1
|
Świeca M, Reguła J, Molska M, Jarocki P, Murat J, Pytka M, Wessely-Szponder J. Adzuki and Mung Bean Sprouts Enriched with Probiotic Lactiplantibacillus plantarum 299v Improve Body Mass Gain and Antioxidant Status and Reduce the Undesirable Enzymatic Activity of Microbiota in Healthy Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:270-276. [PMID: 38358639 DOI: 10.1007/s11130-024-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Introducing and establishing new food requires a detailed evaluation of its safety, nutritional value and functionality, thus the control and probiotic-rich adzuki and mung bean sprouts were studied in an in vivo rats model. However, the total feed intake did not differ significantly between the groups, the highest body weight gain and body weight change were recorded in the control AIN diet. At the same time, the addition of legume sprouts caused a reduction of these parameters (up to 25% in the variant with probiotic-rich adzuki bean sprouts). There was no significant effect on serum morphology, except white blood cells (ca. 20% reduction in the control sprout-supplemented diets). Serum and liver antiradical properties were significantly elevated by consuming mung bean sprouts (no effect of the probiotics). The faecal lactic acid bacteria were already increased by the control sprouts (a 2.8- and 2.1-fold increase for adzuki and mung bean sprouts, respectively). The probiotic-rich sprouts further improved this parameter. The diets enriched with mung bean sprouts significantly decreased the urease (by ca. 65%) and β-glucuronidase activities (by ca. 30%). All the tested diets caused also a significant reduction of faecal tryptophanase activity (the effect was intensified by Lactiplantibacillus plantarum 299v). The functional components did not affect negatively the nutritional parameters and blood morphological characteristics. They improved also the antioxidant potential and significantly decreased the activities of colon cancer-related enzymes (urease and tryptophanase). The results confirmed that these new probiotic carriers may be a valuable, safe and functional element of a healthy diet.
Collapse
Affiliation(s)
- Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland.
| | - Julita Reguła
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego Str. 31, Poznań, 60-624, Poland
| | - Marta Molska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego Str. 31, Poznań, 60-624, Poland
- Department of Dietetics, Faculty of Physical Culture in Gorzów Wlkp, Poznan University of Physical Education, Estkowskiego 13, Gorzów Wielkopolski, 66-400, Poland
| | - Piotr Jarocki
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Jakub Murat
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland
| | - Monika Pytka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, Lublin, 20-033, Poland
| |
Collapse
|
2
|
Jiang C, Li S, Su H, Zhou N, Yao Y. Kidney Bean Protein Prevents High-Fat and High-Fructose Diet-Induced Obesity, Cognitive Impairment, and Disruption of Gut Microbiota Composition. Foods 2024; 13:1718. [PMID: 38890944 PMCID: PMC11171623 DOI: 10.3390/foods13111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
A long-term intake of a high-fat and high-fructose diet (HFFD), even a high-fat, high-fructose but low-protein diet (HFFD + LP), could cause obesity associated with cognitive impairments. In the present study, rats were subjected to a normal diet (ND), an HFFD diet, an HFFD + LP diet, and an HFFD with kidney bean protein (KP) diet for 8 weeks to evaluate the effect of KP on HFFD- or HFFD + LP-induced obesity and cognitive impairment. The results demonstrated that compared with the HFFD diet, KP administration significantly decreased the body weight by 7.7% and the serum Angiotensin-Converting Enzyme 2 (ACE-2) and Insulin-like Growth Factor 1 (IGF-1) levels by 14.4% and 46.8%, respectively (p < 0.05). In addition, KP suppressed HFFD-induced cognitive impairment, which was evidenced by 8.7% less time required to pass the water maze test. The 16s RNA analysis of the colonic contents showed that the relative abundance of Bifidobacterium, Butyricimonas, and Alloprevotella was increased by KP by 5.9, 44.2, and 79.2 times. Additionally, KP supplementation primarily affected the choline metabolic pathway in the liver, and the synthesis and functional pathway of neurotransmitters in the brain, thereby improving obesity and cognitive function in rats.
Collapse
Affiliation(s)
- Chunyang Jiang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China; (C.J.); (S.L.); (H.S.)
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China;
| | - Shiyu Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China; (C.J.); (S.L.); (H.S.)
| | - Hang Su
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China; (C.J.); (S.L.); (H.S.)
| | - Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China;
| | - Yang Yao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China; (C.J.); (S.L.); (H.S.)
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China;
| |
Collapse
|
3
|
In Vivo Nutritional Assessment of the Microalga Nannochloropsis gaditana and Evaluation of the Antioxidant and Antiproliferative Capacity of Its Functional Extracts. Mar Drugs 2022; 20:md20050318. [PMID: 35621969 PMCID: PMC9147351 DOI: 10.3390/md20050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Nannochloropsis gaditana is a microalga with interesting nutritional and functional value due to its high content of protein, polyunsaturated fatty acids, and bioactive compounds. However, the hardness of its cell wall prevents accessibility to these components. This work aimed to study the effect of a treatment to increase the fragility of the cell wall on the bioavailability of its nutrients and functional compounds. The antioxidant and antiproliferative capacity of functional extracts from treated and untreated N. gaditana was assessed, and the profile of bioactive compounds was characterized. Furthermore, to study the effect of treatment on its nutrient availability and functional capacity, an in vivo experiment was carried out using a rat experimental model and a 20% dietary inclusion level of microalgae. Functional extracts from treated N. gaditana exhibited higher antioxidant activity than the untreated control. Furthermore, the treated microalga induced hypoglycemic action, higher nitrogen digestibility, and increased hepatic antioxidant activity. In conclusion, N. gaditana has interesting hepatoprotective, antioxidant, and anti-inflammatory potential, thus proving itself an ideal functional food candidate, especially if the microalga is treated to increase the fragility of its cell wall before consumption.
Collapse
|
4
|
Improvement of glycemic indices by a hypocaloric legume-based DASH diet in adults with type 2 diabetes: a randomized controlled trial. Eur J Nutr 2022; 61:3037-3049. [DOI: 10.1007/s00394-022-02869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 03/08/2022] [Indexed: 11/04/2022]
|
5
|
Mefleh M, Pasqualone A, Caponio F, Faccia M. Legumes as basic ingredients in the production of dairy-free cheese alternatives: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:8-18. [PMID: 34453343 PMCID: PMC9293078 DOI: 10.1002/jsfa.11502] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
Research into dairy-free alternative products, whether plant-based or cell-based, is growing fast and the food industry is facing a new challenge of creating innovative, nutritious, accessible, and natural dairy-free cheese alternatives. The market demand for these products is continuing to increase owing to more people choosing to reduce or eliminate meat and dairy products from their diet for health, environmental sustainability, and/or ethical reasons. This review investigates the current status of dairy product alternatives. Legume proteins have good technological properties and are cheap, which gives them a strong commercial potential to be used in plant-based cheese-like products. However, few legume proteins have been explored in the formulation, development, and manufacture of a fully dairy-free cheese because of their undesirable properties: heat stable anti-nutritional factors and a beany flavor. These can be alleviated by novel or traditional and economical techniques. The improvement and diversification of the formulation of legume-based cheese alternatives is strongly suggested as a low-cost step towards more sustainable food chains. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marina Mefleh
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| | - Michele Faccia
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| |
Collapse
|
6
|
Lupin γ-conglutin protects against cell death induced by oxidative stress and lipotoxicity, but transiently inhibits in vitro insulin secretion by increasing K ATP channel currents. Int J Biol Macromol 2021; 187:76-90. [PMID: 34280449 DOI: 10.1016/j.ijbiomac.2021.07.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
Lupin γ-conglutin beneficially modulates glycemia, but whether it protects against oxidative and lipotoxic damage remains unknown. Here, we studied the effects of γ-conglutin on cell death provoked by hydrogen peroxide and palmitate in HepG2 hepatocytes and insulin-producing MIN6 cells, and if a modulation of mitochondrial potential and reactive oxygen species (ROS) levels was involved. We also investigated how γ-conglutin influences insulin secretion and electrical activity of β-cells. The increased apoptosis of HepG2 cells exposed to hydrogen peroxide was prevented by γ-conglutin, and the viability and ROS content in γ-conglutin-treated cells was similar to that of non-exposed cells. Additionally, γ-conglutin partially protected MIN6 cells against hydrogen peroxide-induced death. This was associated with a marked reduction in ROS. No significant changes were found in the mitochondrial potential of γ-conglutin-treated cells. Besides, we observed a partial protection against lipotoxicity only in hepatocytes. Unexpectedly, we found a transient inhibition of insulin secretion, plasma membrane hyperpolarization, and higher KATP channel currents in β-cells treated with γ-conglutin. Our data show that γ-conglutin protects against cell death induced by oxidative stress or lipotoxicity by decreasing ROS and might also indicate that γ-conglutin promotes a β-cell rest, which could be useful for preventing β-cell exhaustion in chronic hyperglycemia.
Collapse
|
7
|
Mega A, Marzi L, Kob M, Piccin A, Floreani A. Food and Nutrition in the Pathogenesis of Liver Damage. Nutrients 2021; 13:nu13041326. [PMID: 33923822 PMCID: PMC8073814 DOI: 10.3390/nu13041326] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
The liver is an important organ and plays a key role in the regulation of metabolism and in the secretion, storage, and detoxification of endogenous and exogenous substances. The impact of food and nutrition on the pathophysiological mechanisms of liver injury represents a great controversy. Several environmental factors including food and micronutrients are involved in the pathogenesis of liver damage. Conversely, some xenobiotics and micronutrients have been recognized to have a protective effect in several liver diseases. This paper offers an overview of the current knowledge on the role of xenobiotics and micronutrients in liver damage.
Collapse
Affiliation(s)
- Andrea Mega
- Gastroenterology Department, Bolzano Regional Hospital, 39100 Bolzano, Italy;
- Correspondence:
| | - Luca Marzi
- Gastroenterology Department, Bolzano Regional Hospital, 39100 Bolzano, Italy;
| | - Michael Kob
- Dietetics and Clinical Nutrition Unit, Bolzano Regional Hospital, 39100 Bolzano, Italy;
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast BT9 7TS, UK;
- Department of Internal Medicine V, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, 38100 Trento, Italy
| | - Annarosa Floreani
- Scientific Institute for Research, Hospitalization and Healthcare, 37024 Negrar-Verona, Italy;
- Department Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| |
Collapse
|
8
|
Guzmán TJ, Martínez-Ayala AL, García-López PM, Soto-Luna IC, Gurrola-Díaz CM. Effect of the acute and chronic administration of Lupinus albus β-conglutin on glycaemia, circulating cholesterol, and genes potentially involved. Biomed Pharmacother 2021; 133:110969. [PMID: 33166762 DOI: 10.1016/j.biopha.2020.110969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Constituents of lupin seeds, like γ-conglutin and lupanine, have gained attention as potential complementary treatments for dysglycaemia management. Notwithstanding, the effect of other lupin components on carbohydrate metabolism, including β-conglutin protein, has received little attention. Here, we investigated the influence of the acute and chronic administration of β-conglutin on glycaemia modulation in normal and streptozotocin induced-to-diabetes rats. We analysed the liver transcriptome modulation exerted by β-conglutin in diabetes-induced rats using DNA microarrays to scout for potential molecular targets and pathways involved in this biological response. The acute administration of β-conglutin reduced the incremental area under the curve of glycaemia in normal and diabetes-induced animals. In a seven-day study with diabetic animals, glycaemia increased significantly in non-treated animals but remained unchanged in animals treated with a daily dose of β-conglutin. Total cholesterol was significantly lower at the end of the experimental period (-21.8 %, p = 0.039). The microarray and gene ontology analyses revealed several targets and pathways potentially modulated by β-conglutin treatment, including a possible down-regulation of Jun kinase activity. Moreover, our data indicate that targets related to oxidative stress, inflammation, and estrogenic activity might orchestrate these metabolic effects. In conclusion, our findings show that β-conglutin may help manage postprandial glycaemia and reduce cholesterol levels under the dysglycaemia stage. We identified and proposed new potential molecular targets for further research related to the mechanism of action of β-conglutin.
Collapse
Affiliation(s)
- Tereso J Guzmán
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México.
| | - Alma L Martínez-Ayala
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional. Yautepec, Morelos, México.
| | - Pedro M García-López
- Laboratorio de Productos Bióticos, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Zapopan, Jalisco, México.
| | - Irma C Soto-Luna
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México.
| | - Carmen M Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México.
| |
Collapse
|
9
|
Chen K, Gao C, Han X, Li D, Wang H, Lu F. Co-fermentation of lentils using lactic acid bacteria and Bacillus subtilis natto increases functional and antioxidant components. J Food Sci 2020; 86:475-483. [PMID: 32964467 DOI: 10.1111/1750-3841.15349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
We identified lentil products with both nutritional value and antioxidant capacity by studying the changes of probiotics and functional substances during single fermentation with lactic acid bacteria (LAB) or co-fermentation using LAB and Bacillus subtilis natto. After fermentation, the best growth of LAB was observed in anaerobic solid-state co-fermentation, whereby the viable counts of Lactobacillus plantarum TK9 and Lactobacillus paracasei TK1501 reached 2.77 × 109 and 2.78 × 109 CFU/g, respectively. Furthermore, the total phenol and genistin content produced by the two mixed groups, respectively, increased by 0.52- and 0.66-fold, as well as 0.63- and 0.64-fold, compared with unfermented samples. Similarly, the free amino acid content increased by 0.53- and 0.49-fold, respectively. The 50% inhibitory concentrations for the radical-scavenging against 1,1-diphenyl-2-picrylhydrazyl and α-glucosidase inhibitory activity were lower following anaerobic co-fermentation. Consistently, products of anaerobic mixed solid-state fermentation had higher oxygen radical absorbance capacity. Therefore, anaerobic solid-state co-fermentation of lentils using B. subtilis natto may promote the multiplication of LAB and enhance the antioxidant activity of fermented lentil products. PRACTICAL APPLICATION: Simple and efficient food handling is more suitable for industrial production. Co-fermentation is a good method to optimize the fermentation process. Co-culture technology has high potential in terms of functionality and antioxidant capacity.
Collapse
Affiliation(s)
- Kaiyang Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Congcong Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Xuemei Han
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Dan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Haikuan Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| |
Collapse
|
10
|
Germination Improves the Polyphenolic Profile and Functional Value of Mung Bean ( Vigna radiata L.). Antioxidants (Basel) 2020; 9:antiox9080746. [PMID: 32823688 PMCID: PMC7466151 DOI: 10.3390/antiox9080746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
The use of legumes as functional foods has gained increasing attention for the prevention and treatment of the so called non-communicable diseases that are highly prevalent worldwide. In this regard, biotechnological approaches for the enhancement of legumes' nutritional and functional value have been extensively employed. In the present study, the process of germination increased several parameters of mung bean (Vigna radiata L.) functionality, including extract yield, total phenolic content and in vitro antioxidant capacity. In addition, 3-day-germinated mung bean proved to be an interesting source of dietary essential minerals and exhibited a greater variety of polyphenolic compounds compared to raw mung bean. These properties resulted in enhanced cytoprotective features of the 3-day mung bean extracts against radical oxygen species in human colorectal (HT29) and monocyte (U937) cell lines. Moreover, the antiproliferative effects were tested in different colon cancer cell lines, T84 and drug-resistant HCT-18, as well as in a non-tumor colon CCD-18 line. Altogether, our results demonstrate that the germination process improves the mung bean's nutritional value and its potential as a functional food.
Collapse
|
11
|
Alferink LJM, Erler NS, de Knegt RJ, Janssen HLA, Metselaar HJ, Darwish Murad S, Kiefte-de Jong JC. Adherence to a plant-based, high-fibre dietary pattern is related to regression of non-alcoholic fatty liver disease in an elderly population. Eur J Epidemiol 2020; 35:1069-1085. [PMID: 32323115 PMCID: PMC7695656 DOI: 10.1007/s10654-020-00627-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023]
Abstract
Dietary lifestyle intervention is key in treating non-alcoholic fatty liver disease (NAFLD). We aimed to examine the longitudinal relation between well-established dietary patterns as well as population-specific dietary patterns and NAFLD. Participants from two subsequent visits of the Rotterdam Study were included. All underwent serial abdominal ultrasonography (median follow-up: 4.4 years) and filled in a food frequency questionnaire. Secondary causes of steatosis were excluded. Dietary data from 389 items were collapsed into 28 food groups and a posteriori dietary patterns were identified using factor analysis. Additionally, we scored three a priori dietary patterns (Mediterranean Diet Score, Dutch Dietary Guidelines and WHO-score). Logistic mixed regression models were used to examine the relation between dietary patterns and NAFLD. Analyses were adjusted for demographic, lifestyle and metabolic factors. We included 963 participants of whom 343 had NAFLD. Follow-up data was available in 737 participants. Incident NAFLD was 5% and regressed NAFLD was 30%. We identified five a posteriori dietary patterns (cumulative explained variation [R2] = 20%). The patterns were characterised as: vegetable and fish, red meat and alcohol, traditional, salty snacks and sauces, high fat dairy & refined grains pattern. Adherence to the traditional pattern (i.e. high intake of vegetable oils/stanols, margarines/butters, potatoes, whole grains and sweets/desserts) was associated with regression of NAFLD per SD increase in Z-score (0.40, 95% CI 0.15–1.00). Adherence to the three a priori patterns all showed regression of NAFLD, but only the WHO-score showed a distinct association (0.73, 95% CI 0.53–1.00). Hence, in this large elderly population, adherence to a plant-based, high-fibre and low-fat diet was related to regression of NAFLD.
Collapse
Affiliation(s)
- Louise J M Alferink
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Nicole S Erler
- Department of Biostatistics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Harry L A Janssen
- Toronto Centre of Liver Disease, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Sarwa Darwish Murad
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Jessica C Kiefte-de Jong
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
- Department of Public Health and Primary Care/LUMC Campus The Hague, Leiden University Medical Center, Postzone VO-P, Postbus 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
12
|
Abstract
Prior data on long-term association between legume consumption and hypertension risk are sparse. We aimed to evaluate whether total legume and subtype intakes prospectively associate with hypertension incidence among 8758 participants (≥30 years) from the China Health and Nutrition Survey 2004-2011. Diet was assessed by interviews combining 3-d 24-h food recalls and household food inventory weighing at each survey round. Incident hypertension was identified by self-reports or blood pressure measurements. We applied multivariable Cox regressions to estimate hazard ratios (HR) with corresponding 95 % CI for hypertension across increasing categories of cumulatively averaged legume intakes. For 35 990 person-years (median 6·0 years apiece), we documented 944 hypertension cases. After covariate adjustment, higher total legume intakes were significantly associated with lower hypertension risks, with HR comparing extreme categories being 0·56 (95 % CI 0·43, 0·71; Ptrend < 0·001). Then we found that intakes of dried legumes (HR 0·53 (95 % CI 0·43, 0·65); Ptrend < 0·001) and fresh legumes (HR 0·67 (95 % CI 0·55, 0·81); Ptrend < 0·001) were both related to decreased hypertension hazards. However, further dried legume classification revealed that negative association with hypertension substantially held for soyabean (HR 0·51 (95 % CI 0·41, 0·62); Ptrend < 0·001) but not non-soyabean intakes. In stratified analyses, the association of interest remained similar within strata by sex, BMI, physical activity, smoking and drinking status; rather, significant heterogeneity showed across age strata (Pinteraction = 0·02). Total legume consumption among the over-65s was related to a more markedly reduced hypertension risk (HR 0·47 (95 % CI 0·30, 0·73); Ptrend < 0·001). Our findings suggest an inverse association of all kinds of legume (except non-soyabean) intakes with hypertension risks.
Collapse
|
13
|
Porres JM, Constantino J, Kapravelou G, Lopez-Chaves C, Galisteo M, Aranda P, López-Jurado M, Martínez R. The combined treatment with lentil protein hydrolysate and a mixed training protocol is an efficient lifestyle intervention to manage cardiovascular and renal alterations in obese Zucker rats. Eur J Nutr 2020; 59:3473-3490. [PMID: 32030473 DOI: 10.1007/s00394-020-02181-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Functional and structural changes in cardiovascular and renal systems resulting from obesity and metabolic syndrome represent a severe risk to human health. Lifestyle interventions such as combining healthy diet with adequate physical exercise protocols are good strategies to manage these pathologies. In this research, the effects of lentil protein hydrolysate administration, combined or not with a mixed training protocol, on insulin resistance, cardiovascular and renal functionality were studied in the obese Zucker rat experimental model. METHODS Thirty-two rats (16 lean and 16 obese subdivided in sedentary and trained animals) were administered lentil protein hydrolysate, whereas another 32 subdivided in the same experimental design were administered placebo. The experiment lasted for 8 weeks. At the end of the experimental period, insulin resistance and different parameters of cardiovascular and renal functionality were measured. RESULTS The individual or combined interventions with lentil protein hydrolysate and mixed training protocol were efficient at counteracting some of the metabolic, cardiovascular and renal alterations characterizing the obese Zucker rat. Specifically, lentil protein hydrolysate decreased hyperphagia, amplitude of QRS complex, plasma ACE and selectin E expression in aorta, while increasing urinary volume and pH. Exercise showed beneficial actions on HOMA-IR, QRS amplitude, QTc interval, urinary volume, kidney weight and Mn-SOD activity. Interestingly, most of the mentioned benefits of exercise were more consistent when protein hydrolysate was also administered. CONCLUSION The interesting synergies between the two interventions assessed qualify them as alternative therapeutic strategies to treat cardiovascular and kidney diseases associated to the metabolic syndrome.
Collapse
Affiliation(s)
- Jesus M Porres
- Department of Physiology, Institute of Nutrition and Food Technology, Centre for Biomedical Research, Health and Sport Research Centre (IMUDS), Universidad de Granada, Granada, Spain
| | - Janin Constantino
- Department of Physiology, Institute of Nutrition and Food Technology, Centre for Biomedical Research, Health and Sport Research Centre (IMUDS), Universidad de Granada, Granada, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology, Centre for Biomedical Research, Health and Sport Research Centre (IMUDS), Universidad de Granada, Granada, Spain
| | - Carlos Lopez-Chaves
- Department of Physiology, Institute of Nutrition and Food Technology, Centre for Biomedical Research, Health and Sport Research Centre (IMUDS), Universidad de Granada, Granada, Spain
| | - Milagros Galisteo
- Department of Pharmacology, School of Pharmacy, Biohealth Research Institute, Centre for Biomedical Research, Universidad de Granada, Campus Universitario de Cartuja s/n, 18071, Granada, Spain
| | - Pilar Aranda
- Department of Physiology, Institute of Nutrition and Food Technology, Centre for Biomedical Research, Health and Sport Research Centre (IMUDS), Universidad de Granada, Granada, Spain
| | - María López-Jurado
- Department of Physiology, Institute of Nutrition and Food Technology, Centre for Biomedical Research, Health and Sport Research Centre (IMUDS), Universidad de Granada, Granada, Spain.
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology, Centre for Biomedical Research, Health and Sport Research Centre (IMUDS), Universidad de Granada, Granada, Spain
| |
Collapse
|
14
|
Mollahosseini M, Rahimi MH, Yekaninejad MS, Maghbooli Z, Mirzaei K. Dietary patterns interact with chromosome 9p21 rs1333048 polymorphism on the risk of obesity and cardiovascular risk factors in apparently healthy Tehrani adults. Eur J Nutr 2020; 59:35-43. [PMID: 30600348 DOI: 10.1007/s00394-018-1872-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/01/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE Gene-dietary patterns may contribute to determining body composition and related biochemical indices. The aim of this study was to evaluate interactions between rs1333048 polymorphism and major dietary patterns on body fat percentage, general and central obesity, and related biochemical measurements. METHODS This cross-sectional study was conducted on 265 healthy Tehrani adults with mean age of 35 years (47.5% men, 52.5% women). Dietary patterns (DPs) were extracted by factor analysis. Bioelectrical impedance analysis was used for body analysis and rs1333048 was genotyped by the restriction fragment length polymorphism (PCR-RFLP) method. RESULTS Three DPs were extracted: restricted refined grains DP, legumes DP and healthy DP. AA genotype compared to CC genotype had greater odds for general obesity before (OR 3.14; 95% CI 1.008-9.60, P = 0.045) and after (OR 3.11; 95% CI 1.008-9.60, P = 0.048) adjusting for potential confounders. Individuals with AA genotype were more likely to be centrally obese before (OR 2.09; 95% CI 1.006-4.35, P = 0.048) and after (OR 2.63; 95% CI 1.12-6.17, P = 0.026) controlling for potential confounders. Significant interactions were observed between Legumes DP and rs1333048 SNP on waist circumference (P = 0.047), body fat % (BFP) (P = 0.048), hs-Crp (P = 0.042), BMI (P = 0.073), WHtR (P = 0.063) and odds for general obesity (P = 0.051). Following this DP reduced all these items for individuals with CC genotype, whereas increased them for people who carry CA or AA genotypes. CONCLUSIONS The findings indicate that there are significant associations between AA genotype of rs1333048 SNP and general and central obesity, and significant interaction between alleles of this SNP and major dietary patterns on the odds of general obesity, BFP, waist circumference, BMI, WHtR and hs-Crp.
Collapse
Affiliation(s)
- Mehdi Mollahosseini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
- Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hossein Rahimi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
- Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Maghbooli
- MS Research Center, Neurosciences Institute of Tehran University of Medical Sciences, Tehran, Iran.
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran.
| |
Collapse
|
15
|
Abstract
A wide variety of plant species provide edible seeds. Seeds are the dominant source of human calories and protein. The most important and popular seed food sources are cereals, followed by legumes and nuts. Their nutritional content of fiber, protein, and monounsaturated/polyunsaturated fats make them extremely nutritious. They are important additions to our daily food consumption. When consumed as part of a healthy diet, seeds can help reduce blood sugar, cholesterol, and blood pressure.
Collapse
|
16
|
The Effect of a Low Glycemic Index Pulse-Based Diet on Insulin Sensitivity, Insulin Resistance, Bone Resorption and Cardiovascular Risk Factors during Bed Rest. Nutrients 2019; 11:nu11092012. [PMID: 31461862 PMCID: PMC6770095 DOI: 10.3390/nu11092012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
We determined the effects of a low glycemic-index pulse-based diet (i.e., containing lentils, chick peas, beans, and split peas) compared to a typical hospital diet on insulin sensitivity assessed by the Matsuda index from the insulin and glucose response to a two-hour oral glucose tolerance test, insulin resistance assessed by the homeostatic model assessment of insulin resistance (HOMA-IR), bone resorption assessed by 24 h excretion of urinary n-telopeptides(Ntx) and cardiovascular risk factors (blood lipids, blood pressure, arterial stiffness and heart rate variability) during bed rest. Using a randomized, counter-balanced cross-over design with one-month washout, six healthy individuals (30 ± 12 years) consumed the diets during four days of bed rest. The Matsuda index, HOMA-IR, urinary Ntx and cardiovascular risk factors were determined at baseline and after the last day of bed rest. Compared to the typical hospital diet, the pulse-based diet improved the Matsuda index (indicating increased insulin sensitivity; baseline to post-bed rest: 6.54 ± 1.94 to 6.39 ± 2.71 hospital diet vs. 7.14 ± 2.36 to 8.75 ± 3.13 pulse-based diet; p = 0.017), decreased HOMA-IR (1.38 ± 0.54 to 1.37 ± 0.50 hospital diet vs. 1.48 ± 0.54 to 0.88 ± 0.37 pulse-based diet; p = 0.022), and attenuated the increase in Ntx (+89 ± 75% hospital diet vs. +33 ± 20% pulse-based diet; p = 0.035). No differences for changes in cardiovascular risk factors were found between the two diet conditions, with the exception of decreased diastolic blood pressure during day three of bed rest in the pulse-based versus hospital diet (61 ± 9 vs. 66 ± 7 mmHg; p = 0.03). A pulse-based diet was superior to a hospital diet for maintaining insulin sensitivity, preventing insulin resistance, attenuating bone resorption and decreasing diastolic blood pressure during four days of bed rest.
Collapse
|
17
|
Bautista-Expósito S, Peñas E, Frias J, Martínez-Villaluenga C. Pilot-scale produced fermented lentil protects against t-BHP-triggered oxidative stress by activation of Nrf2 dependent on SAPK/JNK phosphorylation. Food Chem 2019; 274:750-759. [DOI: 10.1016/j.foodchem.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/12/2018] [Accepted: 09/02/2018] [Indexed: 12/18/2022]
|
18
|
Bautista-Expósito S, Martínez-Villaluenga C, Dueñas M, Silván JM, Frias J, Peñas E. Combination of pH-controlled fermentation in mild acidic conditions and enzymatic hydrolysis by Savinase to improve metabolic health-promoting properties of lentil. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
19
|
Martínez R, Kapravelou G, Donaire A, Lopez-Chaves C, Arrebola F, Galisteo M, Cantarero S, Aranda P, Porres JM, López-Jurado M. Effects of a combined intervention with a lentil protein hydrolysate and a mixed training protocol on the lipid metabolism and hepatic markers of NAFLD in Zucker rats. Food Funct 2018; 9:830-850. [PMID: 29364302 DOI: 10.1039/c7fo01790a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome is a cluster of metabolic alterations characterized by central obesity, dyslipidemia, elevated plasma glucose, insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD). In this study, a combined intervention of a lentil protein hydrolysate and a mixed training protocol was assessed in an animal experimental model of genetic obesity and metabolic syndrome. Thirty-two male obese and 32 lean Zucker rats were divided into eight different experimental groups. Rats performed a mixed exercise protocol or had a sedentary lifestyle and were administered a lentil protein hydrolysate or placebo. Daily food intake, weekly body weight gain, plasma parameters of glucose and lipid metabolisms, body composition, hepatic weight, total fat content and fatty acid profile, as well as gene expression of lipogenic and lipolytic nuclear transcription factors and their target genes were measured. Obese Zucker rats exhibited higher body and liver weight and fat content than did their lean counterparts. Such alterations were related to modifications in aerobic capacity, plasma biochemical parameters of glucose and lipid metabolisms, hepatic fatty acid profile and gene expression of nuclear transcription factors SREBP1c, PPARα, LXR and associated lipogenic and lipolytic enzymes. The interventions tested did not affect body weight gain but improved aerobic capacity, reduced hepatomegalia and steatosis associated with NAFLD and relieved the adverse effects produced by this condition in glucose and lipid metabolisms through the modulation in the expression of different genes involved in diverse metabolic pathways.
Collapse
Affiliation(s)
- Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology, Centre for Biomedical Research, Sport and Health Research Centre, University of Granada, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bautista-Expósito S, Peñas E, Silván JM, Frias J, Martínez-Villaluenga C. pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chem 2017; 248:262-271. [PMID: 29329853 DOI: 10.1016/j.foodchem.2017.12.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 11/30/2022]
Abstract
Lentil fermentation has a promising potential as a strategy for development of multifunctional ingredients targeting metabolic syndrome (MetS). Response surface methodology was applied to optimize lentil fermentation and study its effects on generation of peptides, soluble phenolics and bioactivities. Fermentation using Lactobacillus plantarum and Savinase® 16 L was carried out at different pH (6.5-8.5) and times (5.5-30 h). Analysis of variance was performed to evaluate linear, quadratic and interaction effects between fermentation parameters. pH positively affected peptides, soluble phenolic compounds and antioxidant activity whereas a negative impact on lipase inhibitory activity was observed (p < .0001). Time showed positive effect on proteolysis and negatively affected angiotensin I-converting enzyme inhibitory activity of fermented lentil (p < .0001). Multivariate optimization led to high levels of peptides, soluble phenolics and bioactivity of fermented lentil at pH 8.5 and 11.6 h. In conclusion, this study might contribute to the development of functional ingredients from lentil for MetS management.
Collapse
Affiliation(s)
- Sara Bautista-Expósito
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - José Manuel Silván
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | |
Collapse
|