1
|
Morales F, Montserrat-de la Paz S, Leon MJ, Rivero-Pino F. Effects of Malnutrition on the Immune System and Infection and the Role of Nutritional Strategies Regarding Improvements in Children's Health Status: A Literature Review. Nutrients 2023; 16:1. [PMID: 38201831 PMCID: PMC10780435 DOI: 10.3390/nu16010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Malnutrition refers to a person's status as under- or overnourished, and it is usually associated with an inflammation status, which can subsequently imply a different health status, as the risk of infection is increased, along with a deterioration of the immune system. Children's immune systems are generally more susceptible to problems than adults. In the situation of malnutrition, because malnourished children's immune systems are compromised, they are more likely to die. However, little is known about the underlying mechanism of altered immune functioning and how it relates to starvation. Nutritional interventions have been reported as cost-effective strategies to prevent or treat the development of malnourishment, considering the link between food intake and health, especially in children, and also the susceptibility of this population to diseases and how their health status during childhood might affect their long-term physiological growth. The ingestion of specific nutrients (e.g., vitamins or oligoelements) has been reported to contribute to the proper functioning of children's immune systems. In this review, we aim to describe the basis of malnutrition and how this is linked to the immune system, considering the role of nutrients in the modulation of the immune system and the risk of infection that can occur in these situations in children, as well as to identify nutritional interventions to improve their health.
Collapse
Affiliation(s)
- Fátima Morales
- Department of Preventive Medicine and Public Health, School of Medicine, University of Seville, 41009 Sevilla, Spain;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Maria J. Leon
- Department of Microbiology and Parasitology, School of Pharmacy, University of Seville, C. Profesor Garcia Gonzalez 2, 41012 Seville, Spain;
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| |
Collapse
|
2
|
Niemiro GM, Chiarlitti NA, Khan NA, De Lisio M. A Carbohydrate Beverage Reduces Monocytes Expressing TLR4 in Children with Overweight or Obesity. J Nutr 2020; 150:616-622. [PMID: 31825075 DOI: 10.1093/jn/nxz294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Childhood obesity is increasing, with about one-third of children overweight or obese. Obesity is characterized by a state of chronic low-grade inflammation that is related to cardiometabolic comorbidities. Inflammatory monocytes, which are classified into 3 different groups-classical, intermediate, and nonclassical monocytes, with Toll-like receptor 4 (TLR4+) expression indicating a proinflammatory state-underlie several obesity-associated morbidities. OBJECTIVES This study aimed to assess the responses of monocyte populations to beverages of differing macronutrient composition in children with healthy weight (HW) or overweight/obesity (OW/OB). METHODS Ten HW children (5th to 84.9th percentile; mean age 12.29 ± 2.5 y) and 7 children with OW/OB (85th to 99.99th percentile; mean age 11.96 ± 3.8 y) completed the study. Adiposity was determined via DXA. Using a double-blinded, randomized, crossover design, participants consumed either a high-carbohydrate (CHO; 210 kcal; 0 g fat/56 g carbohydrates/0 g protein) or a whole-egg-based high-protein/fat (EGG; 210 kcal; 15 g fat/0 g carbohydrates/18 g protein) beverage. Venous blood was collected at baseline and 2 h postprandially for evaluation of metabolic and inflammatory responses. Repeated measures ANOVA and Pearson correlations were conducted. RESULTS Consuming the CHO beverage significantly reduced the primary outcome: TLR4+ expression on classical monocytes in children with OW/OB only (25.60% decrease from baseline in OW/OB compared with 1.61% increase in HW). Children with OW/OB had significantly less percentages of TLR4+ nonclassical monocytes than HW (47.66% lower after CHO). Insulin and glucose (secondary outcomes), were significantly higher after the CHO condition compared with baseline (230.61% and 9.93% increase, respectively). Changes in glucose were significantly and negatively related to changes in monocyte populations in the CHO condition. CONCLUSIONS These data suggest that high-carbohydrate beverages alter monocyte populations in the blood in children with OW/OB, which is related to glucose metabolism. These findings have implications for nutritional recommendations in children with overweight/obesity. National Clinical Trial registry trial number: NCT03597542.
Collapse
Affiliation(s)
- Grace M Niemiro
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Nathan A Chiarlitti
- School of Human Kinetics, Brain and Mind Institute, Centre on Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Naiman A Khan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,School of Human Kinetics, Brain and Mind Institute, Centre on Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Wadman RI, Stam M, Jansen MD, van der Weegen Y, Wijngaarde CA, Harschnitz O, Sodaar P, Braun KPJ, Dooijes D, Lemmink HH, van den Berg LH, van der Pol WL. A Comparative Study of SMN Protein and mRNA in Blood and Fibroblasts in Patients with Spinal Muscular Atrophy and Healthy Controls. PLoS One 2016; 11:e0167087. [PMID: 27893852 PMCID: PMC5125671 DOI: 10.1371/journal.pone.0167087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022] Open
Abstract
Background Clinical trials to test safety and efficacy of drugs for patients with spinal muscular atrophy (SMA) are currently underway. Biomarkers that document treatment-induced effects are needed because disease progression in childhood forms of SMA is slow and clinical outcome measures may lack sensitivity to detect meaningful changes in motor function in the period of 1–2 years of follow-up during randomized clinical trials. Objective To determine and compare SMN protein and mRNA levels in two cell types (i.e. PBMCs and skin-derived fibroblasts) from patients with SMA types 1–4 and healthy controls in relation to clinical characteristics and SMN2 copy numbers. Materials and methods We determined SMN1, SMN2-full length (SMN2-FL), SMN2-delta7 (SMN2-Δ7), GAPDH and 18S mRNA levels and SMN protein levels in blood and fibroblasts from a total of 150 patients with SMA and 293 healthy controls using qPCR and ELISA. We analyzed the association with clinical characteristics including disease severity and duration, and SMN2 copy number. Results SMN protein levels in PBMCs and fibroblasts were higher in controls than in patients with SMA (p<0.01). Stratification for SMA type did not show differences in SMN protein (p>0.1) or mRNA levels (p>0.05) in either cell type. SMN2 copy number was associated with SMN protein levels in fibroblasts (p = 0.01), but not in PBMCs (p = 0.06). Protein levels in PBMCs declined with age in patients (p<0.01) and controls (p<0.01)(power 1-beta = 0.7). Ratios of SMN2-Δ7/SMN2-FL showed a broad range, primarily explained by the variation in SMN2-Δ7 levels, even in patients with a comparable SMN2 copy number. Levels of SMN2 mRNA did not correlate with SMN2 copy number, SMA type or age in blood (p = 0.7) or fibroblasts (p = 0.09). Paired analysis between blood and fibroblasts did not show a correlation between the two different tissues with respect to the SMN protein or mRNA levels. Conclusions SMN protein levels differ considerably between tissues and activity is age dependent in patients and controls. SMN protein levels in fibroblasts correlate with SMN2 copy number and have potential as a biomarker for disease severity.
Collapse
Affiliation(s)
- Renske I. Wadman
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail: (RIW); (WLP)
| | - Marloes Stam
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marc D. Jansen
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yana van der Weegen
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Camiel A. Wijngaarde
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Oliver Harschnitz
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter Sodaar
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Kees P. J. Braun
- Brain Centre Rudolf Magnus, Department of Neurology and Child Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Henny H. Lemmink
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Leonard H. van den Berg
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - W. Ludo van der Pol
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail: (RIW); (WLP)
| |
Collapse
|
4
|
Kobayashi DT, Decker D, Zaworski P, Klott K, McGonigal J, Ghazal N, Sly L, Chung B, Vanderlugt J, Chen KS. Evaluation of peripheral blood mononuclear cell processing and analysis for Survival Motor Neuron protein. PLoS One 2012; 7:e50763. [PMID: 23226377 PMCID: PMC3511312 DOI: 10.1371/journal.pone.0050763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/24/2012] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Survival Motor Neuron (SMN) protein levels may become key pharmacodynamic (PD) markers in spinal muscular atrophy (SMA) clinical trials. SMN protein in peripheral blood mononuclear cells (PBMCs) can be quantified for trials using an enzyme-linked immunosorbent assay (ELISA). We developed protocols to collect, process, store and analyze these samples in a standardized manner for SMA clinical studies, and to understand the impact of age and intraindividual variability over time on PBMC SMN signal. METHODS Several variables affecting SMN protein signal were evaluated using an ELISA. Samples were from healthy adults, adult with respiratory infections, SMA patients, and adult SMA carriers. RESULTS Delaying PBMCs processing by 45 min, 2 hr or 24 hr after collection or isolation allows sensitive detection of SMN levels and high cell viability (>90%). SMN levels from PBMCs isolated by EDTA tubes/Lymphoprep gradient are stable with processing delays and have greater signal compared to CPT-collected samples. SMN signal in healthy individuals varies up to 8x when collected at intervals up to 1 month. SMN signals from individuals with respiratory infections show 3-5x changes, driven largely by the CD14 fraction. SMN signal in PBMC frozen lysates are relatively stable for up to 6 months. Cross-sectional analysis of PBMCs from SMA patients and carriers suggest SMN protein levels decline with age. CONCLUSIONS The sources of SMN signal variability in PBMCs need to be considered in the design and of SMA clinical trials, and interpreted in light of recent medical history. Improved normalization to DNA or PBMC subcellular fractions may mitigate signal variability and should be explored in SMA patients.
Collapse
Affiliation(s)
- Dione T Kobayashi
- Spinal Muscular Atrophy Foundation, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|