be used in CD management in the future.
Collapse
Affiliation(s)
- Runping Su
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijie Wen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yufeng Jin
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirui Cao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiyang Feng
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Chen
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu Lu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guicheng Zhou
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University College of Life Science and Technology, Guangzhou, Guangdong, China
| | - Chao Dong
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shanshan Gao
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Chao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojian Wu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anna Philips
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Kun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiang Gao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University College of Life Science and Technology, Guangzhou, Guangdong, China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Zhang C, Zhong B, Jiang Q, Lu W, Wu H, Xing Y, Wu X, Zhang Z, Zheng Y, Li P, Li Z, Lin Z, Chen Y, Hong C, Zhao Z, Zhang T, Liang W, Zhang Y, Zhang C, Yuan JXJ, Liu C, Wang J, Yang K. Distinct airway mycobiome signature in patients with pulmonary hypertension and subgroups. BMC Med 2025; 23:148. [PMID: 40059138 PMCID: PMC11892250 DOI: 10.1186/s12916-025-03982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/03/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND The association between lung microbiome and pulmonary hypertension (PH) remain unknown. This study aims to define the airway mycobiome signature and its potential correlation with clinical parameters of PH. METHODS Overall, 244 patients with PH and 120 healthy controls (CON) were recruited from three independent centers. The PH group was divided into subgroups not using antibiotics or corticosteroids (non-ANT/CORT), and those using ANT, CORT, or ANT + CORT within 1 month, and clinical classification (Groups 1, 3, and 4), World Health Organization functional class (I-IV), and disease severity based on mean pulmonary artery pressure or pulmonary vascular resistance levels for in-depth comparison. RESULTS Distinct airway mycobiome profiles were observed in PH, CON, and PH subgroups. Linear discriminant analysis effect size analysis showed increased Purpureocillium, Issatchenkia, and Cyberlindnera and decreased Peroneutypa, Simplicillium, and Metarhizium in patients with PH (non-ANT/CORT, ANT, CORT, and ANT + CORT) than in CON. Receiver operating characteristic analysis indicated a strong prediction of the two fungal genera sets in distinguishing PH and its subgroups from CON. The two major fungal phyla, Ascomycota and Basidiomycota, correlated differently with major clinical factors. Increased connections among the top fungal phyla or genera were observed in the PH than in the CON group. Dominant enrichment (Purpureocillium, Issatchenkia, and Cyberlindnera) and diminishment (Peroneutypa, Simplicillium, and Metarhizium) of fungal genera consistently and strongly predicted PH without being influenced by different PH subgroups. CONCLUSIONS This study provides the first description of the unique airway mycobiome signature in PH and among different PH subgroups.
Collapse
Affiliation(s)
- Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
| | - Bihua Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), Guangdong, Foshan, China
| | - Qian Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
| | - Yue Xing
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
| | - Xuefen Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
| | - Zizhou Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yulin Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
| | - Peiwen Li
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), Guangdong, Foshan, China
| | - Zhenxiang Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziying Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
| | - Cheng Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China
| | - Zhuxiang Zhao
- Department of Pulmonary and Critical Care Medicine, Infectious Diseases, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangdong, Guangzhou, China
| | - Tingting Zhang
- Department of Intensive Care Unit, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Weiquan Liang
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), Guangdong, Foshan, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Caojin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jason X-J Yuan
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Chunli Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China.
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, 195 West Dong Feng Road, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
11
|
Wu H, Forslund S, Wang Z, Zhao G. Human Gut Microbiome Researches Over the Last Decade: Current Challenges and Future Directions. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:1-7. [PMID: 40313604 PMCID: PMC12040780 DOI: 10.1007/s43657-023-00131-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Affiliation(s)
- Hao Wu
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, 201203 China
| | - Sofia Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, 13092 Germany
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195 USA
| | - Guoping Zhao
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
12
|
Randeni N, Xu B. Critical Review of the Cross-Links Between Dietary Components, the Gut Microbiome, and Depression. Int J Mol Sci 2025; 26:614. [PMID: 39859327 PMCID: PMC11765984 DOI: 10.3390/ijms26020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The complex relationship between diet, the gut microbiota, and mental health, particularly depression, has become a focal point of contemporary research. This critical review examines how specific dietary components, such as fiber, proteins, fats, vitamins, minerals, and bioactive compounds, shape the gut microbiome and influence microbial metabolism in order to regulate depressive outcomes. These dietary-induced changes in the gut microbiota can modulate the production of microbial metabolites, which play vital roles in gut-brain communication. The gut-brain axis facilitates this communication through neural, immune, and endocrine pathways. Alterations in microbial metabolites can influence central nervous system (CNS) functions by impacting neuroplasticity, inflammatory responses, and neurotransmitter levels-all of which are linked to the onset and course of depression. This review highlights recent findings linking dietary components with beneficial changes in gut microbiota composition and reduced depressive symptoms. We also explore the challenges of individual variability in responses to dietary interventions and the long-term sustainability of these strategies. The review underscores the necessity for further longitudinal and mechanistic studies to elucidate the precise mechanisms through which diet and gut microbiota interactions can be leveraged to mitigate depression, paving the way for personalized nutritional therapies.
Collapse
Affiliation(s)
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China;
| |
Collapse
|
13
|
He J, Zhang Y, Guo Y, Guo J, Chen X, Xu S, Xu X, Wu C, Liu C, Chen J, Ding Y, Fisher M, Jiang M, Liu G, Ji X, Wu D. Blood-derived factors to brain communication in brain diseases. Sci Bull (Beijing) 2024; 69:3618-3632. [PMID: 39353815 DOI: 10.1016/j.scib.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 10/04/2024]
Abstract
Brain diseases, mainly including acute brain injuries, neurodegenerative diseases, and mental disorders, have posed a significant threat to human health worldwide. Due to the limited regenerative capability and the existence of the blood-brain barrier, the brain was previously thought to be separated from the rest of the body. Currently, various cross-talks between the central nervous system and peripheral organs have been widely described, including the brain-gut axis, the brain-liver axis, the brain-skeletal muscle axis, and the brain-bone axis. Moreover, several lines of evidence indicate that leveraging systemic biology intervention approaches, including but not limited to lifestyle interventions, exercise, diet, blood administration, and peripheral immune responses, have demonstrated a significant influence on the progress and prognosis of brain diseases. The advancement of innovative proteomic and transcriptomic technologies has enriched our understanding of the nuanced interplay between peripheral organs and brain diseases. An array of novel or previously underappreciated blood-derived factors have been identified to play pivotal roles in mediating these communications. In this review, we provide a comprehensive summary of blood-to-brain communication following brain diseases. Special attention is given to the instrumental role of blood-derived signals, positing them as significant contributors to the complex process of brain diseases. The insights presented here aim to bridge the current knowledge gaps and inspire novel therapeutic strategies for brain diseases.
Collapse
Affiliation(s)
- Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Yanming Zhang
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaohan Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chengeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115, USA
| | - Miaowen Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China; Brain Hospital, Shengli Oilfield Central Hospital, Dongying 257034, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
14
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Chen W, Zou H, Xu H, Cao R, Zhang H, Zhang Y, Zhao J. The potential influence and intervention measures of gut microbiota on sperm: it is time to focus on testis-gut microbiota axis. Front Microbiol 2024; 15:1478082. [PMID: 39439945 PMCID: PMC11493703 DOI: 10.3389/fmicb.2024.1478082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
As the global male infertility rate continues to rise, there is an urgent imperative to investigate the underlying causes of sustained deterioration in sperm quality. The gut microbiota emerges as a pivotal factor in host health regulation, with mounting evidence highlighting its dual influence on semen. This review underscores the interplay between the Testis-Gut microbiota axis and its consequential effects on sperm. Potential mechanisms driving the dual impact of gut microbiota on sperm encompass immune modulation, inflammatory responses mediated by endotoxins, oxidative stress, antioxidant defenses, gut microbiota-derived metabolites, epigenetic modifications, regulatory sex hormone signaling. Interventions such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and Traditional natural herbal extracts are hypothesized to rectify dysbiosis, offering avenues to modulate gut microbiota and enhance Spermatogenesis and motility. Future investigations should delve into elucidating the mechanisms and foundational principles governing the interaction between gut microbiota and sperm within the Testis-Gut microbiota Axis. Understanding and modulating the Testis-Gut microbiota Axis may yield novel therapeutic strategies to enhance male fertility and combat the global decline in sperm quality.
Collapse
Affiliation(s)
- Wenkang Chen
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hede Zou
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoran Xu
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Rui Cao
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hekun Zhang
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yapeng Zhang
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayou Zhao
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Ye ZN, Eslick GD, Huang SG, He XX. Faecal microbiota transplantation for eradicating Helicobacter pylori infection: clinical practice and theoretical postulation. EGASTROENTEROLOGY 2024; 2:e100099. [PMID: 39944265 PMCID: PMC11770466 DOI: 10.1136/egastro-2024-100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
The sustained increase in antibiotic resistance leads to a declining trend in the eradication rate of Helicobacter pylori (H. pylori) infection with antibiotic-based eradication regimens. Administration of a single probiotic shows limited efficacy in eradicating H. pylori infection. This review indicates that faecal microbiota transplantation (FMT), a novel therapeutic approach, either as a monotherapy or adjunctive therapy, exhibits beneficial effects in terms of the eradication of H. pylori infection and the prevention of adverse events. The role of FMT in H. pylori eradication may be associated directly or indirectly with some therapeutic constituents within the faecal suspension, including bacteria, viruses, antimicrobial peptides and metabolites. In addition, variations in donor selection, faecal suspension preparation and delivery methods are believed to be the main factors determining the effectiveness of FMT for the treatment of H. pylori infection. Future research should refine the operational procedures of FMT to achieve optimal efficacy for H. pylori infection and explore the mechanisms by which FMT acts against H. pylori.
Collapse
Affiliation(s)
- Zhi-Ning Ye
- The Affiliated Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Guy D Eslick
- The Australian Paediatric Surveillance Unit, The University of Sydney, The Children's Hospital, Sydney, New South Wale, Australia
| | - Shao-Gang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xing-Xiang He
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Hu J, Yao Q, Zhao L. Evidences and perspectives on the association between gut microbiota and sepsis: A bibliometric analysis from 2003 to 2023. Heliyon 2024; 10:e37921. [PMID: 39315201 PMCID: PMC11417584 DOI: 10.1016/j.heliyon.2024.e37921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Background In the last two decades, the role of the gut microbiome in the development, maintenance, and outcome of sepsis has received increased attention; however, few descriptive studies exist on its research focus, priorities, and future prospects. This study aimed to identify the current state, evolution, and emerging trends in the field of gut microbiota and sepsis using bibliometric analysis. Methods All publications on sepsis and gut microbiota were retrieved from the Web of Science Core Collection and included in this study. VOSviewer, CiteSpace, and the Web of Science online analysis platform were used to visualize trends based on publication country, institution, author, journal, and keywords. Results A total of 1,882 articles on sepsis-related gut microbiota were screened, mainly from 95 countries or regions and 2,581 institutions. The United States and China contributed the most to this research field, with 521 (27.683 %) and 376 (19.979 %) articles, respectively. Scientists from the University of California were the most prolific, publishing 63 (3.348 %) articles. Cani PD published papers with the highest H-index, establishing himself as a leader in the field. The most publications were published in the journals "Nutrients" and "PLOS One." The journals with the most co-citations were "PLOS One," "Nature," and "Gut." The most used keywords were prebiotics, gut microbiota, and sepsis. The keyword burst research analysis revealed that research on treatment strategies based on the intestinal microbiota, intestine-liver axis, and regulatory mechanisms of bacterial metabolites are currently hot directions. Conclusion This study presents a global overview of the current state and potential trends in the field of sepsis-related gut microbiota. This study identified hot research sub-directions and new trends through comparison and analysis, which will aid in the development of this field.
Collapse
Affiliation(s)
- Jiahui Hu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou City, 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Linjun Zhao
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Rd, Hangzhou City, 310006, China
| |
Collapse
|
18
|
Severino A, Tohumcu E, Tamai L, Dargenio P, Porcari S, Rondinella D, Venturini I, Maida M, Gasbarrini A, Cammarota G, Ianiro G. The microbiome-driven impact of western diet in the development of noncommunicable chronic disorders. Best Pract Res Clin Gastroenterol 2024; 72:101923. [PMID: 39645277 DOI: 10.1016/j.bpg.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
Noncommunicable chronic disorders (NCDs) are multifactorial disorders that share a state of chronic, low-grade inflammation together with an imbalance of gut microbiota. NCDs are becoming increasingly prevalent worldwide, and mainly in Western countries, with a significant impact on global health. Societal changes, together with the widespread diffusion of modern agricultural methods and food processing, have led to a significant shift in dietary habits over the past century, with an increased diffusion of the Western diet (WD). WD includes foods high in saturated fat, refined sugars, salt, sweeteners, and low in fiber, and is characterized by overeating, frequent snacking, and a prolonged postprandial state. An increasing body of evidence supports the association between the diffusion of WD and the rising prevalence of NCDs. WD also negatively affects both gut microbiota and the immune system by driving to microbial alterations, gut barrier dysfunction, increased intestinal permeability, and leakage of harmful bacterial metabolites into the bloodstream, with consequent contribution to the development of systemic low-grade inflammation. In this review article we aim to dissect the role of gut microbiota imbalance and gut barrier impairment in mediating the detrimental effects of WD on the development of NCDs, and to identify potential therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy.
| | - Ege Tohumcu
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Luca Tamai
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Pasquale Dargenio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Debora Rondinella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Irene Venturini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Marcello Maida
- Department of Medicine and Surgery, University of Enna 'Kore', Enna, Italy; Gastroenterology Unit, Umberto I Hospital, Enna, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
19
|
Montrose JA, Kurada S, Fischer M. Current and future microbiome-based therapies in inflammatory bowel disease. Curr Opin Gastroenterol 2024; 40:258-267. [PMID: 38841848 DOI: 10.1097/mog.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW The role of the microbiome and dysbiosis is increasingly recognized in the pathogenesis of inflammatory bowel disease (IBD). Intestinal microbiota transplant (IMT), previously termed fecal microbiota transplant has demonstrated efficacy in restoring a healthy microbiome and promoting gut health in recurrent Clostridioides difficile infection. Several randomized trials (RCTs) highlighted IMT's potential in treating ulcerative colitis, while smaller studies reported on its application in managing Crohn's disease and pouchitis. RECENT FINDINGS This review delves into the current understanding of dysbiosis in IBD, highlighting the distinctions in the microbiota of patients with IBD compared to healthy controls. It explores the mechanisms by which IMT can restore a healthy microbiome and provides a focused analysis of recent RCTs using IMT for inducing and maintaining remission in IBD. Lastly, we discuss the current knowledge gaps that limit its widespread use. SUMMARY The body of evidence supporting the use of IMT in IBD is growing. The lack of a standardized protocol impedes its application beyond clinical trials. Further research is needed to identify patient profile and disease phenotypes that benefit from IMT, to delineate key donor characteristics, optimize the delivery route, dosage, and frequency.
Collapse
Affiliation(s)
| | - Satya Kurada
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Monika Fischer
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
20
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Haggai Bar-Yoseph
- Department of
Gastroenterology, Rambam Health Care
Campus, Haifa,
Israel
- Rappaport Faculty of
Medicine, Technion-Israel Institute of
Technology, Haifa,
Israel
| | - Tanya Marie Monaghan
- National Institute for
Health Research Nottingham Biomedical Research Centre, University of
Nottingham, Nottingham,
United Kingdom
- Nottingham Digestive
Diseases Centre, School of Medicine, University of
Nottingham, Nottingham,
United Kingdom
| | - Sepideh Pakpour
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Andrea Severino
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Ed J. Kuijper
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Wiep Klaas Smits
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Elisabeth M. Terveer
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Sukanya Neupane
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Javad Sadeghi
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Giovanni Cammarota
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Gianluca Ianiro
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Estello Nap-Hill
- Department of
Medicine, Division of Gastroenterology, St Paul’s Hospital,
University of British Columbia,
Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Karen Wong
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Dina Kao
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| |
Collapse
|
21
|
Liu S, Li W, Chen J, Li M, Geng Y, Liu Y, Wu W. The footprint of gut microbiota in gallbladder cancer: a mechanistic review. Front Cell Infect Microbiol 2024; 14:1374238. [PMID: 38774627 PMCID: PMC11106419 DOI: 10.3389/fcimb.2024.1374238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system with the worst prognosis. Even after radical surgery, the majority of patients with GBC have difficulty achieving a clinical cure. The risk of tumor recurrence remains more than 65%, and the overall 5-year survival rate is less than 5%. The gut microbiota refers to a variety of microorganisms living in the human intestine, including bacteria, viruses and fungi, which profoundly affect the host state of general health, disease and even cancer. Over the past few decades, substantial evidence has supported that gut microbiota plays a critical role in promoting the progression of GBC. In this review, we summarize the functions, molecular mechanisms and recent advances of the intestinal microbiota in GBC. We focus on the driving role of bacteria in pivotal pathways, such as virulence factors, metabolites derived from intestinal bacteria, chronic inflammatory responses and ecological niche remodeling. Additionally, we emphasize the high level of correlation between viruses and fungi, especially EBV and Candida spp., with GBC. In general, this review not only provides a solid theoretical basis for the close relationship between gut microbiota and GBC but also highlights more potential research directions for further research in the future.
Collapse
Affiliation(s)
- Shujie Liu
- Joint Program of Nanchang University and Queen Mary University of London, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Jun Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
22
|
Porcari S, Fusco W, Spivak I, Fiorani M, Gasbarrini A, Elinav E, Cammarota G, Ianiro G. Fine-tuning the gut ecosystem: the current landscape and outlook of artificial microbiome therapeutics. Lancet Gastroenterol Hepatol 2024; 9:460-475. [PMID: 38604200 DOI: 10.1016/s2468-1253(23)00357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 04/13/2024]
Abstract
The gut microbiome is acknowledged as a key determinant of human health, and technological progress in the past two decades has enabled the deciphering of its composition and functions and its role in human disorders. Therefore, manipulation of the gut microbiome has emerged as a promising therapeutic option for communicable and non-communicable disorders. Full exploitation of current therapeutic microbiome modulators (including probiotics, prebiotics, and faecal microbiota transplantation) is hindered by several factors, including poor precision, regulatory and safety issues, and the impossibility of providing reproducible and targeted treatments. Artificial microbiota therapeutics (which include a wide range of products, such as microbiota consortia, bacteriophages, bacterial metabolites, and engineered probiotics) have appeared as an evolution of current microbiota modulators, as they promise safe and reproducible effects, with variable levels of precision via different pathways. We describe the landscape of artificial microbiome therapeutics, from those already on the market to those still in the pipeline, and outline the major challenges for positioning these therapeutics in clinical practice.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Igor Spivak
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Medical Clinic III, University Hospital Aachen, Aachen, Germany
| | - Marcello Fiorani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Microbiome and Cancer Division, DKFZ, Heidelberg, Germany
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Gastroenterologia and UOC CEMAD Medicina Interna e Gastroenterologia, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
23
|
Kirk D, Costeira R, Visconti A, Khan Mirzaei M, Deng L, Valdes AM, Menni C. Bacteriophages, gut bacteria, and microbial pathways interplay in cardiometabolic health. Cell Rep 2024; 43:113728. [PMID: 38300802 PMCID: PMC11554570 DOI: 10.1016/j.celrep.2024.113728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Cardiometabolic diseases are leading causes of mortality in Western countries. Well-established risk factors include host genetics, lifestyle, diet, and the gut microbiome. Moreover, gut bacterial communities and their activities can be altered by bacteriophages (also known simply as phages), bacteria-infecting viruses, making these biological entities key regulators of human cardiometabolic health. The manipulation of bacterial populations by phages enables the possibility of using phages in the treatment of cardiometabolic diseases through phage therapy and fecal viral transplants. First, however, a deeper understanding of the role of the phageome in cardiometabolic diseases is required. In this review, we first introduce the phageome as a component of the gut microbiome and discuss fecal viral transplants and phage therapy in relation to cardiometabolic diseases. We then summarize the current state of phageome research in cardiometabolic diseases and propose how the phageome might indirectly influence cardiometabolic health through gut bacteria and their metabolites.
Collapse
Affiliation(s)
- Daniel Kirk
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Ricardo Costeira
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Alessia Visconti
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, UK; Center for Biostatistics, Epidemiology, and Public Health, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, 85764 Neuherberg, Germany; School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, 85764 Neuherberg, Germany; School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ana M Valdes
- Academic Rheumatology, Clinical Sciences Building, Nottingham City Hospital, University of Nottingham, Nottingham, UK
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, UK.
| |
Collapse
|
24
|
Cao Z, Fan D, Sun Y, Huang Z, Li Y, Su R, Zhang F, Li Q, Yang H, Zhang F, Miao Y, Lan P, Wu X, Zuo T. The gut ileal mucosal virome is disturbed in patients with Crohn's disease and exacerbates intestinal inflammation in mice. Nat Commun 2024; 15:1638. [PMID: 38388538 PMCID: PMC10884039 DOI: 10.1038/s41467-024-45794-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Gut bacteriome dysbiosis is known to be implicated in the pathogenesis of inflammatory bowel disease (IBD). Crohn's disease (CD) is an IBD subtype with extensive mucosal inflammation, yet the mucosal virome, an empirical modulator of the bacteriome and mucosal immunity, remains largely unclear regarding its composition and role. Here, we exploited trans-cohort CD patients and healthy individuals to compositionally and functionally investigate the small bowel (terminal ileum) virome and bacteriome. The CD ileal virome was characterised by an under-representation of both lytic and temperate bacteriophages (especially those targeting bacterial pathogens), particularly in patients with flare-up. Meanwhile, the virome-bacteriome ecology in CD ileal mucosa was featured by a lack of Bifidobacterium- and Lachnospiraceae-led mutualistic interactions between bacteria and bacteriophages; surprisingly it was more pronounced in CD remission than flare-up, underlining the refractory and recurrent nature of mucosal inflammation in CD. Lastly, we substantiated that ileal virions from CD patients causally exacerbated intestinal inflammation in IBD mouse models, by reshaping a gut virome-bacteriome ecology preceding intestinal inflammation (microbial trigger) and augmenting microbial sensing/defence pathways in the intestine cells (host response). Altogether, our results highlight the significance of mucosal virome in CD pathogenesis and importance of mucosal virome restoration in CD therapeutics.
Collapse
Affiliation(s)
- Zhirui Cao
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dejun Fan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Sun
- Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
- Yunnan Province Clinical Research Centre for Digestive Diseases, Kunming, Yunnan, China.
- Yunnan Geriatric Medical Centre, Kunming, Yunnan, China.
| | - Ziyu Huang
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Li
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Runping Su
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Zhang
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qing Li
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongju Yang
- Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Geriatric Medical Centre, Kunming, Yunnan, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yinglei Miao
- Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Centre for Digestive Diseases, Kunming, Yunnan, China
| | - Ping Lan
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojian Wu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
McGuinness AJ, Loughman A, Foster JA, Jacka F. Mood Disorders: The Gut Bacteriome and Beyond. Biol Psychiatry 2024; 95:319-328. [PMID: 37661007 DOI: 10.1016/j.biopsych.2023.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Knowledge of the microbiome-gut-brain axis has revolutionized the field of psychiatry. It is now well recognized that the gut bacteriome is associated with, and likely influences, the pathogenesis of mental disorders, including major depressive disorder and bipolar disorder. However, while substantial advances in the field of microbiome science have been made, we have likely only scratched the surface in our understanding of how these ecosystems might contribute to mental disorder pathophysiology. Beyond the gut bacteriome, research into lesser explored components of the gut microbiome, including the gut virome, mycobiome, archaeome, and parasitome, is increasingly suggesting relevance in psychiatry. The contribution of microbiomes beyond the gut, including the oral, lung, and small intestinal microbiomes, to human health and pathology should not be overlooked. Increasing both our awareness and understanding of these less traversed fields of research are critical to improving the therapeutic benefits of treatments targeting the gut microbiome, including fecal microbiome transplantation, postbiotics and biogenics, and dietary intervention. Interdisciplinary collaborations integrating systems biology approaches are required to fully elucidate how these different microbial components and distinct microbial niches interact with each other and their human hosts. Excitingly, we may be at the start of the next microbiome revolution and thus one step closer to informing the field of precision psychiatry to improve outcomes for those living with mental illness.
Collapse
Affiliation(s)
- Amelia J McGuinness
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| | - Amy Loughman
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Jane A Foster
- Center for Depression Research and Clinical Care, Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Felice Jacka
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
26
|
Bu L, Wang C, Bai J, Song J, Zhang Y, Chen H, Suo H. Gut microbiome-based therapies for alleviating cognitive impairment: state of the field, limitations, and future perspectives. Food Funct 2024; 15:1116-1134. [PMID: 38224464 DOI: 10.1039/d3fo02307a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Cognitive impairment (CI) is a multifaceted neurological condition that can trigger negative emotions and a range of concurrent symptoms, imposing significant public health and economic burdens on society. Therefore, it is imperative to discover a remedy for CI. Nevertheless, the mechanisms behind the onset of this disease are multifactorial, which makes the search for effective amelioration difficult and complex, hindering the search for effective measures. Intriguingly, preclinical research indicates that gut microbiota by influencing brain function, plays an important role in the progression of CI. Furthermore, numerous preclinical studies have highlighted the potential of probiotics, prebiotics, fecal microbiota transplantation (FMT), and diet in modulating the gut microbiota, thereby ameliorating CI symptoms. This review provides a comprehensive evaluation of CI pathogenesis, emphasizing the contribution of gut microbiota disorders to CI development. It also summarizes and discusses current strategies and mechanisms centered on the synergistic role of gut microbiota modulation in the microbiota-gut-brain axis in CI development. Finally, problems with existing approaches are contemplated and the development of microbial modulation strategies as therapeutic approaches to promote and restore brain cognition is discussed. Further research considerations and directions are highlighted to provide ideas for future CI prevention and treatment strategies.
Collapse
Affiliation(s)
- Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Xizang 850000, China
| | - Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
27
|
Wang X, Ding Z, Yang Y, Liang L, Sun Y, Hou C, Zheng Y, Xia Y, Dong L. ViromeFlowX: a Comprehensive Nextflow-based Automated Workflow for Mining Viral Genomes from Metagenomic Sequencing Data. Microb Genom 2024; 10:001202. [PMID: 38381034 PMCID: PMC10926697 DOI: 10.1099/mgen.0.001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Understanding the link between the human gut virome and diseases has garnered significant interest in the research community. Extracting virus-related information from metagenomic sequencing data is crucial for unravelling virus composition, host interactions, and disease associations. However, current metagenomic analysis workflows for viral genomes vary in effectiveness, posing challenges for researchers seeking the most up-to-date tools. To address this, we present ViromeFlowX, a user-friendly Nextflow workflow that automates viral genome assembly, identification, classification, and annotation. This streamlined workflow integrates cutting-edge tools for processing raw sequencing data for taxonomic annotation and functional analysis. Application to a dataset of 200 metagenomic samples yielded high-quality viral genomes. ViromeFlowX enables efficient mining of viral genomic data, offering a valuable resource to investigate the gut virome's role in virus-host interactions and virus-related diseases.
Collapse
Affiliation(s)
- Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | | | - Ying Yang
- 01Life Institute, Shenzhen, PR China
| | | | | | - Chaojian Hou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | | | - Yan Xia
- 01Life Institute, Shenzhen, PR China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| |
Collapse
|
28
|
Yadav A, Yadav R, Sharma V, Dutta U. A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease. Indian J Gastroenterol 2024; 43:112-128. [PMID: 38409485 DOI: 10.1007/s12664-023-01510-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
Inflammatory bowel disease (IBD) is an immune mediated chronic inflammatory disorder of gastrointestinal tract, which has underlying multifactorial pathogenic determinants such as environmental factors, susceptibility genes, gut microbial dysbiosis and a dysregulated immune response. Human gut is a frequent inhabitant of complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi and other microorganisms that have an undisputable role in maintaining balanced homeostasis. All of these microbes interact with immune system and affect human gut physiology either directly or indirectly with interaction of each other. Intestinal fungi represent a smaller but crucial component of the human gut microbiome. Besides interaction with bacteriome and virome, it helps in balancing homoeostasis between pathophysiological and physiological processes, which is often dysregulated in patients with IBD. Understanding of gut mycobiome and its clinical implications are still in in its infancy as opposed to bacterial component of gut microbiome, which is more often focused. Modulation of gut mycobiome represents a novel and promising strategy in the management of patients with IBD. Emerging mycobiome-based therapies such as diet interventions, fecal microbiota transplantation (FMT), probiotics (both fungal and bacterial strains) and antifungals exhibit substantial effects in calibrating the gut mycobiome and restoring dysbalanced immune homeostasis by restoring the core gut mycobiome. In this review, we summarized compositional and functional diversity of the gut mycobiome in healthy individuals and patients with IBD, gut mycobiome dysbiosis in patients with IBD, host immune-fungal interactions and therapeutic role of modulation of intestinal fungi in patients with IBD.
Collapse
Affiliation(s)
- Amit Yadav
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Renu Yadav
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| |
Collapse
|
29
|
Huang H, Wang Q, Yang Y, Zhong W, He F, Li J. The mycobiome as integral part of the gut microbiome: crucial role of symbiotic fungi in health and disease. Gut Microbes 2024; 16:2440111. [PMID: 39676474 PMCID: PMC11651280 DOI: 10.1080/19490976.2024.2440111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The gut mycobiome significantly affects host health and immunity. However, most studies have focused on symbiotic bacteria in the gut microbiome, whereas less attention has been given to symbiotic fungi. Although fungi constitute only 0.01%-0.1% of the gut microbiome, their larger size and unique immunoregulatory functions make them significant. Factors like diet, antimicrobials use, and age can disrupt the fungal community, leading to dysbiosis. Fungal-bacterial-host immune interactions are critical in maintaining gut homeostasis, with fungi playing a role in mediating immune responses such as Th17 cell activation. This review highlights methods for studying gut fungi, the composition and influencing factors of the gut mycobiome, and its potential in therapeutic interventions for intestinal and hepatic diseases. We aim to provide new insights into the underexplored role of gut fungi in human health.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Qiurong Wang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Ying Yang
- Department of Gastroenterology, Sichuan Fifth People’s Hospital, Chengdu, China
| | - Wei Zhong
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Feng He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Jun Li
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| |
Collapse
|
30
|
Li L, Huang X, Chen H. Unveiling the hidden players: exploring the role of gut mycobiome in cancer development and treatment dynamics. Gut Microbes 2024; 16:2328868. [PMID: 38485702 PMCID: PMC10950292 DOI: 10.1080/19490976.2024.2328868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
The role of gut fungal species in tumor-related processes remains largely unexplored, with most studies still focusing on fungal infections. This review examines the accumulating evidence suggesting the involvement of commensal and pathogenic fungi in cancer biological process, including oncogenesis, progression, and treatment response. Mechanisms explored include fungal influence on host immunity, secretion of bioactive toxins/metabolites, interaction with bacterial commensals, and migration to other tissues in certain types of cancers. Attempts to utilize fungal molecular signatures for cancer diagnosis and fungal-derived products for treatment are discussed. A few studies highlight fungi's impact on the responsiveness and sensitivity to chemotherapy, radiotherapy, immunotherapy, and fecal microbiota transplant. Given the limited understanding and techniques in fungal research, the studies on gut fungi are still facing great challenges, despite having great potentials.
Collapse
Affiliation(s)
- Lingxi Li
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
31
|
Mullish BH, Tohumcu E, Porcari S, Fiorani M, Di Tommaso N, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. The role of faecal microbiota transplantation in chronic noncommunicable disorders. J Autoimmun 2023; 141:103034. [PMID: 37087392 DOI: 10.1016/j.jaut.2023.103034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/24/2023]
Abstract
The gut microbiome plays a key role in influencing several pathways and functions involved in human health, including metabolism, protection against infection, and immune regulation. Perturbation of the gut microbiome is recognised as a pathogenic factor in several gastrointestinal and extraintestinal disorders, and is increasingly considered as a therapeutic target in these conditions. Faecal microbiota transplantation (FMT) is the transfer of the microbiota from healthy screened stool donors into the gut of affected patients, and is a well-established and highly effective treatment for recurrent Clostridioides difficile infection. Despite the mechanisms of efficacy of FMT not being fully understood, it has been investigated in several chronic noncommunicable disorders, with variable results. This review aims to give an overview of mechanisms of efficacy of FMT in chronic noncommunicable disorders, and to paint the current landscape of its investigation in these medical conditions, including inflammatory bowel disease (IBD), chronic liver disorders, and also extraintestinal autoimmune conditions.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Ege Tohumcu
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Serena Porcari
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marcello Fiorani
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Natalia Di Tommaso
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy.
| |
Collapse
|
32
|
Yu Y, Wang W, Zhang F. The Next Generation Fecal Microbiota Transplantation: To Transplant Bacteria or Virome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301097. [PMID: 37914662 PMCID: PMC10724401 DOI: 10.1002/advs.202301097] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/02/2023] [Indexed: 11/03/2023]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for dysbiosis-related diseases. However, the clinical practice of crude fecal transplants presents limitations in terms of acceptability and reproductivity. Consequently, two alternative solutions to FMT are developed: transplanting bacteria communities or virome. Advanced methods for transplanting bacteria mainly include washed microbiota transplantation and bacteria spores treatment. Transplanting the virome is also explored, with the development of fecal virome transplantation, which involves filtering the virome from feces. These approaches provide more palatable options for patients and healthcare providers while minimizing research heterogeneity. In general, the evolution of the next generation of FMT in global trends is fecal microbiota components transplantation which mainly focuses on transplanting bacteria or virome.
Collapse
Affiliation(s)
- You Yu
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
- Department of Microbiota MedicineSir Run Run HospitalNanjing Medical UniversityNanjing211166China
| |
Collapse
|
33
|
Zhang X, Luo X, Tian L, Yue P, Li M, Liu K, Zhu D, Huang C, Shi Q, Yang L, Xia Z, Zhao J, Ma Z, Li J, Leung JW, Lin Y, Yuan J, Meng W, Li X, Chen Y. The gut microbiome dysbiosis and regulation by fecal microbiota transplantation: umbrella review. Front Microbiol 2023; 14:1286429. [PMID: 38029189 PMCID: PMC10655098 DOI: 10.3389/fmicb.2023.1286429] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Gut microbiome dysbiosis has been implicated in various gastrointestinal and extra-gastrointestinal diseases, but evidence on the efficacy and safety of fecal microbiota transplantation (FMT) for therapeutic indications remains unclear. Methods The gutMDisorder database was used to summarize the associations between gut microbiome dysbiosis and diseases. We performed an umbrella review of published meta-analyses to determine the evidence synthesis on the efficacy and safety of FMT in treating various diseases. Our study was registered in PROSPERO (CRD42022301226). Results Gut microbiome dysbiosis was associated with 117 gastrointestinal and extra-gastrointestinal. Colorectal cancer was associated with 92 dysbiosis. Dysbiosis involving Firmicutes (phylum) was associated with 34 diseases. We identified 62 published meta-analyses of FMT. FMT was found to be effective for 13 diseases, with a 95.56% cure rate (95% CI: 93.88-97.05%) for recurrent Chloridoids difficile infection (rCDI). Evidence was high quality for rCDI and moderate to high quality for ulcerative colitis and Crohn's disease but low to very low quality for other diseases. Conclusion Gut microbiome dysbiosis may be implicated in numerous diseases. Substantial evidence suggests FMT improves clinical outcomes for certain indications, but evidence quality varies greatly depending on the specific indication, route of administration, frequency of instillation, fecal preparation, and donor type. This variability should inform clinical, policy, and implementation decisions regarding FMT.
Collapse
Affiliation(s)
- Xianzhuo Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xufei Luo
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Liang Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Mengyao Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Kefeng Liu
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daoming Zhu
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Chongfei Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qianling Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Liping Yang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhili Xia
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jinyu Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zelong Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jianlong Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, United States
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yaolong Chen
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Research Unit of Evidence-Based Evaluation and Guidelines, Chinese Academy of Medical Sciences, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Institute of Health Data Science, Lanzhou University, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou, China
| |
Collapse
|
34
|
Gu P, Liu R, Yang Q, Xie L, Wei R, Li J, Mei F, Chen T, Zeng Z, He Y, Zhou H, Peng H, Nandakumar KS, Chu H, Jiang Y, Gong W, Chen Y, Schnabl B, Chen P. A metabolite from commensal Candida albicans enhances the bactericidal activity of macrophages and protects against sepsis. Cell Mol Immunol 2023; 20:1156-1170. [PMID: 37553429 PMCID: PMC10541433 DOI: 10.1038/s41423-023-01070-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
The gut microbiome is recognized as a key modulator of sepsis development. However, the contribution of the gut mycobiome to sepsis development is still not fully understood. Here, we demonstrated that the level of Candida albicans was markedly decreased in patients with bacterial sepsis, and the supernatant of Candida albicans culture significantly decreased the bacterial load and improved sepsis symptoms in both cecum ligation and puncture (CLP)-challenged mice and Escherichia coli-challenged pigs. Integrative metabolomics and the genetic engineering of fungi revealed that Candida albicans-derived phenylpyruvate (PPA) enhanced the bactericidal activity of macrophages and reduced organ damage during sepsis. Mechanistically, PPA directly binds to sirtuin 2 (SIRT2) and increases reactive oxygen species (ROS) production for eventual bacterial clearance. Importantly, PPA enhanced the bacterial clearance capacity of macrophages in sepsis patients and was inversely correlated with the severity of sepsis in patients. Our findings highlight the crucial contribution of commensal fungi to bacterial disease modulation and expand our understanding of the host-mycobiome interaction during sepsis development.
Collapse
Affiliation(s)
- Peng Gu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ruofan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Li Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fengyi Mei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kutty Selva Nandakumar
- Department of Environment and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Li Y, Han L, Liu J, Kang L, Zhao L, Cui K. Yeast Peptides Improve the Intestinal Barrier Function and Alleviate Weaning Stress by Changing the Intestinal Microflora Structure of Weaned Lambs. Microorganisms 2023; 11:2472. [PMID: 37894129 PMCID: PMC10608930 DOI: 10.3390/microorganisms11102472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Early weaning stress in lambs leads to decreased feed intake, damage to intestinal morphology, changes in the microbial flora structure, and subsequent complications. Yeast peptides are antimicrobial peptides with anti-inflammatory, antioxidant, and bacteriostasis effects. To study the effects of yeast peptides on relieving weaning stress in lambs, 54 lambs were randomly divided into three groups: ewe-reared (ER), yeast-peptide-treated (AP), and early-weaned (EW) lambs. The body weight and dry matter intake did not significantly differ among all groups. After weaning, the daily gain and feed conversion rate decreased significantly (p < 0.01), but AP showed an upward trend. In the EW group, immunoglobulin (Ig) levels changed significantly post-weaning (IgG decreased; IgA and IgM increased); the villi shortened, the crypt depth increased, and the villi height/crypt depth decreased (p < 0.001). The abundance and diversity of microflora among all groups were not significantly different. A column coordinate analysis showed significant differences in the intestinal microbial structure between the AP and EW groups. Lactobacillus, Aeriscardovia, Ruminosaceae_UCG-014, and Catenisphaera may play key roles in alleviating weaning stress in lambs. Our study provides new clues for alleviating weaning stress in lambs by describing the influence of yeast peptides on the intestinal microflora during weaning.
Collapse
Affiliation(s)
- Yanjun Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.H.); (J.L.); (L.K.)
| | - Lulu Han
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.H.); (J.L.); (L.K.)
| | - Jie Liu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.H.); (J.L.); (L.K.)
| | - Lingyun Kang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.H.); (J.L.); (L.K.)
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Kai Cui
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.H.); (J.L.); (L.K.)
| |
Collapse
|
36
|
Li XH, Luo MM, Wang ZX, Wang Q, Xu B. The role of fungi in the diagnosis of colorectal cancer. Mycology 2023; 15:17-29. [PMID: 38558845 PMCID: PMC10977015 DOI: 10.1080/21501203.2023.2249492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 04/04/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent tumour with high morbidity rates worldwide, and its incidence among younger populations is rising. Early diagnosis of CRC can help control the associated mortality. Fungi are common microorganisms in nature. Recent studies have shown that fungi may have a similar association with tumours as bacteria do. As an increasing number of tumour-associated fungi are discovered, this provides new ideas for the diagnosis and prognosis of tumours. The relationship between fungi and colorectal tumours has also been recently identified by scientists. Therefore, this paper describes the limitations and prospects of the application of fungi in diagnosing CRC and predicting CRC prognosis.
Collapse
Affiliation(s)
- Xu-Huan Li
- Department of General Practice, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming-Ming Luo
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zu-Xiu Wang
- Department of General Practice, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Wang
- Department of Health Statistics, School of PubliHealth and Health Management, Gannan Medical University, Ganzhou, China
| | - Bin Xu
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
37
|
Zuo T, Liang G, Huang Z, Cao Z, Bai F, Zhou Y, Wu X, Wu X, Chen YQ, Balati M, Maimaitiyiming M, Lan P. Baseline gut microbiome features prior to SARS-CoV-2 infection are associated with host symptoms in and post COVID-19. J Med Virol 2023; 95:e29083. [PMID: 37698033 DOI: 10.1002/jmv.29083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/21/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
The human gut microbiome varies substantially across individuals and populations and differentially tames our immunity at steady-state. Hence, we hypothesize that the large heterogeneity of gut microbiomes at steady-state may shape our baseline immunity differentially, and then mediate discrepant immune responses and symptoms when one encounters a viral infection, such as SARS-CoV-2 infection. To validate this hypothesis, we conducted an exploratory, longitudinal microbiome-COVID-19 study involving homogenous young participants from two geographically different regions in China. Subjects were recruited and sampled of fecal specimens before the 3-week surge window of COVID-19 (between December 11 and December 31, 2022) in China, and then were followed up for assessment of COVID-19 and post-COVID-19 manifestations. Our data showed that the baseline gut microbiome composition was intricately associated with different COVID-19 manifestations, particularly gastrointestinal involvement and post-COVID-19 lingering symptoms, in both an individual- and population-dependent manner. Our study intriguingly for the first time highlight that the gut microbiome at steady-state may prepare us differentially for weathering a respiratory viral infection.
Collapse
Affiliation(s)
- Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guanzhan Liang
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyu Huang
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirui Cao
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feiyu Bai
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingqian Zhou
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianrui Wu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojian Wu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Maimaitituerxun Balati
- Department of Gastroenterology, The First People's Hospital of Kashi Prefecture, Kashgar, China
| | - Muyessar Maimaitiyiming
- Department of Gastroenterology, The First People's Hospital of Kashi Prefecture, Kashgar, China
| | - Ping Lan
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Fecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Shen K, Din AU, Sinha B, Zhou Y, Qian F, Shen B. Translational informatics for human microbiota: data resources, models and applications. Brief Bioinform 2023; 24:7152256. [PMID: 37141135 DOI: 10.1093/bib/bbad168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of human intestinal microbiology and diverse microbiome-related studies and investigations, a large amount of data have been generated and accumulated. Meanwhile, different computational and bioinformatics models have been developed for pattern recognition and knowledge discovery using these data. Given the heterogeneity of these resources and models, we aimed to provide a landscape of the data resources, a comparison of the computational models and a summary of the translational informatics applied to microbiota data. We first review the existing databases, knowledge bases, knowledge graphs and standardizations of microbiome data. Then, the high-throughput sequencing techniques for the microbiome and the informatics tools for their analyses are compared. Finally, translational informatics for the microbiome, including biomarker discovery, personalized treatment and smart healthcare for complex diseases, are discussed.
Collapse
Affiliation(s)
- Ke Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Ahmad Ud Din
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Baivab Sinha
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Yi Zhou
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Fuliang Qian
- Center for Systems Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| |
Collapse
|
39
|
He Q, Guo K, Wang L, Xie F, Zhao Q, Jiang X, He Z, Wang P, Li S, Huang Y, Zhang C, Huang R, Liu Y, Wang F, Zhou X, Niu R, Zuo T, Wang Y, Li C. Tannins amount determines whether tannase-containing bacteria are probiotic or pathogenic in IBD. Life Sci Alliance 2023; 6:e202201702. [PMID: 36759174 PMCID: PMC9911794 DOI: 10.26508/lsa.202201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The role of dietary tannin in inflammatory bowel disease (IBD) is still not clear. Therefore, we aim to study the effect of TA in the progression of IBD. Dextran sulphate sodium (DSS)-induced model was used to mimic IBD. Metagenomics and metabolomics were performed to study the alteration of intestinal microbiota and metabolites. NCM460 and THP-1 cells were used for in vitro study. The amount of TA was associated with the outcomes of DSS-induced IBD as evidenced by in vivo and in vitro studies. Metabolomic and metagenomic analyses revealed that TA-induced enrichment of microbial metabolite gallic acid (GA) was responsible for the action of TA. Mechanistically, protective dose of GA promoted colonic mucus secretion to suppress bacterial infection and that it ameliorated DSS-induced epithelial damage by inhibiting p53 signaling, whereas toxic dose of GA directly caused epithelial damage by promoting cell cycle arrest. Therapeutic experiment showed protective dose of GA-promoted recovery of DSS-induced colonic inflammation. The role of tannase-containing bacteria can be transformed under different conditions in IBD progression.
Collapse
Affiliation(s)
- Qiuyue He
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Kenan Guo
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Lulu Wang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Fei Xie
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Qingyuan Zhao
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Xianhong Jiang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Zhongming He
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Peng Wang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Shiqiang Li
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Yan Huang
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, China
| | - Cong Zhang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Rongjuan Huang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Yang Liu
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xiaoyang Zhou
- Department of Biological Safety, Army Medical University, Chongqing, China
| | - Rong Niu
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Wang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Chuangen Li
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| |
Collapse
|
40
|
Imdad A, Pandit NG, Zaman M, Minkoff NZ, Tanner-Smith EE, Gomez-Duarte OG, Acra S, Nicholson MR. Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst Rev 2023; 4:CD012774. [PMID: 37094824 PMCID: PMC10133790 DOI: 10.1002/14651858.cd012774.pub3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, relapsing disease of the gastrointestinal (GI) tract that is thought to be associated with a complex interplay between the immune system, the GI tract lining, the environment, and the gut microbiome, leading to an abnormal inflammatory response in genetically susceptible individuals. An altered composition of the gut's native microbiota, known as dysbiosis, may have a major role in the pathogenesis of ulcerative colitis (UC) and Crohn disease (CD), two subtypes of IBD. There is growing interest in the correction of this underlying dysbiosis using fecal microbiota transplantation (FMT). OBJECTIVES To evaluate the benefits and safety profile of FMT for treatment of IBD in adults and children versus autologous FMT, placebo, standard medication, or no intervention. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, two clinical trial registries, and the reference sections of published trials through 22 December 2022. SELECTION CRITERIA We included randomized controlled trials that studied adults and children with UC or CD. Eligible intervention arms used FMT, defined as the delivery of healthy donor stool containing gut microbiota to a recipient's GI tract, to treat UC or CD. DATA COLLECTION AND ANALYSIS Two review authors independently screened studies for inclusion. Our primary outcomes were: 1. induction of clinical remission, 2. maintenance of clinical remission, and 3. serious adverse events. Our secondary outcomes were: 4. any adverse events, 5. endoscopic remission, 6. quality of life, 7. clinical response, 8. endoscopic response, 9. withdrawals, 10. inflammatory markers, and 11. microbiome outcomes. We used the GRADE approach to assess the certainty of evidence. MAIN RESULTS We included 12 studies with 550 participants. Three studies were conducted in Australia; two in Canada; and one in each of the following: China, the Czech Republic, France, India, the Netherlands, and the USA. One study was conducted in both Israel and Italy. FMT was administered in the form of capsules or suspensions and delivered by mouth, nasoduodenal tube, enema, or colonoscopy. One study delivered FMT by both oral capsules and colonoscopy. Six studies were at overall low risk of bias, while the others had either unclear or high risk of bias. Ten studies with 468 participants, of which nine studies focused on adults and one focused on children, reported induction of clinical remission in people with UC at longest follow-up (range 6 to 12 weeks) and showed that FMT may increase rates of induction of clinical remission in UC compared to control (risk ratio (RR) 1.79, 95% confidence interval (CI) 1.13 to 2.84; low-certainty evidence). Five studies showed that FMT may increase rates of induction of endoscopic remission in UC at longest follow-up (range 8 to 12 weeks); however, the CIs around the summary estimate were wide and included a possible null effect (RR 1.45, 95% CI 0.64 to 3.29; low-certainty evidence). Nine studies with 417 participants showed that FMT may result in little to no difference in rates of any adverse events (RR 0.99, 95% CI 0.85 to 1.16; low-certainty evidence). The evidence was very uncertain about the risk of serious adverse events (RR 1.77, 95% CI 0.88 to 3.55; very low-certainty evidence) and improvement in quality of life (mean difference (MD) 15.34, 95% CI -3.84 to 34.52; very low-certainty evidence) when FMT was used to induce remission in UC. Two studies, of which one also contributed data for induction of remission in active UC, assessed maintenance of remission in people with controlled UC at longest follow-up (range 48 to 56 weeks). The evidence was very uncertain about the use of FMT for maintenance of clinical remission (RR 2.97, 95% CI 0.26 to 34.42; very low-certainty evidence) and endoscopic remission (RR 3.28, 95% CI 0.73 to 14.74; very low-certainty evidence). The evidence was also very uncertain about the risk of serious adverse events, risk of any adverse events, and improvement in quality of life when FMT was used to maintain remission in UC. None of the included studies assessed use of FMT for induction of remission in people with CD. One study with 21 participants reported data on FMT for maintenance of remission in people with CD. The evidence was very uncertain about the use of FMT for maintenance of clinical remission in CD at 24 weeks (RR 1.21, 95% CI 0.36 to 4.14; very low-certainty evidence). The evidence was also very uncertain about the risk of serious or any adverse events when FMT was used to maintain remission in CD. None of the studies reported data on use of FMT for maintenance of endoscopic remission or improvement in quality of life in people with CD. AUTHORS' CONCLUSIONS FMT may increase the proportion of people with active UC who achieve clinical and endoscopic remission. The evidence was very uncertain about whether use of FMT in people with active UC impacted the risk of serious adverse events or improvement in quality of life. The evidence was also very uncertain about the use of FMT for maintenance of remission in people with UC, as well as induction and maintenance of remission in people with CD, and no conclusive statements could be made in this regard. Further studies are needed to address the beneficial effects and safety profile of FMT in adults and children with active UC and CD, as well as its potential to promote longer-term maintenance of remission in UC and CD.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Natasha G Pandit
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Muizz Zaman
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Nathan Zev Minkoff
- Pediatric Gastroenterology, Hepatology and Nutrition, Valley Children's Hospital, Madera, CA, USA
| | - Emily E Tanner-Smith
- Counseling Psychology and Human Services, University of Oregon, Eugene, Oregon, USA
| | - Oscar G Gomez-Duarte
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Sari Acra
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Maribeth R Nicholson
- Department of Pediatrics, D. Brent Polk Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
41
|
Yang P, Xu R, Chen F, Chen S, Khan A, Li L, Zhang X, Wang Y, Xu Z, Shen H. Fungal gut microbiota dysbiosis in systemic lupus erythematosus. Front Microbiol 2023; 14:1149311. [PMID: 37089568 PMCID: PMC10115219 DOI: 10.3389/fmicb.2023.1149311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionDespite recent developments in our comprehension of how the gut microbiota and systemic lupus erythematosus (SLE) are related. The mycobiome: which is a small but crucial part of the gut microbiota and is involved in hosts’ homeostasis and physiological processes, remained unexplored in SLE.MethodsWe profiled the gut fungal mycobiota based on internal transcribed spacer region 1 (ITS1) sequencing for the gut microbial DNA from the SLE individuals with lupus nephritis (LN) (n = 23), SLE without LN (n = 26) and healthy controls (n = 14) enrolled in Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School.ResultsThe ITS sequencing generated a total of 4.63 million valid tags which were stratified into 4,488 operational taxonomic units (OTUs) and identified about 13 phyla and 262 genera. Patients with SLE were characterized with unique fungal flora feature. The fungal microbiomes of the three groups displayed distinct beta diversity from each other. Compared with HC group, the abundance of fungal dysbiosis was reflected in a higher ratio of opportunistic fungi in SLE or LN group, as well as the loss of Rhizopus and Malassezia. The main principal components of the flora between the SLE and LN group were generally consistent. The relative abundance of Vanrija in the fecal fungal community was higher in LN group, while the relative abundance of Fusarium was higher in SLE group. Moreover, our data revealed superior diagnostic accuracy for SLE with the fungal species (e.g. Candida, Meyerozyma). Correlations between gut fungi and clinical parameters were identified by Spearman’s correlation analysis. Interestingly, Aspergillus in SLE patients was positively correlated with ACR, 24 h proteinuria, proteinuria, anti-dsDNA, ANA, and SLEDAI, while Rhizopus was negatively correlated with lymphocytes and Hb. Finally, we successfully cultured the fungi and identified it as Candida glabrata by microscopic observation and mass spectrometry.DiscussionWe first explored the highly significant gut fungal dysbiosis and ecology in patients with SLE, and demonstrated the applicability of fungal species as SLE diagnostic tools, signifying that the gut fungal mycobiome-host interplay can potentially contribute in disease pathogenesis.
Collapse
Affiliation(s)
- Ping Yang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Rui Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Fei Chen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shanshan Chen
- Department of Rheumatology and Immunology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Xiaoshan Zhang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
- Yanbo Wang,
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Zhipeng Xu,
| | - Han Shen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Han Shen,
| |
Collapse
|
42
|
Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 2023; 90:104527. [PMID: 36963238 PMCID: PMC10051028 DOI: 10.1016/j.ebiom.2023.104527] [Citation(s) in RCA: 244] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
Major depressive disorder is one of the most disabling mental disorders worldwide. Increasing preclinical and clinical studies have highlighted that compositional and functional (e.g., metabolite) changes in gut microbiota, known as dysbiosis, are associated with the onset and progression of depression via regulating the gut-brain axis. However, the gut microbiota and their metabolites present a double-edged sword in depression. Dysbiosis is involved in the pathogenesis of depression while, at the same time, offering a novel therapeutic target. In this review, we describe the association between dysbiosis and depression, drug-microbiota interactions in antidepressant treatment, and the potential health benefits of microbial-targeted therapeutics in depression, including dietary interventions, fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and postbiotics. With the emergence of microbial research, we describe a new direction for future research and clinical treatment of depression.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China.
| |
Collapse
|
43
|
Ezzatpour S, Mondragon Portocarrero ADC, Cardelle-Cobas A, Lamas A, López-Santamarina A, Miranda JM, Aguilar HC. The Human Gut Virome and Its Relationship with Nontransmissible Chronic Diseases. Nutrients 2023; 15:977. [PMID: 36839335 PMCID: PMC9960951 DOI: 10.3390/nu15040977] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The human gastrointestinal tract contains large communities of microorganisms that are in constant interaction with the host, playing an essential role in the regulation of several metabolic processes. Among the gut microbial communities, the gut bacteriome has been most widely studied in recent decades. However, in recent years, there has been increasing interest in studying the influences that other microbial groups can exert on the host. Among them, the gut virome is attracting great interest because viruses can interact with the host immune system and metabolic functions; this is also the case for phages, which interact with the bacterial microbiota. The antecedents of virome-rectification-based therapies among various diseases were also investigated. In the near future, stool metagenomic investigation should include the identification of bacteria and phages, as well as their correlation networks, to better understand gut microbiota activity in metabolic disease progression.
Collapse
Affiliation(s)
- Shahrzad Ezzatpour
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alicia del Carmen Mondragon Portocarrero
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alexandre Lamas
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Aroa López-Santamarina
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José Manuel Miranda
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
44
|
A Taxonomy-Agnostic Approach to Targeted Microbiome Therapeutics-Leveraging Principles of Systems Biology. Pathogens 2023; 12:pathogens12020238. [PMID: 36839510 PMCID: PMC9959781 DOI: 10.3390/pathogens12020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The study of human microbiomes has yielded insights into basic science, and applied therapeutics are emerging. However, conflicting definitions of what microbiomes are and how they affect the health of the "host" are less understood. A major impediment towards systematic design, discovery, and implementation of targeted microbiome therapeutics is the continued reliance on taxonomic indicators to define microbiomes in health and disease. Such reliance often confounds analyses, potentially suggesting associations where there are none, and conversely failing to identify significant, causal relationships. This review article discusses recent discoveries pointing towards a molecular understanding of microbiome "dysbiosis" and away from a purely taxonomic approach. We highlight the growing role of systems biological principles in the complex interrelationships between the gut microbiome and host cells, and review current approaches commonly used in targeted microbiome therapeutics, including fecal microbial transplant, bacteriophage therapies, and the use of metabolic toxins to selectively eliminate specific taxa from dysbiotic microbiomes. These approaches, however, remain wholly or partially dependent on the bacterial taxa involved in dysbiosis, and therefore may not capitalize fully on many therapeutic opportunities presented at the bioactive molecular level. New technologies capable of addressing microbiome-associated diseases as molecular problems, if solved, will open possibilities of new classes and categories of targeted microbiome therapeutics aimed, in principle, at all dysbiosis-driven disorders.
Collapse
|
45
|
Huang Z, Li Y, Park H, Ho M, Bhardwaj K, Sugimura N, Lee HW, Meng H, Ebert MP, Chao K, Burgermeister E, Bhatt AP, Shetty SA, Li K, Wen W, Zuo T. Unveiling and harnessing the human gut microbiome in the rising burden of non-communicable diseases during urbanization. Gut Microbes 2023; 15:2237645. [PMID: 37498052 PMCID: PMC10376922 DOI: 10.1080/19490976.2023.2237645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
The world is witnessing a global increase in the urban population, particularly in developing Asian and African countries. Concomitantly, the global burden of non-communicable diseases (NCDs) is rising, markedly associated with the changing landscape of lifestyle and environment during urbanization. Accumulating studies have revealed the role of the gut microbiome in regulating the immune and metabolic homeostasis of the host, which potentially bridges external factors to the host (patho-)physiology. In this review, we discuss the rising incidences of NCDs during urbanization and their links to the compositional and functional dysbiosis of the gut microbiome. In particular, we elucidate the effects of urbanization-associated factors (hygiene/pollution, urbanized diet, lifestyles, the use of antibiotics, and early life exposure) on the gut microbiome underlying the pathogenesis of NCDs. We also discuss the potential and feasibility of microbiome-inspired and microbiome-targeted approaches as novel avenues to counteract NCDs, including fecal microbiota transplantation, diet modulation, probiotics, postbiotics, synbiotics, celobiotics, and precision antibiotics.
Collapse
Affiliation(s)
- Ziyu Huang
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heekuk Park
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Centre, New York, NY, USA
| | - Martin Ho
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Kanchan Bhardwaj
- Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Haryana, India
| | - Naoki Sugimura
- Gastrointestinal Centre and Institute of Minimally-Invasive Endoscopic Care (iMEC), Sano Hospital, Kobe, Japan
| | - Hye Won Lee
- Institute of Gastroenterology and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Huicui Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, China
| | - Matthias P. Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, Mannheim, Germany
- Mannheim Cancer Centre (MCC), University Medical Centre Mannheim, Mannheim, Germany
| | - Kang Chao
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Aadra P. Bhatt
- Department of Medicine, Centre for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Centre, University of North Carolina, Chapel Hill, NC, USA
| | - Sudarshan A. Shetty
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kai Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiping Wen
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
46
|
Cai H, Cao X, Qin D, Liu Y, Liu Y, Hua J, Peng S. Gut microbiota supports male reproduction via nutrition, immunity, and signaling. Front Microbiol 2022; 13:977574. [PMID: 36060736 PMCID: PMC9434149 DOI: 10.3389/fmicb.2022.977574] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota (GM) is a major component of the gastrointestinal tract. Growing evidence suggests that it has various effects on many distal organs including the male reproductive system in mammals. GM and testis form the gut-testis axis involving the production of key molecules through microbial metabolism or de novo synthesis. These molecules have nutrition, immunity, and hormone-related functions and promote the male reproductive system via the circulatory system. GM helps maintain the integral structure of testes and regulates testicular immunity to protect the spermatogenic environment. Factors damaging GM negatively impact male reproductive function, however, the related mechanism is unknown. Also, the correlation between GM and testis remains to be yet investigated. This review discusses the complex influence of GM on the male reproductive system highlighting the impact on male fertility.
Collapse
Affiliation(s)
- Hui Cai
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Xuanhong Cao
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yundie Liu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yang Liu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Sha Peng
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
- *Correspondence: Sha Peng,
| |
Collapse
|
47
|
Li S, Zhou Y, Yan D, Wan Y. An Update on the Mutual Impact between SARS-CoV-2 Infection and Gut Microbiota. Viruses 2022; 14:1774. [PMID: 36016396 PMCID: PMC9415881 DOI: 10.3390/v14081774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is essential for good health. It has also been demonstrated that the gut microbiota can regulate immune responses against respiratory tract infections. Since the outbreak of the COVID-19 pandemic, accumulating evidence suggests that there is a link between the severity of COVID-19 and the alteration of one's gut microbiota. The composition of gut microbiota can be profoundly affected by COVID-19 and vice versa. Here, we summarize the observations of the mutual impact between SARS-CoV-2 infection and gut microbiota composition. We discuss the consequences and mechanisms of the bi-directional interaction. Moreover, we also discuss the immune cross-reactivity between SARS-CoV-2 and commensal bacteria, which represents a previously overlooked connection between COVID-19 and commensal gut bacteria. Finally, we summarize the progress in managing COVID-19 by utilizing microbial interventions.
Collapse
Affiliation(s)
- Shaoshuai Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Public Health Clinical Center, Department of Laboratory Medicine, Shanghai 201508, China
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Dongmei Yan
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Public Health Clinical Center, Department of Radiology, Shanghai 201508, China
| |
Collapse
|
48
|
Mullish BH, McDonald JAK, Marchesi JR. Intestinal microbiota transplantation: do not forget the metabolites. Lancet Gastroenterol Hepatol 2022; 7:594. [PMID: 35709819 DOI: 10.1016/s2468-1253(22)00101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, St Mary's Hospital Campus, Imperial College London, London W2 1NY, UK.
| | - Julie A K McDonald
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Imperial College London, London, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, St Mary's Hospital Campus, Imperial College London, London W2 1NY, UK
| |
Collapse
|
49
|
Chen Z, Tian Y, Wang Y, Zhao H, Chen C, Zhang F. Profile of the Lower Respiratory Tract Microbiome in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome and Lung Disease. Front Microbiol 2022; 13:888996. [PMID: 35814692 PMCID: PMC9260662 DOI: 10.3389/fmicb.2022.888996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Once an human immunodeficiency virus (HIV)-infected individual enters the onset period, a variety of opportunistic infections may occur, affecting various systems and organs throughout the body, due to the considerable reduction in the body’s immune function. The objectives of this study were to explore the relationship between immune status and microbial communities in the lungs of individuals with HIV infection. A total of 88 patients with lung disease [80 (91%) HIV-positive and 8 (9%) HIV-negative] were enrolled in our study between January and July 2018, and 88 bronchoalveolar lavage fluid (BALF) samples were obtained during bronchoscopy. In this cross-sectional study, we investigated differences in the pulmonary microbiome of patients with HIV who had different immune statuses. The diversity of bacteria in the lungs of HIV-positive individuals was lower than that in HIV-negative individuals (p < 0.05). There was a significant difference in the composition and distribution of bacteria and fungi between the HIV-positive and HIV-negative groups (p < 0.01). The number of fungal species in the BALF of HIV-positive patients was higher than in HIV-negative patients. The diversity of bacteria and fungi in the BALF of HIV-positive patients increased with decreasing CD4 T-cell counts. Linear regression analysis showed that Pneumocystis (R2 = 6.4e−03, p < 0.05), Cryptosphaeria (R2 = 7.2e−01, p < 0.05), Candida (R2 = 3.9e−02, p < 0.05), and Trichosporon (R2 = 7.7e−01, p < 0.05) were negatively correlated with CD4 counts (F-test, p < 0.05). The samples collected from HIV-positive patients exhibited a different pattern relative to those from the HIV-negative group. Differences in host immune status cause differences in the diversity and structure of lower respiratory tract microorganisms.
Collapse
Affiliation(s)
- Zhen Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Tian
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Affiliated Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Affiliated Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chen Chen
- Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chen Chen,
| | - Fujie Zhang
- Affiliated Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Fujie Zhang,
| |
Collapse
|
50
|
Wang H, Li J, Wu G, Zhang F, Yin J, He Y. The effect of intrinsic factors and mechanisms in shaping human gut microbiota. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|