1
|
Khazaei M, Parsasefat M, Bahar A, Tahmasebi H, Oksenych V. Behavioral Cooperation or Conflict of Human Intestinal Roundworms and Microbiomes: A Bio-Activity Perspective. Cells 2025; 14:556. [PMID: 40214509 PMCID: PMC11988915 DOI: 10.3390/cells14070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Human infections are greatly impacted by intestinal nematodes. These nematodes, which encompass the large roundworms, have a direct impact on human health and well-being due to their close cohabitation with the host's microorganisms. When nematodes infect a host, the microbiome composition changes, and this can impact the host's ability to control the parasites. We aimed to find out if the small intestinal roundworms produce substances that have antimicrobial properties and respond to their microbial environment, and if the immune and regulatory reactions to nematodes are altered in humans lacking gut microbes. There is no doubt that different nematodes living in the intestines can alter the balance of intestinal bacteria. Nonetheless, our knowledge about the parasite's influence on the gut microbiome remains restricted. The last two decades of study have revealed that the type of iron utilized can influence the activation of unique virulence factors. However, some roundworm proteins like P43, which makes up a large portion of the worm's excretory-secretory product, have an unknown role. This review explores how the bacterial iron regulatory network contributes to the adaptability of this opportunistic pathogen, allowing it to successfully infect nematodes in different host environments.
Collapse
Affiliation(s)
- Meisam Khazaei
- School of Medicine, Shahroud University of Medical Sciences, Shahroud 36147-73943, Iran
| | - Malihe Parsasefat
- School of Medicine, Shahroud University of Medical Sciences, Shahroud 36147-73943, Iran
| | - Aisa Bahar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud 36147-73943, Iran
- Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-1453, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud 36147-73943, Iran
| | | |
Collapse
|
2
|
Mair I, Bennett AR, Forman R, Othman AA, Logunova L, Smith H, Lowe AE, Bradley JE, Thornton DJ, Else KJ. T. Muris Infection Dynamics of a Fresh, Wild Isolate: Is the Established E Isolate Still Relevant? Parasite Immunol 2024; 46:e13072. [PMID: 39480064 DOI: 10.1111/pim.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024]
Abstract
For decades, parasitic worms such as Trichuris muris have been maintained in laboratory animals, providing insights into host-parasite interactions and host immune responses. The most used T. muris isolate is the E isolate, established in the laboratory in 1954. However, one concern with these model systems is the potential for laboratory-induced selection and therefore changes in host-parasite interactions. To address these concerns, we compare the E isolate with a recently isolated T. muris isolate (M isolate), established from wild house mice (Mus musculus domesticus, Isle of May, UK), in their capacity to infect laboratory mice. High dose infection of C57BL/6 mice revealed that significantly more parasites of the M isolate survived to the adult stage compared to the E isolate. Worm persistence was associated with heightened TNF-α and IL-10 secretion upon parasite-specific re-stimulation, and higher serum IgG1 and IgG2c levels, concomitant with an increase in T-bet+ and ICOS+ CD4+ T effector-memory cells. Differences in host response to the isolates were not as pronounced during low dose infection. Our study highlights the need for regular evaluation of lab-maintained parasite isolates against freshly isolated parasites to understand whether the established lab strains remain relevant model systems for our understanding of parasitic infections.
Collapse
Affiliation(s)
- Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Alexander R Bennett
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Abdulrazzag A Othman
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Larisa Logunova
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ann E Lowe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - David J Thornton
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kathryn J Else
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Behnke JM, Jackson JA, Gilbert F, Mohallal EME, Bajer A. Large-bodied gastric spirurids (Nematoda, Spirurida) predict structure in the downstream gastrointestinal helminth community of wild spiny mice ( Acomys dimidiatus). Parasitology 2024; 151:808-820. [PMID: 39320851 PMCID: PMC11579037 DOI: 10.1017/s0031182024000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 09/26/2024]
Abstract
The dominant helminths infecting spiny mice (Acomys dimidiatus) in the montane wadis of the Sinai Peninsula of Egypt are spirurid nematodes, notably Protospirura muricola and Mastophorus muris. Both are relatively large robust stomach worms that accumulate in hosts resulting in high worm burdens. To ascertain whether the presence of spirurid worms or their burdens alters the host's likelihood of infection with other helminth species, we analysed a database containing quantitative data on helminth parasites of these mice (n = 431). This comprised of worm burdens recorded during 4 surveys, conducted at 4-year intervals, in 4 wadis, during late summer of each year. The presence of spirurid worms did not significantly alter species richness with other helminth species nor the likelihood of mice carrying other nematode species. However, there was a significant association, particularly of P. muricola, with the presence of intestinal stages of cestodes, and with the acanthocephalan Moniliformis acomysi. After controlling for intrinsic and extrinsic factors, mice harbouring spirurid worms had greater worm burdens of other helminths compared with mice without spirurids. Moreover, spirurid worm burdens showed a significant positive covariation with similarly adjusted species richness of other helminths, non-spirurid helminths, non-spirurid nematodes, oxyuroid nematodes and intestinal stage cestode worm burdens. We interpret these results as an indication that the key driver for co-occurrence of spirurids with other helminths is likely to be transmission via common arthropod hosts (for cestodes and acanthocephalans), but also that mice carrying the heavier spirurid worm burdens become more susceptible to directly transmitted nematodes such as the Oxyuroidea.
Collapse
Affiliation(s)
- Jerzy M. Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Joseph A. Jackson
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Francis Gilbert
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Eman M. E. Mohallal
- The Ecology Unit of Desert Animals, Desert Research Centre, 1 Mataf El Matareya St, El Matareya, Cairo, Egypt
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Faculty of Biology, Institute of Developmental Biology and Biomedical Sciences, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
4
|
Kariyawasam TN, Ciocchetta S, Visendi P, Soares Magalhães RJ, Smith ME, Giacomin PR, Sikulu-Lord MT. Near-infrared spectroscopy and machine learning algorithms for rapid and non-invasive detection of Trichuris. PLoS Negl Trop Dis 2023; 17:e0011695. [PMID: 37956181 PMCID: PMC10681298 DOI: 10.1371/journal.pntd.0011695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/27/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Trichuris trichiura (whipworm) is one of the most prevalent soil transmitted helminths (STH) affecting 604-795 million people worldwide. Diagnostic tools that are affordable and rapid are required for detecting STH. Here, we assessed the performance of the near-infrared spectroscopy (NIRS) technique coupled with machine learning algorithms to detect Trichuris muris in faecal, blood, serum samples and non-invasively through the skin of mice. METHODOLOGY We orally infected 10 mice with 30 T. muris eggs (low dose group), 10 mice with 200 eggs (high dose group) and 10 mice were used as the control group. Using the NIRS technique, we scanned faecal, serum, whole blood samples and mice non-invasively through their skin over a period of 6 weeks post infection. Using artificial neural networks (ANN) and spectra of faecal, serum, blood and non-invasive scans from one experiment, we developed 4 algorithms to differentiate infected from uninfected mice. These models were validated on mice from a second independent experiment. PRINCIPAL FINDINGS NIRS and ANN differentiated mice into the three groups as early as 2 weeks post infection regardless of the sample used. These results correlated with those from concomitant serological and parasitological investigations. SIGNIFICANCE To our knowledge, this is the first study to demonstrate the potential of NIRS as a diagnostic tool for human STH infections. The technique could be further developed for large scale surveillance of soil transmitted helminths in human populations.
Collapse
Affiliation(s)
- Tharanga N. Kariyawasam
- School of the Environment, Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Silvia Ciocchetta
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| | - Paul Visendi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ricardo J. Soares Magalhães
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
- Children’s Health and Environment Program, UQ Children’s Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Maxine E. Smith
- Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul R. Giacomin
- Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, Queensland, Australia
| | - Maggy T. Sikulu-Lord
- School of the Environment, Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Shears RK, Grencis RK. Whipworm secretions and their roles in host-parasite interactions. Parasit Vectors 2022; 15:348. [PMID: 36175934 PMCID: PMC9524059 DOI: 10.1186/s13071-022-05483-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Whipworm (Trichuris) is a genus of roundworms that causes gastrointestinal infections in humans and animals. Of particular interest are T. trichiura, the causative agent of human trichuriasis, a neglected tropical disease that affects 477 million people worldwide, and T. suis, the pig whipworm species, responsible for growth stunting and economic losses within the agricultural industry. The naturally occurring mouse whipworm, T. muris, has been used for decades as a model for trichuriasis, yielding knowledge on the biology of these parasites and the host response to infection. Ex vivo culture of T. muris (and to some extent, T. suis) has provided insight into the composition of the excretory/secretory (E/S) products released by worms, which include a myriad of proteins, RNAs, lipids, glycans, metabolites and extracellular vesicles. T. muris E/S has formed the basis of the search for whipworm vaccine candidates, while the immunomodulatory potential of T. suis and T. muris secretions has been investigated with the aim of improving our understanding of how these parasites modulate host immunity, as well as identifying immunomodulatory candidates with therapeutic potential in the context of inflammatory diseases. This article will review the various components found within Trichuris E/S, their potential as vaccine candidates and their immunomodulatory properties.
Collapse
Affiliation(s)
- Rebecca K Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5DG, UK.
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5DG, UK.
| | - Richard K Grencis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester, M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
6
|
Zhu L, Myhill LJ, Andersen-Civil AIS, Thamsborg SM, Blanchard A, Williams AR. Garlic-derived organosulfur compounds regulate metabolic and immune pathways in macrophages and attenuate intestinal inflammation in mice. Mol Nutr Food Res 2022; 66:e2101004. [PMID: 35107883 PMCID: PMC9286605 DOI: 10.1002/mnfr.202101004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/04/2022] [Indexed: 11/08/2022]
Abstract
Scope: Garlic is a source of bioactive phytonutrients that may have anti‐inflammatory or immunomodulatory properties. The mechanism(s) underlying the bioactivity of these compounds and their ability to regulate responses to enteric infections remains unclear. Methods and Results: This study investigates if a garlic‐derived preparation (PTSO‐PTS) containing two organosulfur metabolites, propyl‐propane thiosulfonate (PTSO), and propyl‐propane thiosulfinate (PTS), regulate inflammatory responses in murine macrophages and intestinal epithelial cells (IEC) in vitro, as well as in a model of enteric parasite‐induced inflammation. PTSO‐PTS decreases lipopolysaccharide‐induced secretion of TNFα, IL‐6, and IL‐27 in macrophages. RNA‐sequencing demonstrates that PTSO‐PTS strongly suppresses pathways related to immune and inflammatory signaling. PTSO‐PTS induces the expression of a number of genes involved in antioxidant responses in IEC during exposure to antigens from the parasite Trichuris muris. In vivo, PTSO‐PTS does not affect T. muris establishment or intestinal T‐cell responses but significantly alters cecal transcriptomic responses. Notably, a reduction in T. muris‐induced expression of Tnf, Saa2, and Nos2 is observed. Conclusion: Garlic‐derived organosulfur compounds exert anti‐inflammatory effects in macrophages and IEC, and regulate gene expression during intestinal infection. These compounds and related organic molecules may thus hold potential as functional food components to improve gut health in humans and animals.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Audrey I S Andersen-Civil
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Holland CV, Else KJ. Lessons from studying roundworm and whipworm in the mouse: common themes and unique features. Parasitology 2021; 148:1-5. [PMID: 34376259 DOI: 10.1017/s0031182021001451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ascaris lumbricoides, the roundworm, and Trichuris trichiura, the whipworm, are human intestinal nematode parasites; both are soil-transmitted helminths, are often placed together in an epidemiological context and both remain neglected despite high prevalence. Our understanding of parasitic disease continues to be enhanced through animal models. Despite the similarities between whipworm and roundworm, there are key differences between the two species and these have influenced the application of their respective animal models. In the case of T. trichiura, the fact that a murine equivalent, T. muris completes its life cycle in a mouse model has greatly enhanced our knowledge of whipworm biology, pathogenicity and immunology. In contrast, A. lumbricoides and its porcine equivalent, Ascaris suum, lack a rodent model in which the life cycle is completed. However, evidence continues to accumulate demonstrating that mice represent useful models of early Ascaris infection, a key stage of the life cycle. The use of mouse models for both Ascaris and Trichuris has a long history with early pioneers discovering fundamental aspects of each parasite's biology. Novel technologies and perspectives, as outlined in this special issue, demonstrate how through the prism of mouse models, we can continue to explore the similarities and differences between roundworms and whipworms.
Collapse
Affiliation(s)
- C V Holland
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin 2, Ireland
| | - K J Else
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| |
Collapse
|
8
|
Mair I, Else KJ, Forman R. Trichuris muris as a tool for holistic discovery research: from translational research to environmental bio-tagging. Parasitology 2021; 148:1-13. [PMID: 33952360 PMCID: PMC8660646 DOI: 10.1017/s003118202100069x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Trichuris spp. (whipworms) are intestinal nematode parasites which cause chronic infections associated with significant morbidities. Trichuris muris in a mouse is the most well studied of the whipworms and research on this species has been approached from a number of different disciplines. Research on T. muris in a laboratory mouse has provided vital insights into the host–parasite interaction through analyses of the immune responses to infection, identifying factors underpinning host susceptibility and resistance. Laboratory studies have also informed strategies for disease control through anthelmintics and vaccine research. On the contrary, research on naturally occurring infections with Trichuris spp. allows the analysis of the host–parasite co-evolutionary relationships and parasite genetic diversity. Furthermore, ecological studies utilizing Trichuris have aided our knowledge of the intricate relationships amongst parasite, host and environment. More recently, studies in wild and semi-wild settings have combined the strengths of the model organism of the house mouse with the complexities of context-dependent physiological responses to infection. This review celebrates the extraordinarily broad range of beneficiaries of whipworm research, from immunologists and parasitologists, through epidemiologists, ecologists and evolutionary biologists to the veterinary and medical communities.
Collapse
Affiliation(s)
- Iris Mair
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Kathryn J. Else
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Ruth Forman
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| |
Collapse
|