1
|
Cribb TH, Barton DP, Blair D, Bott NJ, Bray RA, Corner RD, Cutmore SC, De Silva MLI, Duong B, Faltýnková A, Gonchar A, Hechinger RF, Herrmann KK, Huston DC, Johnson PTJ, Kremnev G, Kuchta R, Louvard C, Luus-Powell WJ, Martin SB, Miller TL, Pérez-Ponce de León G, Smit NJ, Tkach VV, Truter M, Waki T, Vermaak A, Wee NQX, Yong RQY, Achatz TJ. Challenges in the recognition of trematode species: Consideration of hypotheses in an inexact science. J Helminthol 2025; 99:e54. [PMID: 40260497 DOI: 10.1017/s0022149x25000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The description and delineation of trematode species is a major ongoing task. Across the field there has been, and currently still is, great variation in the standard of this work and in the sophistication of the proposal of taxonomic hypotheses. Although most species are relatively unambiguously distinct from their congeners, many are either morphologically very similar, including the major and rapidly growing component of cryptic species, or are highly variable morphologically despite little to no molecular variation for standard DNA markers. Here we review challenges in species delineation in the context provided to us by the historical literature, and the use of morphological, geographical, host, and molecular data. We observe that there are potential challenges associated with all these information sources. As a result, we encourage careful proposal of taxonomic hypotheses with consideration for underlying species concepts and frank acknowledgement of weaknesses or conflict in the data. It seems clear that there is no single source of data that provides a wholly reliable answer to our taxonomic challenges but that nuanced consideration of information from multiple sources (the 'integrated approach') provides the best possibility of developing hypotheses that will stand the test of time.
Collapse
Affiliation(s)
- T H Cribb
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland4101, Australia
| | - D P Barton
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales2658, Australia
| | - D Blair
- College of Science and Engineering, James Cook University, Australia
| | - N J Bott
- School of Science, RMIT University, PO Box 71, BundooraVIC 3083
| | - R A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
| | - R D Corner
- Department of Primary Industries, Ecosciences Precinct, Dutton Park, Queensland4102, Australia
| | - S C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland4101, Australia
| | - M L I De Silva
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Western Australia
| | - B Duong
- School of the Environment, The University of Queensland, 4072Australia
| | - A Faltýnková
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelská 3, Brno, 613 00, Czech Republic
| | - A Gonchar
- Department of Invertebrate Zoology, St Petersburg University, Universitetskaya emb. 7-9, Saint Petersburg199034, Russia
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Sciences, Universitetskaya emb. 1, Saint Petersburg199034, Russia
| | - R F Hechinger
- Scripps Insitution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - K K Herrmann
- Tarleton State University, Stephenville, Texas, USA
| | - D C Huston
- Australian National Insect Collection, National Research Collections Australia, CSIRO, PO Box 1700, Canberra, ACT2601, Australia
| | - P T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309, USA
| | - G Kremnev
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Sciences, Universitetskaya emb. 1, Saint Petersburg199034, Russia
| | - R Kuchta
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05Ceské Budejovice, Czech Republic
| | - C Louvard
- Water Research Group, Unit for Environmental Science and Management, North-West University - Potchefstroom campus, 11 Hoffman St, Potchefstroom 2531, North West, South Africa
| | - W J Luus-Powell
- DSI-NRF SARChI Chair (Ecosystem Health), Department of Biodiversity, University of Limpopo, 0727, South Africa
| | - S B Martin
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150, Western Australia, Australia
| | - T L Miller
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland4101, Australia
| | - G Pérez-Ponce de León
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, C.P. 97357, Mexico
| | - N J Smit
- Water Research Group, Unit for Environmental Science and Management, North-West University - Potchefstroom campus, 11 Hoffman St, Potchefstroom 2531, North West, South Africa
| | - V V Tkach
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - M Truter
- Water Research Group, Unit for Environmental Science and Management, North-West University - Potchefstroom campus, 11 Hoffman St, Potchefstroom 2531, North West, South Africa
| | - T Waki
- Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan
| | - A Vermaak
- Water Research Group, Unit for Environmental Science and Management, North-West University - Potchefstroom campus, 11 Hoffman St, Potchefstroom 2531, North West, South Africa
| | - N Q-X Wee
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland4101, Australia
| | - R Q-Y Yong
- Water Research Group, Unit for Environmental Science and Management, North-West University - Potchefstroom campus, 11 Hoffman St, Potchefstroom 2531, North West, South Africa
| | - T J Achatz
- Department of Natural Sciences, Middle Georgia State University, Macon, Georgia, USA
| |
Collapse
|
2
|
Wong Y, Rosa BA, Becker L, Camberis M, LeGros G, Zhan B, Bottazzi ME, Fujiwara RT, Ritmejeryte E, Laha T, Chaiyadet S, Taweethavonsawat P, Brindley PJ, Bracken BK, Giacomin PR, Mitreva M, Loukas A. Proteomic characterization and comparison of the infective and adult life stage secretomes from Necator americanus and Ancylostoma ceylanicum. PLoS Negl Trop Dis 2025; 19:e0012780. [PMID: 39832284 PMCID: PMC11745416 DOI: 10.1371/journal.pntd.0012780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
More than 470 million people globally are infected with the hookworms Ancylostoma ceylanicum and Necator americanus, resulting in an annual loss of 2.1 to 4 million disability-adjusted-life-years. Current infection management approaches are limited by modest drug efficacy, the costs associated with frequent mass drug administration campaigns, and the risk of reinfection and burgeoning drug resistance. Subunit vaccines based on proteins excreted and secreted (ES) by hookworms that reduce worm numbers and associated disease burden are a promising management strategy to overcome these limitations. However, studies on the ES proteomes of hookworms have mainly described proteins from the adult life stage which may preclude the opportunity to target the infective larva. Here, we employed high resolution mass spectrometry to identify 103 and 57 ES proteins from the infective third larvae stage (L3) as well as 106 and 512 ES proteins from the adult N. americanus and A. ceylanicum respectively. Comparisons between these developmental stages identified 91 and 41 proteins uniquely expressed in the L3 ES products of N. americanus and A. ceylanicum, respectively. We characterized these proteins based on functional annotation, KEGG pathway analysis, InterProScan signature and gene ontology. We also performed reciprocal BLAST analysis to identify orthologs across species for both the L3 and adult stages and identified five orthologous proteins in both life stages and 15 proteins that could be detected only in the L3 stage of both species. Last, we performed a three-way reciprocal BLAST on the L3 proteomes from both hookworm species together with a previously reported L3 proteome from the rodent hookworm Nippostrongylus brasiliensis, and identified eight L3 proteins that could be readily deployed for testing using well established rodent models. This novel characterization of L3 proteins and taxonomic conservation across hookworm species provides a raft of potential candidates for vaccine discovery for prevention of hookworm infection and disease.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Australia
| | - Bruce A. Rosa
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Luke Becker
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham LeGros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ricardo T. Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edita Ritmejeryte
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyanan Taweethavonsawat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
| | - Bethany K. Bracken
- Charles River Analytics, Cambridge, Massachusetts, United States of America
| | - Paul R. Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Macrobiome Therapeutics Pty Ltd, Cairns, Australia
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Macrobiome Therapeutics Pty Ltd, Cairns, Australia
| |
Collapse
|
3
|
Park MJ, Sohn WM, Bae YA. Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis. PARASITES, HOSTS AND DISEASES 2024; 62:98-116. [PMID: 38443774 PMCID: PMC10915263 DOI: 10.3347/phd.23116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 03/07/2024]
Abstract
Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.
Collapse
Affiliation(s)
- Min-Ji Park
- Department of Microbiology, College of Medicine and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999,
Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999,
Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999,
Korea
| |
Collapse
|
4
|
Kim SH, Yang D, Bae YA. Hypoxic and nitrosative stress conditions modulate expression of myoglobin genes in a carcinogenic hepatobiliary trematode, Clonorchis sinensis. PLoS Negl Trop Dis 2021; 15:e0009811. [PMID: 34591853 PMCID: PMC8483323 DOI: 10.1371/journal.pntd.0009811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Despite recent evidence suggesting that adult trematodes require oxygen for the generation of bioenergy and eggshells, information on the molecular mechanism by which the parasites acquire oxygen remains largely elusive. In this study, the structural and expressional features of globin genes identified in Clonorchis sinensis, a carcinogenic trematode parasite that invades the hypoxic biliary tracts of mammalian hosts, were investigated to gain insight into the molecules that enable oxygen metabolism. The number of globin paralogs substantially differed among parasitic platyhelminths, ranging from one to five genes, and the C. sinensis genome encoded at least five globin genes. The expression of these Clonorchis genes, named CsMb (CsMb1—CsMb3), CsNgb, and CsGbX, according to their preferential similarity patterns toward respective globin subfamilies, exponentially increased in the worms coinciding with their sexual maturation, after being downregulated in early juveniles compared to those in metacercariae. The CsMb1 protein was detected throughout the parenchymal region of adult worms as well as in excretory-secretory products, whereas the other proteins were localized exclusively in the sexual organs and intrauterine eggs. Stimuli generated by exogenous oxygen, nitric oxide (NO), and nitrite as well as co-incubation with human cholangiocytes variously affected globin gene expression in live C. sinensis adults. Together with the specific histological distributions, these hypoxia-induced patterns may suggest that oxygen molecules transported by CsMb1 from host environments are provided to cells in the parenchyma and intrauterine eggs/sex organs of the worms for energy metabolism and/or, more importantly, eggshell formation by CsMb1 and CsMb3, respectively. Other globin homologs are likely to perform non-respiratory functions. Based on the responsive expression profile against nitrosative stress, an oxygenated form of secreted CsMb1 is suggested to play a pivotal role in parasite survival by scavenging NO generated by host immune cells via its NO dioxygenase activity. Trematode parasites that invade mammalian tissues have long been believed to produce bioenergy via anaerobic respiration in their definitive hosts. However, recent studies have revealed that these parasites require considerable amounts of oxygen for the generation of hard eggshells during sexual reproduction as well as energy metabolism. Despite these findings, information on the biological mechanisms and relevant molecules responsible for oxygen uptake in the host environment remains largely elusive. Clonorchis sinensis is a carcinogenic trematode parasite that causes clonorchiasis in humans by infecting the bile ducts. Here, we investigated globin genes/proteins in the liver fluke. The genome of C. sinensis encoded at least five globin paralogs (CsMb1, CsMb2, CsMb3, CsNgb, and CsGbX). Temporal expression of these globin genes coincided with the sexual maturation of C. sinensis. Based on the histological localities and induction profiles upon hypoxia, it could be postulated that the oxygen molecules transported by CsMb1 from host environments are provided to cells in the parenchyma and intrauterine eggs/sex organs of the worms by CsMb1 and CsMb3, respectively, for energy metabolism and eggshell formation. Other globin homologs were likely to perform non-respiratory functions. In addition, the oxygenated form of secreted CsMb1 seemed to participate in the scavenging of nitric oxide generated by host immune cells via its nitric oxide dioxygenase activity to increase the survival of the parasite.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Dongki Yang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
- * E-mail: (DY); (Y-AB)
| | - Young-An Bae
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
- * E-mail: (DY); (Y-AB)
| |
Collapse
|
5
|
Rosa BA, Choi YJ, McNulty SN, Jung H, Martin J, Agatsuma T, Sugiyama H, Le TH, Doanh PN, Maleewong W, Blair D, Brindley PJ, Fischer PU, Mitreva M. Comparative genomics and transcriptomics of 4 Paragonimus species provide insights into lung fluke parasitism and pathogenesis. Gigascience 2020; 9:giaa073. [PMID: 32687148 PMCID: PMC7370270 DOI: 10.1093/gigascience/giaa073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/19/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paragonimus spp. (lung flukes) are among the most injurious foodborne helminths, infecting ∼23 million people and subjecting ∼292 million to infection risk. Paragonimiasis is acquired from infected undercooked crustaceans and primarily affects the lungs but often causes lesions elsewhere including the brain. The disease is easily mistaken for tuberculosis owing to similar pulmonary symptoms, and accordingly, diagnostics are in demand. RESULTS We assembled, annotated, and compared draft genomes of 4 prevalent and distinct Paragonimus species: Paragonimus miyazakii, Paragonimus westermani, Paragonimus kellicotti, and Paragonimus heterotremus. Genomes ranged from 697 to 923 Mb, included 12,072-12,853 genes, and were 71.6-90.1% complete according to BUSCO. Orthologous group analysis spanning 21 species (lung, liver, and blood flukes, additional platyhelminths, and hosts) provided insights into lung fluke biology. We identified 256 lung fluke-specific and conserved orthologous groups with consistent transcriptional adult-stage Paragonimus expression profiles and enriched for iron acquisition, immune modulation, and other parasite functions. Previously identified Paragonimus diagnostic antigens were matched to genes, providing an opportunity to optimize and ensure pan-Paragonimus reactivity for diagnostic assays. CONCLUSIONS This report provides advances in molecular understanding of Paragonimus and underpins future studies into the biology, evolution, and pathogenesis of Paragonimus and related foodborne flukes. We anticipate that these novel genomic and transcriptomic resources will be invaluable for future lung fluke research.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Young-Jun Choi
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Samantha N McNulty
- The McDonnell Genome Institute at Washington University, School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| | - Hyeim Jung
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - John Martin
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Takeshi Agatsuma
- Department of Environmental Health Sciences, Kochi Medical School, Kohasu, Oko-cho 185-1, Nankoku, Kochi, 783-8505, Japan
| | - Hiromu Sugiyama
- Laboratory of Helminthology, Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
| | - Pham Ngoc Doanh
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
| | - Wanchai Maleewong
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Paul J Brindley
- Departments of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, and Pathology School of Medicine & Health Sciences, George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037, USA
| | - Peter U Fischer
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
- The McDonnell Genome Institute at Washington University, School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| |
Collapse
|
6
|
Bailey GF, Bilsky AM, Rowland MB, Poole AZ. Characterization and expression of tyrosinase-like genes in the anemone Exaiptasia pallida as a function of health and symbiotic state. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103459. [PMID: 31377102 DOI: 10.1016/j.dci.2019.103459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Coral disease is a major threat to reef ecosystems and therefore, understanding the cellular pathways underlying disease progression and resistance is critical to mitigating future outbreaks. This study focused on tyrosinase-like proteins in cnidarians, which contribute to melanin synthesis, an invertebrate innate immune defense. Specifically, characterization and phylogenetic analysis of cnidarian tyrosinases were performed, and their role in symbiosis and a "mystery disease" in the anemone Exaiptasia pallida was investigated using qPCR. The results reveal a diversity of tyrosinase-like proteins in cnidarians that separate into two major clades on a phylogenetic tree, suggesting functional divergence. Two E. pallida sequences, Ep_Tyr1 and Ep_Tyr2, were further investigated, and qPCR results revealed no gene expression differences as a function of symbiotic state, but decreased expression in late disease stages. Overall this work provides evidence for the participation of tyrosinases in the cnidarian immune response.
Collapse
Affiliation(s)
- Grace F Bailey
- Berry College, Department of Biology, 2277 Martha Berry Highway NW, Mt. Berry, GA, 30149, USA.
| | - Alexa M Bilsky
- Berry College, Department of Biology, 2277 Martha Berry Highway NW, Mt. Berry, GA, 30149, USA.
| | - Mary B Rowland
- Berry College, Department of Biology, 2277 Martha Berry Highway NW, Mt. Berry, GA, 30149, USA; University of Alabama, Department of Biological Sciences, Science and Engineering Complex, 1325 Hackberry Ln, Tuscaloosa, AL, 35401, USA.
| | - Angela Z Poole
- Berry College, Department of Biology, 2277 Martha Berry Highway NW, Mt. Berry, GA, 30149, USA.
| |
Collapse
|