1
|
Li Y, Zhao Z, He L, Liang Y, Liu M, Dong M, Li Z, Xu B, Zhang Z, Zhou Y, Liu Y, Zhu Z, Zhao J. PD-1 blockade synergizes with ascorbic acid to restore the activation and anti-viral immune functions of CD8 + T cells in a mouse model of BVDV infection. Vet Microbiol 2025; 300:110316. [PMID: 39615163 DOI: 10.1016/j.vetmic.2024.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
Bovine viral diarrhea virus (BVDV) can cause typical peripheral lymphopenia and inhibit CD8+ T-cell activation and proliferation. Programmed death-1 (PD-1) blockade has been shown to increase CD8+ T-cell activation during cytopathic (CP) BVDV infection but not non-cytopathic (NCP) BVDV. Notably, ascorbic acid (AA) restores lymphocyte count and activation during SARS-CoV-2 and influenza virus infections and has a synergistic effect with PD-1 blockade to improve antitumor CD8+ T-cell activity. Nevertheless, it remains unclear whether AA exerts an immunomodulatory effect on the activation and proliferation of CD8+ T cells during BVDV infection, especially NCP BVDV infection, or whether PD-1 blockade and AA exert a synergistic effect in regulating CD8+ T cell antiviral activities. In this study, we found that BVDV infection significantly decreased AA levels in serum and CD8+ T cells in a BALB/c mouse model. Interestingly, AA supplementation dramatically downregulated PD-1 expression, restored the activation and proliferation of CD8+ T cells, inhibited viral replication, ameliorated BVDV-induced histological lesions, and upregulated the expression of CD25 and p-ERK. More importantly, we also found a synergistic effect of PD-1 blockade with AA in restoring the activation and proliferation of CD8+ T cells during CP BVDV infection. However, during NCP BVDV infection, a synergistic effect of PD-1 blockade and AA led to the inhibition of viral replication and the promotion of IFN-γ production. Our findings provided new insights into the immunopathological mechanisms of BVDV and the potential value of anti-viral strategies based on AA treatment alone or in combination with PD-1 blockade.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Engineering Research Center of Prevention and Control of Cattle Diseases, Daqing, Heilongjiang Province 163319, China.
| | - Zhibo Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Linru He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Yue Liang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Meng Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Meiqi Dong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Zehao Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Engineering Research Center of Prevention and Control of Cattle Diseases, Daqing, Heilongjiang Province 163319, China.
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Engineering Research Center of Prevention and Control of Cattle Diseases, Daqing, Heilongjiang Province 163319, China.
| | - Jianjun Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Engineering Research Center of Prevention and Control of Cattle Diseases, Daqing, Heilongjiang Province 163319, China.
| |
Collapse
|
2
|
Vassilopoulou E, Venter C, Roth-Walter F. Malnutrition and Allergies: Tipping the Immune Balance towards Health. J Clin Med 2024; 13:4713. [PMID: 39200855 PMCID: PMC11355500 DOI: 10.3390/jcm13164713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Malnutrition, which includes macro- and micronutrient deficiencies, is common in individuals with allergic dermatitis, food allergies, rhinitis, and asthma. Prolonged deficiencies of proteins, minerals, and vitamins promote Th2 inflammation, setting the stage for allergic sensitization. Consequently, malnutrition, which includes micronutrient deficiencies, fosters the development of allergies, while an adequate supply of micronutrients promotes immune cells with regulatory and tolerogenic phenotypes. As protein and micronutrient deficiencies mimic an infection, the body's innate response limits access to these nutrients by reducing their dietary absorption. This review highlights our current understanding of the physiological functions of allergenic proteins, iron, and vitamin A, particularly regarding their reduced bioavailability under inflamed conditions, necessitating different dietary approaches to improve their absorption. Additionally, the role of most allergens as nutrient binders and their involvement in nutritional immunity will be briefly summarized. Their ability to bind nutrients and their close association with immune cells can trigger exaggerated immune responses and allergies in individuals with deficiencies. However, in nutrient-rich conditions, these allergens can also provide nutrients to immune cells and promote health.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Department of Clinical Sciences and Community Health, Univertià degli Studi die Milano, 20122 Milan, Italy
| | - Carina Venter
- Pediatrics, Section of Allergy & Immunology, University of Colorado Denver School of Medicine, Children’s Hospital Colorado, Box B518, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Franziska Roth-Walter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, 1210 Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Noronha NY, Noma IHY, Fernandes Ferreira R, Rodrigues GDS, Martins LDS, Watanabe LM, Pinhel MADS, Mello Schineider I, Diani LM, Carlos D, Nonino CB. Association between the relative abundance of phyla actinobacteria, vitamin C consumption, and DNA methylation of genes linked to immune response pathways. Front Nutr 2024; 11:1373499. [PMID: 38638293 PMCID: PMC11024951 DOI: 10.3389/fnut.2024.1373499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction There is an emerging body of evidence that vitamin C consumption can modulate microbiota abundance and can also impact DNA methylation in the host, and this could be a link between diet, microbiota, and immune response. The objective of this study was to evaluate common CpG sites associated with both vitamin C and microbiota phyla abundance. Methods Six healthy women participated in this cohort study. They were divided into two groups, according to the amount of vitamin C they ingested. Ingestion was evaluated using the 24-h recall method. The Illumina 450 k BeadChip was used to evaluate DNA methylation. Singular value decomposition analyses were used to evaluate the principal components of this dataset. Associations were evaluated using the differentially methylated position function from the Champ package for R Studio. Results and discussion The group with higher vitamin C (HVC) ingestion also had a higher relative abundance of Actinobacteria. There was a positive correlation between those variables (r = 0.84, p = 0.01). The HVC group also had higher granulocytes, and regarding DNA methylation, there were 207 CpG sites commonly related to vitamin C ingestion and the relative abundance of Actinobacteria. From these sites, there were 13 sites hypomethylated and 103 hypermethylated. The hypomethylated targets involved the respective processes: immune function, glucose homeostasis, and general cellular metabolism. The hypermethylated sites were also enriched in immune function-related processes, and interestingly, more immune responses against pathogens were detected. These findings contribute to understanding the interaction between nutrients, microbiota, DNA methylation, and the immune response.
Collapse
Affiliation(s)
- Natália Yumi Noronha
- Department of Gynecology and Obstetrics, University Medical Center Groningen, Groningen, Netherlands
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabella Harumi Yonehara Noma
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rafael Fernandes Ferreira
- Department of Molecular Biology, Sao Jose do Rio Preto Medical School, São José do Rio Preto, Brazil
| | - Guilherme da Silva Rodrigues
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Luzania dos Santos Martins
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Lígia Moriguchi Watanabe
- Faculty of Medicine of Ribeirao Preto, Department of Health Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcela Augusta de Souza Pinhel
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
- Department of Molecular Biology, Sao Jose do Rio Preto Medical School, São José do Rio Preto, Brazil
| | - Isabelle Mello Schineider
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Luísa Maria Diani
- Faculty of Medicine of Ribeirão Preto, Department of Internal Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Faculty of Medicine of Ribeirão Preto, Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Carla Barbosa Nonino
- Faculty of Medicine of Ribeirao Preto, Department of Health Sciences, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Khan GJ, Imtiaz A, Wang W, Duan H, Cao H, Zhai K, He N. Thymus as Incontrovertible Target of Future Immune Modulatory Therapeutics. Endocr Metab Immune Disord Drug Targets 2024; 24:1587-1610. [PMID: 38347798 DOI: 10.2174/0118715303283164240126104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 10/22/2024]
Abstract
Thymus plays a crucial role in cellular immunity by acting as a warehouse for proliferating and differentiating lymphocytes. Thymic stromal cells educate T-cells to differentiate self from non-self antigens while nurse cells and thymoproteasome play a major role in the maturation and differentiation of T-cells. The thymic conditions dictate T-cells to cope with the risk of cancer development. A study was designed to demonstrate potential mechanisms behind the failure to eliminate tumors and impaired immune surveillance as well as the impact of delay in thymus regression on cancer and autoimmune disorders. Scientific literature from Pubmed; Scopus; WOS; JSTOR; National Library of Medicine Bethesda, Maryland; The New York Academy of Medicine; Library of Speech Rehabilitation, NY; St. Thomas' Hospital Library; The Wills Library of Guys Hospital; Repository of Kings College London; and Oxford Academic repository was explored for pathological, physiological, immunological and toxicological studies of thymus. Studies have shown that systemic chemotherapy may lead to micro inflammatory environment within thymus where conventionally and dynamically metastasized dormant cells seek refuge. The malfunctioning of the thymus and defective T and Treg cells, bypassing negative selection, contributes to autoimmune disorders, while AIRE and Fezf2 play significant roles in thymic epithelial cell solidity. Different vitamins, TCM, and live cell therapy are effective therapeutics. Vitamin A, C, D, and E, selenium and zinc, cinobufagin and dietary polysaccharides, and glandular extracts and live cell injections have strong potential to restore immune system function and thymus health. Moreover, the relationship between different ages/ stages of thymus and their corresponding T-cell mediated anti-tumor immune response needs further exploration.
Collapse
Affiliation(s)
- Ghulam Jilany Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Abeeha Imtiaz
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
| |
Collapse
|
5
|
Yang J, Liu J, Liang J, Li F, Wang W, Chen H, Xie X. Epithelial-mesenchymal transition in age-associated thymic involution: Mechanisms and therapeutic implications. Ageing Res Rev 2023; 92:102115. [PMID: 37922996 DOI: 10.1016/j.arr.2023.102115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The thymus is a critical immune organ with endocrine and immune functions that plays important roles in the physiological and pathological processes of the body. However, with aging, the thymus undergoes degenerative changes leading to decreased production and output of naive T cells and the secretion of thymic hormones and related cytokines, thereby promoting the occurrence and development of various age-associated diseases. Therefore, identifying essential processes that regulate age-associated thymic involution is crucial for long-term control of thymic involution and age-associated disease progression. Epithelial-mesenchymal transition (EMT) is a well-established process involved in organ aging and functional impairment through tissue fibrosis in several organs, such as the heart and kidney. In the thymus, EMT promotes fibrosis and potentially adipogenesis, leading to thymic involution. This review focuses on the factors involved in thymic involution, including oxidative stress, inflammation, and hormones, from the perspective of EMT. Furthermore, current interventions for reversing age-associated thymic involution by targeting EMT-associated processes are summarized. Understanding the key mechanisms of thymic involution through EMT as an entry point may promote the development of new therapies and clinical agents to reverse thymic involution and age-associated disease.
Collapse
Affiliation(s)
- Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Fan Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wenwen Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Mas-Bargues C. Mitochondria pleiotropism in stem cell senescence: Mechanisms and therapeutic approaches. Free Radic Biol Med 2023; 208:657-671. [PMID: 37739140 DOI: 10.1016/j.freeradbiomed.2023.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Aging is a complex biological process characterized by a progressive decline in cellular and tissue function, ultimately leading to organismal aging. Stem cells, with their regenerative potential, play a crucial role in maintaining tissue homeostasis and repair throughout an organism's lifespan. Mitochondria, the powerhouses of the cell, have emerged as key players in the aging process, impacting stem cell function and contributing to age-related tissue dysfunction. Here are discuss the mechanisms through which mitochondria influence stem cell fate decisions, including energy production, metabolic regulation, ROS signalling, and epigenetic modifications. Therefore, this review highlights the role of mitochondria in driving stem cell senescence and the subsequent impact on tissue function, leading to overall organismal aging and age-related diseases. Finally, we explore potential anti-aging therapies targeting mitochondrial health and discuss their implications for promoting healthy aging. This comprehensive review sheds light on the critical interplay between mitochondrial function, stem cell senescence, and organismal aging, offering insights into potential strategies for attenuating age-related decline and promoting healthy longevity.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
7
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
8
|
Wang F, He MM, Xiao J, Zhang YQ, Yuan XL, Fang WJ, Zhang Y, Wang W, Hu XH, Ma ZG, Yao YC, Zhuang ZX, Zhou FX, Ying JE, Yuan Y, Zou QF, Guo ZQ, Wu XY, Jin Y, Mai ZJ, Wang ZQ, Qiu H, Guo Y, Shi SM, Chen SZ, Luo HY, Zhang DS, Wang FH, Li YH, Xu RH. A Randomized, Open-Label, Multicenter, Phase 3 Study of High-Dose Vitamin C Plus FOLFOX ± Bevacizumab versus FOLFOX ± Bevacizumab in Unresectable Untreated Metastatic Colorectal Cancer (VITALITY Study). Clin Cancer Res 2022; 28:4232-4239. [PMID: 35929990 PMCID: PMC9527503 DOI: 10.1158/1078-0432.ccr-22-0655] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/14/2022] [Accepted: 08/02/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To compare the efficacy and safety of high-dose vitamin C plus FOLFOX ± bevacizumab versus FOLFOX ± bevacizumab as first-line treatment in patients with metastatic colorectal cancer (mCRC). PATIENTS AND METHODS Between 2017 and 2019, histologically confirmed patients with mCRC (n = 442) with normal glucose-6-phosphate dehydrogenase status and no prior treatment for metastatic disease were randomized (1:1) into a control (FOLFOX ± bevacizumab) and an experimental [high-dose vitamin C (1.5 g/kg/d, intravenously for 3 hours from D1 to D3) plus FOLFOX ± bevacizumab] group. Randomization was based on the primary tumor location and bevacizumab prescription. RESULTS The progression-free survival (PFS) of the experimental group was not superior to the control group [median PFS, 8.6 vs. 8.3 months; HR, 0.86; 95% confidence interval (CI), 0.70-1.05; P = 0.1]. The objective response rate (ORR) and overall survival (OS) of the experimental and control groups were similar (ORR, 44.3% vs. 42.1%; P = 0.9; median OS, 20.7 vs. 19.7 months; P = 0.7). Grade 3 or higher treatment-related adverse events occurred in 33.5% and 30.3% of patients in the experimental and control groups, respectively. In prespecified subgroup analyses, patients with RAS mutation had significantly longer PFS (median PFS, 9.2 vs. 7.8 months; HR, 0.67; 95% CI, 0.50-0.91; P = 0.01) with vitamin C added to chemotherapy than with chemotherapy only. CONCLUSIONS High-dose vitamin C plus chemotherapy failed to show superior PFS compared with chemotherapy in patients with mCRC as first-line treatment but may be beneficial in patients with mCRC harboring RAS mutation.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Corresponding Authors: Rui-Hua Xu, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China. Phone: 86-20-8734-3468; E-mail: ; and Feng-Hua Wang,
| | - Ming-Ming He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Jian Xiao
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yan-Qiao Zhang
- Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Xiang-Lin Yuan
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei-Jia Fang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yan Zhang
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wei Wang
- The First People's Hospital of Foshan, Foshan, P.R. China
| | - Xiao-Hua Hu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Zhi-Gang Ma
- Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Yi-Chen Yao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zhi-Xiang Zhuang
- The Second Affiliated Hospital of Soochow University, Soochow, P.R. China
| | - Fu-Xiang Zhou
- Zhongnan Hospital of Wuhan University, Hubei Clinical Cancer Study Center, Wuhan, P.R. China
| | - Jie-Er Ying
- Zhejiang Cancer Hospital, Hangzhou, P.R. China
| | - Ying Yuan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qing-Feng Zou
- Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Zeng-Qing Guo
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Xiang-Yuan Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zong-Jiong Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zhi-Qiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Hong Qiu
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ying Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Si-Mei Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Shuang-Zhen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Hui-Yan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Dong-Sheng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Feng-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Yu-Hong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Corresponding Authors: Rui-Hua Xu, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China. Phone: 86-20-8734-3468; E-mail: ; and Feng-Hua Wang,
| |
Collapse
|
9
|
Toan NK, Kim SA, Ahn SG. Ascorbic acid induces salivary gland function through TET2/acetylcholine receptor signaling in aging SAMP1/Klotho (-/-) mice. Aging (Albany NY) 2022; 14:6028-6046. [PMID: 35951355 PMCID: PMC9417236 DOI: 10.18632/aging.204213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
Abstract
Aging affects salivary gland function and alters saliva production and excretion. This study aimed to investigate whether ascorbic acid can be used to treat salivary gland dysfunction in an extensive aging mouse model of SAMP1/Klotho-/- mice. In our previous study, we found that ascorbic acid biosynthesis was disrupted in the salivary glands of SAMP1/Klotho (-/-) mice subjected to metabolomic profiling analysis. In SAMP1/Klotho -/- mice, daily supplementation with ascorbic acid (100 mg/kg for 18 days) significantly increased saliva secretion compared with the control. The expression of salivary gland functional markers (α-amylase, ZO-1, and Aqua5) is upregulated. Additionally, acetylcholine and/or beta-adrenergic receptors (M1AchR, M3AchR, and Adrb1) were increased by ascorbic acid in the salivary glands of aging mice, and treatment with ascorbic acid upregulated the expression of acetylcholine receptors through the DNA demethylation protein TET2. These results suggest that ascorbic acid could overcome the lack caused by dysfunction of ascorbic acid biosynthesis and induce the recovery of salivary gland function.
Collapse
Affiliation(s)
- Nguyen Khanh Toan
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Soo-A Kim
- Department of Biochemistry, School of Oriental Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
10
|
Bisset ES, Howlett SE. The Use of Dietary Supplements and Amino Acid Restriction Interventions to Reduce Frailty in Pre-Clinical Models. Nutrients 2022; 14:2806. [PMID: 35889763 PMCID: PMC9316446 DOI: 10.3390/nu14142806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Frailty is a state of accelerated aging that increases susceptibility to adverse health outcomes. Due to its high societal and personal costs, there is growing interest in discovering beneficial interventions to attenuate frailty. Many of these interventions involve the use of lifestyle modifications such as dietary supplements. Testing these interventions in pre-clinical models can facilitate our understanding of their impact on underlying mechanisms of frailty. We conducted a narrative review of studies that investigated the impact of dietary modifications on measures of frailty or overall health in rodent models. These interventions include vitamin supplements, dietary supplements, or amino acid restriction diets. We found that vitamins, amino acid restriction diets, and dietary supplements can have beneficial effects on frailty and other measures of overall health in rodent models. Mechanistic studies show that these effects are mediated by modifying one or more mechanisms underlying frailty, in particular effects on chronic inflammation. However, many interventions do not measure frailty directly and most do not investigate effects in both sexes, which limits their applicability. Examining dietary interventions in animal models allows for detailed investigation of underlying mechanisms involved in their beneficial effects. This may lead to more successful, translatable interventions to attenuate frailty.
Collapse
Affiliation(s)
- Elise S. Bisset
- Department of Pharmacology, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada;
| | - Susan E. Howlett
- Department of Pharmacology, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada;
- Department of Medicine (Geriatric Medicine), Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
11
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
12
|
Sharma R. Bioactive food components for managing cellular senescence in aging and disease: A critical appraisal and perspectives. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Kim HK, Park CY, Han SN. Nutrient modulation of viral infection-implications for COVID-19. Nutr Res Pract 2021; 15:S1-S21. [PMID: 34909129 PMCID: PMC8636392 DOI: 10.4162/nrp.2021.15.s1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 11/04/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has put focus on the importance of a healthy immune system for recovery from infection and effective response to vaccination. Several nutrients have been under attention because their nutritional statuses showed associations with the incidence or severity of COVID-19 or because they affect several aspects of immune function. Nutritional status, immune function, and viral infection are closely interrelated. Undernutrition impairs immune function, which can lead to increased susceptibility to viral infection, while viral infection itself can result in changes in nutritional status. Here, we review the roles of vitamins A, C, D, and E, and zinc, iron, and selenium in immune function and viral infection and their relevance to COVID-19.
Collapse
Affiliation(s)
- Hye-Keong Kim
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon, Korea
| | - Chan Yoon Park
- Department of Food and Nutrition, College of Health Science, The University of Suwon, Hwaseong, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
14
|
Werlen G, Jain R, Jacinto E. MTOR Signaling and Metabolism in Early T Cell Development. Genes (Basel) 2021; 12:genes12050728. [PMID: 34068092 PMCID: PMC8152735 DOI: 10.3390/genes12050728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) controls cell fate and responses via its functions in regulating metabolism. Its role in controlling immunity was unraveled by early studies on the immunosuppressive properties of rapamycin. Recent studies have provided insights on how metabolic reprogramming and mTOR signaling impact peripheral T cell activation and fate. The contribution of mTOR and metabolism during early T-cell development in the thymus is also emerging and is the subject of this review. Two major T lineages with distinct immune functions and peripheral homing organs diverge during early thymic development; the αβ- and γδ-T cells, which are defined by their respective TCR subunits. Thymic T-regulatory cells, which have immunosuppressive functions, also develop in the thymus from positively selected αβ-T cells. Here, we review recent findings on how the two mTOR protein complexes, mTORC1 and mTORC2, and the signaling molecules involved in the mTOR pathway are involved in thymocyte differentiation. We discuss emerging views on how metabolic remodeling impacts early T cell development and how this can be mediated via mTOR signaling.
Collapse
|
15
|
Reis M, Willis GR, Fernandez-Gonzalez A, Yeung V, Taglauer E, Magaletta M, Parsons T, Derr A, Liu X, Maehr R, Kourembanas S, Mitsialis SA. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Front Immunol 2021; 12:640595. [PMID: 33936055 PMCID: PMC8082426 DOI: 10.3389/fimmu.2021.640595] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
Treating premature infants with high oxygen is a routine intervention in the context of neonatal intensive care. Unfortunately, the increase in survival rates is associated with various detrimental sequalae of hyperoxia exposure, most notably bronchopulmonary dysplasia (BPD), a disease of disrupted lung development. The effects of high oxygen exposure on other developing organs of the infant, as well as the possible impact such disrupted development may have on later life remain poorly understood. Using a neonatal mouse model to investigate the effects of hyperoxia on the immature immune system we observed a dramatic involution of the thymic medulla, and this lesion was associated with disrupted FoxP3+ regulatory T cell generation and T cell autoreactivity. Significantly, administration of mesenchymal stromal cell-derived extracellular vesicles (MEx) restored thymic medullary architecture and physiological thymocyte profiles. Using single cell transcriptomics, we further demonstrated preferential impact of MEx treatment on the thymic medullary antigen presentation axis, as evidenced by enrichment of antigen presentation and antioxidative-stress related genes in dendritic cells (DCs) and medullary epithelial cells (mTECs). Our study demonstrates that MEx treatment represents a promising restorative therapeutic approach for oxygen-induced thymic injury, thus promoting normal development of both central tolerance and adaptive immunity.
Collapse
Affiliation(s)
- Monica Reis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Gareth R Willis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vincent Yeung
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Elizabeth Taglauer
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Margaret Magaletta
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Teagan Parsons
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Alan Derr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Xianlan Liu
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rene Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Sugimoto Y, Endo D, Aratani Y. Mice Deficient in NOX2 Display Severe Thymic Atrophy, Lymphopenia, and Reduced Lymphopoiesis in a Zymosan-Induced Model of Systemic Inflammation. Inflammation 2020; 44:371-382. [PMID: 32939668 DOI: 10.1007/s10753-020-01342-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Patients with chronic granulomatous disease (CGD) who have mutated phagocyte NADPH oxidase are susceptible to infections due to reduced reactive oxygen species production and exhibit autoimmune and inflammatory diseases in the absence of evident infection. Neutrophils and macrophages have been extensively studied since phagocyte NADPH oxidase is mainly found only in them, while the impact of its deficiency on lymphocyte cellularity is less well characterized. We showed herein a zymosan-induced systemic inflammation model that CGD mice deficient in the phagocyte NADPH oxidase gp91phox subunit (NOX2) exhibited more severe thymic atrophy associated with peripheral blood and splenic lymphopenia and reduced lymphopoiesis in the bone marrow in comparison with the wild-type mice. Conversely, the zymosan-exposed CGD mice suffered from more remarkable neutrophilic lung inflammation, circulating and splenic neutrophilia, and enhanced granulopoiesis compared with those in zymosan-exposed wild-type mice. Overall, this study provided evidence that NOX2 deficiency exhibits severe thymic atrophy and lymphopenia concomitant with enhanced neutrophilic inflammation in a zymosan-induced systemic inflammation model.
Collapse
Affiliation(s)
- Yu Sugimoto
- Graduate School of Nanobioscience, Yokohama City University, Seto 22-2, Kanazawa, Yokohama, 236-0027, Japan
| | - Daiki Endo
- Graduate School of Nanobioscience, Yokohama City University, Seto 22-2, Kanazawa, Yokohama, 236-0027, Japan
| | - Yasuaki Aratani
- Graduate School of Nanobioscience, Yokohama City University, Seto 22-2, Kanazawa, Yokohama, 236-0027, Japan.
| |
Collapse
|
17
|
Stroe AC, Oancea S. Immunostimulatory Potential of Natural Compounds and Extracts: A Review. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190301154200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proper functioning of human immune system is essential for organism survival
against infectious, toxic and oncogenic agents. The present study aimed to describe the scientific evidence
regarding the immunomodulatory properties of the main micronutrients and specific phytochemicals.
Plants of food interest have the ability to dynamically affect the immune system through
particular molecules. Plant species, type of compounds and biological effects were herein reviewed
mainly focusing on plants which are not commonly used in food supplements. Several efficient phytoproducts
showed significant advantages compared to synthetic immunomodulators, being good
candidates for the development of immunotherapeutic drugs.
Collapse
Affiliation(s)
- Andreea C. Stroe
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Ion Ratiu Street, Sibiu 550012, Romania
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Ion Ratiu Street, Sibiu 550012, Romania
| |
Collapse
|
18
|
Reider CA, Chung RY, Devarshi PP, Grant RW, Hazels Mitmesser S. Inadequacy of Immune Health Nutrients: Intakes in US Adults, the 2005-2016 NHANES. Nutrients 2020; 12:E1735. [PMID: 32531972 PMCID: PMC7352522 DOI: 10.3390/nu12061735] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
A well-functioning immune system is essential for human health and well-being. Micronutrients such as vitamins A, C, D, E, and zinc have several functions throughout the immune system, yet inadequate nutrient intakes are pervasive in the US population. A large body of research shows that nutrient inadequacies can impair immune function and weaken the immune response. Here, we present a new analysis of micronutrient usual intake estimates based on nationally representative data in 26,282 adults (>19 years) from the 2005-2016 National Health and Nutrition Examination Surveys (NHANES). Overall, the prevalence of inadequacy (% of population below estimated average requirement [EAR]) in four out of five key immune nutrients is substantial. Specifically, 45% of the U.S. population had a prevalence of inadequacy for vitamin A, 46% for vitamin C, 95% for vitamin D, 84% for vitamin E, and 15% for zinc. Dietary supplements can help address nutrient inadequacy for these immune-support nutrients, demonstrated by a lower prevalence of individuals below the EAR. Given the long-term presence and widening of nutrient gaps in the U.S.-specifically in critical nutrients that support immune health-public health measures should adopt guidelines to ensure an adequate intake of these micronutrients. Future research is needed to better understand the interactions and complexities of multiple nutrient shortfalls on immune health and assess and identify optimal levels of intake in at-risk populations.
Collapse
Affiliation(s)
- Carroll A. Reider
- Science & Technology, Pharmavite LLC, West Hills, CA 91304, USA; (R.-Y.C.); (P.P.D.); (R.W.G.); (S.H.M.)
| | | | | | | | | |
Collapse
|
19
|
Zheng S, Zheng H, Huang A, Mai L, Huang X, Hu Y, Huang Y. Piwi-interacting RNAs play a role in vitamin C-mediated effects on endothelial aging. Int J Med Sci 2020; 17:946-952. [PMID: 32308548 PMCID: PMC7163353 DOI: 10.7150/ijms.42586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
The underlying mechanisms that mediate the effects of vitamin C on endothelial cell aging are widely unknown. To investigate whether Piwi-interacting RNAs (piRNAs) are involved in this process, an endothelial aging model was induced in vitro using H2O2 in human umbilical vein endothelial cells (HUVECs) and then treated with vitamin C (VC). Untreated HUVECs without H2O2 exposure were used to serve as the negative control group. Cell cycle, cell viability, and aging-associated protein expression were assessed, and RNA sequencing was performed to reveal the piRNA profile. Functional and regulatory networks of the different piRNA target genes were predicted by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis. H2O2 induced G1 phase cell arrest, decreased cell viability, and upregulated the senescence marker p16 in HUVECs. We found that VC treatment inhibited G1 phase cell arrest, increased the number of cells in the S and G2/M phases, increased cell viability, and decreased p16 expression. The piRNA expression profiles revealed that a large proportion of piRNAs that were differentially expressed in H2O2-treated HUVECs were partly normalized by VC. Furthermore, a number of piRNAs associated with the response to VC in H2O2-treated HUVECs were linked with senescence and cell cycle-related pathways and networks. These results indicate that the ability of VC to attenuate H2O2-mediated endothelial cell senescence may be associated with changes in expression of piRNAs that are linked to the cell cycle.
Collapse
Affiliation(s)
- Sulin Zheng
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Haoxiao Zheng
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
- Second Medical College of Southern Medical University, Guangzhou, China
| | - Anqing Huang
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Linlin Mai
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Xiaohui Huang
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Yunzhao Hu
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Yuli Huang
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| |
Collapse
|
20
|
Implications of Oxidative Stress and Cellular Senescence in Age-Related Thymus Involution. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7986071. [PMID: 32089780 PMCID: PMC7025075 DOI: 10.1155/2020/7986071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
The human thymus is a primary lymphoepithelial organ which supports the production of self-tolerant T cells with competent and regulatory functions. Paradoxically, despite the crucial role that it exerts in T cell-mediated immunity and prevention of systemic autoimmunity, the thymus is the first organ of the body that exhibits age-associated degeneration/regression, termed “thymic involution.” A hallmark of this early phenomenon is a progressive decline of thymic mass as well as a decreased output of naïve T cells, thus resulting in impaired immune response. Importantly, thymic involution has been recently linked with cellular senescence which is a stress response induced by various stimuli. Accumulation of senescent cells in tissues has been implicated in aging and a plethora of age-related diseases. In addition, several lines of evidence indicate that oxidative stress, a well-established trigger of senescence, is also involved in thymic involution, thus highlighting a possible interplay between oxidative stress, senescence, and thymic involution.
Collapse
|
21
|
High dietary vitamin C intake reduces glucocorticoid-induced immunosuppression and measures of oxidative stress in vitamin C-deficient senescence marker protein 30 knockout mice. Br J Nutr 2019; 122:1120-1129. [PMID: 31647039 DOI: 10.1017/s0007114519001922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitamin C (VC) is a vital micronutrient for humans and some other mammals and also has antioxidant activity. Stress-induced elevation of glucocorticoid production is well known to cause immunosuppression. The present study evaluated the effect of high VC intake on glucocorticoid-induced immune changes in mice. Senescence marker protein 30 knockout mice with genetic VC deficiency were fed a diet containing the recommended VC content (20 mg/kg per d; 0·02 %VC group) or a high VC content (200 mg/kg per d; 0·2 %VC group) for 2 months, then dexamethasone was given by intraperitoneal injection. After administration of dexamethasone, the plasma ascorbic acid concentration decreased significantly in the 0·02 %VC group and was unchanged in wild-type C57BL/6 mice on a VC-deficient diet (wild-type group), while it was significantly higher in the 0·2 %VC group compared with the other two groups. In the 0·02 %VC and wild-type groups, dexamethasone caused a significant decrease in the cluster of differentiation (CD)4+ and CD8+ T cells among splenocytes as well as a significant decrease in IL-2, IL-12p40 and interferon-γ protein production by splenocytes and a significant decrease in T-cell proliferation among splenocytes. In the 0·2 %VC group, these dexamethasone-induced immunosuppression improved when compared with the other two groups. In addition, reduction in the intracellular levels of ascorbic acid, superoxide dismutase and glutathione in splenocytes by dexamethasone as well as elevation in thiobarbituric acid-reactive substances were significantly suppressed in the 0·2 %VC group. These findings suggest that high dietary VC intake reduces glucocorticoid-induced T-cell dysfunction by maintaining intracellular antioxidant activity.
Collapse
|
22
|
Majumdar S, Adiga V, Raghavan A, Rananaware SR, Nandi D. Comparative analysis of thymic subpopulations during different modes of atrophy identifies the reactive oxygen species scavenger, N-acetyl cysteine, to increase the survival of thymocytes during infection-induced and lipopolysaccharide-induced thymic atrophy. Immunology 2019; 157:21-36. [PMID: 30659606 DOI: 10.1111/imm.13043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
The development of immunocompetent T cells entails a complex pathway of differentiation in the thymus. Thymic atrophy occurs with ageing and during conditions such as malnutrition, infections and cancer chemotherapy. The comparative changes in thymic subsets under different modes of thymic atrophy and the mechanisms involved are not well characterized. These aspects were investigated, using mice infected with Salmonella Typhimurium, injection with lipopolysaccharide (LPS), an inflammatory but non-infectious stimulus, etoposide (Eto), a drug used to treat some cancers, and dexamethasone (Dex), a steroid used in some inflammatory diseases. The effects on the major subpopulations of thymocytes based on multicolour flow cytometry studies were, first, the CD4- CD8- double-negative (DN) cells, mainly DN2-4, were reduced with infection, LPS and Eto treatment, but not with Dex. Second, the CD8+ CD3lo immature single-positive cells (ISPs) were highly sensitive to infection, LPS and Eto, but not Dex. Third, treatment with LPS, Eto and Dex reduced all three subpopulations of CD4+ CD8+ double-positive (DP) thymocytes, i.e. DP1, DP2 and DP3, but the DP3 subset was relatively more resistant during infection. Fourth, both CD4+ and CD8+ single-positive (SP) thymocytes were lowered by Eto and Dex, but not during infection. Notably, LPS lowered CD4+ SP subsets, whereas the CD8+ SP subsets were relatively more resistant. Interestingly, the reactive oxygen species quencher, N-acetyl cysteine, greatly improved the survival of thymocytes, especially DNs, ISPs and DPs, during infection and LPS treatment. The implications of these observations for the development of potential thymopoietic drugs are discussed.
Collapse
Affiliation(s)
- Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Abinaya Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
23
|
Bischof J, Gärtner F, Zeiser K, Kunz R, Schreiner C, Hoffer E, Burster T, Knippschild U, Zimecki M. Immune Cells and Immunosenescence. Folia Biol (Praha) 2019; 65:53-63. [PMID: 31464181 DOI: 10.14712/fb2019065020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Aging is associated with progressive loss of physiological integrity, leading to impaired physical and mental functions as well as increased morbidity and mortality. With advancing age, the immune system is no longer able to adequately control autoimmunity, infections, or cancer. The abilities of the elderly to slow down undesirable effects of aging may depend on the genetic background, lifestyle, geographic region, and other presently unknown factors. Although most aspects of the immunity are constantly declining in relation to age, some features are retained, while e.g. the ability to produce high levels of cytokines, response to pathogens by increased inflammation, and imbalanced proteolytic activity are found in the elderly, and might eventually cause harm. In this context, it is important to differentiate between the effect of immunosenescence that is contributing to this decline and adaptations of the immune system that can be quickly reversed if necessary.
Collapse
Affiliation(s)
- J Bischof
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - F Gärtner
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - K Zeiser
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - R Kunz
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - C Schreiner
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - E Hoffer
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - T Burster
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan Republic
| | - U Knippschild
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - M Zimecki
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
24
|
Vitamin C and immune cell function in inflammation and cancer. Biochem Soc Trans 2018; 46:1147-1159. [PMID: 30301842 PMCID: PMC6195639 DOI: 10.1042/bst20180169] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions.
Collapse
|
25
|
Gan L, Fan H, Nie W, Guo Y. Ascorbic acid synthesis and transportation capacity in old laying hens and the effects of dietary supplementation with ascorbic acid. J Anim Sci Biotechnol 2018; 9:71. [PMID: 30305897 PMCID: PMC6166276 DOI: 10.1186/s40104-018-0284-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Background Laying hens over 75 weeks of age commonly show great declines in immunity and production performance. It is unclear whether these declines can be relieved by supplementing with ascorbic acid (AA) in feed. Two trials were conducted to investigate the synthesis and metabolism of AA in layers of different ages and the effects of dietary supplemental AA on the performance and the immune and antioxidant statuses of 78 weeks old hens. Methods In Exp. 1, equal numbers (24 hens) of 35 weeks old (Young) and 75 weeks old (Old) layers were fed the same diet without AA supplementation for 4 weeks. In Exp. 2, 360 healthy 78 weeks old laying hens were randomly assigned to 4 treatments (basal diet supplemented with 0, 0.25, 0.5, or 1 g AA/kg diet) in an 8-week feeding trial. Results The old hens tended to have decreased L-gulonolactone oxidase (GLO) synthase activity in the kidney and liver than that of the young hens (P = 0.07 and P = 0.05, respectively). Compared with the young hens, the old hens had lower hepatic antioxidant capacity allowing for the lower thioredoxin (TXN), thioredoxin reductase (TXNR) and cytochrome b5 reductase (CYB5R) gene expression (P < 0.05), whereas increased sodium-dependent vitamin C transporter (SVCT) 1 expression levels in the ileum and kidney and enhanced splenic and hepatic AA concentrations (P < 0.05). Dietary supplementation with AA significantly decreased GLO enzyme activity but increased splenic AA concentration and anti-bovine serum albumin IgG levels (P < 0.05) and tended to increase CD4+ T lymphocyte numbers (P = 0.06) in serum. Supplementation of 0.25 g AA/kg diet significantly increased hepatic total antioxidant capacity (T-AOC, P < 0.05) relative to the control group. Conclusions Laying hens could synthesize AA in both the kidney and the liver, though the GLO enzyme activities were 100 times greater in kidneys than in livers. The old laying hens had greater absorption and reabsorption capacity and higher AA retention in some tissues that did the young hens. Dietary supplementation of AA can improve the health of old layers by enhancing immunity and antioxidant capacity.
Collapse
Affiliation(s)
- Liping Gan
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Hao Fan
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Wei Nie
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yuming Guo
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
26
|
Abstract
Vitamin C or ascorbic acid (AA) is implicated in many biological processes and has been proposed as a supplement for various conditions, including cancer. In this review, we discuss the effects of AA on the development and function of lymphocytes. This is important in the light of cancer treatment, as the immune system needs to regenerate following chemotherapy or stem cell transplantation, while cancer patients are often AA-deficient. We focus on lymphocytes, as these white blood cells are the slowest to restore, rendering patients susceptible to often lethal infections. T lymphocytes mediate cellular immunity and have been most extensively studied in the context of AA biology. In vitro studies demonstrate that T cell development requires AA, while AA also enhances T cell proliferation and may influence T cell function. There are limited and opposing data on the effects of AA on B lymphocytes that mediate humoral immunity. However, AA enhances the proliferation of NK cells, a group of cytotoxic innate lymphocytes. The influence of AA on natural killer (NK) cell function is less clear. In summary, an increasing body of evidence indicates that AA positively influences lymphocyte development and function. Since AA is a safe and cheap nutritional supplement, it is worthwhile to further explore its potential benefits for immune reconstitution of cancer patients treated with immunotoxic drugs.
Collapse
|
27
|
Oyarce K, Campos-Mora M, Gajardo-Carrasco T, Pino-Lagos K. Vitamin C Fosters the In Vivo Differentiation of Peripheral CD4 + Foxp3 - T Cells into CD4 + Foxp3 + Regulatory T Cells but Impairs Their Ability to Prolong Skin Allograft Survival. Front Immunol 2018; 9:112. [PMID: 29479348 PMCID: PMC5811461 DOI: 10.3389/fimmu.2018.00112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are critical players of immunological tolerance due to their ability to suppress effector T cell function thereby preventing transplant rejection and autoimmune diseases. During allograft transplantation, increases of both Treg expansion and generation, as well as their stable function, are needed to ensure allograft acceptance; thus, efforts have been made to discover new molecules that enhance Treg-mediated tolerance and to uncover their mechanisms. Recently, vitamin C (VitC), known to regulate T cell maturation and dendritic cell-mediated T cell polarization, has gained attention as a relevant epigenetic remodeler able to enhance and stabilize the expression of the Treg master regulator gene Foxp3, positively affecting the generation of induced Tregs (iTregs). In this study, we measured VitC transporter (SVCT2) expression in different immune cell populations, finding Tregs as one of the cell subset with the highest levels of SVCT2 expression. Unexpectedly, we found that VitC treatment reduces the ability of natural Tregs to suppress effector T cell proliferation in vitro, while having an enhancer effect on TGFβ-induced Foxp3+ Tregs. On the other hand, VitC increases iTregs generation in vitro and in vivo, however, no allograft tolerance was achieved in animals orally treated with VitC. Lastly, Tregs isolated from the draining lymph nodes of VitC-treated and transplanted mice also showed impaired suppression capacity ex vivo. Our results indicate that VitC promotes the generation and expansion of Tregs, without exhibiting CD4+ T cell-mediated allograft tolerance. These observations highlight the relevance of the nutritional status of patients when immune regulation is needed.
Collapse
Affiliation(s)
- Karina Oyarce
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Tania Gajardo-Carrasco
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
28
|
Majumdar S, Nandi D. Thymic Atrophy: Experimental Studies and Therapeutic Interventions. Scand J Immunol 2017; 87:4-14. [PMID: 28960415 DOI: 10.1111/sji.12618] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
The thymus is essential for T cell development and maturation. It is extremely sensitive to atrophy, wherein loss in cellularity of the thymus and/or disruption of the thymic architecture occur. This may lead to lower naïve T cell output and limited TCR diversity. Thymic atrophy is often associated with ageing. What is less appreciated is that proper functioning of the thymus is critical for reduction in morbidity and mortality associated with various clinical conditions including infections and transplantation. Therefore, therapeutic interventions which possess thymopoietic potential and lower thymic atrophy are required. These treatments enhance thymic output, which is a vital factor in generating favourable outcomes in clinical conditions. In this review, experimental studies on thymic atrophy in rodents and clinical cases where the thymus atrophies are discussed. In addition, mechanisms leading to thymic atrophy during ageing as well as during various stress conditions are reviewed. Therapies such as zinc supplementation, IL7 administration, leptin treatment, keratinocyte growth factor administration and sex steroid ablation during thymic atrophy involving experiments in animals and various clinical scenarios are reviewed. Interventions that have been used across different scenarios to reduce the extent of thymic atrophy and enhance its output are discussed. This review aims to speculate on the roles of combination therapies, which by acting additively or synergistically may further alleviate thymic atrophy and boost its function, thereby strengthening cellular T cell responses.
Collapse
Affiliation(s)
- S Majumdar
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| | - D Nandi
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
29
|
Vitamin C, Aging and Alzheimer's Disease. Nutrients 2017; 9:nu9070670. [PMID: 28654021 PMCID: PMC5537785 DOI: 10.3390/nu9070670] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence in mice models of accelerated senescence indicates a rescuing role of ascorbic acid in premature aging. Supplementation of ascorbic acid appeared to halt cell growth, oxidative stress, telomere attrition, disorganization of chromatin, and excessive secretion of inflammatory factors, and extend lifespan. Interestingly, ascorbic acid (AA) was also found to positively modulate inflamm-aging and immunosenescence, two hallmarks of biological aging. Moreover, ascorbic acid has been shown to epigenetically regulate genome integrity and stability, indicating a key role of targeted nutrition in healthy aging. Growing in vivo evidence supports the role of ascorbic acid in ameliorating factors linked to Alzheimer’s disease (AD) pathogenesis, although evidence in humans yielded equivocal results. The neuroprotective role of ascorbic acid not only relies on the general free radical trapping, but also on the suppression of pro-inflammatory genes, mitigating neuroinflammation, on the chelation of iron, copper, and zinc, and on the suppression of amyloid-beta peptide (Aβ) fibrillogenesis. Epidemiological evidence linking diet, one of the most important modifiable lifestyle factors, and risk of Alzheimer's disease is rapidly increasing. Thus, dietary interventions, as a way to epigenetically modulate the human genome, may play a role in the prevention of AD. The present review is aimed at providing an up to date overview of the main biological mechanisms that are associated with ascorbic acid supplementation/bioavailability in the process of aging and Alzheimer’s disease. In addition, we will address new fields of research and future directions.
Collapse
|