1
|
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci 2024; 25:2763. [PMID: 38474009 DOI: 10.3390/ijms25052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
2
|
Zhou Y, Nishiura A, Morikuni H, Deng W, Tsujibayashi T, Momota Y, Azetsu Y, Takami M, Honda Y, Matsumoto N. RANKL + senescent cells under mechanical stress: a therapeutic target for orthodontic root resorption using senolytics. Int J Oral Sci 2023; 15:20. [PMID: 37253719 DOI: 10.1038/s41368-023-00228-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
In dentistry, orthodontic root resorption is a long-lasting issue with no effective treatment strategy, and its mechanisms, especially those related to senescent cells, remain largely unknown. Here, we used an orthodontic intrusion tooth movement model with an L-loop in rats to demonstrate that mechanical stress-induced senescent cells aggravate apical root resorption, which was prevented by administering senolytics (a dasatinib and quercetin cocktail). Our results indicated that cementoblasts and periodontal ligament cells underwent cellular senescence (p21+ or p16+) and strongly expressed receptor activator of nuclear factor-kappa B (RANKL) from day three, subsequently inducing tartrate-resistant acid phosphatase (TRAP)-positive odontoclasts and provoking apical root resorption. More p21+ senescent cells expressed RANKL than p16+ senescent cells. We observed only minor changes in the number of RANKL+ non-senescent cells, whereas RANKL+ senescent cells markedly increased from day seven. Intriguingly, we also found cathepsin K+p21+p16+ cells in the root resorption fossa, suggesting senescent odontoclasts. Oral administration of dasatinib and quercetin markedly reduced these senescent cells and TRAP+ cells, eventually alleviating root resorption. Altogether, these results unveil those aberrant stimuli in orthodontic intrusive tooth movement induced RANKL+ early senescent cells, which have a pivotal role in odontoclastogenesis and subsequent root resorption. These findings offer a new therapeutic target to prevent root resorption during orthodontic tooth movement.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| | - Aki Nishiura
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan.
| | - Hidetoshi Morikuni
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| | - Wenqi Deng
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| | - Toru Tsujibayashi
- Department of Physics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| | - Yoshihiro Momota
- Department of Anesthesiology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawaku, Tokyo, Japan
| | - Masamichi Takami
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawaku, Tokyo, Japan
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan.
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| |
Collapse
|
3
|
Wang M, He M, Xu X, Wu Z, Tao J, Yin F, Luo K, Jiang J. Cementum protein 1 gene-modified adipose-derived mesenchymal stem cell sheets enhance periodontal regeneration in osteoporosis rat. J Periodontal Res 2023. [PMID: 37154214 DOI: 10.1111/jre.13133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/04/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Osteoporosis (OP) and periodontitis are both diseases with excessive bone resorption, and the number of patients who suffer from these diseases is expected to increase. OP has been identified as a risk factor that accelerates the pathological process of periodontitis. Achieving effective and safe periodontal regeneration in OP patients is a meaningful challenge. This study aimed to assess the efficacy and biosecurity of human cementum protein 1 (hCEMP1) gene-modified cell sheets for periodontal fenestration defect regeneration in an OP rat model. MATERIALS AND METHODS Rat adipose-derived mesenchymal stem cells (rADSCs) were isolated from Sprague-Dawley rats. After primary culture, rADSCs were subjected to cell surface analysis and multi-differentiation assay. And rADSCs were transduced with hCEMP1 by lentiviral vector, and hCEMP1 gene-modified cell sheets were generated. The expression of hCEMP1 was evaluated by reverse transcription polymerase chain reaction and immunocytochemistry staining, and transduced cell proliferation was evaluated by Cell Counting Kit-8. The hCEMP1 gene-modified cell sheet structure was detected by histological analysis and scanning electron microscopy. Osteogenic and cementogenic-associated gene expression was evaluated by real-time quantitative polymerase chain reaction. In addition, an OP rat periodontal fenestration defect model was used to evaluate the regeneration effect of hCEMP1 gene-modified rADSC sheets. The efficacy was assessed with microcomputed tomography and histology, and the biosecurity of gene-modified cell sheets was evaluated by histological analysis of the spleen, liver, kidney and lung. RESULTS The rADSCs showed a phenotype of mesenchymal stem cells and possessed multi-differentiation capacity. The gene and protein expression of hCEMP1 through lentiviral transduction was confirmed, and there was no significant effect on rADSC proliferation. Overexpression of hCEMP1 upregulated osteogenic and cementogenic-related genes such as runt-related transcription factor 2, bone morphogenetic protein 2, secreted phosphoprotein 1 and cementum attachment protein in the gene-modified cell sheets. The fenestration lesions in OP rats treated with hCEMP1 gene-modified cell sheets exhibited complete bone bridging, cementum and periodontal ligament formation. Furthermore, histological sections of the spleen, liver, kidney and lung showed no evident pathological damage. CONCLUSION This pilot study demonstrates that hCEMP1 gene-modified rADSC sheets have a marked ability to enhance periodontal regeneration in OP rats. Thus, this approach may represent an effective and safe strategy for periodontal disease patients with OP.
Collapse
Affiliation(s)
- Meijie Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Mengjiao He
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Zekai Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jing Tao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Fan Yin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Jiang
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Immunohistochemical Evaluation of Periodontal Regeneration Using a Porous Collagen Scaffold. Int J Mol Sci 2021; 22:ijms222010915. [PMID: 34681574 PMCID: PMC8535773 DOI: 10.3390/ijms222010915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Aim: To immunohistochemically evaluate the effect of a volume-stable collagen scaffold (VCMX) on periodontal regeneration. (2) Methods: In eight beagle dogs, acute two-wall intrabony defects were treated with open flap debridement either with VCMX (test) or without (control). After 12 weeks, eight defects out of four animals were processed for paraffin histology and immunohistochemistry. (3) Results: All defects (four test + four control) revealed periodontal regeneration with cementum and bone formation. VCMX remnants were integrated in bone, periodontal ligament (PDL), and cementum. No differences in immunohistochemical labeling patterns were observed between test and control sites. New bone and cementum were labeled for bone sialoprotein, while the regenerated PDL was labeled for periostin and collagen type 1. Cytokeratin-positive epithelial cell rests of Malassez were detected in 50% of the defects. The regenerated PDL demonstrated a larger blood vessel area at the test (14.48% ± 3.52%) than at control sites (8.04% ± 1.85%, p = 0.0007). The number of blood vessels was higher in the regenerated PDL (test + control) compared to the pristine one (p = 0.012). The cell proliferative index was not statistically significantly different in pristine and regenerated PDL. (4) Conclusions: The data suggest a positive effect of VCMX on angiogenesis and an equally high cell turnover in the regenerated and pristine PDL. This VCMX supported periodontal regeneration in intrabony defects.
Collapse
|
5
|
Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int 2019; 2019:9159605. [PMID: 31636679 PMCID: PMC6766151 DOI: 10.1155/2019/9159605] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Dental follicle cells (DFCs) are a group of mesenchymal progenitor cells surrounding the tooth germ, responsible for cementum, periodontal ligament, and alveolar bone formation in tooth development. Cascades of signaling pathways and transcriptional factors in DFCs are involved in directing tooth eruption and tooth root morphogenesis. Substantial researches have been made to decipher multiple aspects of DFCs, including multilineage differentiation, senescence, and immunomodulatory ability. DFCs were proved to be multipotent progenitors with decent amplification, immunosuppressed and acquisition ability. They are able to differentiate into osteoblasts/cementoblasts, adipocytes, neuron-like cells, and so forth. The excellent properties of DFCs facilitated clinical application, as exemplified by bone tissue engineering, tooth root regeneration, and periodontium regeneration. Except for the oral and maxillofacial regeneration, DFCs were also expected to be applied in other tissues such as spinal cord defects (SCD), cardiomyocyte destruction. This article reviewed roles of DFCs in tooth development, their properties, and clinical application potentials, thus providing a novel guidance for tissue engineering.
Collapse
|
6
|
Bone marrow mesenchymal stem cells combine with Treated dentin matrix to build biological root. Sci Rep 2017; 7:44635. [PMID: 28401887 PMCID: PMC5388852 DOI: 10.1038/srep44635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/13/2017] [Indexed: 02/05/2023] Open
Abstract
Treated dentin matrix (TDM) as a kind of scaffolding material has been proved odontogenic induction ability on dental-derived stem cells. Given the limited resources of dental stem cells, it is necessary to seek new seed cell which easily obtained. Jaw bone marrow mesenchymal stem cell (JBMMSC) as non-dental-derived stem cell relates to the development of teeth and jaws which suggest us JBMMSCs could act as a new seed cell for tooth tissue engineering. To assess the odontogenic and osteogenic potential of JBMMSCs, cells were induced by TDM extraction in vitro and combined with TDM in vivo. Results were analyzed by PCR, Western Blotting and histology. PCR and Western Blotting showed odontogenic and osteogenic makers were significantly enhanced in varying degrees after induced by TDM extraction in vitro. In vivo, JBMMSCs expressed both odontogenic and osteogenic-related protein, and the latter showed stronger positive expression. Furthermore, histological examination of the harvested grafts was observed the formation of bone-like tissue. Therefore, osteogenic differentiation ability of JBMMSCs were enhanced significantly after being inducted by TDM which illustrates that non-odontogenic derived stem cells are still promising seed cells in tooth root tissue engineering.
Collapse
|
7
|
Orimoto A, Kurokawa M, Handa K, Ishikawa M, Nishida E, Aino M, Mitani A, Ogawa M, Tsuji T, Saito M. F-spondin negatively regulates dental follicle differentiation through the inhibition of TGF-β activity. Arch Oral Biol 2017; 79:7-13. [PMID: 28282516 DOI: 10.1016/j.archoralbio.2017.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE F-spondin is an extracellular matrix (ECM) protein that belongs to the thrombospondin type I repeat superfamily and is a negative regulator of bone mass. We have previously shown that f-spondin is specifically expressed in the dental follicle (DF), which gives rise to the periodontal ligament (PDL) during the tooth root formation stage. To investigate the molecular mechanism of PDL formation, we investigated the function of f-spondin in DF differentiation. DESIGN The expression patterning of f-spondin in the developing tooth germ was compared with that of periodontal ligament-related genes, including runx2, type I collagen and periostin, by in situ hybridization analysis. To investigate the function of f-spondin during periodontal ligament formation, an f-spondin adenovirus was infected into the bell stage of the developing tooth germ, and the effect on dental differentiation was analyzed. RESULTS F-spondin was specifically expressed in the DF of the developing tooth germ; by contrast, type I collagen, runx2 and periostin were expressed in the DF and in the alveolar bone. F-spondin-overexpresssing tooth germ exhibited a reduction in gene expression of periostin and type I collagen in the DF. By contrast, the knockdown of f-spondin in primary DF cells increased the expression of these genes. Treatment with recombinant f-spondin protein functionally inhibited periostin expression induced by transforming growth factor-β (TGF-β). CONCLUSION Our data indicated that f-spondin inhibits the differentiation of DF cells into periodontal ligament cells by inhibiting TGF-β. These data suggested that f-spondin negatively regulates PDL differentiation which may play an important role in the immature phenotype of DF.
Collapse
Affiliation(s)
- Ai Orimoto
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Misaki Kurokawa
- Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Japan
| | - Keisuke Handa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Eisaku Nishida
- Department of Periodontology, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Makoto Aino
- Department of Periodontology, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi-gakuin University, Nagoya, Aichi, Japan
| | - Miho Ogawa
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Masahiro Saito
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| |
Collapse
|
8
|
Shinagawa-Ohama R, Mochizuki M, Tamaki Y, Suda N, Nakahara T. Heterogeneous Human Periodontal Ligament-Committed Progenitor and Stem Cell Populations Exhibit a Unique Cementogenic Property Under In Vitro and In Vivo Conditions. Stem Cells Dev 2017; 26:632-645. [PMID: 28136695 DOI: 10.1089/scd.2016.0330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues. Thus, we investigated the cementogenic potential of DF- and PDL-derived MSCs that were isolated by using two widely used cell-isolation methods: enzymatic digestion and outgrowth (OG) methods. DF- and PDL-derived cells isolated by using both methods proliferated actively, and all four isolated cell types showed MSC gene/protein expression phenotype and ability to differentiate into adipogenic and chondrogenic lineages. Furthermore, cementogenic-potential analysis revealed that all cell types produced alizarin red S-positive mineralized materials in in vitro cultures. However, PDL-OG cells presented unique cementogenic features, such as nodular formation of mineralized deposits displaying a cellular intrinsic fiber cementum-like structure, as well as a higher expression of cementoblast-specific genes than in the other cell types. Moreover, in in vivo transplantation experiments, PDL-OG cells formed cellular cementum-like hard tissue containing embedded osteocalcin-positive cells, whereas the other cells formed acellular cementum-like materials. Given that the root-cementum defect is likely regenerated through cellular cementum deposition, PDL-OG cell-based therapies might potentially facilitate the de novo cellular cementogenesis required for regenerating the root defect.
Collapse
Affiliation(s)
- Rei Shinagawa-Ohama
- 1 Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry , Saitama, Japan .,2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Mai Mochizuki
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Yuichi Tamaki
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Naoto Suda
- 1 Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry , Saitama, Japan
| | - Taka Nakahara
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| |
Collapse
|
9
|
Practical methods for handling human periodontal ligament stem cells in serum-free and serum-containing culture conditions under hypoxia: implications for regenerative medicine. Hum Cell 2017; 30:169-180. [PMID: 28168362 PMCID: PMC5486878 DOI: 10.1007/s13577-017-0161-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/18/2017] [Indexed: 12/11/2022]
Abstract
Stem cell-based therapies depend on the reliable expansion of patient-derived mesenchymal stem cells (MSCs) in vitro. The supplementation of cell culture media with serum is associated with several risks; accordingly, serum-free media are commercially available for cell culture. Furthermore, hypoxia is known to accelerate the expansion of MSCs. The present study aimed to characterize the properties of periodontal ligament-derived MSCs (PDLSCs) cultivated in serum-free and serum-containing media, under hypoxic and normoxic conditions. Cell growth, gene and protein expression, cytodifferentiation potential, genomic stability, cytotoxic response, and in vivo hard tissue generation of PDLSCs were examined. Our findings indicated that cultivation in serum-free medium does not affect the MSC phenotype or chromosomal stability of PDLSCs. PDLSCs expanded in serum-free medium exhibited more active growth than in fetal bovine serum-containing medium. We found that hypoxia does not alter the cell growth of PDLSCs under serum-free conditions, but inhibits their osteogenic and adipogenic cytodifferentiation while enabling maintenance of their multidifferentiation potential regardless of the presence of serum. PDLSCs expanded in serum-free medium were found to retain common MSC characteristics, including the capacity for hard tissue formation in vivo. However, PDLSCs cultured in serum-free culture conditions were more susceptible to damage following exposure to extrinsic cytotoxic stimuli than those cultured in medium supplemented with serum, suggesting that serum-free culture conditions do not exert protective effects against cytotoxicity on PDLSC cultures. The present work provides a comparative evaluation of cell culture in serum-free and serum-containing media, under hypoxic and normoxic conditions, for applications in regenerative medicine.
Collapse
|
10
|
Abstract
Experimental studies have shown a great potential for periodontal regeneration. The limitations of periodontal regeneration largely depend on the regenerative potential at the root surface. Cellular intrinsic fiber cementum (CIFC), so-called bone-like tissue, may form instead of the desired acellular extrinsic fiber cementum (AEFC), and the interfacial tissue bonding may be weak. The periodontal ligament harbors progenitor cells that can differentiate into periodontal ligament fibroblasts, osteoblasts, and cementoblasts, but their precise location is unknown. It is also not known whether osteoblasts and cementoblasts arise from a common precursor cell line, or whether distinct precursor cell lines exist. Thus, there is limited knowledge about how cell diversity evolves in the space between the developing root and the alveolar bone. This review supports the hypothesis that AEFC is a unique tissue, while CIFC and bone share some similarities. Morphologically, functionally, and biochemically, however, CIFC is distinctly different from any bone type. There are several lines of evidence to propose that cementoblasts that produce both AEFC and CIFC are unique phenotypes that are unrelated to osteoblasts. Cementum attachment protein appears to be cementum-specific, and the expression of two proteoglycans, fibromodulin and lumican, appears to be stronger in CIFC than in bone. A theory is presented that may help explain how cell diversity evolves in the periodontal ligament. It proposes that Hertwig’s epithelial root sheath and cells derived from it play an essential role in the development and maintenance of the periodontium. The role of enamel matrix proteins in cementoblast and osteoblast differentiation and their potential use for tissue engineering are discussed.
Collapse
Affiliation(s)
- D D Bosshardt
- Department of Periodontology and Fixed Prosthodontics, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH-3010 Berne, Switzerland.
| |
Collapse
|
11
|
Bae WJ, Auh QS, Lim HC, Kim GT, Kim HS, Kim EC. Sonic Hedgehog Promotes Cementoblastic Differentiation via Activating the BMP Pathways. Calcif Tissue Int 2016; 99:396-407. [PMID: 27289556 DOI: 10.1007/s00223-016-0155-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/20/2016] [Indexed: 01/25/2023]
Abstract
Although sonic hedgehog (SHH), an essential molecule in embryogenesis and organogenesis, stimulates proliferation of human periodontal ligament (PDL) stem cells, the effects of recombinant human SHH (rh-SHH) on osteoblastic differentiation are unclear. To reveal the role of SHH in periodontal regeneration, expression of SHH in mouse periodontal tissues and its effects on the osteoblastic/cementoblastic differentiation in human cementoblasts were investigated. SHH is immunolocalized to differentiating cementoblasts, PDL cells, and osteoblasts of the developing mouse periodontium. Addition of rh-SHH increased cell growth, ALP activity, and mineralization nodule formation, and upregulated mRNA expression of osteoblastic and cementoblastic markers. The osteoblastic/cementoblastic differentiation of rh-SHH was abolished by the SHH inhibitor cyclopamine (Cy) and the BMP antagonist noggin. rh-SHH increased the expression of BMP-2 and -4 mRNA, as well as levels of phosphorylated Akt, ERK, p38, and JNK, and of MAPK and NF-κB activation, which were reversed by noggin, Cy, and BMP-2 siRNA. Collectively, this study is the first to demonstrate that SHH can promote cell growth and cell osteoblastic/cementoblastic differentiation via BMP pathway. Thus, SHH plays important roles in the development of periodontal tissue, and might represent a new therapeutic target for periodontitis and periodontal regeneration.
Collapse
Affiliation(s)
- Won-Jung Bae
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Q-Schick Auh
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Chang Lim
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Gyu-Tae Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Orthodontics, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.
| |
Collapse
|
12
|
Wang Z, Feng Z, Wu G, Bai S, Dong Y, Zhao Y. In vitro studies on human periodontal ligament stem cell sheets enhanced by enamel matrix derivative. Colloids Surf B Biointerfaces 2016; 141:102-111. [PMID: 26844646 DOI: 10.1016/j.colsurfb.2016.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/31/2015] [Accepted: 01/19/2016] [Indexed: 01/25/2023]
Abstract
Numerous preclinical and clinical studies have focused on the periodontal regenerative functions of enamel matrix derivative (EMD), a heat-treated preparation derived from enamel matrix proteins (EMPs) of developing porcine teeth. In this study, periodontal ligament (PDL) stem cells (PDLSCs) were isolated, and the effects of EMD on the extracorporeal induction process and the characteristics of PDLSC sheets were investigated for their potential as a more effective stem-cell therapy. EMD-enhanced cell sheets could be induced by complete medium supplemented with 50 μg/mL vitamin C and 100 μg/mL EMD. The EMD-enhanced cell sheets appeared thicker and more compact than the normal PDLSC sheets, demonstrated more layers of cells (3-7 layers), secreted richer extracellular matrix (ECM), showed varying degrees of increases in mRNA expression of periodontal tissue-specific genes (COL I, POSTN), calcification-related genes (RUNX2, OPN, OCN) and a cementum tissue-specific gene (CAP), and possessed a better mineralization ability in terms of osteogenic differentiation in vitro. These EMD-enhanced cell sheets may represent a potential option for stem-cell therapy for PDL regeneration.
Collapse
Affiliation(s)
- Zhongshan Wang
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Zhihong Feng
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Guofeng Wu
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Shizhu Bai
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Yan Dong
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China.
| |
Collapse
|
13
|
Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells. Clin Oral Investig 2015. [PMID: 26392396 DOI: 10.1007/s.00784-015-1601-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS SHED were co-cultured with ERM with/without TGF-β1. Then, SHED proliferation, morphological appearance, alkaline phosphatase (ALP) activity, mineralization behaviour and gene/protein expression of cemento/osteoblastic phenotype were evaluated. RESULTS TGF-β1 enhanced SHED proliferation when either cultured alone or co-cultured with ERM. ERM induced the cementoblastic differentiation of SHED which was significantly accelerated when treated with TGF-β1. This activity was demonstrated by high ALP activity, strong mineral deposition and upregulation of cementum/bone-related gene and protein expressions (i.e. ALP, collagen type I, bone sialoprotein, osteocalcin and cementum attachment protein). CONCLUSIONS ERM were able to induce SHED differentiation along the cemento/osteoblastic lineage that was triggered in the presence of TGF-β1. CLINICAL RELEVANCE The cemento/osteoblastic differentiation capability of SHED possesses a therapeutic potential in endodontic and periodontal tissue engineering.
Collapse
|
14
|
Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells. Clin Oral Investig 2015; 20:1181-91. [PMID: 26392396 DOI: 10.1007/s00784-015-1601-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/11/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS SHED were co-cultured with ERM with/without TGF-β1. Then, SHED proliferation, morphological appearance, alkaline phosphatase (ALP) activity, mineralization behaviour and gene/protein expression of cemento/osteoblastic phenotype were evaluated. RESULTS TGF-β1 enhanced SHED proliferation when either cultured alone or co-cultured with ERM. ERM induced the cementoblastic differentiation of SHED which was significantly accelerated when treated with TGF-β1. This activity was demonstrated by high ALP activity, strong mineral deposition and upregulation of cementum/bone-related gene and protein expressions (i.e. ALP, collagen type I, bone sialoprotein, osteocalcin and cementum attachment protein). CONCLUSIONS ERM were able to induce SHED differentiation along the cemento/osteoblastic lineage that was triggered in the presence of TGF-β1. CLINICAL RELEVANCE The cemento/osteoblastic differentiation capability of SHED possesses a therapeutic potential in endodontic and periodontal tissue engineering.
Collapse
|
15
|
Wen X, Liu L, Deng M, Liu R, Zhang L, Nie X. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75(+) stem cells with dental follicle cell conditioned medium. Exp Cell Res 2015; 337:76-86. [PMID: 26165934 DOI: 10.1016/j.yexcr.2015.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/28/2015] [Accepted: 07/06/2015] [Indexed: 12/17/2022]
Abstract
Cranial neural crest-derived cells (CNCCs) play important role in epithelial-mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75(+)) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75(+) CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75(+) cells, suggesting their differentiation along cementoblast-like lineage. p75(+) stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial-mesenchymal interactions in tooth morphogenesis.
Collapse
Affiliation(s)
- Xiujie Wen
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Luchuan Liu
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Manjing Deng
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Li Zhang
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Xin Nie
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.
| |
Collapse
|
16
|
Montoya G, Arenas J, Romo E, Zeichner-David M, Alvarez M, Narayanan AS, Velázquez U, Mercado G, Arzate H. Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo. Bone 2014; 69:154-64. [PMID: 25263524 DOI: 10.1016/j.bone.2014.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 01/11/2023]
Abstract
Cementum extracellular matrix is similar to other mineralized tissues; however, this unique tissue contains molecules only present in cementum. A cDNA of these molecules, cementum attachment protein (hrPTPLa/CAP) was cloned and expressed in a prokaryotic system. This molecule is an alternative splicing of protein tyrosine phosphatase-like A (PTPLa). In this study, we wanted to determine the structural and functional characteristics of this protein. Our results indicate that hrPTPLa/CAP contains a 43.2% α-helix, 8.9% β-sheet, 2% β-turn and 45.9% random coil secondary structure. Dynamic light scattering shows that this molecule has a size distribution of 4.8 nm and aggregates as an estimated mass of 137 kDa species. AFM characterization and FE-SEM studies indicate that this protein self-assembles into nanospheres with sizes ranging from 7.0 to 27 nm in diameter. Functional studies demonstrate that hrPTPLa/CAP promotes hydroxyapatite crystal nucleation: EDS analysis revealed that hrPTPLa/CAP-induced crystals had a 1.59 ± 0.06 Ca/P ratio. Further confirmation with MicroRaman spectrometry and TEM confirm the presence of hydroxyapatite. In vivo studies using critical-size defects in rat cranium showed that hrPTPLa/CAP promoted 73% ± 2.19% and 87% ± 1.97% new bone formation at 4 and 8 weeks respectively. Although originally identified in cementum, PTPLa/CAP is very effective at inducing bone repair and healing and therefore this novel molecule has a great potential to be used for mineralized tissue bioengineering and tissue regeneration.
Collapse
Affiliation(s)
- Gonzalo Montoya
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | - Jesús Arenas
- Instituto de Física, Universidad Nacional Autónoma de México, México
| | - Enrique Romo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | | | - Marco Alvarez
- Laboratorio de Bioingeniería de Tejidos, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | - A Sampath Narayanan
- School of Medicine, Department of Pathology, University of Washington, Seattle, USA
| | - Ulises Velázquez
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | - Gabriela Mercado
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
17
|
Tsiligkrou IA, Tosios KI, Madianos PN, Vrotsos IA, Panis VG. Oxytalan-positive peripheral ossifying fibromas express runt-related transcription factor 2, bone morphogenetic protein-2, and cementum attachment protein. An immunohistochemical study. J Oral Pathol Med 2014; 44:628-33. [PMID: 25359431 DOI: 10.1111/jop.12275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND The peripheral ossifying fibroma (POF) represents one of the most common lesions of the periodontal tissues that may originate from the gingival soft tissues, the periosteum, or the periodontal ligament. AIM To investigate the immunohistochemical expression of runt-related transcription factor 2 (Runx-2), bone morphogenetic protein-2 (BMP-2), and cementum attachment protein (CAP) in oxytalan-positive POF, to establish the use of POF as an in vivo model for the study of the periodontal ligament. MATERIALS AND METHODS Thirty tumors that presented clinical and histologic features of POF, as well as oxytalan fibers, were included in the study. Immunohistochemical expression of Runx-2, BMP-2, and CAP was evaluated by light microscopy. RESULTS Runx-2, BMP-2, and CAP were abundantly expressed by POFs; 22 of 30 tumors expressed positive staining for Runx-2, twenty-six tumors for BMP-2, and twenty-five tumors for CAP. The expression of Runx-2 was abundant in POFs where bone was histologically present (P = 0.04) and of BMP-2 in POFs where dystrophic calcifications were present (P = 0.03). CONCLUSION It is suggested that oxytalan-positive POFs, purportedly originating from the periodontal ligament, express molecules that are specific to bone and cementum (Runx-2, BMP-2), or cementum only (CAP). Thus, the cell populations present in the lesion belong to the mineralized-tissue-forming cell lineages, the cementoblastic or osteoblastic lineage.
Collapse
Affiliation(s)
- Ioanna A Tsiligkrou
- Department of Periodontology, School of Dentistry, University of Athens, Athens, Greece
| | - Konstantinos I Tosios
- Department of Oral Pathology and Medicine, School of Dentistry, University of Athens, Athens, Greece
| | - Phoebus N Madianos
- Department of Periodontology, School of Dentistry, University of Athens, Athens, Greece
| | - Ioannis A Vrotsos
- Department of Periodontology, School of Dentistry, University of Athens, Athens, Greece
| | - Vassilios G Panis
- Department of Periodontology, School of Dentistry, University of Athens, Athens, Greece
| |
Collapse
|
18
|
Qi Y, Feng W, Cai J, Sun Q, Li S, Li M, Song A, Yang P. Effects of conservatively treated diseased cementum with or without EMD on in vitro cementoblast differentiation and in vivo cementum-like tissue formation of human periodontal ligament cells. Cell Prolif 2014; 47:310-7. [PMID: 24930868 DOI: 10.1111/cpr.12116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/08/2014] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES The present study aimed to evaluate the effects of conservatively treated diseased cementum on in vitro cementoblast differentiation and in vivo cementum-like tissue formation of human periodontal ligament cells (hPDLCs), and observe differential effects of enamel matrix derivative (EMD) on in vivo cementum formation by hPDLCs. MATERIALS AND METHODS Forty-eight cementum slices and 48 dentin slices were prepared from periodontitis compromised teeth, and hPDLCs were inoculated on to all root slices. Twenty-four co-cultured root slices of each group were used for mRNA expression of cementum attachment protein and CEMP1. With application of EMD, 24 co-cultured root slices (divided into groups C, D, C+E, D+E) were transplanted subcutaneously into nude mice. All root fragments were reviewed by histological analysis and immunohistochemical staining for bone sialoprotein. RESULTS mRNA expressions of cementum attachment protein and cementum protein - 1 from hPDLCs on cementum slices were statistically higher than those of dentin slices. Seven specimens of group C and 10 specimens of group C+E revealed a layer of cementum-like tissue (NFC) on surfaces of pre-existing cementum. NFC was thicker in group C+E than in group C. All NFCs were positively stained for bone sialoprotein, however, there was no NFC formation on dentin slices. CONCLUSION Conservatively treated diseased cementum promoted in vitro cementoblast differentiation and in vivo cementum-like tissue formation by hPDLCs, and the in vivo effect was enhanced by the presence of EMD.
Collapse
Affiliation(s)
- Y Qi
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Torii D, Konishi K, Watanabe N, Goto S, Tsutsui T. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament. Odontology 2014; 103:27-35. [DOI: 10.1007/s10266-013-0145-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/15/2013] [Indexed: 11/28/2022]
|
20
|
Zhang Y, Li S, Wu C. Thein vitroandin vivocementogenesis of CaMgSi2O6bioceramic scaffolds. J Biomed Mater Res A 2013; 102:105-16. [PMID: 23596060 DOI: 10.1002/jbm.a.34679] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/23/2013] [Accepted: 02/21/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); School & Hospital of Stomatology; Wuhan University; 237 Luoyu Road Wuhan 430079 People's Republic of China
- Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; 237 Luoyu Road Wuhan 430079 People's Republic of China
| | - Shue Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); School & Hospital of Stomatology; Wuhan University; 237 Luoyu Road Wuhan 430079 People's Republic of China
- Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; 237 Luoyu Road Wuhan 430079 People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| |
Collapse
|
21
|
González Alva P, Gómez Plata E, Arzate H. Localización de las proteínas específicas del cemento radicular CEMP1 y CAP en células neoplásicas. JOURNAL OF ORAL RESEARCH 2013. [DOI: 10.17126/joralres.2013.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Saito M, Tsuji T. Extracellular matrix administration as a potential therapeutic strategy for periodontal ligament regeneration. Expert Opin Biol Ther 2012; 12:299-309. [DOI: 10.1517/14712598.2012.655267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Valdés De Hoyos A, Hoz-Rodríguez L, Arzate H, Narayanan AS. Isolation of protein-tyrosine phosphatase-like member-a variant from cementum. J Dent Res 2011; 91:203-9. [PMID: 22067203 DOI: 10.1177/0022034511428155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cementum has been shown to contain unique polypeptides that participate in cell recruitment and differentiation during cementum formation. We report the isolation of a cDNA variant for protein-tyrosine phosphatase-like (proline instead of catalytic arginine) member-a (PTPLA) from cementum. A cementifying fibroma-derived λ-ZAP expression library was screened by panning with a monoclonal antibody to cementum attachment protein (CAP), and 1435 bp cDNA (gb AC093525.3) was isolated. This cDNA encodes a 140-amino-acid polypeptide, and its N-terminal 125 amino acids are identical to those of PTPLA. This isoform, designated as PTPLA-CAP, results from a read-through of the PTPLA exon 2 splice donor site, truncating after the second putative transmembrane domain. It contains 15 amino acids encoded within the intron between PTPLA exons 2 and 3, which replace the active site for PTPLA phosphatase activity. The recombinant protein, rhPTPLA-CAP, has Mr 19 kDa and cross-reacts with anti-CAP antibody. Anti-rhPTPLA-CAP antibody immunostained cementum cells, cementum, heart, and liver. Quantitative RT-PCR showed that PTPLA was expressed in all periodontal cells; however, PTPLA-CAP expression was limited to cementum cells. The rhPTPLA-CAP promoted gingival fibroblast attachment. We conclude that PTPLA-CAP is a splice variant of PTPLA, and that, in the periodontium, cementum and cementum cells express this variant.
Collapse
Affiliation(s)
- A Valdés De Hoyos
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, Universidad Nacional Autónoma de México, México
| | | | | | | |
Collapse
|
24
|
Wen X, Nie X, Zhang L, Liu L, Deng M. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro. Biochem Biophys Res Commun 2011; 409:583-9. [PMID: 21619870 DOI: 10.1016/j.bbrc.2011.05.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/11/2011] [Indexed: 12/16/2022]
Abstract
Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.
Collapse
Affiliation(s)
- Xiujie Wen
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | | | | | | | | |
Collapse
|
25
|
Jung HS, Lee DS, Lee JH, Park SJ, Lee G, Seo BM, Ko JS, Park JC. Directing the differentiation of human dental follicle cells into cementoblasts and/or osteoblasts by a combination of HERS and pulp cells. J Mol Histol 2011; 42:227-35. [DOI: 10.1007/s10735-011-9327-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/12/2011] [Indexed: 11/24/2022]
|
26
|
Park JY, Jeon SH, Choung PH. Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transplant 2010; 20:271-85. [PMID: 20719084 DOI: 10.3727/096368910x519292] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Periodontitis is the most common cause for tooth loss in adults and advanced types affect 10-15% of adults worldwide. The attempts to save tooth and regenerate the periodontal apparatus including cementum, periodontal ligament, and alveolar bone reach to the dental tissue-derived stem cell therapy. Although there have been several periodontitis models suggested, the apical involvement of tooth root is especially challenging to be regenerated and dental stem cell therapy for the state has never been investigated. Three kinds of dental tissue-derived adult stem cells (aDSCs) were obtained from the extracted immature molars of beagle dogs (n = 8), and ex vivo expanded periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and periapical follicular stem cells (PAFSCs) were transplanted into the apical involvement defect. As for the lack of cementum-specific markers, anti-human cementum protein 1 (rhCEMP1) antibody was fabricated and the aDSCs and the regenerated tissues were immunostained with anti-CEMP1 antibody. Autologous PDLSCs showed the best regenerating capacity of periodontal ligament, alveolar bone, and cementum as well as peripheral nerve and blood vessel, which were evaluated by conventional and immune histology, 3D micro-CT, and clinical index. The rhCEMP1 was expressed strongest in PDLSCs and in the regenerated periodontal ligament space. We suggest here the PDLSCs as the most favorable candidate for the clinical application among the three dental stem cells and can be used for treatment of advanced periodontitis where tooth removal was indicated in the clinical cases.
Collapse
Affiliation(s)
- Joo-Young Park
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
27
|
Pan K, Sun Q, Zhang J, Ge S, Li S, Zhao Y, Yang P. Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/cementoblast-related gene expression in dental follicle cells. Cell Prolif 2010; 43:219-28. [PMID: 20546240 DOI: 10.1111/j.1365-2184.2010.00670.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Dental follicle cells (DFCs) provide the origin of periodontal tissues, and Runx2 is essential for bone formation and tooth development. In this study, pluripotency of DFCs was evaluated and effects of Runx2 on them were investigated. MATERIALS AND METHODS The DFCs were induced to differentiate towards osteoblasts, adipocytes or chondrocytes, and alizarin red staining, oil red O staining or alcian blue staining was performed to reveal the differentiated states. Bone marrow stromal cells (BMSCs) and primary mouse fibroblasts served as controls. DFCs were also infected with recombinant retroviruses encoding either full-length Runx2 or mutant Runx2 without the VWRPY motif. Western blot analysis, real-time real time RT-PCR and in vitro mineralization assay were performed to evaluate the effects of full-length Runx2 or mutant Runx2 on osteogenic/cementogenic differentiation of the cells. RESULTS The above-mentioned staining methods demonstrated that DFCs were successfully induced to differentiate towards osteoblasts, adipocytes or chondrocytes respectively, confirming the existence of pluripotent mesenchymal stem cells in dental follicle tissues. However, staining intensity in DFC cultures was weaker than in BMSC cultures. Real-time PCR analysis indicated that mutant Runx2 induced a more pronounced increase in expression levels of OC, OPN, Col I and CP23 than full-length Runx2. Mineralization assay also showed that mutant Runx2 increased mineralization nodule formation more prominently than full-length Runx2. CONCLUSIONS Multipotent DFCs can be induced to differentiate towards osteoblasts, adipocytes or chondrocytes in vitro. Runx2 over-expression up-regulated expression levels of osteoblast/cementoblast-related genes and in vitro enhanced osteogenic differentiation of DFCs. In addition, mutant Runx2-induced changes in DFCs were more prominent than those induced by full-length Runx2.
Collapse
Affiliation(s)
- K Pan
- Department of Periodontology and Institute of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhao Z, Wang Y, Wang D, Liu H. The Regulatory Role of A Disintegrin and Metalloproteinase 28 on the Biologic Property of Human Periodontal Ligament Stem Cells. J Periodontol 2010; 81:934-44. [DOI: 10.1902/jop.2010.090703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Zou D, Zhao J, Ding W, Xia L, Jang X, Huang Y. Wisdom teeth: Mankind’s future third vice-teeth? Med Hypotheses 2010; 74:52-5. [DOI: 10.1016/j.mehy.2009.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/06/2009] [Indexed: 11/25/2022]
|
30
|
Saito M, Nishida E, Sasaki T, Yoneda T, Shimizu N. The KK-Periome database for transcripts of periodontal ligament development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:495-502. [PMID: 19132733 DOI: 10.1002/jez.b.21257] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The periodontal ligament (PDL) is a strong connective tissue that surrounds the tooth root, absorbs occlusal forces, and functions as a sense organ. PDL originated from dental follicle (DF), which possessed mesenchymal progenitors in the developing tooth germ. However, as specific marker genes for PDL and DF are currently unavailable, the molecular mechanisms of PDL development are yet to be clarified. To facilitate the identification of such genes, we have previously established a transcriptome database of the human PDL (the KK-Periome database) and screened for specific genes expressed during PDL development. Initial screening of the database revealed two marker genes for distinguishing DF and PDL. The KK-Periome database thus appears to offer a useful resource for investigating genes involved in PDL development.
Collapse
Affiliation(s)
- Masahiro Saito
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | | | | | | | | |
Collapse
|
31
|
Yu H, Ren Y, Sandham A, Ren A, Huang L, Bai D. Mechanical tensile stress effects on the expression of bone sialoprotein in bovine cementoblasts. Angle Orthod 2009; 79:346-52. [PMID: 19216587 DOI: 10.2319/011508-20.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 04/01/2008] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To develop a new cementoblast culture method and to detect bone sialoprotein (BSP) expression in response to high and low mechanical tensile stress in cementoblast in vitro. MATERIALS AND METHODS Cementoblasts were collected from the roots of newborn bovine teeth and were identified with cementum-derived attachment protein (CAP) antibody 3G9. Cell proliferation was evaluated by MTT [3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay, and mineralization was confirmed by von Kossa staining. Mechanical tensile stress was applied in vitro to the cementoblast with the use of a uniaxial four-point bending system with 2000 or 4000 microstrains, at a frequency of 0.5 Hz for 3, 6, 12, 24, or 36 hours. BSP mRNA level was quantified by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). RESULTS A large amount of cementoblast was observed to be expressing CAP. Cementoblasts had a proliferation tendency similar to that of osteoblasts but different from that of periodontal ligament (PDL) cells. Cementoblasts had the ability to become mineralized between osteoblasts and PDL cells. The mechanical tensile stress significantly up-regulated BSP mRNA expression, which reached a peak at 24 hours in both 2000 and 4000 microstrain groups (P < .01) and was tenfold and sixfold higher than that of controls, respectively. BSP expression dropped toward baseline levels at 36 hours in both groups. CONCLUSIONS Mechanical tensile stress up-regulated the expression of BSP. Low mechanical tensile stress induced earlier and more intensive up-regulation of BSP mRNA; this might represent the optimal stimuli for cementoblast activity.
Collapse
Affiliation(s)
- Hongyou Yu
- Department of Orthodontics, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Hirata A, Sugahara T, Nakamura H. Localization of runx2, osterix, and osteopontin in tooth root formation in rat molars. J Histochem Cytochem 2009; 57:397-403. [PMID: 19124839 DOI: 10.1369/jhc.2008.952192] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cementogenesis starts with the differentiation of cementoblasts. Mature cementoblasts secrete cementum matrix. Cementum components are similar to bone; moreover, cementoblasts possess many characteristics similar to those of osteoblasts. Runx2 and osterix, the transcriptional factors for osteoblast differentiation, participate in tooth formation. However, the characteristics of Runx2 and osterix during the differentiation process of cementoblasts remain unclear. In this study, we examined the immunolocalization patterns of Runx2, osterix, and osteopontin during rat molar tooth formation. Periodontal ligament cells and osteoblasts located on the alveolar bone surface showed immunoreactivity for Runx2. Colocalization of Runx2 and osterix was detected in cementoblasts, which penetrated the ruptured Hertwig's epithelial root sheath and attached to root dentin. Moreover, osteopontin was observed in Runx2-positive cementoblasts facing the root surface. However, the cells adjacent to cementoblasts showed only Runx2 reactivity. Neither Runx2 nor osterix was seen in cementocytes. These results suggest that both Runx2 and osterix are important for differentiation into cementoblasts. Additionally, osterix may be indispensable for transcription of osteopontin expression.
Collapse
Affiliation(s)
- Azumi Hirata
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan.
| | | | | |
Collapse
|
33
|
Saito M, Nishida E, Yoneda T. Comprehensive Analysis of Tissue-specific Markers Involved in Periodontal Ligament Development. J Oral Biosci 2008. [DOI: 10.1016/s1349-0079(08)80005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Kémoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F, Briand-Mesange F, Gadelorge M, Arzate H, Narayanan AS, Brunel G, Salles JP. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 2007; 329:283-94. [PMID: 17443352 DOI: 10.1007/s00441-007-0397-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 02/09/2007] [Indexed: 12/14/2022]
Abstract
The dental follicle (DF) surrounding the developing tooth germ is an ectomesenchymal tissue composed of various cell populations derived from the cranial neural crest. Human dental follicle cells (HDFC) are believed to contain precursor cells for cementoblasts, periodontal ligament cells, and osteoblasts. Bone morphogenetic proteins (BMPs) produced by Hertwig's epithelial root sheath or present in enamel matrix derivatives (EMD) seem to be involved in the control of DF cell differentiation, but their precise function remains largely unknown. We report the immunolocalization of STRO-1 (a marker of multipotential mesenchymal progenitor cells) and BMP receptors (BMPR) in DF in vivo. In culture, HDFC co-express STRO-1/BMPR and exhibit multilineage properties. Incubation with rhBMP-2 and rhBMP-7 or EMD for 24 h increases the expression of BMP-2 and BMP-7 by HDFC. Long-term stimulation of these cells by rhBMP-2 and/or rhBMP-7 or EMD significantly increases alkaline phosphatase activity (AP) and mineralization. Expression of cementum attachment protein (CAP) and cementum protein-23 (CP-23), two putative cementoblast markers, has been detected in EMD-stimulated whole DF and in cultured HDFC stimulated with EMD or BMP-2 and BMP-7. RhNoggin, a BMP antagonist, abolishes AP activity, mineralization, and CAP/CP-23 expression in HDFC cultures and the expression of BMP-2 and BMP-7 induced by EMD. Phosphorylation of Smad-1 and MAPK is stimulated by EMD or rhBMP-2. However, rhNoggin blocks only Smad-1 phosphorylation under these conditions. Thus, EMD may activate HDFC toward the cementoblastic phenotype, an effect mainly (but not exclusively) involving both exogenous and endogenous BMP-dependent pathways.
Collapse
Affiliation(s)
- Philippe Kémoun
- Laboratory of Oral Biology, Faculty of Odontology, University Paul-Sabatier, 3 Chemin des Maraîchers, 31062, Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lu Y, Ye L, Yu S, Zhang S, Xie Y, McKee MD, Li Y, Kong J, Eick D, Dallas SL, Feng JQ. Rescue of odontogenesis in Dmp1-deficient mice by targeted re-expression of DMP1 reveals roles for DMP1 in early odontogenesis and dentin apposition in vivo. Dev Biol 2007; 303:191-201. [PMID: 17196192 PMCID: PMC2059935 DOI: 10.1016/j.ydbio.2006.11.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 10/15/2006] [Accepted: 11/02/2006] [Indexed: 11/22/2022]
Abstract
Dentin matrix protein 1 (DMP1) is expressed in both pulp and odontoblast cells and deletion of the Dmp1 gene leads to defects in odontogenesis and mineralization. The goals of this study were to examine how DMP1 controls dentin mineralization and odontogenesis in vivo. Fluorochrome labeling of dentin in Dmp1-null mice showed a diffuse labeling pattern with a 3-fold reduction in dentin appositional rate compared to controls. Deletion of DMP1 was also associated with abnormalities in the dentinal tubule system and delayed formation of the third molar. Unlike the mineralization defect in Vitamin D receptor-null mice, the mineralization defect in Dmp1-null mice was not rescued by a high calcium and phosphate diet, suggesting a different effect of DMP1 on mineralization. Re-expression of Dmp1 in early and late odontoblasts under control of the Col1a1 promoter rescued the defects in mineralization as well as the defects in the dentinal tubules and third molar development. In contrast, re-expression of Dmp1 in mature odontoblasts, using the Dspp promoter, produced only a partial rescue of the mineralization defects. These data suggest that DMP1 is a key regulator of odontoblast differentiation, formation of the dentin tubular system and mineralization and its expression is required in both early and late odontoblasts for normal odontogenesis to proceed.
Collapse
Affiliation(s)
- Yongbo Lu
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ling Ye
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Shibin Yu
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Shubin Zhang
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Yixia Xie
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Marc D. McKee
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Yanchun Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Juan Kong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - David Eick
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Sarah L. Dallas
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Jian Q. Feng
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
36
|
Foster BL, Popowics TE, Fong HK, Somerman MJ. Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 2007; 78:47-126. [PMID: 17338915 DOI: 10.1016/s0070-2153(06)78003-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Substantial advancements have been made in defining the cells and molecular signals that guide tooth crown morphogenesis and development. As a result, very encouraging progress has been made in regenerating crown tissues by using dental stem cells and recombining epithelial and mesenchymal tissues of specific developmental ages. To date, attempts to regenerate a complete tooth, including the critical periodontal tissues of the tooth root, have not been successful. This may be in part due to a lesser degree of understanding of the events leading to the initiation and development of root and periodontal tissues. Controversies still exist regarding the formation of periodontal tissues, including the origins and contributions of cells, the cues that direct root development, and the potential of these factors to direct regeneration of periodontal tissues when they are lost to disease. In recent years, great strides have been made in beginning to identify and characterize factors contributing to formation of the root and surrounding tissues, that is, cementum, periodontal ligament, and alveolar bone. This review focuses on the most exciting and important developments over the last 5 years toward defining the regulators of tooth root and periodontal tissue development, with special focus on cementogenesis and the potential for applying this knowledge toward developing regenerative therapies. Cells, genes, and proteins regulating root development are reviewed in a question-answer format in order to highlight areas of progress as well as areas of remaining uncertainty that warrant further study.
Collapse
Affiliation(s)
- Brian L Foster
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The Runx2 gene is a master transcription factor of bone and plays a role in all stages of bone formation. It is essential for the initial commitment of mesenchymal cells to the osteoblastic lineage and also controls the proliferation, differentiation, and maintenance of these cells. Control is complex, with involvement of a multitude of factors, thereby regulating the expression and activity of this gene both temporally and spatially. The use of multiple promoters and alternative splicing of exons further extends its diversity of actions. RUNX2 is also essential for the later stages of tooth formation, is intimately involved in the development of calcified tooth tissue, and exerts an influence on proliferation of the dental lamina. Furthermore, RUNX2 regulates the alveolar remodelling process essential for tooth eruption and may play a role in the maintenance of the periodontal ligament. In this article, the structure of Runx2 is described. The control and function of the gene and its product are discussed, with special reference to developing tooth tissues, in an attempt to elucidate the role of this gene in the development of the teeth and supporting structures.
Collapse
Affiliation(s)
- Simon Camilleri
- Department of Orthodontics, Dental Institute of Kings College London, London, UK.
| | | |
Collapse
|
38
|
Kitagawa M, Kudo Y, Iizuka S, Ogawa I, Abiko Y, Miyauchi M, Takata T. Effect of F-spondin on cementoblastic differentiation of human periodontal ligament cells. Biochem Biophys Res Commun 2006; 349:1050-6. [PMID: 16965763 DOI: 10.1016/j.bbrc.2006.08.142] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 11/30/2022]
Abstract
Cementum is a mineralized tissue produced by cementoblasts covering the roots of teeth that provides for the attachment of periodontal ligament to roots and surrounding alveolar bone. To study the mechanism of proliferation and differentiation of cementoblasts is important for understanding periodontal physiology and pathology including periodontal tissue regeneration. However, the detailed mechanism of the proliferation and differentiation of human cementoblasts is still unclear. We previously established human cementoblast-like (HCEM) cell lines. We thought that comparing the transcriptional profiles of HCEM cells and human periodontal ligament (HPL) cells derived from the same teeth could be a good approach to identify genes that influence the nature of cementoblasts. We identified F-spondin as the gene demonstrating the high fold change expression in HCEM cells. Interestingly, F-spondin highly expressing HPL cells showed similar phenotype of cementoblasts, such as up-regulation of mineralized-related genes. Overall, we identified F-spondin as a promoting factor for cementoblastic differentiation.
Collapse
Affiliation(s)
- Masae Kitagawa
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Alvarez-Pérez MA, Narayanan S, Zeichner-David M, Rodríguez Carmona B, Arzate H. Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23). Bone 2006; 38:409-19. [PMID: 16263347 DOI: 10.1016/j.bone.2005.09.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/01/2005] [Accepted: 09/02/2005] [Indexed: 11/20/2022]
Abstract
Cementum is a unique mineralized connective tissue that covers the root surfaces of the teeth. The cementum is critical for appropriate maturation of the periodontium, both during development as well as that associated with regeneration of periodontal tissues, IU; however, one major impediment to understand the molecular mechanisms that regulate periodontal regeneration is the lack of cementum markers. Here we report on the identification and characterization of one such differentially human expressed gene, termed "cementum protein-23" (CP-23) that appears to be periodontal ligament and cementum-specific. We screened human cementum tumor-derived cDNA libraries by transient expression in COS-7 cells and "panning" with a rabbit polyclonal antibody against a cementoblastoma conditioned media-derived protein (CP). One isolated cDNA, CP-23, was expressed in E. coli and polyclonal antibodies against the recombinant human CP-23 were produced. Expression of CP-23 protein by cells of the periodontium was examined by Northern blot and in situ hybridization. Expression of CP-23 transcripts in human cementoblastoma-derived cells, periodontal ligament cells, human gingival fibroblasts and alveolar bone-derived cells was determined by RT-PCR. Our results show that we have isolated a 1374-bp human cDNA containing an open reading frame that encodes a polypeptide with 247 amino acid residues, with a predicted molecular mass of 25.9 kDa that represents CP species. The recombinant human CP-23 protein cross-reacted with antibodies against CP and type X collagen. Immunoscreening of human periodontal tissues revealed that CP-23 gene product is localized to the cementoid matrix of cementum and cementoblasts throughout the entire surface of the root, cell subpopulations of the periodontal ligament as well as cells located paravascularly to the blood vessels into the periodontal ligament. Furthermore, 98% of putative cementoblasts and 15% of periodontal ligament cells cultured in vitro expressed CP-23 gene product. Cementoblastoma cells and periodontal ligament cells contained a 5.0 kb CP-23 mRNA. In situ hybridization showed strong expression of CP-23 mRNA on cementoblast, cell subpopulations of the periodontal ligament and cells located around blood vessels into the periodontal ligament. Our results demonstrate that CP-23 represents a novel, tissue-specific-gene product being expressed by periodontal ligament subpopulations and cementoblasts. These findings offer the possibility to determine the cellular and molecular events that regulate the cementogenesis process during root development. Furthermore, it might provide new venues for the design of translational studies aimed at achieving predictable new cementogenesis and regeneration of the periodontal tissues.
Collapse
Affiliation(s)
- Marco Antonio Alvarez-Pérez
- Laboratorio de Biología Celular y Molecular, Facultad de Odontología, UNAM, Cd. Universitaria, Coyoacán, 04510 DF, Mexico
| | | | | | | | | |
Collapse
|
40
|
Hara R, Wato M, Tanaka A. Marker of cemento-periodontal ligament junction associated with periodontal regeneration. J Periodontal Res 2005; 40:231-8. [PMID: 15853969 DOI: 10.1111/j.1600-0765.2005.00795.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of this study was to identify factors promoting formation of the cemento-periodontal ligament junction. BACKGROUND Regeneration of the cemento-periodontal ligament junction is an important factor in recovery of the connective tissue attachment to the cementum and it is important to identify all specific substances that promote its formation. To clarify the substances involved in cemento-periodontal ligament junction formation, we produced a monoclonal antibody (mAb) to human cemento-periodontal ligament junction (designated as the anti-TAP mAb) and examined its immunostaining properties and reactive antigen. METHODS Hybridomas producing monoclonal antibody against human cemento-periodontal ligament junction antigens were established by fusing P3U1 mouse myeloma cells with spleen cells from BALB/c mice immunized with homogenized human cemento-periodontal ligament junction. The mAb, the anti-TAP mAb for cemento-periodontal ligament junction, was then isolated. The immunoglobulin class and light chain of the mAb were examined using an isotyping kit. Before immunostaining, antigen determination using an enzymatic method or heating was conducted. Human teeth, hard tissue-forming lesions, and animal tissues were immunostained by the anti-TAP mAb. RESULTS The anti-TAP mAb was positive in human cemento-periodontal ligament junction and predentin but negative in all other human and animal tissues examined. In the cemento-osseous lesions, the anti-TAP mAb was positive in the peripheral area of the cementum and cementum-like hard tissues and not in the bone and bone-like tissues. The anti-TAP mAb showed IgM (kappa) and recognized phosphoprotein. CONCLUSION The anti-TAP mAb is potentially useful for developing new agents promoting cementogenesis and periodontal regeneration.
Collapse
Affiliation(s)
- Ryohko Hara
- Graduate School of Dentistry (Pathology), Osaka Dental University, Osaka, Japan
| | | | | |
Collapse
|
41
|
Tompkins K, Alvares K, George A, Veis A. Two related low molecular mass polypeptide isoforms of amelogenin have distinct activities in mouse tooth germ differentiation in vitro. J Bone Miner Res 2005; 20:341-9. [PMID: 15647828 DOI: 10.1359/jbmr.041107] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/19/2004] [Accepted: 08/31/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED Embryonic mouse tooth germs were cultured in vitro in the presence of two related amelogenin isoforms to determine their effects on tooth development. Our results show that these individual proteins have specific but quite different effects on epithelial-derived ameloblasts versus mesenchymal-derived odontoblasts. INTRODUCTION Amelogenins, the main protein components of enamel matrix, have been shown to have signaling activity. Amelogenin isoforms differing only by the presence or exclusion of exon 4, designated [A+4] (composed of exons 2, 3, 4, 5, 6d, and 7) and [A-4] (composed of exons 2, 3, 5, 6d, and 7), showed similar, but different, effects both in vitro and in vivo on postnatal teeth. MATERIALS AND METHODS Lower first molar tooth germs of E15/16 CD1 mice were microdissected and cultured in vitro in a semisolid media containing either 20% FBS, 2% FBS, or 2% FBS with either 1.5 nM [A+4], [A-4], or both for 6 days. Tooth germs were analyzed by H&E staining and immunohistochemistry for collagen I, dentin matrix protein 2, and DAPI nuclear staining. RESULTS Teeth cultured in media containing 20% FBS showed normal development with polarized ameloblasts, and odontoblasts producing dentin matrix, and DMP2 expression in odontoblasts and pre-ameloblasts. Culture in 2% FBS media resulted in no ameloblast polarization and modest odontoblast differentiation with scant dentin matrix. Tooth germs cultured with [A+4] in 2% FBS media had well-polarized odontoblasts with robust dentin production and concomitant ameloblast polarization. DMP2 expression was equal to or greater than seen in the 20% FBS culture condition. In cultures with [A-4] in 2% FBS media, odontoblast polarization and dentin production was reduced compared with [A+4]. However, the pre-ameloblast layer was disorganized, with no ameloblast polarization occurring along the dentin surface. DMP2 expression was reduced in the odontoblasts compared with the 20% FBS and [A+4] conditions and was almost completely abrogated in the pre-ameloblasts. CONCLUSION These data show different signaling activities of these closely related amelogenin isoforms on tooth development. Here we make the novel observation that [A-4] has an inhibitory effect on ameloblast development, whereas [A+4] strongly stimulates odontoblast development. We show for the first time that specific amelogenin isoforms have effects on embryonic tooth development in vitro and also hypothesize that DMP2 may play a role in the terminal differentiation of both ameloblasts and odontoblasts.
Collapse
Affiliation(s)
- Kevin Tompkins
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
42
|
Saito M, Handa K, Kiyono T, Hattori S, Yokoi T, Tsubakimoto T, Harada H, Noguchi T, Toyoda M, Sato S, Teranaka T. Immortalization of cementoblast progenitor cells with Bmi-1 and TERT. J Bone Miner Res 2005; 20:50-7. [PMID: 15619669 DOI: 10.1359/jbmr.041006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 07/01/2004] [Accepted: 08/03/2004] [Indexed: 12/31/2022]
Abstract
UNLABELLED A cementoblast progenitor cell line designated BCPb8 was successfully isolated from dental follicle cells immortalized with Bmi-1 and hTERT. BCPb8 showed the potential to differentiate into cementoblasts on implantation into immunodeficient mice. BCPb8 was confirmed to be the first established cementoblast progenitor cell line and will provide a useful model for investigating cementogenesis. INTRODUCTION The dental follicle is the mesenchymal tissue surrounding the developing tooth germ. During tooth root development, progenitor cells present in the dental follicle are believed to play a central role in the formation of periodontal components (cementum, periodontal ligament, and alveolar bone). However, little more is known about the biology of these progenitors. Previously, we observed that cultured bovine dental follicle cells (BDFCs) contained putative cementoblast progenitors. To further analyze the biology of these cells, we attempted to isolate cementoblast progenitors from immortalized BDFC through expression of the polycomb group protein, Bmi-1, and human telomerase reverse transcriptase (hTERT). MATERIALS AND METHODS BDFCs were transduced with replication-deficient retroviruses carrying human Bmi-1(LXSN-Bmi-1), and hTERT (LXSH-hTERT) for immortalization. Single cell clones were established from immortalized BDFC, and differentiation into cementoblasts was assessed by implantation into immunodeficient mice. RESULTS AND CONCLUSION BDFCs expressing Bmi-1 and hTERT showed an extended life span-90 population doublings more than normal BDFCs-and still contained cells with the potential to differentiate into cementoblasts on implantation into immunodeficient mice. From these cells, we established a clonal cell line, designated BCPb8, which formed cementum-like tissue that was reactive to the anti-cementum-specific monoclonal antibody 3G9 and expressed mRNA for bone sialoprotein, osteocalcin, osteopontin, and type I collagen on implantation. Thus, by using Bmi-1 and hTERT, we succeeded in immortalizing cementoblast progenitor cells from BDFC without affecting differentiation potential. The BCPb8 cell line is the first immortalized clonal cell line of cementoblast progenitors and could be a useful tool not only to study cementogenesis but also to develop regeneration therapy for patients with periodontitis.
Collapse
Affiliation(s)
- Masahiro Saito
- Department of Operative Dentistry and Endodontics, Kanagawa Dental College, Yokosuka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Ito Y, Nishikawa T, Tanaka A. Production and Characterization of Novel Monoclonal Antibody to Rat Periodontium. J Oral Biosci 2005. [DOI: 10.1016/s1349-0079(05)80022-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Alvarez Pérez MA, Pitaru S, Alvarez Fregoso O, Reyes Gasga J, Arzate H. Anti-cementoblastoma-derived protein antibody partially inhibits mineralization on a cementoblastic cell line. J Struct Biol 2003; 143:1-13. [PMID: 12892721 DOI: 10.1016/s1047-8477(03)00116-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of human anti-cementoblastoma-derived protein antibody during cementogenesis in vitro was investigated by using human cementoblastoma-derived cells. Cultures treated with 5 microg/ml of CP antibody from day 1 to day 15 revealed a significant decrease in alkaline phosphatase activity (ALP) 40% (p < 0.005), 44% (p < 0.001), 49% (p < 0.1), and 45% (p < 0.02) at 9, 11, 13, and 15 days, respectively. Immunoexpression of osteopontin revealed that in cultures treated with anti-CP antibody, the positive number of cementoblastoma cells was reduced by 87, 83, 69, and 52% at 5, 7, 9, and 11 days, respectively. Bone sialoprotein immunoexpression showed a decrease in positive cells of 82, 51, 60, 80, 83, and 87% at 5, 7, 9, 11, 13, and 15 days, respectively, as compared to controls. The Ca/P ratio of the mineral-like tissue deposited in vitro by cementoblastoma cells revealed that control cultures had a Ca/P ratio of 1.45 and 1.61 at 5 and 15 days, whereas experimental cultures revealed a Ca/P ratio of 0.50 and 0.79 at 5 and 15 days, respectively. Electron diffraction patterns showed inner double rings representing D-spacing that were consistent with those of hydroxyapatite in both control and experimental cultures. Examination of the crystallinity with high resolution transmission electron microscopy showed homogeneous and preferential spatial arrangement of hydroxyapatite crystallites in control and experimental cultures at 15 days. Atomic force microscopy images of control cultures at 5 and 15 days revealed small granular particles and grain agglomeration that favored the formation of crystalline plaques with a lamellar-like pattern of the mineral-like tissue. Experimental cultures at 5 and 15 days showed tiny and homogeneous granular morphology. The agglomerates maintained spherical morphology without organization of needle-like crystals to form plaque-like structures. Based on these findings, it is hypothesized that cementoblastoma-derived protein may be associated to crystal growth, compositional and morphological features during the mineralization process of cementum in vitro.
Collapse
|
46
|
Handa K, Saito M, Tsunoda A, Yamauchi M, Hattori S, Sato S, Toyoda M, Teranaka T, Narayanan AS. Progenitor cells from dental follicle are able to form cementum matrix in vivo. Connect Tissue Res 2003; 43:406-8. [PMID: 12489190 DOI: 10.1080/03008200290001023] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To address the molecular mechanisms of cementogenesis, we have isolated dental follicle cells and examined them to see if they contain cementoblast progenitors. Dental follicle tissue was dissected from the root surface of bovine tooth germ and cells were released by digestion with bacterial collagenase. The released cells were maintained as a bovine dental follicle cells (BDFC). To elucidate the differentiation capacity of BDFC, they were transplanted into severe combined immunodeficiency (SCID) mice for 4 weeks. Transplanted BDFC formed cementumlike matrix; in contrast, bovine alveolar osteoblast (BAOB) transplants formed bonelike matrix, and bovine periodontal ligament cells (BPDL) formed a small amount of the cementumlike matrix. Immunohistochemical analysis showed that cementumlike matrix was positive for anti-cementum attachment protein monoclonal antibody, whereas bone-like matrix was negative. These results indicated that the BDFC contained cementoblast progenitors that were able to differentiate to cementoblasts in vivo. They also indicated that the BDFC are phenotypically distinct from BAOB and BPDL, and provide a useful model for investigating molecular mechanisms of cementogenesis.
Collapse
Affiliation(s)
- Keisuke Handa
- Department of Operative Dentistry and Endodontics, Kanagawa Dental College, 82 Inaokacho, Yokosuka-city, Kanagawa, Japan 238-8580
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Grzesik WJ, Narayanan AS. Cementum and periodontal wound healing and regeneration. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 13:474-84. [PMID: 12499241 DOI: 10.1177/154411130201300605] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The extracellular matrix (ECM) of cementum resembles other mineralized tissues in composition; however, its physiology is unique, and it contains molecules that have not been detected in other tissues. Cementum components influence the activities of periodontal cells, and they manifest selectivity toward some periodontal cell types over others. In light of emerging evidence that the ECM determines how cells respond to environmental stimuli, we hypothesize that the local environment of the cementum matrix plays a pivotal role in maintaining the homeostasis of cementum under healthy conditions. The structural integrity and biochemical composition of the cementum matrix are severely compromised in periodontal disease, and the provisional matrix generated during periodontal healing is different from that of cementum. We propose that, for new cementum and attachment formation during periodontal regeneration, the local environment must be conducive for the recruitment and function of cementum-forming cells, and that the wound matrix is favorable for repair rather than regeneration. How cementum components may regulate and participate in cementum regeneration, possible new regenerative therapies using these principles, and models of cementoblastic cells are discussed.
Collapse
Affiliation(s)
- Wojciech J Grzesik
- Dental Research Center, CB#7455, University of North Carolina, Chapel Hill, NC 27599-7455, USA
| | | |
Collapse
|
48
|
Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T, Sampath Narayanan A. Cementum matrix formation in vivo by cultured dental follicle cells. Bone 2002; 31:606-11. [PMID: 12477575 DOI: 10.1016/s8756-3282(02)00868-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dental follicle is the fibrous tissue that surrounds the developing tooth germ, and it is believed to contain progenitors for cementoblasts, periodontal ligament cells, and osteoblasts. In this study, we report the presence of cementoblast progenitors in cultures of bovine dental follicle cells and demonstrate their differentiation capacity. Bovine dental follicle cells (BDFC) obtained from tooth germs by collagenase digestion were compared with bovine alveolar bone osteoblasts (BAOB) and bovine periodontal ligament cells (BPDL) in vitro and in vivo. In culture, BDFC exhibited low levels of alkaline phosphatase activity and expressed mRNA for osteopontin (OP) and type I collagen (COLI), as well as low levels of osteocalcin (OC) mRNA. In contrast, cultured BAOB exhibited high alkaline phosphatase activity levels and expressed mRNA for OC, OP, COLI, and bone sialoprotein (BSP). To elucidate the differentiation capacity of BDFC in vivo, cells were transplanted into severe combined immunodeficiency (SCID) mice and analyzed after 4 weeks. Transplanted BDFC formed fibrous tissue and cementum-like matrix, which stained positive for anti-cementum attachment protein (CAP) monoclonal antibody (3G9), and expressed mRNA for OC, OP, COLI, and BSP. On the other hand, transplanted BAOB formed bone-like matrix, but were negative for anti-CAP monoclonal antibody. The BPDL transplants formed fibrous tissue that contained a few cells expressing CAP. These results indicate that cementoblast progenitors are present in BDFC, which can provide a useful model for investigating the molecular mechanisms of cementogenesis.
Collapse
Affiliation(s)
- K Handa
- Department of Operative Dentistry and Endodontics, Yokosuka, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 2002; 81:695-700. [PMID: 12351668 DOI: 10.1177/154405910208101008] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tooth loss due to periodontal disease, dental caries, trauma, or a variety of genetic disorders continues to affect most adults adversely at some time in their lives. A biological tooth substitute that could replace lost teeth would provide a vital alternative to currently available clinical treatments. To pursue this goal, we dissociated porcine third molar tooth buds into single-cell suspensions and seeded them onto biodegradable polymers. After growing in rat hosts for 20 to 30 weeks, recognizable tooth structures formed that contained dentin, odontoblasts, a well-defined pulp chamber, putative Hertwig's root sheath epithelia, putative cementoblasts, and a morphologically correct enamel organ containing fully formed enamel. Our results demonstrate the first successful generation of tooth crowns from dissociated tooth tissues that contain both dentin and enamel, and suggest the presence of epithelial and mesenchymal dental stem cells in porcine third molar tissues.
Collapse
Affiliation(s)
- C S Young
- Department of Cytokine Biology and Harvard-Forsyth Department of Oral Biology, The Forsyth Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Arzate H, Jiménez-García LF, Alvarez-Pérez MA, Landa A, Bar-Kana I, Pitaru S. Immunolocalization of a human cementoblastoma-conditioned medium-derived protein. J Dent Res 2002; 81:541-6. [PMID: 12147744 DOI: 10.1177/154405910208100808] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Little is known about the molecular mechanisms that regulate the cementogenesis process, because specific cementum markers are not yet available. To investigate whether a cementoblastoma-conditioned medium-derived protein (CP) could be useful as a cementum biological marker, we studied its expression and distribution in human periodontal tissues, human periodontal ligament, alveolar bone, and cementoblastoma-derived cells. In human periodontal tissues, immunoreactivity to anti-CP was observed throughout the cementoid phase of acellular and cellular cementum, cementoblasts, cementocytes, cells located in the endosteal spaces of human alveolar bone, and in cells in the periodontal ligament located near the blood vessels. Immunopurified CP promoted cell attachment on human periodontal ligament, alveolar bone-derived cells, and gingival fibroblasts. A monoclonal antibody against bovine cementum attachment protein (CAP) cross-reacted with CP. These findings indicate that CP identifies potential cementoblast progenitor cells, is immunologically related to CAP species, and serves as a biological marker for cementum.
Collapse
Affiliation(s)
- H Arzate
- Laboratorio de Biología Celular y Molecular, División de Estudios de Posgrado e Investigación, Facultad de Odontología, UNAM, Cd. Universitaria, 04510, México DF, Mexico.
| | | | | | | | | | | |
Collapse
|