1
|
Bevers MSAM, Moharir S, Heyer FL, Wyers CE, van den Bergh JP, van Rietbergen B. A 2D-registration algorithm for the correction of motion-induced misalignments of consecutive image stacks in multi-stack high-resolution peripheral quantitative CT scans. Bone 2025; 197:117490. [PMID: 40252819 DOI: 10.1016/j.bone.2025.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/28/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Multi-stack imaging using high-resolution peripheral quantitative CT (HR-pQCT) can involve misalignments of consecutive image stacks ('stack shift') due to subject movement during scan acquisition. We developed a simple, 2D-registration algorithm for the correction of stack shifts in multi-stack HR-pQCT scans and investigated 1) the differences in standard HR-pQCT parameters and repeatability between before and after stack-shift correction; and 2) the correlation between the transformation needed for the stack-shift correction and corresponding difference in HR-pQCT parameters. The algorithm generates an artificial stack overlap of two slices, then rigidly registers the overlapping region (only in-plane translation allowed), and subsequently applies the resulting translation to the proximal stack. The algorithm was applied to data of 23 men and women with three same-day repeated scans (69 radius and 63 tibia scans, Dataset 1) and of 48 postmenopausal women with 78 radius scans taken at two time points with 12-week interval (Dataset 2). In both datasets, median differences in HR-pQCT parameters between before and after stack-shift correction were mostly significant yet small (≤0.53 %). The differences could vary considerably between subjects and ranged between -12.1 % and +35.8 % for cortical porosity, stiffness, and failure load. For the other HR-pQCT parameters, the differences ranged between ±0.8 % (Dataset 1) and between -4.5 % and +0.9 % (Dataset 2) among subjects. Spearman correlations between the magnitude of the translation and corresponding difference in HR-pQCT parameters were significant for most parameters in both datasets and strongest for stiffness and failure load (ρ = 0.687-0.947; p < 0.01). Based on Dataset 1, coefficients of variation differed between ±0.3 percentage points after stack-shift correction as compared to before. To conclude, correction of stack misalignments in two-stack HR-pQCT scans using our algorithm resulted in significant but negligible median differences in HR-pQCT parameters and precision, but differences could exceed least-significant differences and thereby be clinically relevant in individual subjects. The translation needed for the stack-shift correction correlated significantly with the difference in most HR-pQCT parameters, thereby potentially serving as objective measure for stack-shift severity. The algorithm can be applied directly after scan reconstruction, at low computational cost and without negative effects from image interpolation.
Collapse
Affiliation(s)
- M S A M Bevers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - S Moharir
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - F L Heyer
- NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Surgery, VieCuri Medical Center, Venlo, the Netherlands
| | - C E Wyers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - B van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Guyan F, Waltenspül M, Dietrich M, Kabelitz M. Intra-Individual Differences of the Femoral Cortical Thickness Index in Elderly Patients with a Proximal Femoral Fracture. J Clin Med 2025; 14:2654. [PMID: 40283484 PMCID: PMC12028276 DOI: 10.3390/jcm14082654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Osteoporosis is prevalent in the elderly and increases fracture risk. Bone density is commonly assessed using dual-energy X-ray absorptiometry (DEXA). The femoral cortical thickness index (CTI) also provides indirect information for osteoporosis. It remains unclear whether there are intra-individual differences and if a correlation to fracture risk of the CTI in fractured femora results due to fracture related malrotation during X-rays. The aim of this study was to investigate the individual bilateral CTI in patients with proximal femoral fractures. Methods: A retrospective analysis of 200 surgically treated patients (100 trochanteric, 100 femoral neck fractures) was performed. Measurements included the bilateral CTI at 10 and 15 cm below the lesser trochanter. Analysis of the correlation of those examinations, in comparison to the contralateral CTI at 15 cm, and correlation of the CTI with the body mass index (BMI) and age was performed. Results: Results showed significant differences (p < 0.001) in bilateral CTIs for both fracture types at 15 cm with a strong inter-rater reliability (ICC > 0.9). There was no significant correlation between age and CTI, as well as BMI and CTI in both cohorts (p > 0.1). Sex-specific subgroup analyses revealed that females exhibited significant differences in CTI between fractured and non-fractured sides (p < 0.001). Conclusions: In conclusion, CTI, and the modified CTI at 15 cm below the lesser trochanter in fractured proximal femora, is lower compared to the non-fractured side. The femoral CTI could help in daily clinical routines and circumstances, where more detailed risk prediction tools are lacking.
Collapse
Affiliation(s)
- Flurina Guyan
- Medical School, University of Zürich, 8006 Zürich, Switzerland;
| | - Manuel Waltenspül
- Clinic for Orthopaedics, Hand Surgery and Trauma Surgery, Stadtspital Zürich, Tièchestrasse 99, 8037 Zürich, Switzerland; (M.W.); (M.D.)
| | - Michael Dietrich
- Clinic for Orthopaedics, Hand Surgery and Trauma Surgery, Stadtspital Zürich, Tièchestrasse 99, 8037 Zürich, Switzerland; (M.W.); (M.D.)
| | - Method Kabelitz
- Clinic for Orthopaedics, Hand Surgery and Trauma Surgery, Stadtspital Zürich, Tièchestrasse 99, 8037 Zürich, Switzerland; (M.W.); (M.D.)
| |
Collapse
|
3
|
Cha Y, Park S, Jung CH, Kim JW, Yoo JI, Kim JT, Jeon Y, Han KJ. Additional Screw Added to the Femoral Neck System Could Enhance the Stability of Pauwel Type III Femoral Neck Fractures: a Finite Element Analysis. Clin Orthop Surg 2025; 17:204-215. [PMID: 40170784 PMCID: PMC11957821 DOI: 10.4055/cios24194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 04/03/2025] Open
Abstract
Backgroud This study explores effective fixation methods for Pauwel type III femoral neck fractures by evaluating the biomechanical benefits of adding a screw to the Femoral Neck System (FNS). Methods Computed tomography (CT) scans of an 82-year-old female patient with an intertrochanteric fracture were used to establish a finite element femur model with heterogeneous material properties. Finite element models of Pauwel type III fractures were created with and without an additional screw. The central and inferior trajectories of the FNS bolt were examined separately and combined with an additional screw for virtual fixation. Walking and stair-climbing loads were applied. Results With the addition of a screw, both peak maximum and minimum principal strains consistently stayed comparable or decreased in models with both central and inferior bolt trajectories, while the volume of elements with principal strain exceeding 1% decreased by more than half. The peak von Mises stress observed in the implants ranged from 215.7 to 359.3 MPa, remaining below the titanium alloy's yield strength of 800 MPa. For normal walking, the addition of a screw to the central bolt trajectory model decreased the fracture gap by 50.6% and reduced sliding distance by 8.6%. For the inferior bolt trajectory, the gap was reduced by 57.9% and sliding distance by 25.0%. Under stair-climbing conditions, these improvements were also evident; the central trajectory model saw a halved fracture gap and a 7.9% decrease in sliding distance, while the inferior trajectory model experienced a 55.7% gap reduction and a 27.2% decrease in sliding distance. The additional screw increased the area ratio of the fracture site experiencing interfragmentary compression 34%-39%, while the additional screw alleviated peak interfragmentary compression by 12%-18% under both normal walking and stair-climbing conditions. Conclusions The addition of a screw reduced the fracture gap, sliding distance, and peak interfragmentary compression, while increasing the area ratio of interfragmentary compression under both walking and stair-climbing loads, regardless of the FNS bolt trajectory, suggesting a better mechanical environment for fracture healing.
Collapse
Affiliation(s)
- Yonghan Cha
- Department of Orthopedic Surgery, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Sunghoon Park
- Department of Radiology, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea
| | - Chang-Ho Jung
- Department of Mechanical Engineering, Ajou University, Suwon, Korea
| | - Jin-Woo Kim
- Department of Orthopedic Surgery, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Jun-Il Yoo
- Department of Orthopedic Surgery, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Jung-Taek Kim
- Department of Orthopedic Surgery, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea
| | - Yongho Jeon
- Department of Mechanical Engineering, Ajou University, Suwon, Korea
| | - Kyeong Jin Han
- Department of Orthopedic Surgery, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
4
|
Quintiens J, Paravisi E, Uniyal P, van Lenthe GH. Bone stiffness and strength at the distal radius can be determined using photon-counting CT. Arch Osteoporos 2025; 20:40. [PMID: 40116966 DOI: 10.1007/s11657-025-01527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Estimating bone strength aids in osteoporotic fracture risk assessment. Bone strength is usually calculated with a high-resolution CT; however, this modality has limited clinical utility. We demonstrated that clinical photon-counting CT can also be used for bone strength quantification, which facilitates the use of this information in clinical decision-making. PURPOSE Quantification of bone strength and microarchitecture at the distal radius with high-resolution peripheral quantitative computed tomography (HR-pQCT) can predict osteoporotic fracture risk independently of dual-energy X-ray absorptiometry. Photon-counting CT (PCCT) is a novel imaging technique with larger fields of view, shorter acquisition times, and similar resolution when compared to HR-pQCT. This study aimed to compare the stiffness and strength of the distal radius computed from PCCT and HR-pQCT images. METHODS We evaluated a 10.2 mm section of the distal radius from eight cadaveric forearms scanned with PCCT and HR-pQCT at 0.11 mm and 0.061 mm voxel size, respectively. All CT images were converted to voxel-based linear finite element models. Two material models were used: a segmentation-based model with a fixed Young's modulus of 10 GPa for bone elements, and a density-based model where Young's modulus was assigned on a voxel-by-voxel basis, based on its gray value. Poisson's ratio was set to 0.3 for all elements. Axial compression at 1% apparent strain was applied to quantify stiffness; strength was quantified with the Pistoia criterion. In addition, load sharing between cortical and trabecular bone was quantified. RESULTS We found strong correlations between PCCT and HR-pQCT-derived bone stiffness, strength, and cortical and trabecular proportion for segmentation-based models (R2 > 0.911; p < 2e-4). Correlation and agreement were higher for density-based models (R2 > 0.977; p < 4e-6). CONCLUSION We demonstrated that PCCT can estimate bone strength with high accuracy and agreement when compared to HR-pQCT. These findings highlight PCCT's potential in assessing fracture risk in osteoporosis. At the same time, PCCT's large field of view enables broader usage, at sites different from peripheral limbs.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Elena Paravisi
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Piyush Uniyal
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
5
|
Hosseinitabatabaei S, Vitienes I, Rummler M, Birkhold A, Rauch F, Willie BM. Non-invasive quantification of bone (re)modeling dynamics in adults with osteogenesis imperfecta treated with setrusumab using timelapse high-resolution peripheral-quantitative computed tomography. J Bone Miner Res 2025; 40:348-361. [PMID: 39849981 PMCID: PMC11909737 DOI: 10.1093/jbmr/zjaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/07/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Timelapse imaging using high-resolution peripheral quantitative computed tomography has emerged as a non-invasive method to quantify bone (re)modeling. However, there is no consensus on how to perform the procedure. As part of the ASTEROID phase-2b multicenter trial, we used 29 same-day repeated scans from adults with OI to identify a method that minimized measurement error. We evaluated input image type, registration method, segmentation mask, and for grayscale images various values for the voxel density difference considered formed or resorbed, minimum formation/resorption cluster size, and Gaussian smoothing sigma. We verified the accuracy of our method and then used it on longitudinal scans (baseline, 6, 12, 18, and 24 mo) from 78 participants to assess bone formation and resorption induced by an anabolic (setrusumab) and anti-catabolic (zoledronic acid) treatments as part of the ASTEROID trial. Regardless of image registration method, binary input images resulted in large errors ~13% and ~8% for first- and second-generation scanners, respectively. For the grayscale input images, errors were smaller for 3D compared to matched angle registration. For both scanner generations, a density threshold of 200 mgHA/cm3 combined with Gaussian noise reduction resulted in errors <1%. We verified the method was accurate by showing that similar regions of bone formation and resorption were identified when comparing each scan from the same-day repeated scans with a scan from another timepoint. Timelapse analysis revealed a dose-dependent increase in bone formation and resorption with setrusumab treatment. Zoledronic acid altered bone changes in favor of formation, although no changes reached statistical significance. This study identifies a timelapse method that minimizes measurement error, which can be used in future studies to improve the uniformity of results. This non-invasive imaging biomarker revealed dose dependent bone (re)modeling outcomes from 1 year of setrusumab treatment in adults with OI.
Collapse
Affiliation(s)
- Seyedmahdi Hosseinitabatabaei
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Isabela Vitienes
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Maximillian Rummler
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | | | - Frank Rauch
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC H4A 0A9, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
6
|
Yadav RN, Oravec DJ, Cushman T, Rao SD, Yeni YN. Strength and strain distributions obtained from digital wrist tomosynthesis discriminate patients with and without a history of fragility fracture. Bone 2025; 192:117368. [PMID: 39672218 DOI: 10.1016/j.bone.2024.117368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Bone fractures due to osteoporosis are a significant problem. Limited accuracy of standard bone mineral density (BMD) for fracture risk assessment, combined with low adherence to bone health screening precludes identification of those at risk of fracture. Because of the wide availability of digital breast tomosynthesis (DBT) imaging, bone screening using a DBT scanner at the time of breast screening has been proposed. Earlier studies have shown that BMD, microstructure, and stiffness of the distal radius can be calculated using digital tomosynthesis imaging of the wrist (DWT). However, strength and stress/strain parameters, which are more relevant to structural failure, and have the potential to enhance the utility of DWT, were not examined previously. Therefore, this study aimed to examine the ability of DWT to discriminate patients with and without fragility fracture using DWT based finite element (DWT-FE) derived strength and stress/strain distribution properties, and to determine in vivo repeatability of these biomechanical properties. Twenty-two postmenopausal women with any fragility fracture (included spine, hip, distal radius, humerus and tibia fractures) and 68 without were recruited. Each participant's nondominant arm (dominant arm if history of fracture in the nondominant arm) was scanned with DWT and compressive loading was simulated using FE modeling. Six additional patients were DWT-scanned thrice, with repositioning, to determine the repeatability of the study variables. Age and T-score were not different between fracture and nonfracture groups (p > 0.1), but strength and stress/strain parameters were significant predictors of fracture status (AUC = 0.64-0.74). Standard deviation of tensile strain was the most discriminatory variable for fracture status (AUC = 0.74) and was independent from stiffness. Repeatability error of DWT biomechanical properties was 0.7 % to 5.8 %. This study demonstrated that DWT-FE based strength and standard deviation of tensile strain were reproducible and predict fracture status independent from BMD and stiffness. The results suggest that the accuracy of fracture risk screening can be improved in the highly accessible environment of mammographic imaging.
Collapse
Affiliation(s)
- Ram N Yadav
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA
| | | | - Terra Cushman
- Division of Endocrinology, Diabetes and Bone & Mineral Disorders, and Bone & Mineral Research Laboratory, Henry Ford Health, Detroit, MI, USA
| | - Sudhaker D Rao
- Division of Endocrinology, Diabetes and Bone & Mineral Disorders, and Bone & Mineral Research Laboratory, Henry Ford Health, Detroit, MI, USA; Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Yener N Yeni
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA; Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA.
| |
Collapse
|
7
|
Kamanda-Kosseh M, Shiau S, Agarwal S, Kondapalli A, Colon I, Kil N, Bucovsky M, Lappe JM, Stubby J, Shane E, Cohen A. Bisphosphonates Maintain BMD After Sequential Teriparatide and Denosumab in Premenopausal Women with Idiopathic Osteoporosis. J Clin Endocrinol Metab 2025; 110:e791-e801. [PMID: 38605469 PMCID: PMC11834718 DOI: 10.1210/clinem/dgae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
CONTEXT We previously reported that sequential teriparatide followed by denosumab substantially increases bone mineral density (BMD) in premenopausal idiopathic osteoporosis (PremenIOP). OBJECTIVE To determine whether administration of bisphosphonates after denosumab cessation is associated with stable BMD in PremenIOP. DESIGN Open-label extension study. PARTICIPANTS Twenty-four PremenIOP Teriparatide-Denosumab Study participants. INTERVENTIONS Oral alendronate (ALN), 70 mg weekly, or intravenous zoledronic acid (ZOL), 5 mg once (patient choice), was administered 7 months (M) after final denosumab dose. OUTCOMES BMD by dual-energy x-ray absorptiometry and serum C-telopeptide (CTX) q6M; Vertebral Fracture Assessment (VFA), and high-resolution peripheral quantitative computed tomography (HR-pQCT) q12 M. RESULTS Twenty-four women with PremenIOP (aged 43 ± 8 years), severely affected with low trauma adult fractures (range 0-12; 9 with vertebral fractures) and/or very low BMD, had large BMD increases on sequential teriparatide-denosumab (spine: 25 ± 9%; total hip: 11 ± 6%). During the Bisphosphonate Extension, mean BMD and CTX changes in the entire group were small and not statistically significant at 6 or 12 M.Women choosing ZOL (n = 6) vs ALN (n = 18) did not differ by baseline age, body mass index, fractures, BMD, or CTX. On ZOL, there were small lumbar spine BMD declines and CTX increases, particularly between 6 M and 12 M, while greater stability was observed on ALN.Changes in BMD and CTX did not differ by duration of denosumab (36 M vs <36 M) or between 20 women who remained premenopausal and 4 who transitioned into menopause. Higher pre-teriparatide CTX, likely reflecting baseline remodeling status, predicted more spine and hip bone loss. No new vertebral (clinical or vertebral fraction assessment screening) or nonvertebral fractures occurred. CONCLUSION BMD remained stable in women with PremenIOP who received bisphosphonates after sequential teriparatide-denosumab therapy.
Collapse
Affiliation(s)
- Mafo Kamanda-Kosseh
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stephanie Shiau
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA
| | - Sanchita Agarwal
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ananya Kondapalli
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ivelisse Colon
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nayoung Kil
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mariana Bucovsky
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joan M Lappe
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE 68131, USA
| | - Julie Stubby
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE 68131, USA
| | - Elizabeth Shane
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Adi Cohen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Alexander CJ, Kaluta L, Whitman PW, Billington EO, Burt LA, Gabel L. Strength training for osteoporosis prevention during early menopause (STOP-EM): a pilot study protocol for a single centre randomised waitlisted control trial in Canada. BMJ Open 2025; 15:e093711. [PMID: 39909519 PMCID: PMC11800298 DOI: 10.1136/bmjopen-2024-093711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
INTRODUCTION Women lose up to 10% of their bone mass around menopause and the decade following. There is a need for proactive approaches to preserve bone mass and quality around menopause. Existing work has found that high-intensity resistance and impact training (HiRIT) can improve bone and muscle measures in late postmenopausal women. However, this has not been investigated in perimenopausal and early postmenopausal women who are in the midst of the menopausal transition. METHODS AND ANALYSIS This study is a 9-month randomised controlled feasibility trial evaluating a HiRIT programme in perimenopausal and early postmenopausal women. The primary objective of this study is to determine the feasibility of HiRIT in 40 perimenopausal and early postmenopausal women (45-60 years). Participants will be randomised 1:1 into a supervised HiRIT exercise intervention and waitlisted control. The primary outcomes are recruitment, retention and adherence to the exercise intervention. Secondary outcomes include bone (bone mineral density, microarchitecture and strength), muscle (mass, strength and power), physical function (balance and aerobic fitness) and quality of life measures. Feasibility will be assessed based on a priori criterion for success and secondary outcomes will be assessed via multiple linear regressions. The study will be considered feasible if>50% of interested and eligible participants are recruited, if there is>60% adherence to the two times per week, 9-month exercise intervention and if at least 65% of the sample complete the final study visit. Feasibility outcomes will be used to inform a larger, future trial aimed at identifying the efficacy of the exercise intervention for improving various health outcomes, including bone density and muscle mass. Secondary exploratory outcomes will provide insight into the effect of exercise on muscle and bone in perimenopausal and early postmenopausal women. ETHICS AND DISSEMINATION This study has been approved by the Conjoint Health Research Ethics Board of the University of Calgary REB22-1632. The results of this study will be disseminated at national and international conferences and published in academic journals. TRAIL REGISTRATION NUMBER ClinicalTrials.gov: NCT05961371. (Protocol V.1.2, 28 September 2023).
Collapse
Affiliation(s)
- Christina J Alexander
- University of Calgary Faculty of Kinesiology, Calgary, Alberta, Canada
- University of Calgary McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada
| | - Leah Kaluta
- University of Calgary Faculty of Kinesiology, Calgary, Alberta, Canada
- University of Calgary McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada
| | - Patrick W Whitman
- University of Calgary Faculty of Kinesiology, Calgary, Alberta, Canada
- University of Calgary McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada
| | - Emma O Billington
- University of Calgary McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Lauren A Burt
- University of Calgary McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Leigh Gabel
- University of Calgary Faculty of Kinesiology, Calgary, Alberta, Canada
- University of Calgary McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Zervou Z, Bevers MSAM, Wyers CE, Bruggenwirth HT, Demirdas S, van den Bergh JP, Zillikens MC. Bone microarchitecture and strength in men and women with PLS3 gene variants assessed with HR-pQCT. J Bone Miner Res 2025; 40:241-250. [PMID: 39658012 DOI: 10.1093/jbmr/zjae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/07/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
X-linked osteoporosis, caused by PLS3 genetic variants, is a rare bone disease, clinically affecting mainly men. Limited data are available on bone microarchitecture and genotype-phenotype correlations in this disease. Our aims were to assess bone microarchitecture and strength in adults with PLS3 variants using high-resolution peripheral quantitative computed tomography (HR-pQCT) and to explore differences in the phenotype from HR-pQCT between PLS3 variants. HR-pQCT scans were obtained from the distal radius and tibia of 13 men and 3 women with PLS3 variants. Results were compared with age- and sex-matched controls from a normative dataset from literature and expressed as Z-scores. Median age was 46 yr for men and 48 yr for women. In men, total bone area was large (median Z-score: 1.33 radius; 1.46 tibia) due to a large trabecular area (+1.73 radius; +1.87 tibia), while the cortical area was small (-2.61 radius; -2.84 tibia). Total volumetric bone mineral density (BMD) was low due to low trabecular (-3.46 radius; -3.37 tibia) and cortical BMD (-2.87 radius; -2.26 tibia). Regarding bone microarchitecture, the largest deviations were found in trabecular number (-2.18 radius; -1.64 tibia), trabecular separation (+2.32 radius; +1.65 tibia), and cortical thickness (-2.99 radius; -2.46 tibia), whereas trabecular thickness and cortical porosity were normal (-0.36 and -0.58 radius; 0.09 and -0.79 tibia). Additionally, failure load was low (-2.39 radius; -2.2 tibia). Results in the women deviated less from normative data. Men with frameshift/nonsense variants seemed to have more deviant trabecular and cortical microarchitecture and strength, at both scan locations, than those with missense/in-frame insertion variants. In conclusion, HR-pQCT provides valuable insights into bone area, BMD, microarchitecture, and strength in adults with PLS3 variants and can be used to explore genotype-phenotype relationships. Longitudinal analyses in larger groups are needed to study the natural course of the disease and treatment effects.
Collapse
Affiliation(s)
- Zografia Zervou
- Department of Internal Medicine, Erasmus MC Bone Center, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Melissa S A M Bevers
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL, Venlo, The Netherlands
- NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Caroline E Wyers
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL, Venlo, The Netherlands
- NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
- Department of Internal Medicine, Subdivision Rheumatology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus MC, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus MC, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Joop P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL, Venlo, The Netherlands
- NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
- Department of Internal Medicine, Subdivision Rheumatology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC Bone Center, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Smith EM, Drager K, Groves EM, Gabel L, Boyd SK, Burt LA. New approach to identifying elite winter sport athletes' risk of relative energy deficiency in sport (REDs). BMJ Open Sport Exerc Med 2025; 11:e002320. [PMID: 39897986 PMCID: PMC11784212 DOI: 10.1136/bmjsem-2024-002320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Objectives Relative energy deficiency in sport (REDs) is a syndrome resulting from problematic low energy availability (LEA). Low areal bone mineral density (aBMD) is a primary indicator of LEA, measured by dual X-ray absorptiometry (DXA). High-resolution peripheral quantitative CT (HR-pQCT) is an advanced imaging device that provides measures of volumetric BMD (vBMD), bone microarchitecture, geometry and strength. This study aimed to assess the prevalence of REDs in elite winter sport athletes and to observe the associations in bone parameters using HR-pQCT in athletes identified as at-risk or not at-risk of REDs. Methods Participants included 101 elite athletes (24.1±4.4 SD years; 52% female). The REDs Clinical Assessment Tool (CAT2) was used to determine REDs risk. HR-pQCT scans of the non-dominant radius and left tibia were analysed on REDs risk grouping. Results 17 athletes (17%; 71% female) were at-risk based on the REDs CAT2. After covarying for lean mass, OR suggested a higher likelihood of REDs risk classification for athletes with low cortical thickness, cortical area, total vBMD and bone strength. Conclusions Impaired total vBMD, bone strength and cortical bone parameters were approximately twice as likely (OR: 1.9-3.0) in athletes at-risk of REDs. Results agree with the consensus statement that HR-pQCT may identify impaired bone health in athletes at-risk of REDs. Future directions should use HR-pQCT to explore REDs risk longitudinally, using bone change over time, as this may provide greater insight. Using advanced imaging to explore REDs risk in a population of winter high-performance athletes is novel.
Collapse
Affiliation(s)
- Emily M Smith
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Kelly Drager
- Canadian Sport Institute Alberta, Calgary, Alberta, Canada
| | - Erik M Groves
- Canadian Sport Institute Alberta, Calgary, Alberta, Canada
- Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Leigh Gabel
- Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Steven K Boyd
- Radiology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Lauren A Burt
- Radiology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Bugbird AR, Boisvert NMJ, Burt LA, Boyd SK. Choose your mother wisely: the familial resemblance of bone adaptation. Osteoporos Int 2025; 36:141-149. [PMID: 39579163 DOI: 10.1007/s00198-024-07321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
This study demonstrates how complex bone microarchitectural features can be summarized to describe bone adaptations seen with aging in women, which are consistent with the stages of osteoporosis. Additionally, we showed familial resemblance in these bone microarchitectural traits between mothers and daughters that can be used to predict bone adaptations. INTRODUCTION Patient-specific characterization of bone quality can reduce complex microarchitectural features to common combinations of bone characteristics, known as bone phenotypes. This study investigated whether there is a general trend in bone phenotype change over time seen with aging in females and whether there is a familial resemblance to phenotype membership between mothers and daughters. METHODS Bone phenotype membership was calculated on biological mother and daughter pairs (Participants = 101), scanned using high resolution peripheral quantitative computed tomography, to the three pre-defined phenotypes (healthy, low volume, and low density). The trajectory of bone phenotype with age was explored using all participant's data. Linear regression models were used to assess the familial resemblance of phenotyping in the mother-daughter pairs. RESULTS When stratified for age, the trajectory of the phenotype membership transitioned from healthy (20-40 years), to low volume (40-60 years), to low density (60-80 years), which similarly aligns with the stages of osteoporosis observed in females. Familial resemblance (½h2) was observed in the healthy phenotype (β = 0.432, p < 0.01). Predictive modelling showed a significant association in phenotype membership between mothers and daughters in the healthy (R2 = 0.347, p = 0.04) and low volume (R2 = 0.416, p < 0.01) phenotypes, adjusted for age, height, and weight. CONCLUSION Our results suggest that phenotype membership in females changes with age in a pattern that is consistent with the stages of osteoporosis. Additionally, we showed familial resemblance in bone phenotype, which can be used to predict bone adaptations between mothers and daughters that are associated with bone loss with aging.
Collapse
Affiliation(s)
- Annabel R Bugbird
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - Nicole M J Boisvert
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Lauren A Burt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
12
|
Seemala V, Williams MA, King R, Goia S, Wilson PF, Palit A. Quantifying bone compaction and implant-bone contact in uncemented total hip arthroplasty through μCT and digital volume correlation: A cadaveric study. Comput Biol Med 2025; 184:109474. [PMID: 39615236 DOI: 10.1016/j.compbiomed.2024.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/24/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND The stability of uncemented implants during total hip arthroplasty (THA) depends on bone compaction and the bone-implant contact area achieved during the surgical process, particularly during broaching and implantation. However, the evaluation of these factors in actual hip is limited through experimental studies. Therefore, the aim of this study was to quantify bone compaction, and the bone-implant contact area achieved during uncemented THA through a μCT-based cadaveric study of three femur samples. METHODS Three cadaveric femur samples underwent uncemented THA, with μCT scans conducted at intermediate surgical steps. The bone compaction resulting from the surgical process was quantified using two parameters: (a) displacement and strain induced using Digital Volume Correlation (DVC), (b) changes in bone volume fraction (BV/TV) around the bone-implant interface. Furthermore, the bone-implant contact, and its location were evaluated, including an assessment of the robustness and sensitivity of the measurements. RESULTS The DVC showed that the trabecular bone deformed plastically, with a displacement of 0.09 ± 0.13 mm, a Von-Mises strain of 7082.28 ± 9162.73 με due to the surgical process. Broken trabecular bone accumulated around the bone-implant interface, increasing BV/TV from 3.31 % to 20.69 %. Bone-implant contact (BIC) was limited, ranging from 3.05 % to 5.22 %, but 75.26 %-82.27 % of the maximum potential contact area (PBICA) was achieved. All samples established a three-point contact, and sensitivity analysis revealed a robust BIC calculation with minimal variability of ±0.87 %. CONCLUSION The findings offer important insights into bone-implant behaviour during the uncemented THA process. These insights could be useful for physics-based pre-surgical planning to evaluate the stability of uncemented implants and help surgeons choose the most appropriate implants for their patients.
Collapse
Affiliation(s)
| | | | - Richard King
- Department of Trauma & Orthopaedics, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Sofia Goia
- WMG, The University of Warwick, Coventry, UK
| | | | - Arnab Palit
- WMG, The University of Warwick, Coventry, UK
| |
Collapse
|
13
|
Agarwal S, El-Najjar D, Kondapalli A, Kil N, Kamanda-Kosseh M, Bucovsky M, Colon I, Lappe JM, Stubby J, Recker RR, Guo XE, Shane E, Cohen A. HR-pQCT reveals marked trabecular and cortical structural deficits in women with pregnancy and lactation-associated osteoporosis (PLO). J Bone Miner Res 2024; 40:38-49. [PMID: 39423251 PMCID: PMC12034093 DOI: 10.1093/jbmr/zjae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/26/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
Pregnancy and lactation-associated osteoporosis (PLO) is a rare presentation of early-onset osteoporosis characterized by low trauma and spontaneous fractures during late pregnancy/lactation. Herein, we report areal BMD (aBMD) by DXA and volumetric BMD (vBMD), microarchitecture, and strength at the distal radius and tibia by HR-pQCT in 59 women with PLO-in comparison to both healthy premenopausal controls (n = 28) and premenopausal women with idiopathic osteoporotic fractures not associated with pregnancy/lactation (non-PLO IOP; n = 50). Women with PLO (aged 34 ± 6 yr) had a more severe clinical presentation than non-PLO IOP: 80% had vertebral and 92% had multiple fractures (p<.001). They had lower DXA aBMD at all sites vs Controls (all p<.001) and non-PLO IOP (all p<.05). By HR-pQCT, PLO had deficits in all radial/tibial density and most microarchitecture parameters and lower bone strength than controls (all p<.001). Compared to non-PLO IOP, PLO had lower total and trabecular density at radius and tibia (all p ≤ .01) and significant deficits in trabecular microstructure and cortical thickness at the radius only. We studied PLO subgroups with clinical factors potentially related to bone physiology: Within PLO, women with vertebral fractures had lower spine aBMD and higher tibial cortical porosity but were otherwise structurally similar to the nonvertebral group. Those with prior heparin exposure had larger bone size and trabecular area, and those with renal stones had smaller bone size and lower 1/3 radius aBMD. We also compared groups based on postpartum timing: Recent PLO (n = 25) evaluated ≤12 M postpartum, before expected recovery of pregnancy/lactation bone loss, had significantly lower aBMD than distant PLO (n = 34) evaluated >12 M postpartum. However, radial/tibial HR-pQCT measures did not differ, suggesting pre-existing and/or persistent structural deficits. This structural study increases our mechanistic understanding of the severe bone fragility presentation that characterizes PLO and also highlights areas of potential mechanistic heterogeneity that require additional investigation.
Collapse
Affiliation(s)
- Sanchita Agarwal
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Ave, New York, NY, United States
| | - Dany El-Najjar
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Ave, New York, NY, United States
| | - Ananya Kondapalli
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Ave, New York, NY, United States
| | - Nayoung Kil
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Ave, New York, NY, United States
| | - Mafo Kamanda-Kosseh
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Ave, New York, NY, United States
| | - Mariana Bucovsky
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Ave, New York, NY, United States
| | - Ivelisse Colon
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Ave, New York, NY, United States
| | - Joan M Lappe
- Department of Medicine, Creighton University Medical Center, 2420 Cuming St, Omaha, NE-68131, United States
| | - Julie Stubby
- Department of Medicine, Creighton University Medical Center, 2420 Cuming St, Omaha, NE-68131, United States
| | - Robert R Recker
- Department of Medicine, Creighton University Medical Center, 2420 Cuming St, Omaha, NE-68131, United States
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, 116th and Broadway, New York, NY-10027, United States
| | - Elizabeth Shane
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Ave, New York, NY, United States
| | - Adi Cohen
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Ave, New York, NY, United States
| |
Collapse
|
14
|
Muollo V, Hvid LG, Shanbhogue VV, Steinhauser V, Caporossi D, Dimauro I, Andersen MS, Fantini C, Grazioli E, Strotmeyer ES, Caserotti P. Effects of 12-week power training on bone in mobility-limited older adults: randomised controlled trial. Arch Osteoporos 2024; 20:5. [PMID: 39729186 DOI: 10.1007/s11657-024-01487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
This study examines how power training affects estimated bone strength, revealing that females benefit more than males, especially in the upper limbs (radius). These findings highlight the importance of designing sex-specific exercise programs to enhance bone health. Further research is needed to optimize training duration and address site-specific differences. PURPOSE This study aimed to compare the effects of 12-week of power training (PWT), an explosive form of strength training, on bone microarchitecture, estimated bone strength, and markers in mobility-limited (gait speed < 0.9 m/s) older adults. METHODS Fifty-seven older adults (83 ± 5 years) were randomly assigned to either a training group (TRAIN, n = 28, 15 females, 13 males) performing high-intensity PWT or a control group (CTRL, n = 29, 22 females, 7 males) maintaining their usual lifestyle. High-resolution peripheral quantitative computed tomography (HR-pQCT) assessed bone geometry, densities, microarchitecture (e.g. trabecular number (Tb.N) and thickness (Tb.Th)), and estimated bone strength (stiffness and failure load) at the tibia and radius. Blood markers for bone metabolism (PINP and CTX-1) and muscle strength (handgrip and leg press) were also measured. RESULTS Baseline sex differences showed females having lower stiffness (- 37.5%) and failure load (- 38%) at the radius compared with males. After PWT, females in the TRAIN group exhibited declines in Tb.N (- 4.4%) and improvements in Tb.Th (+ 6.0%), stiffness (+ 2.7%), and failure load (+ 2.4%) at the radius (p < 0.05). A time x group interaction indicated increases in leg press strength for the whole TRAIN group (+ 23%), and within females (+ 29%) and males (+ 19%) (p < 0.001). Baseline handgrip strength correlated with stiffness (r = 0.577) and failure load (r = 0.612) at the radius (p < 0.001). Females in the TRAIN group showed a reduction in PINP (- 25%), while males showed an increase in CTX-1 (+ 18%). CONCLUSION A 12-week PWT may enhance estimated bone strength in mobility-limited older adults, especially at sites less accustomed to daily loading (i.e. radius). CLINICAL TRIAL REGISTRATION NCT02051725.
Collapse
Affiliation(s)
- Valentina Muollo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Lars G Hvid
- Department of Public Health, Exercise Biology, Aarhus University, Aarhus C, Denmark
- The Danish MS Hospitals, Ry and Haslev, Denmark
| | | | - Viktoria Steinhauser
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Elisa Grazioli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Elsa S Strotmeyer
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paolo Caserotti
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
West SL, Furman M, Moineddin R, Sochett E. Association of daily physical activity and bone microarchitecture in young adults with type 1 diabetes - A pilot exploratory study. Bone Rep 2024; 23:101813. [PMID: 39611164 PMCID: PMC11603002 DOI: 10.1016/j.bonr.2024.101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Purpose Physical activity (PA) is an important determinant of skeletal health. In young adults with type 1 diabetes (T1D) fracture risk is increased, yet few studies have examined the PA and bone health relationship. Therefore, this pilot cross-sectional study characterized PA levels and their association with bone parameters measured by high resolution peripheral quantitative computed tomography (HR-pQCT) in young adults with T1D. Methods HR-pQCT (Xtreme CTII) was used to measure bone outcomes at the distal tibia and radius, and accelerometery (ActiGraph GT3X) recorded daily minutes of light and moderate-vigorous physical activity (MVPA). Quadratic regression analyses were conducted with a p-value ≤ 0.05 considered significant. Results PA data from 19 young adults (23.1 ± 1.9 years) with T1D was analyzed. Over half (63 %) of participants completed ≥150 min of MVPA per week, however, most measured activity time per day (57 %) was spent in sedentary pursuits. Significant non-linear associations were found between the duration of MVPA and several trabecular bone parameters at the tibia. Conclusions In young adults with T1D, MVPA may have site specific (tibia) and compartment specific (trabecular) non-linear associations with bone. Further studies should confirm these findings, which may help inform evidence-based exercise recommendations to optimize bone health in young adults with T1D.
Collapse
Affiliation(s)
- Sarah L. West
- Department of Kinesiology, Trent University, Peterborough, ON, Canada
| | - Michelle Furman
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Rahim Moineddin
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Etienne Sochett
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Heilberg IP, Carvalho AB, Denburg MR. Between a Rock and a Short Place-The Impact of Nephrolithiasis on Skeletal Growth and Development Across the Lifespan. Curr Osteoporos Rep 2024; 22:576-589. [PMID: 39356465 DOI: 10.1007/s11914-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE OF REVIEW The impact of nephrolithiasis on skeletal growth and bone health across the life span of kidney stone formers is reviewed. MAIN FINDINGS Bone disease is an early event among kidney stone formers (SF), with distinct phenotypes according to each age, sex, menopausal status, dietary, hormonal and genetic factors. Nephrolithiasis-associated bone disorder is characterized by reduced bone mineral density (BMD) and histologically discloses low bone formation, high bone resorption and abnormal mineralization. Although hypercalciuria has been presumed to be pathogenic for bone loss in SF, the association of BMD with urinary calcium is not uniform in all studies. Hypocitraturia, metabolic disturbances, cytokines and receptors, growth factors and acid-base status may all influence skeletal outcomes. The potential link of bone disease with vascular calcification and cardiovascular disease among SF is discussed. The unique vulnerability of the younger skeleton to the effects of nephrolithiasis on attainment of peak bone mass and strength is highlighted and the association of bone loss with kidney stone formation early in life indicate the opportunity for intervention to reduce the risk of future bone fractures.
Collapse
Affiliation(s)
- Ita Pfeferman Heilberg
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Botucatu 740 - Vila Clementino, São Paulo, 04023-900, Brazil.
| | - Aluizio Barbosa Carvalho
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Botucatu 740 - Vila Clementino, São Paulo, 04023-900, Brazil
| | - Michelle R Denburg
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Division of Pediatric Nephrology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
17
|
Rosillo I, Germosen C, Agarwal S, Rawal R, Colon I, Bucovsky M, Kil N, Shane E, Walker M. Patella fractures are associated with bone fragility - a retrospective study. J Bone Miner Res 2024; 39:1752-1761. [PMID: 39385460 PMCID: PMC11638554 DOI: 10.1093/jbmr/zjae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 10/12/2024]
Abstract
Patella fractures are not typically considered osteoporotic fractures. We compared bone mineral density (BMD) and microstructure in elderly women from a multiethnic population-based study in New York City with any history of a patella fracture (n = 27) to those without historical fracture (n = 384) and those with an adult fragility forearm fracture (n = 28) using dual energy x-ray absorptiometry (DXA) and high resolution peripheral quantitative computed tomography (HR-pQCT). Compared to those without fracture, women with patella fracture had 6.5% lower areal BMD (aBMD) by DXA only at the total hip (p=.007), while women with forearm fracture had lower aBMD at multiple sites and lower trabecular bone score (TBS), adjusted for age, body mass index, race and ethnicity (all p<.05). By HR-pQCT, adjusted radial total and trabecular (Tb) volumetric BMD (vBMD) and Tb number were 10%-24% lower while Tb spacing was 12-23% higher (all p<.05) in the fracture groups versus women without fracture. Women with a forearm, but not a patella, fracture also had lower adjusted radial cortical (Ct) area and vBMD and 21.8% (p<.0001) lower stiffness vs. women without fracture. At the tibia, the fracture groups had 9.3%-15.7% lower total and Tb vBMD (all p<.05) compared to the non-fracture group. Women with a forearm fracture also had 10.9, and 14.7% lower tibial Ct area and thickness versus those without fracture. Compared to women without fracture, tibial stiffness was 9.9% and 12% lower in the patella and forearm fracture groups, respectively (all p<.05). By HR-pQCT, the patella vs. forearm fracture group had 36% higher radial Tb heterogeneity (p<.05). In summary, women with patella fracture had Tb deterioration by HR-pQCT associated with lower tibial mechanical competence that was similar to those with fragility forearm fracture, a more universally accepted "osteoporotic" fracture. These data suggest patella fractures are associated with skeletal fragility and warrant skeletal evaluation.
Collapse
Affiliation(s)
- Isabella Rosillo
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Carmen Germosen
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Sanchita Agarwal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ragyie Rawal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ivelisse Colon
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mariana Bucovsky
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Nayoung Kil
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Marcella Walker
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
18
|
Quaytman JA, David NL, Venugopal S, Amorim T, Beatrice B, Toledo FGS, Miller RG, Steinhauser ML, Fazeli PK. Intermittent fasting for systemic triglyceride metabolic reprogramming (IFAST): Design and methods of a prospective, randomized, controlled trial. Contemp Clin Trials 2024; 146:107698. [PMID: 39299543 PMCID: PMC11625453 DOI: 10.1016/j.cct.2024.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Caloric restriction prolongs lifespan in model organisms and improves metrics of aging-related diseases in humans, but daily compliance is challenging. Intermittent fasting improves metrics of lipid and glucose metabolism in the setting of weight loss but whether these metrics are improved independent of weight loss is not known. METHODS We seek to address this gap with IFAST, a single-center, three-arm, prospective, randomized, controlled clinical trial. Eligible study participants are adults with no chronic medical conditions beyond prediabetes or overweight but who are at high risk for type 2 diabetes mellitus (T2D), defined as having a history of gestational diabetes or a first-degree relative with T2D. Participants will be randomized in a 1:2:2 schema to either a control group, a fasting group, or a fasting/weight maintenance group. The fasting groups will complete a 24-h fast one day per week for 12 weeks. The key mechanistic endpoint is change in triglyceride composition (defined by carbon content and degree of saturation) as measured by longitudinal metabolomics. The key safety endpoint is percent change from baseline in bone volume fraction (BV/TV; high-resolution peripheral quantitative CT) at the radius in the fasting group. Secondary endpoints include measures of insulin sensitivity (hyperinsulinemic-euglycemic clamp), clinical lipid profiling, systemic inflammation markers, hunger assessment, bone density, and bone microarchitecture with high-resolution peripheral quantitative CT. CONCLUSION IFAST will investigate intrinsic metabolic benefits of intermittent fasting beyond weight loss. TRIAL REGISTRATION ClinicalTrials.gov ID NCT05722873.
Collapse
Affiliation(s)
- Jacob A Quaytman
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Natalie L David
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sharini Venugopal
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tânia Amorim
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Britney Beatrice
- Department of Sports Medicine and Nutrition, University of Pittsburgh School of Health and Rehabilitation Sciences, Pittsburgh, PA 15260, USA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rachel G Miller
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew L Steinhauser
- Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Division of Cardiovascular Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Pouneh K Fazeli
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Neuroendocrinology Unit, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Sarfati M, Chapurlat R, Dufour AB, Sornay-Rendu E, Merle B, Boyd SK, Whittier DE, Hanley DA, Goltzman D, Szulc P, Wong AKO, Lespessailles E, Khosla S, Ferrari S, Biver E, Ohlsson C, Lorentzon M, Mellström D, Nethander M, Samelson EJ, Kiel DP, Hannan MT, Bouxsein ML. Short-term risk of fracture is increased by deficits in cortical and trabecular bone microarchitecture independent of DXA BMD and FRAX: Bone Microarchitecture International Consortium (BoMIC) prospective cohorts. J Bone Miner Res 2024; 39:1574-1583. [PMID: 39236248 PMCID: PMC11523184 DOI: 10.1093/jbmr/zjae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Identifying individuals at risk for short-term fracture is essential to offer prompt beneficial treatment, especially since many fractures occur in those without osteoporosis by DXA-aBMD. We evaluated whether deficits in bone microarchitecture and density predict short-term fracture risk independent of the clinical predictors, DXA-BMD and FRAX. We combined data from eight cohorts to conduct a prospective study of bone microarchitecture at the distal radius and tibia (by HR-pQCT) and 2-year incidence of fracture (non-traumatic and traumatic) in 7327 individuals (4824 women, 2503 men, mean 69 ± 9 years). We estimated sex-specific hazard ratios (HR) for associations between bone measures and 2-year fracture incidence, adjusted for age, cohort, height, and weight, and then additionally adjusted for FN aBMD or FRAX for major osteoporotic fracture. Only 7% of study participants had FN T-score ≤ -2.5, whereas 53% had T-scores between -1.0 and -2.5 and 37% had T-scores ≥-1.0. Two-year cumulative fracture incidence was 4% (296/7327). Each SD decrease in radius cortical bone measures increased fracture risk by 38%-76% for women and men. After additional adjustment for FN-aBMD, risks remained increased by 28%-61%. Radius trabecular measures were also associated with 2-year fracture risk independently of FN-aBMD in women (HRs range: 1.21 per SD for trabecular separation to 1.55 for total vBMD). Decreased failure load (FL) was associated with increased fracture risk in both women and men (FN-aBMD ranges of adjusted HR = 1.47-2.42). Tibia measurement results were similar to radius results. Findings were also similar when models were adjusted for FRAX. In older adults, FL and HR-pQCT measures of cortical and trabecular bone microarchitecture and density with strong associations to short-term fractures improved fracture prediction beyond aBMD and FRAX. Thus, HR-pQCT may be a useful adjunct to traditional assessment of short-term fracture risk in older adults, including those with T-scores above the osteoporosis range.
Collapse
Affiliation(s)
- Marine Sarfati
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Roland Chapurlat
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Alyssa B Dufour
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, and the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | | - Blandine Merle
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary AB, Canada
| | - Danielle E Whittier
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary AB, Canada
| | - David A Hanley
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary AB, Canada
| | - David Goltzman
- Departments of Medicine, McGill University and McGill University Health Centre, Montreal, QC, Canada
| | - Pawel Szulc
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Andy Kin On Wong
- Toronto General Hospital and University Health Network and Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Dan Mellström
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics and Data Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elizabeth J Samelson
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, and the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, and the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Marian T Hannan
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, and the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mary L Bouxsein
- Department of Orthopedic Surgery, Harvard Medical School, Center for Advanced Orthopedic Studies, BIDMC, Boston, MA, United States
| |
Collapse
|
20
|
Funck-Brentano T, Vanjak A, Ostertag A, Nethander M, Fernandez S, Collet C, Hans D, van Rietbergen B, Cohen-Solal M. Evaluation of bone density and microarchitecture in adult patients with X-linked hypophosphatemic rickets: A pilot longitudinal study. Bone 2024; 187:117179. [PMID: 38960298 DOI: 10.1016/j.bone.2024.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
X-linked Hypophosphatemia (XLH) is the most common type of inherited rickets. Although the clinical features are well characterized, bone structure, mineralization, and biomechanical properties are poorly known. Our aim was to analyze bone properties in the appendicular and axial skeleton of adults with XLH. In this observational case-control study, each affected patient (N = 14; 9 females; age 50 ± 15 years) was matched by sex, age and body mass index to a minimum of two healthy controls (N = 34). Dual-energy X-ray Absorptiometry (DXA) analyses revealed that areal bone mineral density (aBMD) was higher in XLH patients at the lumbar spine (Z score mean difference = +2.47 SD, P value = 1.4 × 10-3). Trabecular Bone Score was also higher at the lumbar spine (P value = 1.0 × 10-4). High Resolution peripheral Quantitative Computed Tomography (HRpQCT) demonstrated that bone cross-sectional area was larger at the distal radius (P value = 6 × 10-3). Total and trabecular volumetric BMD were lower at both sites. Trabecular bone volume fraction was also lower with fewer trabecular numbers at both sites. However, bone strength evaluated by micro-finite element analyzes revealed unaffected bone stiffness and maximum failure load. Evaluation of bone mineralization with aBMD by DXA at the distal radius correlated with vBMD by HRpQCT measurements at both sites. PTH levels were inversely correlated with trabecular vBMD and BV/TV at the tibia. We then followed a subset of nine patients (median follow-up of 4 years) and reassessed HRpQCT. At the tibia, we observed a greater decrease than expected from an age and sex standardized normal population in total and cortical vBMD as well as a trabecularization of the cortical compartment. In conclusion, in adult patients with XLH, bone mineral density is high at the axial skeleton but low at the appendicular skeleton. With time, microarchitectural alterations worsen. We propose that noninvasive evaluation methods of bone mineralization such as DXA including the radius should be part of the management of XLH patients. Larger studies are needed to evaluate the clinical significance of BMD changes in XLH patients under conventional or targeted therapies.
Collapse
Affiliation(s)
- Thomas Funck-Brentano
- BIOSCAR UMRS 1132, INSERM, Université Paris Cité, F-75475 Paris, France; Assistance Publique des Hôpitaux de Paris, Lariboisière Hospital, DMU Locomotion, Department of Rheumatology, F-75475 Paris, France; National Reference Center For Rare Bone Diseases, Lariboisière Hospital, APHP.Nord, Filière OSCAR, F-75475 Paris, France.
| | - Arnaud Vanjak
- BIOSCAR UMRS 1132, INSERM, Université Paris Cité, F-75475 Paris, France; Assistance Publique des Hôpitaux de Paris, Lariboisière Hospital, DMU Locomotion, Department of Rheumatology, F-75475 Paris, France; National Reference Center For Rare Bone Diseases, Lariboisière Hospital, APHP.Nord, Filière OSCAR, F-75475 Paris, France.
| | - Agnes Ostertag
- BIOSCAR UMRS 1132, INSERM, Université Paris Cité, F-75475 Paris, France
| | - Maria Nethander
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Sweden
| | - Sylvie Fernandez
- Assistance Publique des Hôpitaux de Paris, Lariboisière Hospital, DMU Locomotion, Department of Rheumatology, F-75475 Paris, France
| | - Corinne Collet
- Imagine Institut, Necker Hospital, Université Paris Cité, F-75475 Paris, France
| | - Didier Hans
- Center of Bone Diseases, Bone & Joint Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Martine Cohen-Solal
- BIOSCAR UMRS 1132, INSERM, Université Paris Cité, F-75475 Paris, France; Assistance Publique des Hôpitaux de Paris, Lariboisière Hospital, DMU Locomotion, Department of Rheumatology, F-75475 Paris, France; National Reference Center For Rare Bone Diseases, Lariboisière Hospital, APHP.Nord, Filière OSCAR, F-75475 Paris, France
| |
Collapse
|
21
|
Shigeno R, Horie I, Haraguchi A, Niimi R, Chiba K, Tashiro S, Kawazoe Y, Sato S, Osaki M, Kawakami A, Abiru N. A Randomized Controlled Trial on the Effect of Luseogliflozin on Bone Microarchitecture Evaluated Using HR-pQCT in Elderly Type 2 Diabetes. Diabetes Ther 2024; 15:2233-2248. [PMID: 39153152 PMCID: PMC11410743 DOI: 10.1007/s13300-024-01634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
INTRODUCTION Bone fragility is a critical issue in the treatment of elderly people with type 2 diabetes (T2D). In the Canagliflozin Cardiovascular Assessment Study, the subjects with T2D who were treated with canagliflozin showed a significant increase in fracture events compared to a placebo group as early as 12 weeks post-initiation. In addition, it has been unclear whether sodium-glucose co-transporter 2 (SGLT2) inhibitors promote bone fragility. We used high-resolution peripheral quantitative computed tomography (HR-pQCT) to prospectively evaluate the short-term effect of the SGLT2 inhibitor luseogliflozin on bone strength and microarchitecture in elderly people with T2D. METHODS This was a single-center, randomized, open-label, active-controlled pilot trial for ≥ 60-year-old Japanese individuals with T2D without osteoporosis. A total of 22 subjects (seven women and 15 men) were randomly assigned to a Lusefi group (added luseogliflozin 2.5 mg) or a control group (added metformin 500 mg) and treated for 48 weeks. We used the second-generation HR-pQCT (Xtreme CT II®, Scanco Medical, Brüttisellen, Switzerland) before and 48 weeks after the treatment to evaluate the subjects' bone microarchitecture and estimate their bone strength. RESULTS Twenty subjects (Lusefi group, n = 9; control group, n = 11) completed the study, with no fracture events. As the primary outcome, the 48-week changes in the bone strength (stiffness and failure load) estimated by micro-finite element analysis were not significantly different between the groups. As the secondary outcome, the changes in all of the cortical/trabecular microarchitectural parameters at the radius and tibia from baseline to 48 weeks were not significantly different between the groups. CONCLUSIONS In the pilot trial, we observed no negative effect of 48-week luseogliflozin treatment on bone microarchitecture or bone strength in elderly people with T2D. TRIAL REGISTRATION UMIN-CTR no. 000036202 and jRCT 071180061.
Collapse
Affiliation(s)
- Riyoko Shigeno
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Ai Haraguchi
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ryuji Niimi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shigeki Tashiro
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yurika Kawazoe
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Atsushi Kawakami
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
22
|
Johansson L, Litsne H, Axelsson KF, Lorentzon M. High physical activity is associated with greater cortical bone size, better physical function, and with lower risk of incident fractures independently of clinical risk factors in older women from the SUPERB study. J Bone Miner Res 2024; 39:1284-1295. [PMID: 38995943 PMCID: PMC11371905 DOI: 10.1093/jbmr/zjae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 07/14/2024]
Abstract
The Physical Activity Scale for the Elderly (PASE) is a validated test to assess physical activity in older people. It has not been investigated if physical activity, according to PASE, is associated with fracture risk independently from the clinical risk factors (CRFs) in FRAX, bone mineral density (BMD), comorbidity, and if such an association is due to differences in physical performance or bone parameters. The purpose of this study was to evaluate if PASE score is associated with bone characteristics, physical function, and independently predicts incident fracture in 3014 75-80-yr-old women from the population-based cross-sectional SUPERB study. At baseline, participants answered questionnaires and underwent physical function tests, detailed bone phenotyping with DXA, and high-resolution peripheral quantitative CT. Incident fractures were X-ray verified. Cox regression models were used to assess the association between PASE score and incident fractures, with adjustments for CRFs, femoral neck (FN) BMD, and Charlson comorbidity index. Women were divided into quartiles according to PASE score. Quartile differences in bone parameters (1.56% for cortical volumetric BMD and 4.08% for cortical area, Q4 vs Q1, p = .007 and p = .022, respectively) were smaller than quartile differences in physical performance (27% shorter timed up and go test, 52% longer one leg standing time, Q4 vs Q1). During 8 yr (median, range 0.20-9.9) of follow-up, 1077 women had any fracture, 806 a major osteoporotic fracture (MOF; spine, hip, forearm, humerus), and 236 a hip fracture. Women in Q4 vs. Q1 had 30% lower risk of any fracture, 32% lower risk of MOF, and 54% lower risk of hip fracture. These associations remained in fully adjusted models. In conclusion, high physical activity was associated with substantially better physical function and a lower risk of any fracture, MOF and hip fracture, independently of risk factors used in FRAX, FN BMD, and comorbidity.
Collapse
Affiliation(s)
- Lisa Johansson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, 431 80 Mölndal, Sweden
- Region Västra Götaland, Department of Orthopedics, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Henrik Litsne
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Kristian F Axelsson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, 431 80 Mölndal, Sweden
- Region Västra Götaland, Närhälsan Norrmalm Health Centre, 549 40 Skövde, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, 431 80 Mölndal, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria 3065, Australia
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| |
Collapse
|
23
|
Mehta SP, Karagiannopoulos C, Pepin ME, Ballantyne BT, Michlovitz S, MacDermid JC, Grewal R, Martin RL. Distal Radius Fracture Rehabilitation. J Orthop Sports Phys Ther 2024; 54:CPG1-CPG78. [PMID: 39213418 DOI: 10.2519/jospt.2024.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Distal radius fracture (DRF) is arguably the most common upper extremity fracture resulting from a fall accident. These clinical practice guidelines (CPG) were developed to guide all aspects of the management of DRF by physical therapists and other rehabilitation practitioners, such as certified hand therapists. This CPG employed a systematic review methodology to locate, appraise, and synthesize contemporary evidence while developing practice recommendations for determining the prognosis of outcomes, examination, and interventions while managing individuals with DRF. The quality of the primary studies found in the literature search was appraised using standardized tools. The strength of the available evidence for a particular practice domain (e.g., prognosis or intervention) was graded as strong, moderate, weak, or conflicting, where such gradings guided the level of obligation for each practice recommendation. Lastly, the CPG also provided the gaps in the evidence pool for the rehabilitation of DRF that future research efforts can address. J Orthop Sports Phys Ther 2024;54(9):CPG1-CPG78. doi:10.2519/jospt.2024.0301.
Collapse
|
24
|
Agarwal S, Germosen C, Rosillo I, Bucovsky M, Colon I, Kil N, Wang Z, Dinescu A, Guo XDE, Walker M. Fractures in women with type 2 diabetes are associated with marked deficits in cortical parameters and trabecular plates. J Bone Miner Res 2024; 39:1083-1093. [PMID: 38861455 PMCID: PMC11337576 DOI: 10.1093/jbmr/zjae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
The basis for increased fracture risk in type 2 diabetes (T2DM) is not well understood. In this multi-ethnic, population-based study (n = 565), we investigated bone microstructure, trabecular plate/rod morphology, and mineralization in women with T2DM (n = 175) with and without fracture using a second-generation HRpQCT and individual trabecula segmentation and mineralization (ITS; ITM). Covariate-adjusted aBMD was 3.0%-6.5% higher at all sites (all p<.005) in T2DM vs controls. By HRpQCT, T2DM had higher covariate-adjusted trabecular vBMD (5.3%-6.4%) and number (3.8%-5.1%) and greater cortical area at the radius and tibia. Covariate-adjusted cortical porosity was 10.0% higher at the tibia only in T2DM vs controls, but failure load did not differ. Among women with T2DM, those with adult atraumatic fracture (n = 59) had 5.2%-8.5% lower adjusted aBMD at all sites by DXA compared with those without fracture (n = 103). By HRpQCT, those with fracture had lower adjusted total vBMD and smaller cortical area (10.2%-16.1%), lower cortical thickness (10.5-15.8%) and lower cortical vBMD associated with 18.1 and 17.2% lower failure load at the radius and tibia, respectively (all p<.05); plate volume and thickness were 5.7% and 4.7% lower, respectively, (p<.05) while rod volume fraction was 12.8% higher in the fracture group at the tibia only. Sodium glucose cotransporter 2 inhibitor users (SGLT2i; n = 19), tended to have lower radial rod tissue mineral density by ITS (p=.06). GLP1 agonist users (n = 19) had trabecular deficits at both sites and higher cortical porosity and larger pores at the distal tibia. In summary, T2DM is associated with increased cortical porosity while those with T2DM and fracture have more marked cortical deficits and fewer trabecular plates associated with lower failure load.
Collapse
Affiliation(s)
- Sanchita Agarwal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Carmen Germosen
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Isabella Rosillo
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mariana Bucovsky
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ivelisse Colon
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Nayoung Kil
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Zexi Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Andreea Dinescu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Xiang-Dong Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Marcella Walker
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
25
|
Usiskin IM, Mitchell GF, Bouxsein ML, Liu CT, Kiel DP, Samelson EJ. Vascular function and skeletal fragility: a study of tonometry, brachial hemodynamics, and bone microarchitecture. J Bone Miner Res 2024; 39:906-917. [PMID: 38709885 PMCID: PMC11301519 DOI: 10.1093/jbmr/zjae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Osteoporosis and cardiovascular disease frequently occur together in older adults; however, a causal relationship between these 2 common conditions has not been established. By the time clinical cardiovascular disease develops, it is often too late to test whether vascular dysfunction developed before or after the onset of osteoporosis. Therefore, we assessed the association of vascular function, measured by tonometry and brachial hemodynamic testing, with bone density, microarchitecture, and strength, measured by HR-pQCT, in 1391 individuals in the Framingham Heart Study. We hypothesized that decreased vascular function (pulse wave velocity, primary pressure wave, brachial pulse pressure, baseline flow amplitude, and brachial flow velocity) contributes to deficits in bone density, microarchitecture and strength, particularly in cortical bone, which is less protected from excessive blood flow pulsatility than the trabecular compartment. We found that individuals with increased carotid-femoral pulse wave velocity had lower cortical volumetric bone mineral density (tibia: -0.21 [-0.26, -0.15] standardized beta [95% CI], radius: -0.20 [-0.26, -0.15]), lower cortical thickness (tibia: -0.09 [-0.15, -0.04], radius: -0.07 [-0.12, -0.01]) and increased cortical porosity (tibia: 0.20 [0.15, 0.25], radius: 0.21 [0.15, 0.27]). However, these associations did not persist after adjustment for age, sex, height, and weight. These results suggest that vascular dysfunction with aging may not be an etiologic mechanism that contributes to the co-occurrence of osteoporosis and cardiovascular disease in older adults. Further study employing longitudinal measures of HR-pQCT parameters is needed to fully elucidate the link between vascular function and bone health.
Collapse
Affiliation(s)
- Ilana M Usiskin
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Gary F Mitchell
- Cardiovascular Engineering, Inc, Norwood, MA 02062, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies (CAOS), Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, United States
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Elizabeth J Samelson
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
26
|
Ramchand SK, Ghasem-Zadeh A, Hoermann R, White S, Yeo B, Francis PA, Xu CLH, Coleman O, Shore-Lorenti C, Ebeling PR, Zajac JD, Seeman E, Grossmann M. Denosumab Prevents Bone Loss and Microarchitectural Deterioration in Premenopausal Women With Breast Cancer Receiving Estradiol Suppression Therapy: A Randomized Controlled Trial. J Clin Oncol 2024:JCO2302309. [PMID: 38954783 DOI: 10.1200/jco.23.02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Suppression of ovarian function and aromatase inhibition (AI) increases disease-free survival in premenopausal women with estrogen receptor (ER)-positive early-stage breast cancer but accelerates bone loss. We therefore hypothesized that suppressing bone remodeling using denosumab (DMAB) would prevent bone loss in these women. METHODS In a 12-month double-blind randomized trial, 68 women with ER-positive early-stage breast cancer commencing ovarian function suppression and AI were randomly assigned to 60 mg DMAB (n = 34) or placebo (PBO; n = 34) once every 6 months (at 0 and 6 months). Volumetric bone mineral density (BMD), microarchitecture, and estimated bone strength of the distal tibia and distal radius were measured using high-resolution peripheral quantitative computed tomography, and spine and hip BMD were measured using dual-energy X-ray absorptiometry at 0, 6, and 12 months. The primary end point and treatment effect was the mean adjusted between group difference (MAD; [95% CI]) in distal tibial total volumetric BMD over 12 months, with a single P value tested over all time points. The study is registered with the Australian New Zealand Clinical Trials Registry (anzctr.org.au; identifier: ACTRN12616001051437). RESULTS Intention-to-treat analysis included all 68 randomly assigned women. Over 12 months, compared with PBO, DMAB prevented the decrease in distal tibial total BMD (MAD, 20.8 mg HA/cm3 [95% CI, 17.3 to 24.2]), cortical BMD (42.9 mg HA/cm3 [95% CI, 32.1 to 53.9]), trabecular BMD (3.32 mg HA/cm3 [95% CI, 1.45 to 5.20], P = .004), estimated stiffness (11.6 kN/m [95% CI, 7.6 to 15.6]), and failure load (563 N [95% CI, 388 to 736]). Findings were similar at the distal radius. Decreases in BMD at the lumbar spine (MAD, 0.13 g/cm2 [95% CI, 0.11 to 0.15]), total hip (0.08 g/cm2 [95% CI, 0.07 to 0.09], and femoral neck (0.06 g/cm2 [95% CI, 0.05 to 0.07]) were also prevented. All P < .001 unless otherwise noted. CONCLUSION Treatment with DMAB at commencement of estradiol suppression therapy preserves BMD, bone microarchitecture, and estimated strength, and is likely to increase fracture-free survival.
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Australia
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ali Ghasem-Zadeh
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Australia
- Department of Endocrinology, Austin Health, University of Melbourne, Parkville, Australia
| | - Rudolf Hoermann
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Australia
| | - Shane White
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Australia
- Olivia Newton-John Cancer & Wellness Centre, Austin Health, Melbourne, Australia
| | - Belinda Yeo
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Australia
- Olivia Newton-John Cancer & Wellness Centre, Austin Health, Melbourne, Australia
| | - Prudence A Francis
- Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia
| | - Cecilia L H Xu
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Australia
| | - Olivia Coleman
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Australia
| | - Cat Shore-Lorenti
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Australia
- Department of Endocrinology, Austin Health, University of Melbourne, Parkville, Australia
| | - Ego Seeman
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Australia
- Department of Endocrinology, Austin Health, University of Melbourne, Parkville, Australia
| | - Mathis Grossmann
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Australia
- Department of Endocrinology, Austin Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
27
|
Yılmaz D, Marques FC, Fischer Y, Zimmermann S, Hwang G, Atkins PR, Mathavan N, Singh A, de Souza PP, Kuhn GA, Wehrle E, Müller R. Elucidating the mechano-molecular dynamics of TRAP activity using CRISPR/Cas9 mediated fluorescent reporter mice. Heliyon 2024; 10:e32949. [PMID: 39021958 PMCID: PMC11252717 DOI: 10.1016/j.heliyon.2024.e32949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Osteoclasts are essential for bone remodeling by adapting their resorptive activity in response to their mechanical in vivo environment. However, the molecular mechanisms underlying this process remain unclear. Here, we demonstrated the role of tartrate-resistant acid phosphatase (TRAP, Acp5), a key enzyme secreted by osteoclasts, in bone remodeling and mechanosensitivity. Using CRISPR/Cas9 reporter mice, we demonstrated bone cell reporter (BCRIbsp/Acp5) mice feature fluorescent TRAP-deficient osteoclasts and examined their activity during mechanically driven trabecular bone remodeling. Although BCRIbsp/Acp5 mice exhibited trabecular bone impairments and reduced resorption capacity in vitro, RNA sequencing revealed unchanged levels of key osteoclast-associated genes such as Ctsk, Mmp9, and Calcr. These findings, in conjunction with serum carboxy-terminal collagen crosslinks (CTX) and in vivo mechanical loading outcomes collectively indicated an unaltered bone resorption capacity of osteoclasts in vivo. Furthermore, we demonstrated similar mechanoregulation during trabecular bone remodeling in BCRIbsp/Acp5 and wild-type (WT) mice. Hence, this study provides valuable insights into the dynamics of TRAP activity in the context of bone remodeling and mechanosensation.
Collapse
Affiliation(s)
- Dilara Yılmaz
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | | | | | - Gaonhae Hwang
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Penny R. Atkins
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, USA
| | | | - Amit Singh
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Pedro P.C. de Souza
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- Innovation in Biomaterials Laboratory, School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Szulc P, Dufour AB, Hannan MT, Kiel DP, Chapurlat R, Sornay-Rendu E, Merle B, Boyd SK, Whittier DE, Hanley DA, Goltzman D, Wong AKO, Lespessailles E, Khosla S, Ferrari S, Biver E, Bouxsein ML, Samelson EJ. Fracture risk based on high-resolution peripheral quantitative computed tomography measures does not vary with age in older adults-the bone microarchitecture international consortium prospective cohort study. J Bone Miner Res 2024; 39:561-570. [PMID: 38477737 PMCID: PMC11205894 DOI: 10.1093/jbmr/zjae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Fracture risk increases with lower areal bone mineral density (aBMD); however, aBMD-related estimate of risk may decrease with age. This may depend on technical limitations of 2-dimensional (2D) dual energy X-ray absorptiometry (DXA) which are reduced with 3D high-resolution peripheral quantitative computed tomography (HR-pQCT). Our aim was to examine whether the predictive utility of HR-pQCT measures with fracture varies with age. We analyzed associations of HR-pQCT measures at the distal radius and distal tibia with two outcomes: incident fractures and major osteoporotic fractures. We censored follow-up time at first fracture, death, last contact or 8 years after baseline. We estimated hazard ratios (HR) and 95%CI for the association between bone traits and fracture incidence across age quintiles. Among 6835 men and women (ages 40-96) with at least one valid baseline HR-pQCT scan who were followed prospectively for a median of 48.3 months, 681 sustained fractures. After adjustment for confounders, bone parameters at both the radius and tibia were associated with higher fracture risk. The estimated HRs for fracture did not vary significantly across age quintiles for any HR-pQCT parameter measured at either the radius or tibia. In this large cohort, the homogeneity of the associations between the HR-pQCT measures and fracture risk across age groups persisted for all fractures and for major osteoporotic fractures. The patterns were similar regardless of the HR-pQCT measure, the type of fracture, or the statistical models. The stability of the associations between HR-pQCT measures and fracture over a broad age range shows that bone deficits or low volumetric density remain major determinants of fracture risk regardless of age group. The lower risk for fractures across measures of aBMD in older adults in other studies may be related to factors which interfere with DXA but not with HR-pQCT measures.
Collapse
Affiliation(s)
- Pawel Szulc
- INSERM UMR1033, University of Lyon, Lyon 69100, France
| | - Alyssa B Dufour
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Marian T Hannan
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | | | | | | | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary AB, T2N 1N4, Canada
| | - Danielle E Whittier
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary AB, T2N 1N4, Canada
| | - David A Hanley
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary AB, T2N 1N4, Canada
| | - David Goltzman
- Departments of Medicine, McGill University and McGill University Health Centre, Montreal, QC, H3A 0G4, Canada
| | - Andy Kin On Wong
- Joint Department of Medical Imaging, University Health Network; and Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5R 0A3, Canada
| | - Eric Lespessailles
- Department of Rheumatology and PRIMMO, University Hospital of Orléans, Orléans, 45234, France
| | - Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN 55902, United States
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
| | - Mary L Bouxsein
- Dept of Orthopedic Surgery, Harvard Medical School, Center for Advanced Orthopaedics Studies, BIDMC, Boston, MA 02215, United States
| | - Elizabeth J Samelson
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
29
|
Schene MR, Bevers MSAM, van der Vijgh WJF, Driessen JHM, Vranken L, van der Velde RY, Willems HC, Wyers CE, van den Bergh JP. PPI use is not associated with bone microarchitecture and strength assessed with HR-pQCT after three-years follow-up in patients visiting the Fracture Liaison Service. Bone 2024; 182:117066. [PMID: 38438097 DOI: 10.1016/j.bone.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND The use of proton pump inhibitors (PPIs) has been associated with an increased fracture risk in observational studies. However, the reported association between PPI use and bone mineral density (BMD), bone microarchitecture, and bone strength is inconsistent. This study aims to assess the association between PPI use and bone microarchitecture and strength using high-resolution peripheral quantitative CT (HR-pQCT) in a three-year follow-up study in patients with a recent fracture visiting the Fracture Liaison Service (FLS). METHODS This three-year prospective cohort study included FLS patients aged ≥ 50 years with a recent fracture (median age 62 [IQR 56-69] years, 68.7 % females) and without anti-osteoporosis treatment indication. HR-pQCT scans (distal radius and tibia) were obtained at baseline (T0) and three-year follow-up (T3). Volumetric bone mineral density and bone area, microarchitecture, and strength (micro-finite element analysis) were determined. The association between three-year continuous PPI use and the percentage change in HR-pQCT parameters between T0 and T3 was assessed using sex-stratified multivariate linear regression analyses. Covariates included age, BMI, vitamin-D deficiency (< 50 nmol/l), glucocorticoid use, and cardiovascular co-morbidity (males and females) fracture type (major/hip vs. all others, only males) and probable sarcopenia (only females). RESULTS In total, 282 participants had available medication data throughout follow-up, of whom 20.6 % were continuous PPI users. In both males and females with complete HR-pQCT follow-up data (males: N = 69 radius, N = 84 tibia; females: N = 147 radius, N = 168 tibia), PPI use was not associated with the percentage change of any of the bone microarchitecture or strength parameters between T0 and T3 at the radius and tibia as compared to non-use. CONCLUSION Compared to non-use, PPI use was not associated with the change of bone microarchitecture and strength in FLS patients at three years of follow-up. These results do not support that an altered bone microarchitecture or strength may contribute to the increased fracture risk associated with PPI use, as reported in observational studies.
Collapse
Affiliation(s)
- M R Schene
- Department of Internal Medicine, VieCuri Medical Center, P.O. Box 1926, 5900 BX Venlo, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Amsterdam UMC location University of Amsterdam, Internal Medicine and Geriatrics, Meibergdreef 9, Amsterdam, Netherlands
| | - M S A M Bevers
- Department of Internal Medicine, VieCuri Medical Center, P.O. Box 1926, 5900 BX Venlo, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - W J F van der Vijgh
- Department of Internal Medicine, VieCuri Medical Center, P.O. Box 1926, 5900 BX Venlo, the Netherlands
| | - J H M Driessen
- Department of clinical pharmacy, CARIM School of Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands; Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Center +, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - L Vranken
- Department of Internal Medicine, VieCuri Medical Center, P.O. Box 1926, 5900 BX Venlo, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - R Y van der Velde
- Department of Internal Medicine, VieCuri Medical Center, P.O. Box 1926, 5900 BX Venlo, the Netherlands
| | - H C Willems
- Amsterdam UMC location University of Amsterdam, Internal Medicine and Geriatrics, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam Bone Center, Movement Sciences Amsterdam, the Netherlands
| | - C E Wyers
- Department of Internal Medicine, VieCuri Medical Center, P.O. Box 1926, 5900 BX Venlo, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center +, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | - J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, P.O. Box 1926, 5900 BX Venlo, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center +, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
30
|
Bevers MSAM, Harsevoort AGJ, Gooijer K, Wyers CE, Feenstra J, van Rietbergen B, Boomsma MF, van den Bergh JP, Janus GJM. Bone microarchitecture and strength assessment in adults with osteogenesis imperfecta using HR-pQCT: normative comparison and challenges. J Bone Miner Res 2024; 39:271-286. [PMID: 38477754 DOI: 10.1093/jbmr/zjae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024]
Abstract
Data on bone microarchitecture in osteogenesis imperfecta (OI) are scarce. The aim of this cross-sectional study was to assess bone microarchitecture and strength in a large cohort of adults with OI using high-resolution peripheral quantitative computed tomography (HR-pQCT) and to evaluate challenges of using HR-pQCT in this cohort. Second-generation HR-pQCT scans were obtained at the distal radius and tibia in 118 men and women with Sillence OI type I, III, or IV using an extremity-length-dependent scan protocol. In total, 102 radius and 105 tibia scans of sufficient quality could be obtained, of which 11 radius scans (11%) and 14 tibia scans (13%) had a deviated axial scan angle as compared with axial angle data of 13 young women. In the scans without a deviated axial angle and compared with normative HR-pQCT data, Z-scores at the radius for trabecular bone mineral density (BMD), number, and separation were -1.6 ± 1.3, -2.5 ± 1.4, and -2.7 (IQR: 2.7), respectively. They were -1.4 ± 1.5 and -1.1 ± 1.2 for stiffness and failure load and between ±1 for trabecular thickness and cortical bone parameters. Z-scores were significantly lower for total and trabecular BMD, stiffness, failure load, and cortical area and thickness at the tibia. Additionally, local microarchitectural inhomogeneities were observed, most pronounced being trabecular void volumes. In the scans with a deviated axial angle, the proportion of Z-scores <-4 or >4 was significantly higher for trabecular BMD and separation (radius) or most total and trabecular bone parameters (tibia). To conclude, especially trabecular bone microarchitecture and bone strength were impaired in adults with OI. HR-pQCT may be used without challenges in most adults with OI, but approximately 12% of the scans may have a deviated axial angle in OI due to bone deformities or scan positioning limitations. Furthermore, standard HR-pQCT parameters may not always be reliable due to microarchitectural inhomogeneities nor fully reflect all inhomogeneities.
Collapse
Affiliation(s)
- M S A M Bevers
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - A G J Harsevoort
- Expert Center for adults with Osteogenesis Imperfecta, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - K Gooijer
- Expert Center for adults with Osteogenesis Imperfecta, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - C E Wyers
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
- Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - J Feenstra
- Expert Center for adults with Osteogenesis Imperfecta, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - B van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
- Department of Orthopedic Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - M F Boomsma
- Department of Radiology, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
- Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - G J M Janus
- Expert Center for adults with Osteogenesis Imperfecta, Isala, Dokter van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| |
Collapse
|
31
|
Griesbach JK, Schulte FA, Schädli GN, Rubert M, Müller R. Mechanoregulation analysis of bone formation in tissue engineered constructs requires a volumetric method using time-lapsed micro-computed tomography. Acta Biomater 2024; 179:149-163. [PMID: 38492908 DOI: 10.1016/j.actbio.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Bone can adapt its microstructure to mechanical loads through mechanoregulation of the (re)modeling process. This process has been investigated in vivo using time-lapsed micro-computed tomography (micro-CT) and micro-finite element (FE) analysis using surface-based methods, which are highly influenced by surface curvature. Consequently, when trying to investigate mechanoregulation in tissue engineered bone constructs, their concave surfaces make the detection of mechanoregulation impossible when using surface-based methods. In this study, we aimed at developing and applying a volumetric method to non-invasively quantify mechanoregulation of bone formation in tissue engineered bone constructs using micro-CT images and FE analysis. We first investigated hydroxyapatite scaffolds seeded with human mesenchymal stem cells that were incubated over 8 weeks with one mechanically loaded and one control group. Higher mechanoregulation of bone formation was measured in loaded samples with an area under the curve for the receiver operating curve (AUCformation) of 0.633-0.637 compared to non-loaded controls (AUCformation: 0.592-0.604) during culture in osteogenic medium (p < 0.05). Furthermore, we applied the method to an in vivo mouse study investigating the effect of loading frequencies on bone adaptation. The volumetric method detected differences in mechanoregulation of bone formation between loading conditions (p < 0.05). Mechanoregulation in bone formation was more pronounced (AUCformation: 0.609-0.642) compared to the surface-based method (AUCformation: 0.565-0.569, p < 0.05). Our results show that mechanoregulation of formation in bone tissue engineered constructs takes place and its extent can be quantified with a volumetric mechanoregulation method using time-lapsed micro-CT and FE analysis. STATEMENT OF SIGNIFICANCE: Many efforts have been directed towards optimizing bone scaffolds for tissue growth. However, the impact of the scaffolds mechanical environment on bone growth is still poorly understood, requiring accurate assessment of its mechanoregulation. Existing surface-based methods were unable to detect mechanoregulation in tissue engineered constructs, due to predominantly concave surfaces in scaffolds. We present a volumetric approach to enable the precise and non-invasive quantification and analysis of mechanoregulation in bone tissue engineered constructs by leveraging time-lapsed micro-CT imaging, image registration, and finite element analysis. The implications of this research extend to diverse experimental setups, encompassing culture conditions, and material optimization, and investigations into bone diseases, enabling a significant stride towards comprehensive advancements in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Julia K Griesbach
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Friederike A Schulte
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Gian Nutal Schädli
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Marina Rubert
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland.
| |
Collapse
|
32
|
Mitchell DM, Singhal V, Nimmala S, Lauze M, Bouxsein ML, Misra M, Bredella MA. Risk of wrist fracture, estimated by the load-to-strength ratio, declines following sleeve gastrectomy in adolescents and young adults. Osteoporos Int 2024; 35:285-291. [PMID: 37864596 DOI: 10.1007/s00198-023-06941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
To understand whether the bone loss which occurs after vertical sleeve gastrectomy increases the risk of fracture, we used an engineering model to estimate risk in participants before and after surgery. We found that estimated risk decreased 1 year after surgery and remained lower, though had rebounded, at year 2. PURPOSE Vertical sleeve gastrectomy (VSG) improves metabolic health in young people with obesity but is accompanied by substantial loss of bone mass and estimated bone strength. We thus estimated fracture risk following VSG using the load-to-strength ratio (LSR), which integrates bone strength estimates with the predicted force of a fall. METHODS Prospective 2-year study of youth ages 13-24 years with obesity undergoing VSG (n = 24) or lifestyle therapy (n = 34). We performed high-resolution peripheral quantitative computed tomography of the distal radius and microfinite element analysis to estimate bone strength and calculated LSR. RESULTS VSG participants lost 26.4 ± 8.1% weight at year 1 (p < 0.001), which was sustained at year 2, while control participants gained weight at year 2 (4.5 ± 8.3%, p = 0.009). The predicted impact force decreased at years 1 and 2 following VSG (p < 0.001) but increased at year 2 among controls (p = 0.011). Estimated bone strength was unchanged at year 1 but decreased (p < 0.001) at year 2 following VSG, while bone strength did not change in controls. At year 1, the LSR decreased among VSG participants (p < 0.001), implying a lower risk of fracture. At year 2, the LSR was lower than baseline (p < 0.001), but higher compared to year 1 (p = 0.001). LSR did not change in the control group. CONCLUSIONS Short-term estimated fracture risk at the radius following VSG decreases. However, ongoing bone loss despite stable weight between years 1 and 2 leads to a concerning rise in estimated fracture risk. Longer follow-up will be critical to evaluate the trajectory of fracture risk. (ClinicalTrials.gov NCT02557438, registered 9/23/2015).
Collapse
Affiliation(s)
- Deborah M Mitchell
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Supritha Nimmala
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Meghan Lauze
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Kendall JJ, Ledoux C, Marques FC, Boaretti D, Schulte FA, Morgan EF, Müller R. An in silico micro-multiphysics agent-based approach for simulating bone regeneration in a mouse femur defect model. Front Bioeng Biotechnol 2023; 11:1289127. [PMID: 38164405 PMCID: PMC10757951 DOI: 10.3389/fbioe.2023.1289127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Bone defects represent a challenging clinical problem as they can lead to non-union. In silico models are well suited to study bone regeneration under varying conditions by linking both cellular and systems scales. This paper presents an in silico micro-multiphysics agent-based (micro-MPA) model for bone regeneration following an osteotomy. The model includes vasculature, bone, and immune cells, as well as their interaction with the local environment. The model was calibrated by time-lapsed micro-computed tomography data of femoral osteotomies in C57Bl/6J mice, and the differences between predicted bone volume fractions and the longitudinal in vivo measurements were quantitatively evaluated using root mean square error (RMSE). The model performed well in simulating bone regeneration across the osteotomy gap, with no difference (5.5% RMSE, p = 0.68) between the in silico and in vivo groups for the 5-week healing period - from the inflammatory phase to the remodelling phase - in the volume spanning the osteotomy gap. Overall, the proposed micro-MPA model was able to simulate the influence of the local mechanical environment on bone regeneration, and both this environment and cytokine concentrations were found to be key factors in promoting bone regeneration. Further, the validated model matched clinical observations that larger gap sizes correlate with worse healing outcomes and ultimately simulated non-union. This model could help design and guide future experimental studies in bone repair, by identifying which are the most critical in vivo experiments to perform.
Collapse
Affiliation(s)
- Jack J. Kendall
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States
| | - Charles Ledoux
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Elise F. Morgan
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Dao T, Robinson DL, Doyle LW, Lee PVS, Olsen J, Kale A, Cheong JLY, Wark JD. Quantifying Bone Strength Deficits in Young Adults Born Extremely Preterm or Extremely Low Birth Weight. J Bone Miner Res 2023; 38:1800-1808. [PMID: 37850817 PMCID: PMC10946901 DOI: 10.1002/jbmr.4926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/28/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
The long-term bone health of young adults born extremely preterm (EP; <28 weeks' gestation) or extremely low birth weight (ELBW; <1000 g birth weight) in the post-surfactant era (since the early 1990s) is unclear. This study investigated their bone structure and estimated bone strength using peripheral quantitative computed tomography (pQCT)-based finite element modeling (pQCT-FEM). Results using this technique have been associated with bone fragility in several clinical settings. Participants comprised 161 EP/ELBW survivors (46.0% male) and 122 contemporaneous term-born (44.3% male), normal birth weight controls born in Victoria, Australia, during 1991-1992. At age 25 years, participants underwent pQCT at 4% and 66% of tibia and radius length, which was analyzed using pQCT-FEM. Groups were compared using linear regression and adjusted for height and weight. An interaction term between group and sex was added to assess group differences between sexes. Parameters measured included compressive stiffness (kcomp ), torsional stiffness (ktorsion ), and bending stiffness (kbend ). EP/ELBW survivors were shorter than the controls, but their weights were similar. Several unadjusted tibial pQCT-FEM parameters were lower in the EP/ELBW group. Height- and weight-adjusted ktorsion at 66% tibia remained lower in EP/ELBW (mean difference [95% confidence interval] -180 [-352, -8] Nm/deg). The evidence for group differences in ktorsion and kbend at 66% tibia was stronger among males than females (pinteractions <0.05). There was little evidence for group differences in adjusted radial models. Lower height- and weight-adjusted pQCT-FEM measures in EP/ELBW compared with controls suggest a clinically relevant increase in predicted long-term fracture risk in EP/ELBW survivors, particularly males. Future pQCT-FEM studies should utilize the tibial pQCT images because of the greater variability in the radius possibly related to lower measurement precision. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Thang Dao
- Melbourne Medical SchoolThe University of MelbourneMelbourneAustralia
| | - Dale Lee Robinson
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - Lex W Doyle
- Clinical SciencesMurdoch Children's Research InstituteMelbourneAustralia
- Department of Obstetrics and GynecologyUniversity of MelbourneMelbourneAustralia
- Newborn ResearchRoyal Women's HospitalMelbourneAustralia
- Department of PediatricsUniversity of MelbourneMelbourneAustralia
| | - Peter VS Lee
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - Joy Olsen
- Clinical SciencesMurdoch Children's Research InstituteMelbourneAustralia
| | - Ashwini Kale
- Department of Medicine, The Royal Melbourne HospitalThe University of MelbourneMelbourneAustralia
- Bone and Mineral Medicine, Department of Diabetes and EndocrinologyThe Royal Melbourne HospitalMelbourneAustralia
| | - Jeanie LY Cheong
- Clinical SciencesMurdoch Children's Research InstituteMelbourneAustralia
- Department of Obstetrics and GynecologyUniversity of MelbourneMelbourneAustralia
- Newborn ResearchRoyal Women's HospitalMelbourneAustralia
| | - John D Wark
- Department of Medicine, The Royal Melbourne HospitalThe University of MelbourneMelbourneAustralia
- Bone and Mineral Medicine, Department of Diabetes and EndocrinologyThe Royal Melbourne HospitalMelbourneAustralia
| |
Collapse
|
35
|
Peng Y, Langermann S, Kothari P, Liu L, Zhao W, Hu Y, Chen Z, Moraes de Lima Perini M, Li J, Cao J, Guo XE, Chen L, Bauman WA, Qin W. Anti-Siglec-15 Antibody Prevents Marked Bone Loss after Acute Spinal Cord Injury-Induced Immobilization in Rats. JBMR Plus 2023; 7:e10825. [PMID: 38130761 PMCID: PMC10731123 DOI: 10.1002/jbm4.10825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
Rapid and extensive sublesional bone loss after spinal cord injury (SCI) is a difficult medical problem that has been refractory to available interventions except the antiresorptive agent denosumab (DMAB). While DMAB has shown some efficacy in inhibiting bone loss, its concurrent inhibition of bone formation limits its use. Sialic acid-binding immunoglobulin-like lectin (Siglec)-15 is expressed on the cell surface of mature osteoclasts. Anti-Siglec-15 antibody (Ab) has been shown to inhibit osteoclast maturation and bone resorption while maintaining osteoblast activity, which is distinct from current antiresorptive agents that inhibit the activity of both osteoclasts and osteoblasts. The goal of the present study is to test a Siglec-15 Ab (NP159) as a new treatment option to prevent bone loss in an acute SCI model. To this end, 4-month-old male Wistar rats underwent complete spinal cord transection and were treated with either vehicle or NP159 at 20 mg/kg once every 2 weeks for 8 weeks. SCI results in significant decreases in bone mineral density (BMD, -18.7%), trabecular bone volume (-43.1%), trabecular connectivity (-59.7%), and bone stiffness (-76.3%) at the distal femur. Treatment with NP159 almost completely prevents the aforementioned deterioration of bone after SCI. Blood and histomorphometric analyses revealed that NP159 is able to greatly inhibit bone resorption while maintaining bone formation after acute SCI. In ex vivo cultures of bone marrow cells, NP159 reduces osteoclastogenesis while increasing osteoblastogenesis. In summary, treatment with NP159 almost fully prevents sublesional loss of BMD and metaphysis trabecular bone volume and preserves bone strength in a rat model of acute SCI. Because of its unique ability to reduce osteoclastogenesis and bone resorption while promoting osteoblastogenesis to maintain bone formation, Siglec-15 Ab may hold greater promise as a therapeutic agent, compared with the exclusively antiresorptive or anabolic agents that are currently used, in mitigating the striking bone loss that occurs after SCI or other conditions associated with severe immobilization. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
| | | | | | | | - Wei Zhao
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
| | - Yizhong Hu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Zihao Chen
- Department of BiotechnologyBrown UniversityProvidenceRhode IslandUSA
| | | | - Jiliang Li
- School of Science, Indiana University Purdue UniversityIndianapolisIndianaUSA
| | - Jay Cao
- USDA‐ARS Grand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| | - X. Edward Guo
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Lieping Chen
- NextCure, IncBeltsvilleMarylandUSA
- Cancer Research, Immunobiology and Medicine, The Yale University School of MedicineNew HavenConnecticutUSA
| | - William A. Bauman
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
- Departments of MedicineRehabilitation and Human Performance, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
- Departments of MedicineRehabilitation and Human Performance, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
36
|
Gregori G, Paudyal A, Barnouin Y, Celli A, Segoviano-Escobar MB, Armamento-Villareal R, Napoli N, Qualls C, Villareal DT. Indices of sarcopenic obesity are important predictors of finite element analysis-derived bone strength in older adults with obesity. Front Endocrinol (Lausanne) 2023; 14:1279321. [PMID: 38027147 PMCID: PMC10660264 DOI: 10.3389/fendo.2023.1279321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background The expanding population of older adults with obesity is a public health challenge, in part, because of the increased risk of fractures despite normal or high bone mineral density. Potential factors predisposing to fractures in this group include sarcopenia associated with obesity and impaired bone quality. We aimed to determine the contribution of sarcopenic obesity (SO) indices to bone strength as assessed by microfinite element analysis (μFEA) of high-resolution peripheral quantitative computed tomography (HR-pQCT). Methods One-hundred eighty-nine older (age ≥ 65 years) adults with obesity (BMI ≥ 30 kg/m2) participated in lifestyle intervention trials at our medical center. All underwent baseline measurements of bone strength (failure load and stiffness) using μFEA from HR-pQCT of the distal radius and tibia. In addition, SO indices [appendicular lean mass/weight (ALM/W) and percent body fat (FM%)] by dual-energy X-ray absorptiometry and handgrip strength (HGS) by dynamometry were assessed. SO was diagnosed and staged based on the 2022 ESPEN and EASO expert consensus statement. Results Both ALM/W and HGS were positively correlated explaining 28% to 36% of the variance in failure load and stiffness at the distal radius and tibia (all p < 0.001). In contrast, FM% was negatively correlated explaining 22% to 31% of the variance in failure load and stiffness at the distal radius and tibia (all p < 0.001). The associations of SO indices with failure load and stiffness remained significant after controlling for age, sex, race/ethnicity, diabetes, and 25-OH vitamin D (ALM/W: R 2 = 0.301 to 0.448, HGS: R 2 = 0.346 to 0.472, FM%: R 2 = 0.299 to 0.432) (p < 0.001 to 0.011). SO was diagnosed in 75/189 (40%) participants with 66/75 (88%) having functional or metabolic complications (stage II). Participants with SO had lower failure load and stiffness at the distal radius than participants with no SO (both p < 0.05). Conclusion These findings demonstrate that lower muscle mass and strength and higher fat mass may impair bone quality. Therefore, interventions that focus on preserving muscle mass and strength while reducing fat mass may be important to decrease fracture risk when older adults with obesity undertake lifestyle intervention therapy.
Collapse
Affiliation(s)
- Giulia Gregori
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Arjun Paudyal
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Yoann Barnouin
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Alessandra Celli
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Martha Belen Segoviano-Escobar
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Nicola Napoli
- Divison of Bone and Mineral Diseases, Washington University School of Medicine, St Louis, MO, United States
- Operative Research Unit of Osteo-metabolic Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Clifford Qualls
- Department of Mathematics and Statistics, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Dennis T. Villareal
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| |
Collapse
|
37
|
Lau RWL, Cheuk KY, Hung VWY, Yu FWP, Tam EMS, Wong LLN, Zhang J, Lee WYW, Cheng JCY, Lam TP, Lau AYC. Handgrip strength assessment at baseline in addition to bone parameters could potentially predict the risk of curve progression in adolescent idiopathic scoliosis. Front Pediatr 2023; 11:1258454. [PMID: 38027290 PMCID: PMC10655030 DOI: 10.3389/fped.2023.1258454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Adolescent idiopathic scoliosis (AIS) is characterized by deranged bone and muscle qualities, which are important prognostic factors for curve progression. This retrospective case-control study aims to investigate whether the baseline muscle parameters, in addition to the bone parameters, could predict curve progression in AIS. Methods The study included a cohort of 126 female patients diagnosed with AIS who were between the ages of 12 and 14 years old at their initial clinical visit. These patients were longitudinally followed up every 6 months (average 4.08 years) until they reached skeletal maturity. The records of these patients were thoroughly reviewed as part of the study. The participants were categorized into two sub-groups: the progressive AIS group (increase in Cobb angle of ≥6°) and the stable AIS group (increase in Cobb angle <6°). Clinical and radiological assessments were conducted on each group. Results Cobb angle increase of ≥6° was observed in 44 AIS patients (34.9%) prior to skeletal maturity. A progressive AIS was associated with decreased skeletal maturity and weight, lower trunk lean mass (5.7%, p = 0.027) and arm lean mass (8.9%, p < 0.050), weaker dominant handgrip strength (8.8%, p = 0.027), deranged cortical compartment [lower volumetric bone mineral density (vBMD) by 6.5%, p = 0.002], and lower bone mechanical properties [stiffness and estimated failure load lowered by 13.2% (p = 0.005) and 12.5% (p = 0.004)]. The best cut-off threshold of maximum dominant handgrip strength is 19.75 kg for distinguishing progressive AIS from stable AIS (75% sensitivity and 52.4% specificity, p = 0.011). Discussion Patients with progressive AIS had poorer muscle and bone parameters than patients with stable AIS. The implementation of a cut-off threshold in the baseline dominant handgrip strength could potentially be used as an additional predictor, in addition to bone parameters, for identifying individuals with AIS who are at higher risk of experiencing curve progression.
Collapse
Affiliation(s)
- Rufina Wing Lum Lau
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ka Yee Cheuk
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Vivian Wing Yin Hung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fiona Wai Ping Yu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Elisa Man Shan Tam
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lyn Lee Ning Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jiajun Zhang
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jack Chun Yiu Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tsz Ping Lam
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adam Yiu Chung Lau
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
38
|
Whittier DE, Walle M, Schenk D, Atkins PR, Collins CJ, Zysset P, Lippuner K, Müller R. A multi-stack registration technique to improve measurement accuracy and precision across longitudinal HR-pQCT scans. Bone 2023; 176:116893. [PMID: 37666441 DOI: 10.1016/j.bone.2023.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Recent applications of high-resolution peripheral quantitative computed tomography (HR-pQCT) have demonstrated that changes in local bone remodelling can be quantified in vivo using longitudinal three-dimensional image registration. However, certain emerging applications, such as fracture healing and joint analysis, require larger multi-stack scan regions that can result in stack shift image artifacts. These artifacts can be detrimental to the accurate alignment of the bone structure across multiple timepoints. The purpose of this study was to establish a multi-stack registration protocol for evaluating longitudinal HR-pQCT images and to assess the accuracy and precision error in comparison with measures obtained using previously established three-dimensional longitudinal registration. METHODS Three same day multi-stack HR-pQCT scans of the radius (2 stacks in length) and tibia (3 stacks in length) were obtained from 39 healthy individuals who participated in a previous reproducibility study. A fully automated multi-stack registration algorithm was developed to re-align stacks within a scan by leveraging slight offsets between longitudinal scans. Stack shift severity before and after registration was quantified using a newly proposed stack-shift severity score. The false discovery rate for bone remodelling events and precision error of bone morphology and micro-finite element analysis parameters were compared between longitudinally registered scans with and without the addition of multi-stack registration. RESULTS Most scans (82 %) improved in stack alignment or maintained the lowest stack shift severity score when multi-stack registration was implemented. The false discovery rate of bone remodelling events significantly decreased after multi-stack registration, resulting in median false detection of bone formation and resorption fractions between 3.2 to 7.5 % at the radius and 3.4 to 5.3 % at the tibia. Further, precision error was significantly reduced or remained unchanged in all standard bone morphology and micro-finite element analysis parameters, except for total and trabecular cross-sectional areas. CONCLUSION Multi-stack registration is an effective strategy for accurately aligning multi-stack HR-pQCT scans without modification of the image acquisition protocol. The algorithm presented here is a viable approach for performing accurate morphological analysis on multi-stack HR-pQCT scans, particularly for advanced application investigating local bone remodelling in vivo.
Collapse
Affiliation(s)
- Danielle E Whittier
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Osteoporosis, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Matthias Walle
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Denis Schenk
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Penny R Atkins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Osteoporosis, Inselspital, Bern University Hospital, University of Bern, Switzerland; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, United States
| | - Caitlyn J Collins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, United States
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Grahnemo L, Eriksson AL, Nethander M, Johansson R, Lorentzon M, Mellström D, Pettersson-Kymmer U, Ohlsson C. Low Circulating Valine Associate With High Risk of Hip Fractures. J Clin Endocrinol Metab 2023; 108:e1384-e1393. [PMID: 37178220 PMCID: PMC10583993 DOI: 10.1210/clinem/dgad268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
CONTEXT Hip fractures constitute a major health concern. An adequate supply of amino acids is crucial to ensure optimal acquisition and remodeling of bone. Circulating amino acid levels have been proposed as markers of bone mineral density, but data on their ability to predict incident fractures are scarce. OBJECTIVES To investigate the associations between circulating amino acids and incident fractures. METHODS We used UK Biobank (n = 111 257; 901 hip fracture cases) as a discovery cohort and the Umeå Fracture and Osteoporosis (UFO) hip fracture study (hip fracture cases n = 2225; controls n = 2225) for replication. Associations with bone microstructure parameters were tested in a subsample of Osteoporotic Fractures in Men Sweden (n = 449). RESULTS Circulating valine was robustly associated with hip fractures in the UK Biobank (HR per SD increase 0.79, 95% CI 0.73-0.84), and this finding was replicated in the UFO study (combined meta-analysis including 3126 incident hip fracture cases, odds ratio per SD increase 0.84, 95% CI 0.80-0.88). Detailed bone microstructure analyses showed that high circulating valine was associated with high cortical bone area and trabecular thickness. CONCLUSION Low circulating valine is a robust predictor of incident hip fractures. We propose that circulating valine may add information for hip fracture prediction. Future studies are warranted to determine whether low valine is causally associated with hip fractures.
Collapse
Affiliation(s)
- Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Anna L Eriksson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Sahlgrenska Academy, Bioinformatics and Data Centre, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Robert Johansson
- The Biobank Research Unit, Umeå University, SE-90187 Umeå, Sweden
| | - Mattias Lorentzon
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg and Geriatric Medicine, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, 3000 VIC, Melbourne, Australia
| | - Dan Mellström
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg and Geriatric Medicine, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Ulrika Pettersson-Kymmer
- Clinical Pharmacology, Department of Integrative Medical Biology, Umeå University, SE-90197 Umeå, Sweden
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
40
|
Gabel L, Kent K, Hosseinitabatabaei S, Burghardt AJ, Leonard MB, Rauch F, Willie BM. Recommendations for High-resolution Peripheral Quantitative Computed Tomography Assessment of Bone Density, Microarchitecture, and Strength in Pediatric Populations. Curr Osteoporos Rep 2023; 21:609-623. [PMID: 37428435 PMCID: PMC10543577 DOI: 10.1007/s11914-023-00811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize current approaches and provide recommendations for imaging bone in pediatric populations using high-resolution peripheral quantitative computed tomography (HR-pQCT). RECENT FINDINGS Imaging the growing skeleton is challenging and HR-pQCT protocols are not standardized across centers. Adopting a single-imaging protocol for all studies is unrealistic; thus, we present three established protocols for HR-pQCT imaging in children and adolescents and share advantages and disadvantages of each. Limiting protocol variation will enhance the uniformity of results and increase our ability to compare study results between different research groups. We outline special cases along with tips and tricks for acquiring and processing scans to minimize motion artifacts and account for growing bone. The recommendations in this review are intended to help researchers perform HR-pQCT imaging in pediatric populations and extend our collective knowledge of bone structure, architecture, and strength during the growing years.
Collapse
Affiliation(s)
- L Gabel
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
- McCaig Institute for Bone and Joint Health and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| | - K Kent
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - S Hosseinitabatabaei
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - A J Burghardt
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - M B Leonard
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - F Rauch
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Department of Pediatrics, McGill University, Montreal, Canada
| | - B M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
41
|
Wyatt PM, Drager K, Groves EM, Stellingwerff T, Billington EO, Boyd SK, Burt LA. Comparison of Bone Quality Among Winter Endurance Athletes with and Without Risk Factors for Relative Energy Deficiency in Sport (REDs): A Cross-Sectional Study. Calcif Tissue Int 2023; 113:403-415. [PMID: 37578531 DOI: 10.1007/s00223-023-01120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Relative Energy Deficiency in Sport (REDs) is a syndrome describing the relationship between prolonged and/or severe low energy availability and negative health and performance outcomes. The high energy expenditures incurred during training and competition put endurance athletes at risk of REDs. The objective of this study was to investigate differences in bone quality in winter endurance athletes classified as either low-risk versus at-risk for REDs. Forty-four participants were recruited (M = 18; F = 26). Bone quality was assessed at the distal radius and tibia using high resolution peripheral quantitative computed tomography (HR-pQCT), and at the hip and spine using dual X-ray absorptiometry (DXA). Finite element analysis was used to estimate bone strength. Participants were grouped using modified criteria from the REDs Clinical Assessment Tool Version 1. Fourteen participants (M = 3; F = 11), were classified as at-risk of REDs (≥ 3 risk factors). Measured with HR-pQCT, cortical bone area (radius) and bone strength (radius and tibia) were 6.8%, 13.1% and 10.3% lower (p = 0.025, p = 0.033, p = 0.027) respectively, in at-risk compared with low-risk participants. Using DXA, femoral neck areal bone density was 9.4% lower in at-risk compared with low-risk participants (p = 0.005). At-risk male participants had 21.9% lower femoral neck areal bone density (via DXA) than low-risk males (p = 0.020) with no significant differences in females. Overall, 33.3% of athletes were at-risk for REDs and had lower bone quality than those at low-risk.
Collapse
Affiliation(s)
- Paige M Wyatt
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Canadian Sport Institute Calgary, Calgary, AB, Canada
| | - Kelly Drager
- Canadian Sport Institute Calgary, Calgary, AB, Canada
| | - Erik M Groves
- Canadian Sport Institute Calgary, Calgary, AB, Canada
| | - Trent Stellingwerff
- Canadian Sport Institute Pacific, Victoria, BC, Canada
- Department of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Emma O Billington
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Division of Endocrinology and Metabolism, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lauren A Burt
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
42
|
Okoro PC, Orwoll ES, Huttenhower C, Morgan X, Kuntz TM, McIver LJ, Dufour AB, Bouxsein ML, Langsetmo L, Farsijani S, Kado DM, Pacifici R, Sahni S, Kiel DP. A two-cohort study on the association between the gut microbiota and bone density, microarchitecture, and strength. Front Endocrinol (Lausanne) 2023; 14:1237727. [PMID: 37810879 PMCID: PMC10551180 DOI: 10.3389/fendo.2023.1237727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
The gut microbiome affects the inflammatory environment through effects on T-cells, which influence the production of immune mediators and inflammatory cytokines that stimulate osteoclastogenesis and bone loss in mice. However, there are few large human studies of the gut microbiome and skeletal health. We investigated the association between the human gut microbiome and high resolution peripheral quantitative computed tomography (HR-pQCT) scans of the radius and tibia in two large cohorts; Framingham Heart Study (FHS [n=1227, age range: 32 - 89]), and the Osteoporosis in Men Study (MrOS [n=836, age range: 78 - 98]). Stool samples from study participants underwent amplification and sequencing of the V4 hypervariable region of the 16S rRNA gene. The resulting 16S rRNA sequencing data were processed separately for each cohort, with the DADA2 pipeline incorporated in the16S bioBakery workflow. Resulting amplicon sequence variants were assigned taxonomies using the SILVA reference database. Controlling for multiple covariates, we tested for associations between microbial taxa abundances and HR-pQCT measures using general linear models as implemented in microbiome multivariable association with linear model (MaAslin2). Abundance of 37 microbial genera in FHS, and 4 genera in MrOS, were associated with various skeletal measures (false discovery rate [FDR] ≤ 0.1) including the association of DTU089 with bone measures, which was independently replicated in the two cohorts. A meta-analysis of the taxa-bone associations further revealed (FDR ≤ 0.25) that greater abundances of the genera; Akkermansia and DTU089, were associated with lower radius total vBMD, and tibia cortical vBMD respectively. Conversely, higher abundances of the genera; Lachnospiraceae NK4A136 group, and Faecalibacterium were associated with greater tibia cortical vBMD. We also investigated functional capabilities of microbial taxa by testing for associations between predicted (based on 16S rRNA amplicon sequence data) metabolic pathways abundance and bone phenotypes in each cohort. While there were no concordant functional associations observed in both cohorts, a meta-analysis revealed 8 pathways including the super-pathway of histidine, purine, and pyrimidine biosynthesis, associated with bone measures of the tibia cortical compartment. In conclusion, our findings suggest that there is a link between the gut microbiome and skeletal metabolism.
Collapse
Affiliation(s)
- Paul C. Okoro
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - Eric S. Orwoll
- Department of Medicine, Oregon Health & Sciences University, Portland, OR, United States
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Xochitl Morgan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Thomas M. Kuntz
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lauren J. McIver
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Alyssa B. Dufour
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mary L. Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Orthopedic Surgery, Harvard Medical School and Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Lisa Langsetmo
- Center for Care Delivery and Outcomes Research, Minneapolis Veterans Affairs (VA) Health Care System, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Samaneh Farsijani
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Deborah M. Kado
- Department of Medicine, Stanford University, Stanford, CA, United States
- Geriatric Research Education and Clinical Center (GRECC), VA Health System, Palo Alto, CA, United States
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Shivani Sahni
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Douglas P. Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Tuli S, Singhal V, Slattery M, Gupta N, Brigham KS, Rosenblum J, Ebrahimi S, Eddy KT, Miller KK, Misra M. Bone Density, Geometry, Structure and Strength Estimates in Adolescent and Young Adult Women with Atypical Anorexia Nervosa versus Typical Anorexia Nervosa and Normal-Weight Healthy Controls. Nutrients 2023; 15:3946. [PMID: 37764731 PMCID: PMC10534603 DOI: 10.3390/nu15183946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Our objective was to characterize bone outcomes in adolescent and young adult women with atypical anorexia nervosa (AAN) compared to typical AN and normal-weight healthy controls (HC) based on DSM-5 criteria. Four hundred thirty-two participants (141 AN, 131 AAN and 160 HC), ages 12-21 years, underwent dual-energy X-ray absorptiometry for areal BMD, and a subset had high-resolution peripheral quantitative CT assessment of the distal radius and tibia for volumetric BMD (vBMD), bone geometry and microarchitecture, and microfinite element analysis for estimated strength. The groups did not differ for age, pubertal stage, menarcheal age or physical activity. BMI and bone outcomes overall were intermediate in AAN compared with AN and HC. This applied to spine, total hip and femoral neck BMD measures and many distal tibial measures. However, the mean whole-body less head BMD Z-score did not differ between AAN and AN, and it was lower in both vs. HC. Similarly, many distal radius measures did not differ between AAN vs. AN or HC but were lower in AN than HC. Lower BMI, lean mass and bone age, older menarcheal age and longer illness duration correlated with greater impairment of bone outcomes. These data indicate that individuals with AAN overall have bone outcomes that are intermediate between AN and HC.
Collapse
Affiliation(s)
- Shubhangi Tuli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- MGH Weight Center, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Meghan Slattery
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Nupur Gupta
- Division of Adolescent Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn S. Brigham
- Division of Adolescent Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jennifer Rosenblum
- Division of Adolescent Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Seda Ebrahimi
- Cambridge Eating Disorders Center, Cambridge, MA 02138, USA
| | - Kamryn T. Eddy
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Karen K. Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
44
|
Whittier DE, Samelson EJ, Hannan MT, Burt LA, Hanley DA, Biver E, Szulc P, Sornay-Rendu E, Merle B, Chapurlat R, Lespessailles E, Wong AKO, Goltzman D, Khosla S, Ferrari S, Bouxsein ML, Kiel DP, Boyd SK. A Fracture Risk Assessment Tool for High Resolution Peripheral Quantitative Computed Tomography. J Bone Miner Res 2023; 38:1234-1244. [PMID: 37132542 PMCID: PMC10523935 DOI: 10.1002/jbmr.4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 02/10/2023] [Accepted: 03/21/2023] [Indexed: 05/04/2023]
Abstract
Most fracture risk assessment tools use clinical risk factors combined with bone mineral density (BMD) to improve assessment of osteoporosis; however, stratifying fracture risk remains challenging. This study developed a fracture risk assessment tool that uses information about volumetric bone density and three-dimensional structure, obtained using high-resolution peripheral quantitative compute tomography (HR-pQCT), to provide an alternative approach for patient-specific assessment of fracture risk. Using an international prospective cohort of older adults (n = 6802) we developed a tool to predict osteoporotic fracture risk, called μFRAC. The model was constructed using random survival forests, and input predictors included HR-pQCT parameters summarizing BMD and microarchitecture alongside clinical risk factors (sex, age, height, weight, and prior adulthood fracture) and femoral neck areal BMD (FN aBMD). The performance of μFRAC was compared to the Fracture Risk Assessment Tool (FRAX) and a reference model built using FN aBMD and clinical covariates. μFRAC was predictive of osteoporotic fracture (c-index = 0.673, p < 0.001), modestly outperforming FRAX and FN aBMD models (c-index = 0.617 and 0.636, respectively). Removal of FN aBMD and all clinical risk factors, except age, from μFRAC did not significantly impact its performance when estimating 5-year and 10-year fracture risk. The performance of μFRAC improved when only major osteoporotic fractures were considered (c-index = 0.733, p < 0.001). We developed a personalized fracture risk assessment tool based on HR-pQCT that may provide an alternative approach to current clinical methods by leveraging direct measures of bone density and structure. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danielle E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elizabeth J Samelson
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marian T Hannan
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lauren A Burt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David A Hanley
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pawel Szulc
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | | | - Blandine Merle
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Roland Chapurlat
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Eric Lespessailles
- Regional Hospital of Orleans, PRIMMO and EA 4708-I3MTO, University of Orleans, Orleans, France
| | - Andy Kin On Wong
- Joint Department of Medical Imaging, University Health Network, Dalla Lana School of Public Health, University of Toronto, Toronto, CA, USA
- Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, CA, USA
| | - David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC, Canada
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, BIDMC, Harvard Medical School, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
45
|
Yang P, Liu Q, Lin T, Aikebaier A, Jiang L, Sun W, Zhang Q, Bai X, Sun W. Mechanical upside of PAO mainstream fixations: co-simulation based on early postoperative gait characteristics of DDH patients. Front Bioeng Biotechnol 2023; 11:1171040. [PMID: 37539435 PMCID: PMC10396769 DOI: 10.3389/fbioe.2023.1171040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose: To investigate the early postoperative gait characteristics of patients who underwent periacetabular osteotomy (PAO) and predict the biomechanical performance of two commonly used PAO fixation methods: iliac screw (IS) and transverse screw (TS). Methods: A total of 12 patients with unilateral developmental dysplasia of the hip (DDH) (mean age 27.81 ± 4.64 years, 42% male) that were scheduled to undergo PAO surgery were included in this study. Their preoperative CT images and pre- and postoperative gait data were used to create subject-specific musculoskeletal models and complete the inverse dynamics analysis (IDA). Two patients with typical gait characteristics were selected using clustering analysis, and their IDA data were incorporated into finite element (FE) models of IS and TS fixations. Failure simulation was performed by applying iterative steps with increasing gait load to predict yield load. Stress results and yield loads were calculated for each FE model at different phases of the gait cycle. Results: Postoperative gait showed improvement compared to preoperative gait but remained inferior to that of healthy individuals. Postoperative gait was characterized by a lower hip range of motion, lower peri-ilium muscle forces, particularly in the abductors, and a sharper initial peak and flatter second peak of hip joint reaction force (HRF). Finite element analysis (FEA) showed a trend of increasing stress during the second-fourth phases of the gait cycle, with lower stress levels in other phases. At high-stress gait phases, the mean stress of maximum p ¯ 100 differed significantly between IS and TS (p < 0.05) and between coupled and uncoupled muscle forces (p < 0.05). Failure analysis predicted a slightly larger yield load for TS configurations (6.21*BW) than that for IS (6.16*BW), but both were well above the gait load. Coupled and uncoupled groups showed similar results, but uncoupled groups had lower yield loads (5.9*BW). Conclusion: PAO early postoperative gait shows a normalized trend, but abnormalities persist. IS and TS are both capable of resisting mechanical strain failure, with no significant mechanical advantage found for transverse screw fixation during PAO early postoperative gait. Additionally, it is important to note that the TS may have a higher risk of cyclic fatigue failure due to the localized greater stress concentration. Furthermore, the most medial screw is crucial for pelvic stability.
Collapse
Affiliation(s)
- Peng Yang
- Department of Orthopedics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Qi Liu
- Department of Orthopedics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Tianye Lin
- Traumatology and Orthopedics Institute of Chinese Medicine of Guangdong, Guangzhou, Guangdong, China
| | - Aobulikasimu Aikebaier
- Department of Orthopedics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Luoyong Jiang
- Department of Orthopedics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Qingwen Zhang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xueling Bai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
46
|
Singhal V, Kaur S, Haidar LA, Lee H, Bredella MA, Misra M. Differences in bone accrual over one year in young girls with obesity compared to Normal weight controls. Bone 2023; 172:116757. [PMID: 37030498 PMCID: PMC10198942 DOI: 10.1016/j.bone.2023.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Despite higher bone mineral density (BMD), women with obesity are at an increased risk of fracture compared to normal-weight women. Optimal adolescent bone accrual is critical for normal peak bone mass acquisition and future bone health. Whereas several studies have examined the impact of low body weight on bone accrual in youth, data are lacking regarding the impact of obesity on bone accrual. We examined bone accrual over one year in young women with moderate to severe obesity (OB) (n = 21) versus normal-weight controls (NWC) (n = 50). Participants were 13-25 years old. We used dual-energy X-ray absorptiometry to assess areal BMD (aBMD) and high resolution peripheral quantitative computed tomography (distal radius and tibia) to assess volumetric BMD (vBMD), bone geometry, and microarchitecture. Analyses were controlled for age and race. The mean age was 18.7 ± 2.7 years. OB and NWC were similar for age, race, height, and physical activity. OB had a higher BMI (p < 0.0001) and younger menarchal age (p = 0.022) than NWC. Over one year, OB did not demonstrate the increase in total hip BMD observed in NWC (p = 0.03). Increases in percent cortical area and cortical thickness, and cortical and total vBMD at the radius were lower in OB than in NWC (p ≤ 0.037). Groups did not differ for tibial bone accrual. We demonstrate that longitudinal bone accrual is impaired at the total hip and radial cortex in young women with obesity, raising concerns regarding their future bone health.
Collapse
Affiliation(s)
- Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America; MGH Weight Center, Boston, MA, United States of America; Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America.
| | - Snimarjot Kaur
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Lea Abou Haidar
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Hang Lee
- MGH Biostatistics Center and Harvard Medical School, Boston, MA, United States of America; Department of Medicine and Harvard Medical School, Boston, MA, United States of America
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America; Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
47
|
Peng L, Wu Y, Lakshminarayanan K, Zhang A, Gan Y, Li Y, Yao Y. The relationship between shear wave velocity in transverse carpal ligament and carpal tunnel pressure: A finite element analysis. Med Eng Phys 2023; 116:103995. [PMID: 37230698 DOI: 10.1016/j.medengphy.2023.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Elevated carpal tunnel pressure in carpal tunnel syndrome (CTS) patients is one of the major causes of nerve damage but cannot be measured non-invasively. This study proposed to use shear wave velocity (SWV) in the transverse carpal ligament (TCL) to measure the surrounding carpal tunnel pressure. The relationship between the carpal tunnel pressure and the SWV in the TCL was investigated through a subject-specific carpal tunnel finite element model reconstrued by MRI imaging. Parametric analysis was conducted to study the effect of TCL Young's modulus and carpal tunnel pressure on the TCL SWV. The SWV in TCL was found to be strongly dependent on the carpal tunnel pressure and TCL Young's modulus. The calculated SWV ranged from 8.0 m/s to 22.6 m/s under a combination of carpal tunnel pressure (0-200 mmHg) and TCL Young's modulus (1.1-11 MPa). An empirical equation was used to fit the relationship between the SWV in TCL and carpal tunnel pressure, with TCL Young's modulus as a confounding factor. The equation proposed in this study provided an approach to estimate carpal tunnel pressure by measuring the SWV in the TCL for a potential non-invasive diagnosis of CTS and may shed light on the mechanical nerve damage mechanism.
Collapse
Affiliation(s)
- Linjing Peng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yu Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Olin College of Engineering, 1000 Olin Way, Needham, 02492, US
| | - Kishor Lakshminarayanan
- Department of Sensors and Biomedical Engineering, Vellore Institute of Technology, Ranipet Katpadi Road Vellore, 632 014, Tamil Nadu, India
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yaokai Gan
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Department of Orthopedics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China, 200011
| | - Yiming Li
- Department of Orthopedics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China, 200011
| | - Yifei Yao
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| |
Collapse
|
48
|
Marques FC, Boaretti D, Walle M, Scheuren AC, Schulte FA, Müller R. Mechanostat parameters estimated from time-lapsed in vivo micro-computed tomography data of mechanically driven bone adaptation are logarithmically dependent on loading frequency. Front Bioeng Biotechnol 2023; 11:1140673. [PMID: 37113673 PMCID: PMC10126906 DOI: 10.3389/fbioe.2023.1140673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanical loading is a key factor governing bone adaptation. Both preclinical and clinical studies have demonstrated its effects on bone tissue, which were also notably predicted in the mechanostat theory. Indeed, existing methods to quantify bone mechanoregulation have successfully associated the frequency of (re)modeling events with local mechanical signals, combining time-lapsed in vivo micro-computed tomography (micro-CT) imaging and micro-finite element (micro-FE) analysis. However, a correlation between the local surface velocity of (re)modeling events and mechanical signals has not been shown. As many degenerative bone diseases have also been linked to impaired bone (re)modeling, this relationship could provide an advantage in detecting the effects of such conditions and advance our understanding of the underlying mechanisms. Therefore, in this study, we introduce a novel method to estimate (re)modeling velocity curves from time-lapsed in vivo mouse caudal vertebrae data under static and cyclic mechanical loading. These curves can be fitted with piecewise linear functions as proposed in the mechanostat theory. Accordingly, new (re)modeling parameters can be derived from such data, including formation saturation levels, resorption velocity moduli, and (re)modeling thresholds. Our results revealed that the norm of the gradient of strain energy density yielded the highest accuracy in quantifying mechanoregulation data using micro-finite element analysis with homogeneous material properties, while effective strain was the best predictor for micro-finite element analysis with heterogeneous material properties. Furthermore, (re)modeling velocity curves could be accurately described with piecewise linear and hyperbola functions (root mean square error below 0.2 µm/day for weekly analysis), and several (re)modeling parameters determined from these curves followed a logarithmic relationship with loading frequency. Crucially, (re)modeling velocity curves and derived parameters could detect differences in mechanically driven bone adaptation, which complemented previous results showing a logarithmic relationship between loading frequency and net change in bone volume fraction over 4 weeks. Together, we expect this data to support the calibration of in silico models of bone adaptation and the characterization of the effects of mechanical loading and pharmaceutical treatment interventions in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Agarwal S, McMahon DJ, Chen J, Brossfield A, Fernando J, Bilezikian JP, Cusano NE, Rubin MR. The Clinical and Skeletal Effects of Long-Term Therapy of Hypoparathyroidism With rhPTH(1-84). J Bone Miner Res 2023; 38:480-492. [PMID: 36726204 PMCID: PMC10101915 DOI: 10.1002/jbmr.4780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023]
Abstract
Hypoparathyroidism (HypoPT) is a disorder characterized by hypocalcemia, low or absent parathyroid hormone (PTH) levels, reduced bone remodeling, and high areal bone mineral density (aBMD). PTH is a therapeutic option, yet data on the prolonged clinical and skeletal effects of PTH treatment are limited. We tracked annual daily doses of calcium and active vitamin D supplements, calciotropic biochemistries, estimated glomerular filtration rate (eGFR), and aBMD measurements in 27 HypoPT patients (16 postsurgical, 11 nonsurgical) who were treated with recombinant human PTH(1-84) [rhPTH(1-84)] for at least 8 (n = 27) and up to 12 (n = 14) years. We also performed high-resolution-peripheral quantitative computed tomography (HRpQCT) imaging and report results at baseline, 5, 8, and 12 years of rhPTH(1-84) treatment. With prolonged use of rhPTH, reductions in the need for supplemental calcium and active vitamin D were maintained. The eGFR did not decline. Serum calcium was maintained within the lower limit of the normal range. aBMD by dual-energy X-ray absorptiometry (DXA) showed an increase at the lumbar spine and a decrease at the distal 1/3 radius. By HRpQCT, cortical volumetric BMD (vBMD) at the tibia decreased at year 5: -20.0% ± 1.5%. The magnitude of this reduction was mitigated in year 8: -8.5% ± 1.6% and in year 12: -10.3% ± 2.2% but all were significantly below the mean baseline value (p < 0.001). A similar pattern of decline was observed at the radius. Cortical porosity progressively increased at the tibia in year 5: 17.4% ± 10% (p < 0.05), year 8: 55.2% ± 11% (p < 0.001), and year 12: 83.5% ± 14% (p < 0.001). A similar pattern of increase was observed at the radius. Failure load, which was higher than normal at baseline, decreased but remained above normal at year 12. This is the longest experience, to date, with PTH therapy in HypoPT. These results demonstrate sustained biochemical stability but overall decreases in bone mass. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sanchita Agarwal
- Metabolic Bone Disease Unit, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Donald J. McMahon
- Metabolic Bone Disease Unit, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Juliet Chen
- Sophie Davis Program for Biomedical Education, CUNY School of Medicine, New York, NY
| | - Aiden Brossfield
- Metabolic Bone Disease Unit, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Jason Fernando
- Metabolic Bone Disease Unit, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - John P. Bilezikian
- Metabolic Bone Disease Unit, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | | | - Mishaela R. Rubin
- Metabolic Bone Disease Unit, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| |
Collapse
|
50
|
Boaretti D, Marques FC, Ledoux C, Singh A, Kendall JJ, Wehrle E, Kuhn GA, Bansod YD, Schulte FA, Müller R. Trabecular bone remodeling in the aging mouse: A micro-multiphysics agent-based in silico model using single-cell mechanomics. Front Bioeng Biotechnol 2023; 11:1091294. [PMID: 36937760 PMCID: PMC10017748 DOI: 10.3389/fbioe.2023.1091294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Bone remodeling is regulated by the interaction between different cells and tissues across many spatial and temporal scales. Notably, in silico models are regarded as powerful tools to further understand the signaling pathways that regulate this intricate spatial cellular interplay. To this end, we have established a 3D multiscale micro-multiphysics agent-based (micro-MPA) in silico model of trabecular bone remodeling using longitudinal in vivo data from the sixth caudal vertebra (CV6) of PolgA(D257A/D257A) mice, a mouse model of premature aging. Our in silico model includes a variety of cells as single agents and receptor-ligand kinetics, mechanomics, diffusion and decay of cytokines which regulate the cells' behavior. We highlighted its capabilities by simulating trabecular bone remodeling in the CV6 of five mice over 4 weeks and we evaluated the static and dynamic morphometry of the trabecular bone microarchitecture. Based on the progression of the average trabecular bone volume fraction (BV/TV), we identified a configuration of the model parameters to simulate homeostatic trabecular bone remodeling, here named basal. Crucially, we also produced anabolic, anti-anabolic, catabolic and anti-catabolic responses with an increase or decrease by one standard deviation in the levels of osteoprotegerin (OPG), receptor activator of nuclear factor kB ligand (RANKL), and sclerostin (Scl) produced by the osteocytes. Our results showed that changes in the levels of OPG and RANKL were positively and negatively correlated with the BV/TV values after 4 weeks in comparison to basal levels, respectively. Conversely, changes in Scl levels produced small fluctuations in BV/TV in comparison to the basal state. From these results, Scl was deemed to be the main driver of equilibrium while RANKL and OPG were shown to be involved in changes in bone volume fraction with potential relevance for age-related bone features. Ultimately, this micro-MPA model provides valuable insights into how cells respond to their local mechanical environment and can help to identify critical pathways affected by degenerative conditions and ageing.
Collapse
Affiliation(s)
| | | | - Charles Ledoux
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Amit Singh
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|