1
|
Hu X, Liu C, Tang Z, Pan M, Fang A, Li L, Meng X, Tang X, Liu Y, Wang X, Gao H, Zou J, Qiu Z. Sophoraflavanone G as an ectosteric inhibitor of cathepsin K attenuates ovariectomy-induced bone loss by suppressing bone resorption. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156720. [PMID: 40220429 DOI: 10.1016/j.phymed.2025.156720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Cathepsin K (CTSK) is a key enzyme in bone resorption, making it a promising target for osteoporosis treatment. Active-site inhibitors of CTSK are effective but have undesirable side effects, while ectosteric inhibitors may provide a safer alternative. PURPOSE This study investigates whether Sophoraflavanone G (SG), derived from Rhizoma Drynariae, can act as an ectosteric CTSK inhibitor to attenuate osteoporotic bone loss and explores its underlying mechanisms. STUDY DESIGN SG's effects were evaluated in an ovariectomized (OVX) osteoporotic mice model, with in vitro experiments assessing SG's interaction and binding affinity with CTSK. METHODS Micro-CT, histology, and mechanical testing were used to evaluate bone density and strength. CTSK activity and expression were assessed by immunohistochemistry and western blotting. Cell thermal shift assays, isothermal titration calorimetry, CTSK site-specific degradation assays, molecular docking and dynamic simulation were performed to study SG's binding affinity and inhibitory effects. Biosafety, including body weight, uterine histomorphometry, and toxicity of the heart and lung, was also assessed. RESULTS SG improved bone mineral density, microarchitecture, and strength, primarily by inhibiting bone resorption. It inhibited CTSK's enzymatic activity with a strong binding affinity (KD: 8.49 μM) and effectively inhibited osteoclast function. CTSK site-specific assays showed SG inhibited CTSK-mediated degradation of type I collagen. Unlike odanacatib, SG did not affect gelatin or TGF-β1 degradation in fibroblasts. Biosafety assessments revealed no adverse effects. CONCLUSION SG acts as an ectosteric CTSK inhibitor, offering a safer alternative for postmenopausal osteoporosis treatment by selectively inhibiting bone resorption without the side effects associated with active-site inhibitors.
Collapse
Affiliation(s)
- Xueling Hu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China
| | - Chunxia Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Ziling Tang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ailing Fang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China
| | - Ling Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Xiangbo Meng
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Xiyang Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yanzhi Liu
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen 518118, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Zuocheng Qiu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Xiao HH, Mok DKW, Yao XS, Wong MS. Lignans from Sambucus williamsii Protect Bone Via Microbiome. Curr Osteoporos Rep 2024; 22:497-501. [PMID: 39235563 PMCID: PMC11499313 DOI: 10.1007/s11914-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE OF REVIEW Traditional Chinese Medicine has a unique system to diagnose and treat bone diseases with symptoms similar to those of osteoporosis. Sambucus williamsii Hance (SWH), a folk medicine in northern part of China for fractures healing and pain alleviation, has been demonstrated to exert bone anabolic effects in ovariectomized (OVX) rat and mice models in our previous studies. Lignans were identified to be the main bioactive fractions of SWH. However, pharmacokinetics study showed that the levels of lignan were too low to be detected in rat serum even upon taking 15 times of the effective dose of lignan-rich fraction from SWH. We hypothesize that lignans from SWH might exert its bone protective effect via the gut microbiome. RECENT FINDINGS Our study revealed that the lignan-rich fraction of SWH did not influence the diversity of gut microbiota in OVX rats, but significantly increased the abundance of a few phyla, in particular, the restoration of the abundance of several genera that was directly correlated with bone mineral density (BMD). In addition, a subsequent metabolomic study indicated that serotonin, a neurotransmitter synthesized in the intestine and influenced by gut microbiota, may be involved in mediating the bone protective action of the lignans. Gut-derived serotonin is thought to inhibit bone growth. Based on this finding, several inhibitors that suppressed the synthesis of serotonin were identified from the lignans of SWH. Our studies suggested that microbiome is an indispensable factor for lignans derived from S. willimasii to exert bone beneficial effects.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- Department of Food Science and Nutrients, The Hong Kong Polytechnic University, Hong Kong, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Daniel Kam-Wah Mok
- Department of Food Science and Nutrients, The Hong Kong Polytechnic University, Hong Kong, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, China
| | - Man-Sau Wong
- Department of Food Science and Nutrients, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China.
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Yu WX, Tang HH, Ye JJ, Xiao HH, Lam CY, Shum TF, Sun ZK, Li YZ, Zang XY, Du WC, Zhang JP, Kong TH, Zhou LP, Chiou JC, Kung CF, Mok KW, Hu J, Wong MS. Identification of the Microbial Transformation Products of Secoisolariciresinol Using an Untargeted Metabolomics Approach and Evaluation of the Osteogenic Activities of the Metabolites. Molecules 2023; 28:5742. [PMID: 37570714 PMCID: PMC10420892 DOI: 10.3390/molecules28155742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Secoisolariciresinol (SECO) is one of the major lignans occurring in various grains, seeds, fruits, and vegetables. The gut microbiota plays an important role in the biotransformation of dietary lignans into enterolignans, which might exhibit more potent bioactivities than the precursor lignans. This study aimed to identify, synthesize, and evaluate the microbial metabolites of SECO and to develop efficient lead compounds from the metabolites for the treatment of osteoporosis. SECO was fermented with human gut microbiota in anaerobic or micro-aerobic environments at different time points. Samples derived from microbial transformation were analyzed using an untargeted metabolomics approach for metabolite identification. Nine metabolites were identified and synthesized. Their effects on cell viability, osteoblastic differentiation, and gene expression were examined. The results showed that five of the microbial metabolites exerted potential osteogenic effects similar to those of SECO or better. The results suggested that the enterolignans might account for the osteoporotic effects of SECO in vivo. Thus, the presence of the gut microbiota could offer a good way to form diverse enterolignans with bone-protective effects. The current study improves our understanding of the microbial transformation products of SECO and provides new approaches for new candidate identification in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Wen-Xuan Yu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; (W.-X.Y.); (H.-H.T.); (H.-H.X.); (C.-Y.L.); (T.-F.S.); (T.-H.K.); (J.-C.C.); (M.-S.W.)
| | - Hok-Him Tang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; (W.-X.Y.); (H.-H.T.); (H.-H.X.); (C.-Y.L.); (T.-F.S.); (T.-H.K.); (J.-C.C.); (M.-S.W.)
| | - Jun-Jie Ye
- Increasepharm (Tianjin) Innovative Medicine Institute Limited, Tianjin 300382, China; (J.-J.Y.); (Z.-K.S.); (Y.-Z.L.); (X.-Y.Z.); (W.-C.D.); (J.-P.Z.)
| | - Hui-Hui Xiao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; (W.-X.Y.); (H.-H.T.); (H.-H.X.); (C.-Y.L.); (T.-F.S.); (T.-H.K.); (J.-C.C.); (M.-S.W.)
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of the Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Chung-Yan Lam
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; (W.-X.Y.); (H.-H.T.); (H.-H.X.); (C.-Y.L.); (T.-F.S.); (T.-H.K.); (J.-C.C.); (M.-S.W.)
| | - Tim-Fat Shum
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; (W.-X.Y.); (H.-H.T.); (H.-H.X.); (C.-Y.L.); (T.-F.S.); (T.-H.K.); (J.-C.C.); (M.-S.W.)
| | - Zhi-Kang Sun
- Increasepharm (Tianjin) Innovative Medicine Institute Limited, Tianjin 300382, China; (J.-J.Y.); (Z.-K.S.); (Y.-Z.L.); (X.-Y.Z.); (W.-C.D.); (J.-P.Z.)
| | - Yuan-Zhen Li
- Increasepharm (Tianjin) Innovative Medicine Institute Limited, Tianjin 300382, China; (J.-J.Y.); (Z.-K.S.); (Y.-Z.L.); (X.-Y.Z.); (W.-C.D.); (J.-P.Z.)
| | - Xin-Yu Zang
- Increasepharm (Tianjin) Innovative Medicine Institute Limited, Tianjin 300382, China; (J.-J.Y.); (Z.-K.S.); (Y.-Z.L.); (X.-Y.Z.); (W.-C.D.); (J.-P.Z.)
| | - Wen-Chao Du
- Increasepharm (Tianjin) Innovative Medicine Institute Limited, Tianjin 300382, China; (J.-J.Y.); (Z.-K.S.); (Y.-Z.L.); (X.-Y.Z.); (W.-C.D.); (J.-P.Z.)
| | - Jian-Ping Zhang
- Increasepharm (Tianjin) Innovative Medicine Institute Limited, Tianjin 300382, China; (J.-J.Y.); (Z.-K.S.); (Y.-Z.L.); (X.-Y.Z.); (W.-C.D.); (J.-P.Z.)
| | - Tsz-Hung Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; (W.-X.Y.); (H.-H.T.); (H.-H.X.); (C.-Y.L.); (T.-F.S.); (T.-H.K.); (J.-C.C.); (M.-S.W.)
| | - Li-Ping Zhou
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Jia-Chi Chiou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; (W.-X.Y.); (H.-H.T.); (H.-H.X.); (C.-Y.L.); (T.-F.S.); (T.-H.K.); (J.-C.C.); (M.-S.W.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chun-Fai Kung
- Increasepharm (HK) Limited, Hong Kong Science Park, Shatin, Hong Kong, China;
| | - Kam-Wah Mok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; (W.-X.Y.); (H.-H.T.); (H.-H.X.); (C.-Y.L.); (T.-F.S.); (T.-H.K.); (J.-C.C.); (M.-S.W.)
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of the Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Jing Hu
- Increasepharm (Tianjin) Innovative Medicine Institute Limited, Tianjin 300382, China; (J.-J.Y.); (Z.-K.S.); (Y.-Z.L.); (X.-Y.Z.); (W.-C.D.); (J.-P.Z.)
| | - Man-Sau Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; (W.-X.Y.); (H.-H.T.); (H.-H.X.); (C.-Y.L.); (T.-F.S.); (T.-H.K.); (J.-C.C.); (M.-S.W.)
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of the Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| |
Collapse
|
4
|
Shen YW, Cheng YA, Li Y, Li Z, Yang BY, Li X. Sambucus williamsii Hance maintains bone homeostasis in hyperglycemia-induced osteopenia by reversing oxidative stress via cGMP/PKG signal transduction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154607. [PMID: 36610352 DOI: 10.1016/j.phymed.2022.154607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sambucus williamsii Hance (SWH) has effectively been adopted to treat joint and bone disorders. Diabetes-induced osteopenia (DOP) is caused primarily by impaired bone formation as a result of hyperglycemia. We had previously demonstrated that SWH extract accelerated fracture healing and promoted osteoblastic MC3T3-E1 cell proliferation and osteogenic differentiation. This study assessed the impacts of SWH extract on diabetes-induced bone loss and explored the mechanisms underlying its osteoprotective effects. METHODS This work employed MC3T3-E1 cell line for evaluating how SWH extract affected osteogenesis, oxidative stress (OS), and the underlying mechanism in vitro. Streptozotocin-induced osteopenia mouse model was applied with the purpose of assessing SWH extract's osteoprotection on bone homeostasis in vivo. RESULTS The increased OS of MC3T3-E1 cells exposed to high glucose (HG) was largely because of the upregulation of pro-oxidant genes and the downregulation of antioxidant genes, whereas SWH extract reduced the OS by modulating NADPH oxidase-4 and thioredoxin-related genes by activating cyclic guanosine monophosphate (cGMP) production and increasing the level of cGMP-mediated protein kinase G type-2 (PKG2). The oral administration of SWH extract maintained bone homeostasis in type 1 diabetes mellitus (T1DM) mice by enhancing osteogenesis while decreasing OS. In bones from hyperglycemia-induced osteopenia mice and HG-treated MC3T3-E1 cells, the SWH extract achieved the osteoprotective effects through activating the cGMP/PKG2 signaling pathway, upregulating the level of antioxidant genes, as well as downregulating the level of pro-oxidant genes. CONCLUSION SWH extract exerts osteoprotective effects on hyperglycemia-induced osteopenia by reversing OS via cGMP/PKG signal transduction and is a potential therapy for DOP.
Collapse
Affiliation(s)
- Yi-Wei Shen
- Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University), Ningbo, Zhejiang, 315010, China; The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China; Key Laboratory of Northern Medicine Base and Application under Ministry of d Education, Harbin, Heilongjiang 150040, China; Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Yang-Ang Cheng
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China; Key Laboratory of Northern Medicine Base and Application under Ministry of d Education, Harbin, Heilongjiang 150040, China
| | - Yi Li
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zuo Li
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Bing-You Yang
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xue Li
- Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University), Ningbo, Zhejiang, 315010, China; The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
5
|
Xiao HH, Zhu YX, Lu L, Zhou LP, Poon CCW, Chan CO, Wang LJ, Cao S, Yu WX, Wong KY, Mok DKW, Wong MS. The Lignan-Rich Fraction from Sambucus williamsii Hance Exerts Bone Protective Effects via Altering Circulating Serotonin and Gut Microbiota in Rats. Nutrients 2022; 14:nu14224718. [PMID: 36432403 PMCID: PMC9692752 DOI: 10.3390/nu14224718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Our previous study revealed that the bone anabolic effects of the lignan-rich fraction (SWCA) from Sambucus williamsii Hance was involved in modulating the metabolism of tryptophan in vivo and inhibiting serotonin (5-HT) synthesis in vitro. This study aimed to determine how SWCA modulates bone metabolism via serotonin in vivo. The effects of SWCA were evaluated by using 4-month-old Sprague-Dawley (SD) ovariectomized rats. The serum levels of 5-HT and kynurenine, the protein expressions of tryptophan hydroxylase 1 (TPH-1) and TPH-2, the genes and proteins related to the 5-HT signaling pathway as well as gut microbiota composition were determined. SWCA treatment alleviated bone loss and decreased serum levels of serotonin, which was negatively related to bone mineral density (BMD) in rats. It suppressed the protein expression of TPH-1 in the colon, and reversed the gene and protein expressions of FOXO1 and ATF4 in the femur in OVX rats, while it did not affect the TPH-2 protein expression in the cortex. SWCA treatment escalated the relative abundance of Antinobacteria and modulated several genera relating to BMD. These findings verified that the bone protective effects of lignans were mediated by serotonin, and provided evidence that lignans might be a good source of TPH-1 inhibitors.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu-Xin Zhu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Lu Lu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Christina Chui-Wa Poon
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chi-On Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Li-Jing Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Sisi Cao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen-Xuan Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka-Ying Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Daniel Kam-Wah Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: ; Tel.: +852-34008665
| |
Collapse
|
6
|
Waswa EN, Li J, Mkala EM, Wanga VO, Mutinda ES, Nanjala C, Odago WO, Katumo DM, Gichua MK, Gituru RW, Hu GW, Wang QF. Ethnobotany, phytochemistry, pharmacology, and toxicology of the genus Sambucus L. (Viburnaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115102. [PMID: 35288288 DOI: 10.1016/j.jep.2022.115102] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Sambucus L. (Viburnaceae) consists of about 29 recognized species distributed in all regions of the world except the extremely cold and desert areas. Some species have been used as traditional medicines to treat various disorders such as bone fractures, rheumatism, diabetes, respiratory and pulmonary disorders, skin diseases, inflammatory ailments, diarrhea, and others. However, the currently available data on traditional and pharmacological uses have not been comprehensively reviewed. STUDY AIM The present review is designed to provide information on the ethnobotanical uses, phytochemistry, toxicity, and the known biological properties of Sambucus, to understand their connotations and provide a scientific basis and gaps for further research. MATERIALS AND METHODS The information was obtained from different bibliographic databases, Google Scholar, Springer Link, Web of Science, PubMed, and Science Direct along with other literature sources such as dissertation before August 2021. The scientific names were validated using The Plant List and World Flora Online websites. RESULTS Twelve Sambucus species were found to be frequently mentioned in ethnomedical uses recorded in China, Korea, Turkey, Iran, and other countries. Traditionally, they have been used as remedies to numerous health complications among others, bone fractures and rheumatism, diabetes, wounds, inflammatory diseases, diarrhea, menstrual pains, respiratory and pulmonary complaints, skin disorders, headaches, snakebites, and urinary tract infections. To date, only eleven species have been studied for their chemical compounds and a total of 425 bioactive constituents, including phenolic compounds, terpenoids, fatty acids, cyanogenic glycosides, phytosterols, lectins, organic acids, alkaloid, coumarin, anthraquinone, and others have been reported. The crude extracts and the isolated chemical constituents exhibited diverse outstanding pharmacological activities including antioxidant, antimicrobial, antidiabetic, anti-inflammatory, antidepressant, analgesic, anti-giardial, immunomodulatory, scolicidal, anti-ulcerogenic, antiradical, bone-protective, anti-glycemic, antiosteoporotic, hypolipidemic, anti-glycation, and wound-healing properties. CONCLUSION This study summarized and scrutinized the data on traditional uses, pharmacological activities, phytochemicals, and toxicity of Sambucus species, which indicate they have interesting chemical compounds with diverse biological activities. Many traditional uses of some species from this genus have now been confirmed by pharmacological activities, such as antioxidant, antimicrobial, bone-protective, wound healing, anti-inflammatory, and analgesic properties. However, the currently available data has several gaps in understanding the traditional uses of all Sambucus species. Thus, we strongly recommend further investigations into the scientific connotations between traditional medicinal uses and pharmacological activities, mode of action of the isolated bioactive constituents, and toxicity of other Sambucus species to unravel their efficacy and therapeutic potential for safe clinical application. The current extensive study avails valuable information on therapeutic use of Sambucus species and paves way for further investigations of other useful species, as well as drug discovery.
Collapse
Affiliation(s)
- Emmanuel Nyongesa Waswa
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Li
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Elijah Mbandi Mkala
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Vincent Okelo Wanga
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Elizabeth Syowai Mutinda
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Consolata Nanjala
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wyclif Ochieng Odago
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Daniel Mutavi Katumo
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Moses Kirega Gichua
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Robert Wahiti Gituru
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Guang-Wan Hu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qing-Feng Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Waswa EN, Li J, Mkala EM, Wanga VO, Mutinda ES, Nanjala C, Odago WO, Katumo DM, Gichua MK, Gituru RW, Hu GW, Wang QF. Ethnobotany, phytochemistry, pharmacology, and toxicology of the genus Sambucus L. (Viburnaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115102. [DOI: https:/doi.org/10.1016/j.jep.2022.115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
8
|
Sukkho T, Khanongnuch C, Lumyong S, Ruangsuriya J, Pattananandecha T, Apichai S, Ogata F, Kawasaki N, Saenjum C. Local Wisdom and Diversity of Medicinal Plants in Cha Miang Forest in Mae Kampong Village, Chiang Mai, Thailand, and Their Potential for Use as Osteoprotective Products. PLANTS (BASEL, SWITZERLAND) 2022; 11:1492. [PMID: 35684265 PMCID: PMC9182823 DOI: 10.3390/plants11111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022]
Abstract
"People-Forest-Miang" communities are villages located in the cultivated area of Camellia sinensis var. assamica, or Cha Miang, in northern Thailand. Cha Miang forests are a form of agriculture relying on forest-rich bioresources. This study focuses on a survey of the diversity of medicinal plants used by "People-Forest-Miang" communities in Mae Kampong Village, Chiang Mai, Thailand. The results demonstrated that 73 species of medicinal plants were used to prevent and treat various ailments. The highest number of species (30.14%) was used for musculoskeletal system disorders, followed by digestive system disorders (21.92%) and unspecified medicinal disorders (15.07%). The alkaline phosphatase (ALP) is the most widely recognized biochemical marker for osteoblast activity. The ALP activity of ethanol and deionized water extracts of the nine selected medicinal plants used for musculoskeletal system disorders were examined in the MG63 cell line. The results showed that the numerous water extracts, including MKP1, MKP2, MKP5, MKP6, MKP7, MKP8, and MKP9, and the ethanolic extracts-namely, MKP2, MKP3, MKP7, and MKP9-significantly increased ALP activity in the MG-63 cell line. The findings indicate that some medicinal plants may be further studied for active chemicals and developed as natural active pharmaceutical ingredients for osteoprotective products.
Collapse
Affiliation(s)
- Treethip Sukkho
- Department of Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (S.A.)
| | - Chartchai Khanongnuch
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Research Center for Multidisciplinary Approaches to Miang, Science and Technology Research Institute (STRI), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Thanawat Pattananandecha
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (S.A.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sutasinee Apichai
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (S.A.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Fumihiko Ogata
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan; (F.O.); (N.K.)
| | - Naohito Kawasaki
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan; (F.O.); (N.K.)
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Chalermpong Saenjum
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (S.A.)
- Research Center for Multidisciplinary Approaches to Miang, Science and Technology Research Institute (STRI), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Puerarin specifically disrupts osteoclast activation via blocking integrin-β3 Pyk2/Src/Cbl signaling pathway. J Orthop Translat 2022; 33:55-69. [PMID: 35228997 PMCID: PMC8858883 DOI: 10.1016/j.jot.2022.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Given the limitations of current anti-resorption agents for postmenopausal osteoporosis, there is a need for alternatives without impairing coupling crosstalk between bone resorption and bone formation ie. osteoclastogenesis. Puerarin, a unique C-glycoside isoflavonoid, was found to be able to prevent bone loss by inhibiting bone resorption, but the underlying mechanism was controversial. In this study, we investigated the effects of puerarin on osteoclastic differentiation, activation and bone resorption and its underlying molecular mechanism in vitro, and then evaluated the effects of puerarin on bone metabolism using an ovariectomized (OVX) rat model. Methods In vitro, the effect of puerarin on osteoclastic cytotoxicity, differentiation, apoptosis, activation and function were studied in raw 264.7 cells and mouse BMMs. Mechanistically, osteoclast-related makers were determined by RT-PCR, western blot, immunofluorescence, and kinase activity assay. In vivo, Micro-CT, histology, serum bone biomarker, and mechanical testing were used to evaluate the effects of puerarin on preventing osteoporosis. Results Puerarin significantly inhibited osteoclast activation and bone resorption, without affecting osteoclastogenesis or apoptosis. In terms of mechanism, the expressions of protein of integrin-β3 and phosphorylations of Src, Pyk2 and Cbl were lower in puerarin group than those in the control group. Oral administration of puerarin prevented OVX-induced trabecular bone loss and significantly improved bone strength in rats. Moreover, puerarin significantly decreased trap positive osteoclast numbers and serum TRAP-5b, CTx1, without affecting bone formation rate. Conclusions Collectively, puerarin prevented the bone loss in OVX rat through suppression of osteoclast activation and bone resorption, by inhibiting integrin-β3-Pyk2/Cbl/Src signaling pathway, without affecting osteoclasts formation or apoptosis. Translational potential of this article These results demonstrate the unique mechanism of puerarin on bone metabolism and provide a novel agent for prevention of postmenopausal osteoporosis.
Collapse
|
10
|
Wang S, Yu Y, Cui M, Liu K, Liu K. Seed Oil Quality and Cultivation of Sambucus williamsii Hance as a New Oil Crop. Front Nutr 2021; 8:796175. [PMID: 35004823 PMCID: PMC8740463 DOI: 10.3389/fnut.2021.796175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Natural edible oil derived from wild non-cultivated oil crops contributed to human daily nutritional diversity and disease prevention. It was important to investigate the nutritional value of these oils and the feasibility of crop cultivation. The present study focused on the assessment of seed oil quality of Sambucus williamsii Hance (SWH) and its molecular breeding. Wild SWH seed oil was extracted by supercritical CO2 technology and the composition of the oil was determined by using gas chromatography mass spectrometry (GC-MS) analysis. The oil content of SWH seeds reaches around 40%. Its seed oil was found to be rich in unsaturated fatty acids, such as 24.24% of linolenic acid and 50.56% of linoleic acid, and vitamin E (25.92 mg kg-1). The cytotoxicity and heavy metal analysis showed SWH seed oil was safe for consumption. In addition, the SWH strains with excellent characteristics were screened out for cultivation according to genetic diversity and morphological analysis. Amplified fragment length polymorphism (AFLP) markers were used to evaluate the genetic diversity of 28 accessions of wild SWH seeds and 5 accessions were selected to cultivate. Among them, two strains of SWH (sample 3 and 6) with high yielding (275.7 and 266.8 area yield kg-1) were suitable for dense planting and could be used to establish the raw material forest of SWH seed oil. The results of this study indicated the potential of development of selected SWH as novel oil crops and their wide cultivation.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Mingxiao Cui
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Canter for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Kewu Liu
- Mudanjiang Branch of Heilongjiang Academy of Forestry, Mudanjiang, China
| |
Collapse
|
11
|
Prenylated Isoflavonoids-Rich Extract of Erythrinae Cortex Exerted Bone Protective Effects by Modulating Gut Microbial Compositions and Metabolites in Ovariectomized Rats. Nutrients 2021; 13:nu13092943. [PMID: 34578822 PMCID: PMC8471919 DOI: 10.3390/nu13092943] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids, found in a wide variety of foods and plants, are considered to play an important role in the prevention and treatment of osteoporosis. Our previous studies demonstrated that Erythrina cortex extract (EC) rich in prenylated isoflavonoids exerted bone protective effects in ovariectomized (OVX) rats. The present study aimed to investigate the interactions of gut microbiota with the EC extract to explore the underlying mechanisms involved in its beneficial effects on bone. Sprague-Dawley female rats of 3-months-old were ovariectomized and treated with EC extract for 12 weeks. EC extract reversed ovariectomy-induced deterioration of bone mineral density and bone microarchitecture as well as downregulated cathepsin K (Ctsk) and upregulated runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) in the tibia of OVX rats. Its protective effects on bone were correlated with changes in microbial richness and the restorations of several genera. EC increased the serum circulating levels of acetate and propionate in OVX rats. We conclude that the bone protective effects of EC extract were associated with the changes in microbial compositions and serum short chain fatty acids (SCFAs) in OVX rats.
Collapse
|
12
|
The lignan-rich fraction from Sambucus Williamsii Hance ameliorates dyslipidemia and insulin resistance and modulates gut microbiota composition in ovariectomized rats. Biomed Pharmacother 2021; 137:111372. [PMID: 33761598 DOI: 10.1016/j.biopha.2021.111372] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Menopausal women are susceptible to have high risk of cardiovascular diseases, type II diabetes and osteoporosis due to the metabolic disorder caused by estrogen deficiency. Accumulating evidence supports that gut microbiota is a key regulator of metabolic diseases. Our previous metabolomics study interestingly demonstrated that the anti-osteoporotic effects of lignan-rich fraction (SWCA) from Sambucus wialliamsii Hance were related to the restoration of a series of lipid and glucose metabolites. This study aims to investigate how SWCA modulates lipid and glucose metabolism and the underlying mechanism. Our results show that oral administration of SWCA (140 mg/kg and 280 mg/kg) for 10 weeks alleviated dyslipidemia, improved liver functions, prevented glucose tolerance and insulin actions, attenuated system inflammation and improved intestinal barrier in OVX rats. It also induced a high abundance of Actinobacteria, and restored microbial composition. We are the first to report the protective effects of the lignan-rich fraction from S. williamsii on dyslipidemia and insulin resistance. Our findings provide strong evidence for the application of this lignan-rich fraction to treat menopausal lipid disorder and insulin resistance-related diseases.
Collapse
|
13
|
Xiao HH, Lv J, Mok D, Yao XS, Wong MS, Cooper R. NMR Applications for Botanical Mixtures: The Use of HSQC Data to Determine Lignan Content in Sambucus williamsii. JOURNAL OF NATURAL PRODUCTS 2019; 82:1733-1740. [PMID: 31282673 DOI: 10.1021/acs.jnatprod.8b00891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lignans found in the botanical extract of the Traditional Chinese Medicine Sambucus williamsii Hance exhibit protective effects on trabecular bone mass and mechanical strength of cortical bone of ovariectomized rats. A novel approach was adapted using HSQC NMR methods to estimate the total amount of these bioactives in a complex mixture. It was determined that lignans possessing the hydroxy- or oxybenzyl carbon signal were bioactive. These compounds were readily identified and assigned in a defined region of the 13C NMR spectrum at 80-90 ppm and calculated as 10-15% of the lignan-rich fraction of S. williamsii. Comparison of the peak heights of the oxybenzyl-substituted carbon resonance signals of the lignans in the botanical extract was made against those of a standard lignan pinoresinol. The application of this simple and reliable NMR method can be used to estimate amounts of related compounds and chemical families in complex mixtures or botanical extracts and offers measurable scientific evidence in quality processes. This is of particular importance for registration requirements of botanical drugs and in complex mixtures of botanical extracts.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , Shenzhen Research Institute of The Hong Kong Polytechnic University , Shenzhen 518057 , People's Republic of China
| | - Juan Lv
- Bruker (Beijing) Scientific Technology Co. Ltd. 8F , Tower C, Building B-6, No. 66, Xi Xiao Kou Road , Haidian District, Beijing 100192 , People's Republic of China
| | - Daniel Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , Shenzhen Research Institute of The Hong Kong Polytechnic University , Shenzhen 518057 , People's Republic of China
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , Shenzhen Research Institute of The Hong Kong Polytechnic University , Shenzhen 518057 , People's Republic of China
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , People's Republic of China
| | - Raymond Cooper
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China
| |
Collapse
|
14
|
Wong MS, Poon CCW, Zhou LP, Xiao HH. Natural Products as Potential Bone Therapies. Handb Exp Pharmacol 2019; 262:499-518. [PMID: 31792676 DOI: 10.1007/164_2019_322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Demands for natural products, in the form of botanicals, dietary supplements, and herbal medicine, for management of chronic diseases are increasing globally. Natural products might be an alternative for the management of bone health to meet the demands of a growing aging population. Different types of natural products, including Chinese herbal medicine decoctions, herbs, and isolated phytochemicals, have been demonstrated to exert bone protective effects. The most common types of bone protective bioactives are flavonoids, stilbene, triterpenoids, coumestans, lignans, and phenolic acid. The actions of natural products can be mediated by acting systemically on the hormonal axis or locally via their direct or indirect effects on osteogenesis, osteoclastogenesis, as well as adipogenesis. Furthermore, with the use of metabolomic and microbiome approaches to understand the actions of natural products, novel mechanisms that involve gut-brain-bone axis are also revealed. These studies provide evidence to support the use of natural products as bone therapeutics as well as identify new biological targets for novel drug development.
Collapse
Affiliation(s)
- Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China. .,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, People's Republic of China.
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, People's Republic of China
| |
Collapse
|
15
|
Xiao HH, Sham TT, Chan CO, Li MH, Chen X, Wu QC, Mok DKW, Yao XS, Wong MS. A Metabolomics Study on the Bone Protective Effects of a Lignan-Rich Fraction From Sambucus Williamsii Ramulus in Aged Rats. Front Pharmacol 2018; 9:932. [PMID: 30186170 PMCID: PMC6110923 DOI: 10.3389/fphar.2018.00932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
The lignan-rich fraction (SWR) of Sambucus Williamsii Ramulus, a folk herbal medicine in China for treatment of bone diseases, has previously reported to exert protective effects on bone without exerting uterotrophic effects in ovariectomized (OVX) mice. The aim of the present study was to identify the potential metabolites and the associated metabolic pathways that contribute to the beneficial effects of SWR on bone in vivo. Aged female Sprague Dawley rats (9 months old) were either sham-operated or ovariectomized for 12 weeks, before receiving treatment for another 12 weeks with the following treatment groups (n = 12 each): vehicle (Sham), vehicle (OVX), Premarin (130 μg/kg) or low (57 mg/kg), medium (114 mg/kg), and high (228 mg/kg) doses of SWR. The results showed that SWRH significantly suppressed bone loss, improved bone micro-architecture and increased bone strength on tibia without stimulating uterus weight gain in OVX rats. Premarin exerted similar bone protective effects as SWRH but elicited uterotrophic effects in OVX rats. The metabolic profiles of serum samples were analyzed by using ultra-performance liquid chromatography quadrupole time-of flight mass spectrometry and gas chromatography time-of flight mass spectrometry, and the metabolites that were significantly altered were identified by multivariate statistical analysis. Our study indicated that SWRH effectively restored the changes of 26 metabolites induced by estrogen-deficiency in OVX rats, which related to lipids, amino acids, tryptophan metabolisms, and anti-oxidative system. A subsequent validation showed that the serum level of superoxide dismutase and catalase were indeed up-regulated, while the serotonin level in a tryptophan hydroxylase 1 (TPH1) high expressing cells (rats RBL-2H3 cells) was down regulated after treatment with SWR. The results also suggested that the gut-microbiota may play an important role on the bone protective effects of SWR. The current study provides insight for understanding the unique mechanism of actions of SWR that might be involved in achieving bone protective effects in vivo.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Tung-Ting Sham
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Chi-On Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Meng-Heng Li
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Xi Chen
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Qing-Chang Wu
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, China
| | - Daniel Kam-Wah Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
16
|
Effect of long-term administration of mangiferin from Belamcanda chinensis on bone metabolism in ovariectomized rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Wang YG, Jiang LB, Gou B. PROTECTIVE EFFECT OF VANILLIC ACID ON OVARIECTOMY-INDUCED OSTEOPOROSIS IN RATS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638864 PMCID: PMC5471479 DOI: 10.21010/ajtcam.v14i4.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: The need for an anti-osteoporotic agent is in high demand since osteoporosis contributes to high rates of disability or impairment (high osteoporotic fracture), morbidity and mortality. Hence, the present study is designed to evaluate the protective effects of vanillic acid (VA) against bilateral ovariectomy-induced osteoporosis in female Sprague-Dawley (SD) rats. Materials and Methods: Forty healthy female adult SD rats were separated in to four groups with sham-operated control with bilateral laprotomy (Sham; n = 10), bilateral overiectomy (OVX; n = 10) group, OVX rats were orallay administrated with 50 mg/kg b.wt of VA (OVX + 50 VA; n = 10) or 100 mg/kg b.wt of VA (OVX + 100 VA; n = 10) for 12 weeks (post-treatment) after 4 weeks of OVX. Results: A significant change in the body weight gain was noted in OVX group, while treatment with VA substantially reverted to normalcy. Meanwhile, the bone mineral density and content (BMD and BMC) were substantially improved on supplementation with VA. Also, the bone turnover markers like calcium (Ca), phosphorous (P), osteocalcin (OC), alkaline phosphatase (ALP) and deoxypyridinoline (DPD) and inflammatory markers (IL-1β, IL-6, and TNF-α) levels were markedly attenuated in VA-treated rats. Moreover, the biomechanical stability was greatly ameliorated with VA administration. Both the dose of VA showed potent anti-osteoporotic activity, but VA 100 mg showed highest protective effects as compared with 50 mg of VA. Conclusion: Based on the outcome, we concluded that VA 100 showed better anti-osteoporotic activity by improving BMD and BMC as well as biomechanical stability and therefore used as an alternative therapy for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Yong Gui Wang
- Department of Orthopaedics, Xiangyang No.1 People's Hospital affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Liang Bo Jiang
- Department of Microscopic Orthopaedics, Shiyan People's Hospital affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Bo Gou
- Department of Orthopaedics, Shiyan People's Hospital affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, China
| |
Collapse
|
18
|
Xiao HH, Zhang Y, Cooper R, Yao XS, Wong MS. Phytochemicals and potential health effects of Sambucus williamsii Hance (Jiegumu). Chin Med 2016; 11:36. [PMID: 27478495 PMCID: PMC4965893 DOI: 10.1186/s13020-016-0106-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/15/2016] [Indexed: 12/02/2022] Open
Abstract
Sambucus williamsii Hance (Jiegumu) is traditionally used in Chinese medicine to treat bone and joint diseases. The major phytochemicals in S. williamsii are lignans, terpenoids, and phenolic acids, together with trace amounts of essential oils, minerals, amino acids, and natural pigments. In this review, a database search for studies published from 1990 to November 2015 was conducted using PubMed, the China Academic Journals Full-Text Database, and Google Scholar with the keywords “Sambucus williamsii Hance”, “Sambucus williamsii”, “Sambucuswilliamsii + clinic”, “Sambucuswilliamsii + biology”, “Sambucuswilliamsii + chemicals”, and “Jiegumu”, which covered chemical studies, cell culture studies, animal experiments, and clinical studies. This article reviewed the compounds isolated from S. williamsii that may reduce the risk of cancer, and exert antifungal, antioxidant, anti-inflammatory, bone fracture healing, and antiosteoporotic effects.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057 China ; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yan Zhang
- Spine Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057 China ; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
20
|
Comparative study of two types of herbal capsules with different Epimedium species for the prevention of ovariectomised-induced osteoporosis in rats. J Orthop Translat 2015; 4:14-27. [PMID: 30035062 PMCID: PMC5987012 DOI: 10.1016/j.jot.2015.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022] Open
Abstract
Background/Objective Epimedii Folium is the most important osteogenic herb formulated for the traditional Chinese Medicine Xian Ling Gu Bao (XLGB) capsule. The present study compared XLGB capsules containing two different Epimedium species, i.e., either Epimedium pubescens (XEP) or Epimedium koreanum (XEK), with the focus being on the chemical constituents and antiosteoporotic efficacy. Methods Ultra performance liquid chromatography was used to demonstrate the different chemical constituents. Biomechanical tests, histological, and cytological evaluation were performed to characterise and compare the bone mineral density, bone strength, microstructure of bone tissue, and biological activity between XEP and XEK using an established ovariectomised (OVX) rat model. Results Six flavonoids with different contents between XEK and XEP were identified. As compared with the OVX group, significantly higher bone mineral density, elastic-modulus, and compressive strength were found in both the XEK group and XEP group (p < 0.05 for all, n = 8). Histomorphometric data presented significantly higher osteoblast surface ratio and osteoid area accompanied by significantly lower values of erosion surface and adiopocytes area in two treatment groups (p < 0.05, n = 6). XLGB Fufang with either XEK or XEP all showed significant preventive effects in OVX-induced osteoporosis and deterioration of bone mechanical properties. Conclusion The significance of the current preclinical experimental study was that these two Epimedium species used for formulating XLGB capsules were equally effective for the prevention of oestrogen-depletion induced osteoporosis.
Collapse
|
21
|
Xiao HH, Gao QG, Ho MX, Zhang Y, Wong KC, Dai Y, Yao XS, Wong MS. An 8-O-4' norlignan exerts oestrogen-like actions in osteoblastic cells via rapid nongenomic ER signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 170:39-49. [PMID: 25978953 DOI: 10.1016/j.jep.2015.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sambucus williamsii Hance (SWH), which belongs to the Caprifoliaceae family distributed in various regions of China, Korea and Japan, has been used as a folk medicine for treatment of bone and joint diseases in China for thousands of years. In previous studies, SWH was shown to possess anti-osteoporosis, healing fracture, anti-inflammatory and analgesic activities. Our previous studies showed that SWH extract effectively suppressed ovariectomy-induced increase in bone turnover and improved bone mineral density and bone biomechanical strength in rats as well as in mice. An 8-O-4' norlignan, (7R,8S)-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol (PPD) was previously isolated and identified as the bioactive ingredient in SWH. The present study aimed to characterize the bone protective effects as well as its mechanism of actions in osteoblasts. MATERIALS AND METHODS Bone protective actions of PPD on different cells were determined by proliferation assay, alkaline phosphatase (ALP) activity assay, calcium deposition as well as real-time reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, estrogen receptor (ER) antagonist ICI182,780 and mitogen-activated protein kinase kinase (MEK) inhibitor U0126 blocking assays, competitive ER radioligand binding assay, ERE-dependent luciferase reporter assay and immunoblotting were used to determine if PPD activated ER and if the effects of PPD on osteoblastic functions were ER dependent. RESULTS PPD exerted anabolic effects in osteoblasts and its effects were abolished by co-incubation with ICI182,780 or U0126. PPD induced mRNA expressions of Runx2, ALP, osteocalcin, and increased the ratio of osteoprotegerin/receptor activator of nuclear factor κB (OPG/RANKL). PPD failed to bind to either ERα or ERβ and did not activate ERE-luciferase activity via ER. PPD induced the phosphorylation of extracellular regulated kinases (ERK) and its effect was completely abolished by U0126. It also induced the phosphorylation of ERα at serine 118. CONCLUSION These data show that PPD is a bioactive compound in SWH that exerts oestrogen-like actions in osteoblast-like cells via ligand-independent, estrogen response element (ERE)-independent and mitogen-activated protein (MAP) Kinase-mediated rapid nongenomic ER signaling pathway.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Quan-Gui Gao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Ming-Xian Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yan Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China; Center for Systems Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ka-Chun Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China.
| |
Collapse
|
22
|
Wang X, He Y, Guo B, Tsang MC, Tu F, Dai Y, Yao Z, Zheng L, Xie X, Wang N, Yao X, Zhang G, Qin L. In vivo screening for anti-osteoporotic fraction from extract of herbal formula Xianlinggubao in ovariectomized mice. PLoS One 2015; 10:e0118184. [PMID: 25695519 PMCID: PMC4335011 DOI: 10.1371/journal.pone.0118184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background and Objectives Traditional Chinese Medicine (TCM) Fufang or formula Xianlinggubao (XLGB) is a prescribed TCM drug in China registered for prevention and treatment of osteoporosis. Fufang in TCM is comprised of a group of herbal compounds contributing in group to the treatment efficacy. The present study aims to identify the bioactive fraction(s) in XLGB extract that account(s) dominantly for its osteogenic effects. Methods The extract of XLGB formula was separated into three fractions using chromatography, i.e., XLGB-A, XLGB-B and XLGB-C. They were administrated to 4-month old ovariectomized (OVX) mice for 6 weeks to determine which bioactive fraction(s) were more effective for preventing OVX-induced bone loss evaluated by microCT, biomechanical testing and biochemical markers. The main peaks of the key fraction were identified using reference compounds isolated from the fraction. In addition, the effects of the composite compounds in XLGB-B on osteoblasts’ proliferation and mineralization were evaluated in UMR 106 cells. Results XLGB-B with a yield of 13.0% from herbal Fufang XLGB was identified as the most potential one among the three fractions for prevention of OVX-induced bone loss confirmed with bone mass, bone microarchitecture, bone strength and bone turnover markers. Nine compounds in HPLC fingerprint were identified in the XLGB-B fraction, including phenylpropanoids from Herba Epimedii, terpenes from Radix Dipsaci and coumarins from Fructus Psoraleae. In addition, the identified compounds effectively promoted proliferation and/or mineralization of osteoblast-like UMR 106 cells in vitro. Conclusion XLGB-B with defined phytochemical structures was screened as the key fraction that demonstrated preventive effects on OVX-induced bone loss in mice. The present study laid down a foundation towards a new generation of herbal Fufang characterized with “less herbal materials for achieving equal treatment efficacy” in development strategy of TCM for prevention of OVX-induced osteoporosis.
Collapse
Affiliation(s)
- Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yixin He
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baosheng Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man-Ching Tsang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengjuan Tu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhihong Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xinhui Xie
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nan Wang
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- * E-mail: (LQ); (XY); (GZ)
| | - Ge Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (LQ); (XY); (GZ)
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (LQ); (XY); (GZ)
| |
Collapse
|
23
|
Xiao HH, Dai Y, Wong MS, Yao XS. Two new phenylpropanoids and one new sesquiterpenoid from the bioactive fraction of Sambucus williamsii. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2015; 17:625-32. [PMID: 26045083 DOI: 10.1080/10286020.2015.1046448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two new phenylpropanoids, samwirin (1) and samwiphenol (2), and a new sesquiterpenoid, 2β,4β,10α-trihydroxy-1αH,5βH-guaia-6-ene (3), together with six known compounds were isolated from the bioactive fraction of Sambucus williamsii Hance. Their structures including the absolute configurations were characterized on the basis of extensive 1D, 2D-NMR, MS, and CD spectral data. In vitro proliferation effects of all compounds on osteoblast-like UMR 106 cells were examined. Compounds 1, 4-9 significantly promoted cell proliferation. Compounds 5, 6, and 8 increased osteoblastic cell numbers separately by 24.3%, 25.2%, and 29.1% at 10(-10) M, 10(-10) M, and 10(-8) M, respectively.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- a Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | | | | | | |
Collapse
|
24
|
Xiao HH, Gao QG, Zhang Y, Wong KC, Dai Y, Yao XS, Wong MS. Vanillic acid exerts oestrogen-like activities in osteoblast-like UMR 106 cells through MAP kinase (MEK/ERK)-mediated ER signaling pathway. J Steroid Biochem Mol Biol 2014; 144 Pt B:382-91. [PMID: 25106917 DOI: 10.1016/j.jsbmb.2014.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/11/2014] [Accepted: 08/01/2014] [Indexed: 01/10/2023]
Abstract
Sambucus williamsii Hance (SWH) has been used for treatment of bone and joint disease in China for thousands of years. Our previous study showed that SWH extract and its bioactive fraction could effectively prevent oestrogen-deficiency induced bone loss in ovariectomized mice. The present study aimed to study the bone protective effects of vanillic acid (VA), a phenolic acid isolated from the bioactive fraction of SWH, and to characterize the signaling pathways that mediated its actions in rat osteoblast-like UMR 106 cells. VA significantly stimulated proliferation, alkaline phosphatase (ALP) activities as well as significantly altered the mRNA expression of genes involved in osteoblast functions and osteoclastogenesis in UMR 106 cells. Co-treatment of UMR 106 cells with 10(-6)M ICI182,780 (a specific oestrogen receptor (ER) antagonist) abolished the stimulatory effects of VA on osteoblast proliferation and ALP activities, suggesting the role of ER in mediating its actions. However, VA (10(-12) to 10(-6)M) failed to bind to ERα or ERβ and did not activate oestrogen response element (ERE)-luciferase activities via ERα or ERβ in UMR 106 cells. In contrast, 10(-10) and 10(-8)M of VA induced the phosphorylation of MEK 1/2, ERK1/2 and ERα at Ser118 residue in UMR 106 cells, suggesting that MAP kinase-mediated pathway is involved in mediating its actions. Taken together, our results indicated that VA is a bioactive compound in SWH that exerts stimulatory effects in osteoblast-like cells via non-genomic, but not classical, ER signaling pathway.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Quan-Gui Gao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yan Zhang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Ka-Chung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China.
| |
Collapse
|
25
|
New lignans from the bioactive fraction of Sambucus williamsii Hance and proliferation activities on osteoblastic-like UMR106 cells. Fitoterapia 2014; 94:29-35. [PMID: 24462959 DOI: 10.1016/j.fitote.2014.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/31/2013] [Accepted: 01/09/2014] [Indexed: 11/22/2022]
Abstract
Four new lignans (1, 7-9), together with nine known ones, were isolated from the anti-osteoporosis fraction of the extract of Sambucus williamsii Hance which was eluted by 50% and 95% aqueous ethanol over D101 macroporous resin column. Their structures were elucidated by NMR spectroscopic analyses, and the absolute configurations of all compounds were determined by application of circular dichroism method. All the compounds were reported for the first time from the Sambucus genus and firstly studied for their proliferation effects on osteoblastic-like UMR 106 cell. The data showed that compounds 2-9 significantly promoted cell proliferation in some dose, especially compounds 2, 3, 4, 5, and 7 increased osteoblastic cell numbers by 31.3%, 28.3%, 25.6%, 25.1% and 26.0% at 10(-10) M, 10(-10) M, 10(-7) M, 10(-10) M and 10(-10) M, respectively, which suggested that lignans were the components accounting for the bone protective effects of SWH.
Collapse
|
26
|
|
27
|
Law MC, Wong KC, Pang WY, Wong MS, Chan TH. Chemical synthesis and biological study of 4β-carboxymethyl-epiafzelechin acid, an osteoprotective compound from the rhizomes of Drynaria fortunei. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20082a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|