1
|
Wu Z, Lei X, Zhang Y, Wu S, Hou Z, Ma K, Pei H, Shang F, Xue T. The membrane protein DtpT plays an important role in biofilm formation and stress resistance in foodborne Staphylococcus aureus RMSA49. Food Res Int 2025; 208:116249. [PMID: 40263806 DOI: 10.1016/j.foodres.2025.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Staphylococcus aureus has been a major contributor to the contamination of dairy products and preserved foods due to its capacity for biofilm formation and strong resistance to environmental stress. The membrane transport protein di-and tripeptides transporter (DtpT) is the primary transporter of di- and tripeptides in S. aureus, yet its impact on biofilm formation and stress resistance in S. aureus has not been previously reported. Our study focused on the foodborne S. aureus strain RMSA49, revealing that mutation of the dtpT resulted in diminished biofilm formation ability and reduced tolerance to environmental stress (high temperature, dryness, oxidative stress, and salt stress). These findings highlight the significance of DtpT in both biofilm formation and response to environmental stress in foodborne S. aureus. Our study represents the first report demonstrating the crucial role of DtpT in biofilm formation and environmental tolerance in S. aureus, providing new avenues for future research on this protein while also identifying potential target genes for further investigation into S. aureus tolerance mechanisms during food processing and control of biofilm formation.
Collapse
Affiliation(s)
- Ziheng Wu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolu Lei
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunying Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Siyao Wu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhiyuan Hou
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hao Pei
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Szabó Á, Jerzsele Á, Kovács L, Kerek Á. Antimicrobial Susceptibility Profiles of Commensal Staphylococcus spp. Isolates from Chickens in Hungarian Poultry Farms Between 2022 and 2023. Antibiotics (Basel) 2025; 14:103. [PMID: 39858388 PMCID: PMC11763316 DOI: 10.3390/antibiotics14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Antimicrobial resistance is one of the greatest challenges of our time, urging researchers in both veterinary and public health to engage in collaborative efforts, thereby fostering the One Health approach. Infections caused by Staphylococcus species can not only lead to significant diseases in poultry but also pose serious threats to human life, particularly in hospital (nosocomial) infections; therefore, it is crucial to identify their antimicrobial resistance. METHODS Our objective was to assess the susceptibility profile of commensal Staphylococcus aureus strains (n = 227) found in commercial chicken flocks in Hungary through the determination of minimum inhibitory concentration (MIC) values. RESULTS Based on our findings, resistance to tiamulin (82.8%; 95% CI: 77.4-87.2%) and doxycycline (74.4%; 95% CI: 68.5-79.7%) is the most critical. The 55.1% (95% CI: 48.8-61.3%) resistance rate to enrofloxacin, a critically important antimicrobial, is also concerning. The fact that 58.6% (95% CI: 52.4-64.5%) of the strains were resistant to amoxicillin and 35.7% (95% CI: 29.7-42.1) were resistant to amoxicillin-clavulanic acid suggests that a proportion of the strains produce β-lactamase. Comparing our results with the available human hospital data, it was found that resistance to macrolide antibiotics is similarly high in both cases. CONCLUSIONS Our findings highlight the necessity of conducting regular surveillance studies, which would allow the monitoring of future temporal trends. This information could benefit practitioners making clinical decisions to successfully treat infections. To uncover the underlying causes of multidrug resistance, next-generation sequencing can be employed to elucidate the genetic basis of phenotypic resistance.
Collapse
Affiliation(s)
- Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary; (Á.S.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary;
| | - László Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary;
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, H-1078 Budapest, Hungary
- Poultry-Care Limited Liability Company, H-5052 Újszász, Hungary
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary;
| |
Collapse
|
3
|
Lee JB, Lim JH, Park JH, Lee GY, Park KT, Yang SJ. Genetic characteristics and antimicrobial resistance of Staphylococcus aureus isolates from pig farms in Korea: emergence of cfr-positive CC398 lineage. BMC Vet Res 2024; 20:503. [PMID: 39487420 PMCID: PMC11529005 DOI: 10.1186/s12917-024-04360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Livestock-associated Staphylococcus aureus (LA-SA) has gained global attention because of its ability to colonize farm animals and transmit to the environment and humans, leading to symptomatic infections and the spread of antimicrobial resistance (AMR). In the last decade, numerous studies have reported a high prevalence of S. aureus clonal complex (CC) 398 in pig farms. RESULTS In this study, 163 S. aureus isolates were collected from healthy pigs (n = 110), farm environments (n = 42), and farm workers (n = 11), and their AMR profiles and epidemiological characteristics were analyzed. We identified 51 (31.3%) methicillin-resistant S. aureus (MRSA) and 112 (68.7%) methicillin-susceptible S. aureus (MSSA), with 161 (98.8%) isolates belonging to the CC398 lineage. The highest prevalence of spa type t571 was observed among the CC398 isolates. All 47 sequence type (ST) 398 MRSA isolates carried staphylococcal cassette chromosome mec (SCCmec) V, while four ST541 isolates carried SCCmec IV. High levels of resistance to commonly used antibiotics, including phenicols, quinolones, lincosamides, macrolides, aminoglycosides, and tetracyclines, have been observed on Korean pig farms. Notably, 21 cfr-positive CC398 isolates (four ST541-SCCmec IV MRSA and 17 ST398 MSSA) displaying increased resistance to linezolid were identified in healthy pigs. CONCLUSIONS In summary, these findings suggest that the multidrug-resistant CC398 S. aureus lineage predominantly colonizes healthy pigs and farm environments in Korea. The emergence of cfr-positive S. aureus at human-animal interfaces presents a significant threat to food safety and public health.
Collapse
Affiliation(s)
- Jun Bong Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ji Hyun Lim
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ji Heon Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Gi Yong Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kun Taek Park
- Department of Biotechnology, Inje University, Gimhae, 50834, Korea
| | - Soo-Jin Yang
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Aguirre-Sánchez JR, Castro-Del Campo N, Medrano-Félix JA, Martínez-Torres AO, Chaidez C, Querol-Audi J, Castro-Del Campo N. Genomic insights of S. aureus associated with bovine mastitis in a high livestock activity region of Mexico. J Vet Sci 2024; 25:e42. [PMID: 38910306 PMCID: PMC11291432 DOI: 10.4142/jvs.23286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 06/25/2024] Open
Abstract
IMPORTANCE Bovine mastitis, predominantly associated with gram-positive Staphylococcus aureus, poses a significant threat to dairy cows, leading to a decline in milk quality and volume with substantial economic implications. OBJECTIVE This study investigated the incidence, virulence, and antibiotic resistance of S. aureus associated with mastitis in dairy cows. METHODS Fifty milk-productive cows underwent a subclinical mastitis diagnosis, and the S. aureus strains were isolated. Genomic DNA extraction, sequencing, and bioinformatic analysis were performed, supplemented by including 124 S. aureus genomes from cows with subclinical mastitis to enhance the overall analysis. RESULTS The results revealed a 42% prevalence of subclinical mastitis among the cows tested. Genomic analysis identified 26 sequence types (STs) for all isolates, with Mexican STs belonging primarily to CC1 and CC97. The analyzed genomes exhibited multidrug resistance to phenicol, fluoroquinolone, tetracycline, and cephalosporine, which are commonly used as the first line of treatment. Furthermore, a similar genomic virulence repertoire was observed across the genomes, encompassing the genes related to invasion, survival, pathogenesis, and iron uptake. In particular, the toxic shock syndrome toxin (tss-1) was found predominantly in the genomes isolated in this study, posing potential health risks, particularly in children. CONCLUSION AND RELEVANCE These findings underscore the broad capacity for antibiotic resistance and pathogenicity by S. aureus, compromising the integrity of milk and dairy products. The study emphasizes the need to evaluate the effectiveness of antibiotics in combating S. aureus infections.
Collapse
Affiliation(s)
- José Roberto Aguirre-Sánchez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa 80110, México
| | - Nohemí Castro-Del Campo
- Departamento de Parasitología Animal. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma de Sinaloa (UAS), Culiacán, Sinaloa 80260, México
| | - José Andrés Medrano-Félix
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa 80110, México
| | - Alex Omar Martínez-Torres
- Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panamá City 0820, Panamá
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa 80110, México
| | - Jordi Querol-Audi
- Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panamá City 0820, Panamá
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa 80110, México.
| |
Collapse
|
5
|
Dagnaw M, Bazezew M, Mengistu B, Anagaw B, Mebratu AS. Rate of Beta-Lactam Resistance and Epidemiological Features of S. Aureus-Associated Bovine Mastitis in Cross-Bred Ethiopian Cows: Systematic Review. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:39-55. [PMID: 38433734 PMCID: PMC10908337 DOI: 10.2147/vmrr.s415339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Background Dairy cows get mastitis from a common infection called Staphylococcus aureus. Because of its broad distribution across diverse populations and capacity to acquire antibiotic resistance, this particular bacterial strain presents a serious threat to public health. The main goals of this study were to determine the beta-lactam resistance profile of S. aureus in Ethiopian dairy cows and to offer thorough epidemiological data. Methods We employed manual searches, Web of Science, PubMed Central, and Google Scholar HINARI for electronic bibliographic data. Results Twenty-six epidemiological studies were included in this systematic review. Of these studies, 12 articles in Oromia, 4 articles in Addis Ababa, 4 articles in Southern Nations, Nationalities, and People's (SNNPRS), 3 articles in Tigray, and 3 articles in Amhara region. The average prevalence S. aureus were 34.3% in Oromia, 40.2% in Amhara, 39.5 in AA, 40% in Tigray and 21% in SNNPRS. The antimicrobial resistance rate of S. aureus, specifically in relation to beta-lactam drugs, exhibited an average estimation. Notably, penicillin resistance reached a rate of 75%, while amoxicillin resistance stood at 67%. Furthermore, it was determined that, when treating S. aureus, the resistance rates to ampicillin and cephalosporin were 50% and 57%, respectively. Conclusion The results of this analysis have demonstrated a considerable rise in S. aureus prevalence and beta-lactam resistance within the Ethiopian geographic environment. This emphasizes the critical need for alternate therapeutic approaches and preventative measures in order to successfully lessen the disease's extensive spread and detrimental effects across the nation.
Collapse
Affiliation(s)
- Melkie Dagnaw
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Marshet Bazezew
- Department of Epidemiology, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Bemrew Mengistu
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Birhan Anagaw
- Department of Pathology, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon Mebratu
- Department of Pharmacy, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Monecke S, Braun SD, Collatz M, Diezel C, Müller E, Reinicke M, Cabal Rosel A, Feßler AT, Hanke D, Loncaric I, Schwarz S, Cortez de Jäckel S, Ruppitsch W, Gavier-Widén D, Hotzel H, Ehricht R. Molecular Characterization of Chimeric Staphylococcus aureus Strains from Waterfowl. Microorganisms 2024; 12:96. [PMID: 38257923 PMCID: PMC10821479 DOI: 10.3390/microorganisms12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Staphylococcus aureus is a versatile pathogen that does not only occur in humans but also in various wild and domestic animals, including several avian species. When characterizing S. aureus isolates from waterfowl, isolates were identified as atypical CC133 by DNA microarray analysis. They differed from previously sequenced CC133 strains in the presence of the collagen adhesin gene cna; some also showed a different capsule type and a deviant spa type. Thus, they were subjected to whole-genome sequencing. This revealed multiple insertions of large regions of DNA from other S. aureus lineages into a CC133-derived backbone genome. Three distinct strains were identified based on the size and extent of these inserts. One strain comprised two small inserts of foreign DNA up- and downstream of oriC; one of about 7000 nt or 0.25% originated from CC692 and the other, at ca. 38,000 nt or 1.3% slightly larger one was of CC522 provenance. The second strain carried a larger CC692 insert (nearly 257,000 nt or 10% of the strain's genome), and its CC522-derived insert was also larger, at about 53,500 nt or 2% of the genome). The third strain carried an identical CC692-derived region (in which the same mutations were observed as in the second strain), but it had a considerably larger CC522-like insertion of about 167,000 nt or 5.9% of the genome. Both isolates of the first, and two out of four isolates of the second strain also harbored a hemolysin-beta-integrating prophage carrying "bird-specific" virulence factors, ornithine cyclodeaminase D0K6J8 and a putative protease D0K6J9. Furthermore, isolates had two different variants of SCC elements that lacked mecA/mecC genes. These findings highlight the role of horizontal gene transfer in the evolution of S. aureus facilitated by SCC elements, by phages, and by a yet undescribed mechanism for large-scale exchange of core genomic DNA.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Maximillian Collatz
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Adriana Cabal Rosel
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, 1220 Vienna, Austria
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection, Medicine School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Centre for Infection, Medicine School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection, Medicine School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | | | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, 1220 Vienna, Austria
| | - Dolores Gavier-Widén
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), 75189 Uppsala, Sweden
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), 75007 Uppsala, Sweden
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), 07743 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
7
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Molecular Characterization of Methicillin-Resistant Staphylococci from the Dairy Value Chain in Two Indian States. Pathogens 2023; 12:pathogens12020344. [PMID: 36839616 PMCID: PMC9965176 DOI: 10.3390/pathogens12020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023] Open
Abstract
Bovine milk and milk products may contain pathogens, antimicrobial resistant bacteria, and antibiotic residues that could harm consumers. We analyzed 282 gram-positive isolates from milk samples from dairy farmers and vendors in Haryana and Assam, India, to assess the prevalence of methicillin-resistant staphylococci using microbiological tests, antibiotic susceptibility testing, and genotyping by PCR. The prevalence of genotypic methicillin resistance in isolates from raw milk samples was 5% [95% confidence interval, CI (3-8)], with 7% [CI (3-10)] in Haryana, in contrast to 2% [CI (0.2-6)] in Assam. The prevalence was the same in isolates from milk samples collected from farmers [5% (n = 6), CI (2-11)] and vendors [5% (n = 7), CI (2-10)]. Methicillin resistance was also observed in 15% of the isolates from pasteurized milk [(n = 3), CI (3-38)]. Two staphylococci harboring a novel mecC gene were identified for the first time in Indian dairy products. The only SCCmec type identified was Type V. The staphylococci with the mecA (n = 11) gene in raw milk were commonly resistant to oxacillin [92%, CI (59-100)] and cefoxitin [74%, CI (39-94)], while the isolates with mecC (n = 2) were resistant to oxacillin (100%) only. All the staphylococci with the mecA (n = 3) gene in pasteurized milk were resistant to both oxacillin and cefoxitin. Our results provided evidence that methicillin-resistant staphylococci occur in dairy products in India with potential public health implications. The state with more intensive dairy systems (Haryana) had higher levels of methicillin-resistant bacteria in milk.
Collapse
|
9
|
Zaher HA, El Baz S, Alothaim AS, Alsalamah SA, Alghonaim MI, Alawam AS, Eraqi MM. Molecular Basis of Methicillin and Vancomycin Resistance in Staphylococcus aureus from Cattle, Sheep Carcasses and Slaughterhouse Workers. Antibiotics (Basel) 2023; 12:antibiotics12020205. [PMID: 36830115 PMCID: PMC9952529 DOI: 10.3390/antibiotics12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a serious infection-causing pathogen in humans and animal. In particular, methicillin-resistant S. aureus (MRSA) is considered one of the major life-threatening pathogens due to its rapid resistance to several antibiotics in clinical practice. MRSA strains have recently been isolated in a number of animals utilized in food production processes, and these species are thought to be the important sources of the spread of infection and disease in both humans and animals. The main objective of the current study was to assess the prevalence of drug-resistant S. aureus, particularly vancomycin-resistant S. aureus (VRSA) and MRSA, by molecular methods. To address this issue, a total of three hundred samples (200 meat samples from cattle and sheep carcasses (100 of each), 50 hand swabs, and 50 stool samples from abattoir workers) were obtained from slaughterhouses in Egypt provinces. In total, 19% S. aureus was isolated by standard culture techniques, and the antibiotic resistance was confirmed genotypically by amplification nucA gen. Characteristic resistance genes were identified by PCR with incidence of 31.5%, 19.3%, 8.7%, and 7% for the mecA, VanA, ermA, and tet L genes, respectively, while the aac6-aph gene was not found in any of the isolates. In this study, the virulence genes responsible for S. aureus' resistance to antibiotics had the highest potential for infection or disease transmission to animal carcasses, slaughterhouse workers, and meat products.
Collapse
Affiliation(s)
- Hanan A. Zaher
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa El Baz
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdulaziz S. Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Sulaiman A. Alsalamah
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mostafa M. Eraqi
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
- Microbiology and Immunology Department, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Correspondence: ; Tel.: +966-565709849
| |
Collapse
|
10
|
Genes associated with desiccation stress in foodborne Staphylococcus aureus as revealed by transposon insertion mutagenesis. Food Res Int 2023; 163:112271. [PMID: 36596182 DOI: 10.1016/j.foodres.2022.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. However, the molecular mechanisms involved in desiccation stress have received little attention in S. aureus. Here, some potential genes related to desiccation stress were determined in S. aureus by the transposon random mutagenesis approach. Eight mutants with different mutant sites who showed lower survival rates compared to wild-type (WT) strain RMSA24 under desiccation stress were successfully screened from a mutant library (n = 3,154). The eight mutation sites are identified as potential genes of U32 family peptidase, CHAP domain-containing protein, YdcF family protein, RNA polymerase sigma factor, EVE domain-containing protein, acetyltransferase, LPXTG-anchored DUF1542 repeat protein FmtB, and CvpA family protein, which haven't been reported as the desiccation-tolerant related genes. We found that the growth rates and biofilm formation abilities of these mutants were not significantly affected, indicating that their reduced survival rates under desiccation stress not dependent on reduced growth rates and biofilm formation abilities. Under desiccation stress, the expression levels of the three mutated genes were up-regulated and the four mutated genes were down-regulated in the WT strain, implying that these genes may play different roles in S. aureus to adapt to desiccation stress conditions. The study reveals valuable information for the control of S. aureus in low water activity foods and their production environments.
Collapse
|
11
|
Huber C, Wolf SA, Ziebuhr W, Holmes MA, Assmann J, Lübke-Becker A, Thürmer A, Semmler T, Brombach J, Bethe A, Bischoff M, Wieler LH, Epping L, Walther B. How to survive pig farming: Mechanism of SCC mec element deletion and metabolic stress adaptation in livestock-associated MRSA. Front Microbiol 2022; 13:969961. [PMID: 36504815 PMCID: PMC9728531 DOI: 10.3389/fmicb.2022.969961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Previous research on methicillin susceptible Staphylococcus aureus (MSSA) belonging to livestock-associated (LA-) sequence type (ST) 398, isolated from pigs and their local surroundings, indicated that differences between these MSSA and their methicillin resistant predecessors (MRSA) are often limited to the absence of the staphylococcal cassette chromosome mec (SCCmec) and few single nucleotide polymorphisms. So far, our understanding on how LA-MRSA endure the environmental conditions associated with pig-farming as well as the putative impact of this particular environment on the mobilisation of SCCmec elements is limited. Thus, we performed in-depth genomic and transcriptomic analyses using the LA-MRSA ST398 strain IMT38951 and its methicillin susceptible descendant. We identified a mosaic-structured SCCmec region including a putative replicative SCCmecVc which is absent from the MSSA chromosome through homologous recombination. Based on our data, such events occur between short repetitive sequences identified within and adjacent to two distinct alleles of the large cassette recombinase genes C (ccrC). We further evaluated the global transcriptomic response of MRSA ST398 to particular pig-farm associated conditions, i.e., contact with host proteins (porcine serum) and a high ammonia concentration. Differential expression of global regulators involved in stress response control were identified, i.e., ammonia-induced alternative sigma factor B-depending activation of genes for the alkaline shock protein 23, the heat shock response and the accessory gene regulator (agr)-controlled transcription of virulence factors. Exposure to serum transiently induced the transcription of distinct virulence factor encoding genes. Transcription of genes reported for mediating the loss of methicillin resistance, especially ccrC, was not significantly different compared to the unchallenged controls. We concluded that, from an evolutionary perspective, bacteria may save energy by incidentally dismissing a fully replicative SCCmec element in contrast to the induction of ccr genes on a population scale. Since the genomic SCCmec integration site is a hot-spot of recombination, occasional losses of elements of 16 kb size may restore capacities for the uptake of foreign genetic material. Subsequent spread of resistance, on the other hand, might depend on the autonomous replication machinery of the deleted SCCmec elements that probably enhance chances for reintegration of SCCmec into susceptible genomes by mere multiplication.
Collapse
Affiliation(s)
- Charlotte Huber
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany
| | - Silver A. Wolf
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julia Assmann
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Andrea Thürmer
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Julian Brombach
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Lothar H. Wieler
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Lennard Epping
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany,*Correspondence: Birgit Walther,
| |
Collapse
|
12
|
Qi Y, Hou J, Zhao Y, Song W, Wang L, Chen H, Chen G. An inhibitory effect of schisandrone on α-hemolysin expression to combat methicillin-resistant staphylococcus aureus infections. World J Microbiol Biotechnol 2022; 39:3. [PMID: 36344903 DOI: 10.1007/s11274-022-03442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Due to increasing antibiotic resistance, targeting bacterial virulence factors is now gaining further interest as an alternative strategy to develop novel classes of anti-infective agents. The critical role of α-hemolysin (Hla), an indispensable virulence determinant, in the pathogenicity of Staphylococcus aureus renders this virulence factor an appealing target for effective therapeutic applications. Herein, we identified a natural compound schisandraone, as an effective Hla inhibitor, which could inhibit Hla production and thus hemolytic activity in a dose-dependent manner without affecting the growth of S. aureus. We also found that the addition of schisandrone could down-regulate the transcriptional levels of the hla, agrA and RNAIII and significantly alleviated Hla-mediated injury of A549 cells co-cultured with S. aureus. In vivo studies further suggested that schisandrone combined with antibiotic ceftiofur exhibited a significant therapeutic effect on S. aureus infection. These findings revealed the role of schisandrone in inhibiting the activity of Hla and we believe that it is a promising anti-virulence candidate to combat MRSA pneumonia.
Collapse
Affiliation(s)
- Yingxin Qi
- College of Life Science, Key Laboratory of Straw Biology and Utilization of the Ministry of Education Jilin Agricultural University, Changchun, China.,School of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Juan Hou
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wu Song
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Huan Chen
- Jilin Agricultural University, Changchun, China
| | - Guang Chen
- College of Life Science, Key Laboratory of Straw Biology and Utilization of the Ministry of Education Jilin Agricultural University, Changchun, China. .,School of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China.
| |
Collapse
|
13
|
Yang J, Brown C, Noland W, Johnson TJ, Ji Y. Identification and Validation of a Novel Antibacterial Compound MZ-01 against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:1550. [PMID: 36358205 PMCID: PMC9686779 DOI: 10.3390/antibiotics11111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
The discovery of new classes of antibiotics is slow, and it is being greatly outpaced by the development of bacterial resistance. This disparity places us in an increasingly vulnerable position because we are running out of safe and effective therapeutic options to treat antibiotic-resistant infections. This is exemplified by the emergence and persistence of hospital-acquired and community-associated methicillin-resistant S. aureus (MRSA), which has markedly narrowed our options for treating life-threatening staph infections. Thus, there is an urgent need to develop novel, potent, preventive, and therapeutic agents. In our current study, we performed a whole-cell screening assay of synthetic libraries for antibacterial activity and identified a novel molecule, MZ-01. MZ-01 exhibited potent bactericidal activity against Gram-positive bacterial pathogens, including MRSA, Streptococcus pyogenes, and Streptococcus pneumoniae, at low concentrations. MZ-01 killed and lysed both the late exponential phase of an S. aureus population and bacteria inside mammalian cells. Furthermore, MZ-01 exhibited low cytotoxicity. These results indicate that MZ-01 is a promising scaffold to guide the development of novel, potent antibacterial agents against multidrug-resistant Gram-positive bacterial pathogens such as MRSA.
Collapse
Affiliation(s)
- Junshu Yang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Christopher Brown
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55454, USA
| | - Wayland Noland
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55454, USA
| | - Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
14
|
Golob M, Pate M, Kušar D, Zajc U, Papić B, Ocepek M, Zdovc I, Avberšek J. Antimicrobial Resistance and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Two Pig Farms: Longitudinal Study of LA-MRSA. Antibiotics (Basel) 2022; 11:1532. [PMID: 36358187 PMCID: PMC9687068 DOI: 10.3390/antibiotics11111532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 10/29/2023] Open
Abstract
Pigs were identified as the most important reservoir of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA), mostly belonging to the emergent zoonotic clonal complex (CC) 398. Here, we investigated the presence of MRSA in sows and piglets over a period of several months in two pig farms (intensive farm A and family-run farm B). Isolates underwent antimicrobial susceptibility testing, PCR characterization and spa typing. We collected 280 samples, namely 206 nasal swabs from pigs and 74 environmental samples from pig housings at 12 consecutive time points. A total of 120/161 (74.5%) and 75/119 (63.0%) samples were MRSA-positive in farms A and B, respectively. All isolates harbored mecA but lacked mecC and PVL-encoding genes. The identified spa types (t571, t034, t1250 and t898 in farm A, t1451 and t011 in farm B) were indicative of CC398. Antimicrobial resistance patterns (all multidrug resistant in farm A, 57.2% in farm B) depended on the farm, suggesting the impact of farm size and management practices on the prevalence and characteristics of MRSA. Due to the intermittent colonization of pigs and the high contamination of their immediate environment, MRSA status should be determined at the farm level when considering preventive measures or animal trade between farms.
Collapse
Affiliation(s)
- Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Krüger-Haker H, Ji X, Bartel A, Feßler AT, Hanke D, Jiang N, Tedin K, Maurischat S, Wang Y, Wu C, Schwarz S. Metabolic Characteristics of Porcine LA-MRSA CC398 and CC9 Isolates from Germany and China via Biolog Phenotype MicroArray TM. Microorganisms 2022; 10:2116. [PMID: 36363707 PMCID: PMC9693340 DOI: 10.3390/microorganisms10112116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 10/02/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is an important zoonotic pathogen, often multi-resistant to antimicrobial agents. Among swine, LA-MRSA of clonal complex (CC) 398 dominates in Europe, Australia and the Americas, while LA-MRSA-CC9 is the main epidemic lineage in Asia. Here, we comparatively investigated the metabolic properties of rare and widespread porcine LA-MRSA isolates from Germany and China using Biolog Phenotype MicroArray technology to evaluate if metabolic variations could have played a role in the development of two different epidemic LA-MRSA clones in swine. Overall, we were able to characterize the isolates' metabolic profiles and show their tolerance to varying environmental conditions. Sparse partial least squares discriminant analysis (sPLS-DA) supported the detection of the most informative substrates and/or conditions that revealed metabolic differences between the LA-MRSA lineages. The Chinese LA-MRSA-CC9 isolates displayed unique characteristics, such as a consistently delayed onset of cellular respiration, and increased, reduced or absent usage of several nutrients. These possibly unfavorable metabolic properties might promote the ongoing gradual replacement of the current epidemic LA-MRSA-CC9 clone in China with the emerging LA-MRSA-CC398 lineage through livestock trade and occupational exposure. Due to the enhanced pathogenicity of the LA-MRSA-CC398 clone, the public health risk posed by LA-MRSA from swine might increase further.
Collapse
Affiliation(s)
- Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Xing Ji
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory, Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Alexander Bartel
- Institute for Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Nansong Jiang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Sven Maurischat
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Congming Wu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, MARA, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Yimana M, Tesfaye J. Isolation, identification and antimicrobial profile of methicillin‐resistant
Staphylococcus aureus
from bovine mastitis in and around Adama, Central Ethiopia. Vet Med Sci 2022; 8:2576-2584. [DOI: 10.1002/vms3.902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Muhabaw Yimana
- Addis Ababa University College of Veterinary Medicine, Department of Veterinary public health Debrezeit Ethiopia
- Sekota Agricultural Bureau, Animal health case team Sekota Ethiopia
| | - Juhar Tesfaye
- Ethiopian Institute of Agricultural Research Werer Agricultural Research Center, Animal health research department Werer Ethiopia
| |
Collapse
|
17
|
Clonal distribution and antimicrobial resistance of methicillin-susceptible and -resistant Staphylococcus aureus strains isolated from broiler farms, slaughterhouses, and retail chicken meat. Poult Sci 2022; 101:102070. [PMID: 36041389 PMCID: PMC9449669 DOI: 10.1016/j.psj.2022.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
|
18
|
Sora VM, Panseri S, Nobile M, Di Cesare F, Meroni G, Chiesa LM, Zecconi A. Milk Quality and Safety in a One Health Perspective: Results of a Prevalence Study on Dairy Herds in Lombardy (Italy). Life (Basel) 2022; 12:786. [PMID: 35743817 PMCID: PMC9225654 DOI: 10.3390/life12060786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022] Open
Abstract
Mastitis is one of the major diseases of dairy cows that affects milk quality and quantity and increases the potential risk for the presence of antimicrobial residues (AR) in milk, which could lead to the development of antimicrobial resistance (AMR) among human pathogens. Even if the presence of AR in milk and milk products is low in many countries, the threat is not negligible and cannot be ignored. These problems may be investigated by applying a One Health approach, and this prevalence study aimed to estimate the risks for human health related to milk production applied to dairy herds in Lombardy. Three hundred thirty-one bulk tank milk samples were randomly collected and analyzed by CombiFoss 7 and MilkoScan 7 (milk quality, bacteria, and somatic cell count), an HPLC system coupled to a Q-Exactive Orbitrap (AR), and qPCR (contagious pathogens). The data were analyzed by a generalized linear model. The results showed a relatively high prevalence of contagious pathogens (S. aureus 28.1%; Str. agalactiae 7.3%; M. bovis 3%), which primarily affect milk nutritional components decreasing mainly milk fat content (range 1%-2.5%), but did not show them to be associated to an increase of the risk of antimicrobial residues. These latter ones were recovered only in 7/331 samples at concentrations far below official MLRs. The results support currently active surveillance programs' efficacy in reducing AR risks, which may be further improved by prioritizing them based on geographical area characteristics.
Collapse
Affiliation(s)
- Valerio M. Sora
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy; (V.M.S.); (G.M.)
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Università 6, 26900 Lodi, Italy; (S.P.); (M.N.); (F.D.C.); (L.M.C.)
| | - Maria Nobile
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Università 6, 26900 Lodi, Italy; (S.P.); (M.N.); (F.D.C.); (L.M.C.)
| | - Federica Di Cesare
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Università 6, 26900 Lodi, Italy; (S.P.); (M.N.); (F.D.C.); (L.M.C.)
| | - Gabriele Meroni
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy; (V.M.S.); (G.M.)
| | - Luca M. Chiesa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Università 6, 26900 Lodi, Italy; (S.P.); (M.N.); (F.D.C.); (L.M.C.)
| | - Alfonso Zecconi
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy; (V.M.S.); (G.M.)
| |
Collapse
|
19
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Staphylococcus aureus in cattle and horses. EFSA J 2022; 20:e07312. [PMID: 35582361 PMCID: PMC9087474 DOI: 10.2903/j.efsa.2022.7312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) was identified among the most relevant antimicrobial-resistant (AMR) bacteria in the EU for cattle and horses in previous scientific opinions. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR S. aureus can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (60-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1, 2 and 4 (Categories A, B and D; 1-5%, 5-10% and 10-33% probability of meeting the criteria, respectively) and the AHAW Panel was uncertain whether it meets the criteria in Sections 3 and 5 (Categories C and E, 33-90% and 60-90% probability of meeting the criteria, respectively). The animal species to be listed for AMR S. aureus according to Article 8 criteria include mainly mammals, birds, reptiles and fish.
Collapse
|
20
|
Rocha GD, Nogueira JF, Gomes Dos Santos MV, Boaventura JA, Nunes Soares RA, José de Simoni Gouveia J, Matiuzzi da Costa M, Gouveia GV. Impact of polymorphisms in blaZ, blaR1 and blaI genes and their relationship with β-lactam resistance in S. aureus strains isolated from bovine mastitis. Microb Pathog 2022; 165:105453. [PMID: 35217180 DOI: 10.1016/j.micpath.2022.105453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
There is not a consensus between the presence of the genotypic resistance marker gene and the phenotypic resistance to β-lactams in Staphylococcus aureus, which means, positive S. aureus blaZ isolates demonstrating sensitivity to β-lactams. The present study aimed to characterize the blaZ, blaR1 and blaI genes, identify and evaluate single nucleotide polymorphisms (SNPs) and their relationship with β-lactam resistance in samples of Staphylococcus aureus obtained from cases of bovine mastitis. Five isolates (two resistant and three sensitive to oxacillin) of Staphylococcus aureus with detected production of beta-lactamase, previously evaluated as containing the blaZ gene and negative for the mecA and mecC genes, had the bla operon completely sequenced. Impacts on the protein sequence due to the detected polymorphisms were evaluated by modeling the proteins encoded by the blaZ, blaR1 and blaI genes using a three-dimensional model structure obtained from the Protein Data Bank (PDB) database. Fifteen SNPs were detected in the blaZ gene, 30 in the blaR1 gene and three in the blaI gene. These SNPs caused alterations in amino acid sites. Deleterious mutations were detected in the blaZ gene (E146G, P218S, Y221C) and the blaR1 gene (K481E). Molecular docking analysis revealed that polymorphisms in the blaZ gene may explain the phenotypic sensitivity in isolates that contain the resistance marker gene. Although sensitive and resistant isolates encode beta-lactamase, these proteins are functionally altered due to a change in the binding site with the antibiotic.
Collapse
Affiliation(s)
- Gabriela Dias Rocha
- Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho s/n, C1, Petrolina, PE, 56300-000, Brazil
| | - Joel Fonseca Nogueira
- Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho s/n, C1, Petrolina, PE, 56300-000, Brazil
| | - Marion Venâncio Gomes Dos Santos
- Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho s/n, C1, Petrolina, PE, 56300-000, Brazil
| | - Joanna Adrielly Boaventura
- Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho s/n, C1, Petrolina, PE, 56300-000, Brazil
| | - Riani Ananda Nunes Soares
- Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho s/n, C1, Petrolina, PE, 56300-000, Brazil
| | - João José de Simoni Gouveia
- Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho s/n, C1, Petrolina, PE, 56300-000, Brazil
| | - Mateus Matiuzzi da Costa
- Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho s/n, C1, Petrolina, PE, 56300-000, Brazil
| | - Gisele Veneroni Gouveia
- Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, Rodovia Km 12, Lote 543, Projeto de Irrigação Nilo Coelho s/n, C1, Petrolina, PE, 56300-000, Brazil.
| |
Collapse
|
21
|
Tuominen K, Sternberg Lewerin S, Jacobson M, Rosendal T. Modelling environmentally mediated spread of livestock-associated methicillin-resistant Staphylococcus aureus in a pig herd. Animal 2022; 16:100450. [DOI: 10.1016/j.animal.2021.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022] Open
|
22
|
Fonseca M, Heider LC, Léger D, Mcclure JT, Rizzo D, Dufour S, Kelton DF, Renaud D, Barkema HW, Sanchez J. Canadian Dairy Network for Antimicrobial Stewardship and Resistance (CaDNetASR): An On-Farm Surveillance System. Front Vet Sci 2022; 8:799622. [PMID: 35097047 PMCID: PMC8790291 DOI: 10.3389/fvets.2021.799622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Canada has implemented on-farm antimicrobial resistance (AMR) surveillance systems for food-producing animals under the Canadian Integrated Program for Antimicrobial Resistance (CIPARS); however, dairy cattle have not been included in that program yet. The objective of this manuscript was to describe the development and implementation of the Canadian Dairy Network for Antimicrobial Stewardship and Resistance (CaDNetASR). An Expert Panel (EP) of researchers was created to lead the development of the dairy surveillance system. The EP initiated a draft document outlining the essential elements of the surveillance framework. This document was then circulated to a Steering Committee (SC), which provided recommendations used by the EP to finalize the framework. CaDNetASR has the following components: (1) a herd-level antimicrobial use quantification system; (2) annually administered risk factor questionnaires; and (3) methods for herd-level detection of AMR in three sentinel enteric pathogens (generic Escherichia coli, Campylobacter spp., and Salmonella spp.) recovered from pooled fecal samples collected from calves, heifers, cows, and the manure pit. A total of 144 dairy farms were recruited in five Canadian provinces (British-Columbia, Alberta, Ontario, Québec, and Nova-Scotia), with the help of local herd veterinarians and regional field workers, and in September 2019, the surveillance system was launched. 97.1 and 94.4% of samples were positive for E. coli, 63.8, and 49.1% of samples were positive for Campylobacter spp., and 5.0 and 7.7% of samples were positive for Salmonella spp., in 2019 and 2020, respectively. E. coli was equally distributed among all sample types. However, it was more likely that Campylobacter spp. were recovered from heifer and cow samples. On the other hand, it was more common to isolate Salmonella spp. from the manure pit compared to samples from calves, heifers, or cows. CaDNetASR will continue sampling until 2022 after which time this system will be integrated into CIPARS. CaDNetASR will provide online access to farmers and veterinarians interested in visualizing benchmarking metrics regarding AMU practices and their relationship to AMR and animal health in dairy herds. This will provide an opportunity to enhance antimicrobial stewardship practices on dairy farms in Canada.
Collapse
Affiliation(s)
- Mariana Fonseca
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Luke C. Heider
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - David Léger
- Public Health Agency of Canada, Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| | - J. Trenton Mcclure
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Daniella Rizzo
- Public Health Agency of Canada, Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| | - Simon Dufour
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David F. Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - Javier Sanchez
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
23
|
Cave R, Cole J, Mkrtchyan HV. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. ENVIRONMENT INTERNATIONAL 2021; 157:106836. [PMID: 34479136 PMCID: PMC8443212 DOI: 10.1016/j.envint.2021.106836] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistant (AMR) bacteria present one of the biggest threats to public health; this must not be forgotten while global attention is focussed on the COVID-19 pandemic. Resistant bacteria have been demonstrated to be transmittable to humans in many different environments, including public settings in urban built environments where high-density human activity can be found, including public transport, sports arenas and schools. However, in comparison to healthcare settings and agriculture, there is very little surveillance of AMR in the built environment outside of healthcare settings and wastewater. In this review, we analyse the existing literature to aid our understanding of what surveillance has been conducted within different public settings and identify what this tells us about the prevalence of AMR. We highlight the challenges that have been reported; and make recommendations for future studies that will help to fill knowledge gaps present in the literature.
Collapse
Affiliation(s)
- Rory Cave
- School of Biomedical Sciences, University of West London, United Kingdom
| | - Jennifer Cole
- Royal Holloway University of London, Department of Health Studies, United Kingdom
| | | |
Collapse
|
24
|
Zhao L, Huang X, Zhang T, Zhang X, Jiang M, Lu H, Sui G, Zhao Y, Zhao W, Liu X. A point-of-care test device for MRSA rapid detection. J Pharm Biomed Anal 2021; 209:114464. [PMID: 34915322 DOI: 10.1016/j.jpba.2021.114464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus (SA) is one of the most common pathogenic bacteria, and methicillin-resistant SA (MRSA) is an equally common drug-resistant bacteria. MRSA detection is of great significance for clinical diagnosis, medication guidance, and prevention of antibiotic abuse. Traditional MRSA detection using the culture method is time-consuming, laborious, and difficult to conduct rapid on-site detection. In this research, we developed a device for rapid MRSA detection, which can detect the nuc gene in SA and mecA gene in MRSA simultaneously for 30-40 min. After simple sample processing, the mixture can be directly loaded onto the chip device. The detection results can be directly determined by a color change, with a limitation of approximately 102 copies. This isothermal amplification chip device can be widely applied in many fields, with simple operation and low contamination.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | - Xiaochun Huang
- Department of Laboratory, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | - Tong Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Xinlian Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Mengni Jiang
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | - Huijun Lu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Yue Zhao
- Liaocheng Center for Disease Control and Prevention, 2 East Hunan Road, Liaocheng 252000, Shandong, PR China
| | - Wang Zhao
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Xiao Liu
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China.
| |
Collapse
|
25
|
Thwala T, Madoroba E, Basson A, Butaye P. Prevalence and Characteristics of Staphylococcus aureus Associated with Meat and Meat Products in African Countries: A Review. Antibiotics (Basel) 2021; 10:antibiotics10091108. [PMID: 34572690 PMCID: PMC8465003 DOI: 10.3390/antibiotics10091108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance has been increasing globally, which negatively affects food safety, veterinary, and human medicine. Ineffective antibiotics may cause treatment failure, which results in prolonged hospitalisation, increased mortality, and consequently, increased health care costs. Staphylococcus aureus causes a diverse range of infections including septicaemia and endocarditis. However, in food, it mainly causes food poisoning by the production of enterotoxins. With the discovery of methicillin-resistant S. aureus strains that have a separate reservoir in livestock animals, which were termed as livestock-associated methicillin-resistant S. aureus (LA-MRSA) in 2005, it became clear that animals may pose another health risk. Though LA-MRSA is mainly transferred by direct contact, food transmission cannot be excluded. While the current strains are not very pathogenic, mitigation is advisable, as they may acquire new virulence genes, becoming more pathogenic, and may transfer their resistance genes. Control of LA-MRSA poses significant problems, and only Norway has an active mitigation strategy. There is limited information about LA-MRSA, MRSA in general, and other S. aureus infections from African countries. In this review, we discuss the prevalence and characteristics of antimicrobial susceptible and resistant S. aureus (with a focus on MRSA) from meat and meat products in African countries and compare it to the situation in the rest of the world.
Collapse
Affiliation(s)
- Thembeka Thwala
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa; (T.T.); (E.M.); (A.B.)
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa; (T.T.); (E.M.); (A.B.)
| | - Albert Basson
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa; (T.T.); (E.M.); (A.B.)
| | - Patrick Butaye
- Department of Biosciences, Ross University School of Veterinary Medicine, West Farm, Saint Kitts and Nevis
- Bacteriology and Avian Diseases, Department of Pathology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- Correspondence:
| |
Collapse
|
26
|
Mala L, Lalouckova K, Skrivanova E. Bacterial Skin Infections in Livestock and Plant-Based Alternatives to Their Antibiotic Treatment. Animals (Basel) 2021; 11:2473. [PMID: 34438930 PMCID: PMC8388705 DOI: 10.3390/ani11082473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Due to its large surface area, the skin is susceptible to various injuries, possibly accompanied by the entrance of infective agents into the body. Commensal organisms that constitute the skin microbiota play important roles in the orchestration of cutaneous homeostasis and immune competence. The opportunistic pathogen Staphylococcus aureus is present as part of the normal biota of the skin and mucous membranes in both humans and animals, but can cause disease when it invades the body either due to trauma or because of the impaired immune response of the host. Colonization of livestock skin by S. aureus is a precursor for majority of bacterial skin infections, which range from boils to sepsis, with the best-characterized being bovine mastitis. Antibiotic treatment of these infections can contribute to the promotion of resistant bacterial strains and even to multidrug resistance. The development of antibiotic resistance to currently available antibiotics is a worldwide problem. Considering the increasing ability of bacteria to effectively resist antibacterial agents, it is important to reduce the livestock consumption of antibiotics to preserve antibiotic effectiveness in the future. Plants are recognized as sources of various bioactive substances, including antibacterial activity towards clinically important microorganisms. This review provides an overview of the current knowledge on the major groups of phytochemicals with antibacterial activity and their modes of action. It also provides a list of currently known and used plant species aimed at treating or preventing bacterial skin infections in livestock.
Collapse
Affiliation(s)
- Lucie Mala
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Klara Lalouckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Eva Skrivanova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| |
Collapse
|
27
|
Tesfaye K, Gizaw Z, Haile AF. Prevalence of Mastitis and Phenotypic Characterization of Methicillin-Resistant Staphylococcus aureus in Lactating Dairy Cows of Selected Dairy Farms in and Around Adama Town, Central Ethiopia. ENVIRONMENTAL HEALTH INSIGHTS 2021; 15:11786302211021297. [PMID: 34103935 PMCID: PMC8165823 DOI: 10.1177/11786302211021297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The emergence of Methicillin resistant Staphylococcus aureus (MRSA) poses a serious public health threat. Strains of Staphylococcus aureus resistant to β-lactam antibiotics are known as MRSA. MRSA has gained attention as community pathogen. MRSA has been increasingly reported as emerging problem in veterinary medicine. However, little is known in Ethiopia. This study was, therefore, conducted to identify MRSA, to determine its drug susceptibility patterns, and mastitis infection in dairy cattle in and around Adama town, Central Ethiopia. METHODS A cross-sectional study was conducted to estimate the occurrence of MRSA in mastitic dairy cows in and around Adama town, central Ethiopia. A total of 384 lactating cows were included from the conveniently selected dairy farms in the study area. Approximately 10 ml of milk was aseptically collected from clinical and subclinical mastitic cows into sterile universal bottles after discarding the first 3 milking streams. Then, Staphylococcus aureus was isolated using the conventional bacteriological procedure. Resistance to methicillin was detected using the Kirby-Bauer disc diffusion antibiotic susceptibility method. Oxacillin disc was used to detect methicillin resistant Staphylococcus aureus strains. Antimicrobial susceptibility test was conducted against MRSA strains using streptomycin (S, 10 µg), amoxicillin (Am, 25 µg), kanamycin (k, 30 µg), nalidixic acid (NA, 30 µg), oxytetracycline (OT, 30 µg) sulphonamide (S, 300 µg) and ceftriazole (CRO, 30 µg). RESULTS The study found that the prevalence of mastitis was 121(31.5%). Among this 37(30.6%) were clinical mastitis and 84 (69.4%) of them were sub-clinical mastitis. Of 121 mastitis cases, Staphylococcus aureus was isolated in 37 (30.6%) of mastitic cow milk samples. The prevalence of mastitis was significantly affected by breed, age, floor type and hygienic status of the milkers (P < .05). Moreover, 32.4% of Staphylococcus aureus isolates were resistant to oxacillin. A total of 75% percent of MRSA isolates were resistant to amoxicillin, 66.7% were resistant to oxytetracycline, and 50% were resistant to sulphonamide. However, 75% of MRSA isolates were susceptible to kanamycin, 58.3% were susceptible to streptomycin, and 50% were susceptible to nalidixic acid. CONCLUSION The study revealed that relatively high number of strains are resistant to the antibiotics commonly used in the therapeutic protocol of many human and animal infections. Therefore, antimicrobial susceptibility test should be carried out at a regular basis and proper hygienic practices should be introduced at farm level. Creating public awareness about transmission, prevention and control of MRSA should also be considered.
Collapse
Affiliation(s)
- Kaleab Tesfaye
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zemichael Gizaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
28
|
Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, Mohd Amin MCI. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Biopharm 2021; 165:84-105. [PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Multi antibiotic-resistant bacterial infections are on the rise due to the overuse of antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the pathogens listed under the category of serious threats where vancomycin remains the mainstay treatment despite the availability of various antibacterial agents. Recently, decreased susceptibility to vancomycin from clinical isolates of MRSA has been reported and has drawn worldwide attention as it is often difficult to overcome and leads to increased medical costs, mortality, and longer hospital stays. Development of antibiotic delivery systems is often necessary to improve bioavailability and biodistribution, in order to reduce antibiotic resistance and increase the lifespan of antibiotics. Liposome entrapment has been used as a method to allow higher drug dosing apart from reducing toxicity associated with drugs. The surface of the liposomes can also be designed and enhanced with drug-release properties, active targeting, and stealth effects to prevent recognition by the mononuclear phagocyte system, thus enhancing its circulation time. The present review aimed to highlight the possible targeting strategies of liposomes against MRSA bacteremia systemically while investigating the magnitude of this effect on the minimum inhibitory concentration level.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Zahraa Mustafa Hussein
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Fahimi Mustapa
- Hospital Batu Gajah Jalan Changkat, 31000 Batu Gajah, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Xiang Yi Chen
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Zhou Y, Zhao S, Gao X, Jiang S, Ma J, Wang R, Li Q, Qin L, Tong Z, Wu J, Zhao J. Staphylococcus aureus Induces IFN-β Production via a CARMA3-Independent Mechanism. Pathogens 2021; 10:pathogens10030300. [PMID: 33806598 PMCID: PMC8000617 DOI: 10.3390/pathogens10030300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Type I interferon (IFN) induction is a critical component of innate immune response to viral and bacterial infection, including S. aureus, but whether it activates the signaling in macrophages and the regulation mechanisms is less well understood. Here we show that S. aureus infection promoted the IFN-β mRNA expression and stimulator of IFN genes (STING)/TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)-dependent production of IFN-β. Infection with S. aureus induced caspase recruitment domain and membrane-associated guanylate kinase-like domain protein 3 (CARMA3) expression at both the mRNA and protein levels. The heat-killed bacteria failed to trigger IRF3 phosphorylation and upregulation of CARMA3 expression. However, overexpression of CARMA3 did not affect phosphorylation of TBK1 or IRF3 in RAW264.7 cells, J774A.1 macrophages, and mouse embryonic fibroblast (MEF) cells. In conclusion, S. aureus infection induces STING/TBK1/IRF3-mediated IFN-β production in a CARMA3-independent manner.
Collapse
Affiliation(s)
- Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence: (Y.Z.); (J.Z.)
| | - Shasha Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Xiao Gao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Songhong Jiang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Jialu Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Rui Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Qing Li
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China;
| | - Leiying Qin
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Zhizi Tong
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Junwei Wu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Jianjun Zhao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China;
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
30
|
Camargo AC, Costa EA, Fusieger A, Freitas RD, Nero LA, Carvalho AFD. Microbial shifts through the ripening of the "Entre Serras" Minas artisanal cheese monitored by high-throughput sequencing. Food Res Int 2020; 139:109803. [PMID: 33509447 DOI: 10.1016/j.foodres.2020.109803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022]
Abstract
Minas Gerais is a Brazilian state known as the largest cheese producer in Brazil. Minas Artisanal Cheese (MAC) is produced in different regions of this Brazilian state using raw cow milk to which a natural starter culture ("pingo") is added. "Entre Serras" is one of these regions, in which the MAC production had decreased (even stopped) for decades until recently, when artisanal cheeses production has been resurrected. Here, we aimed to gain insights on the bacterial diversity of "Entre Serras" MAC. 16S rRNA gene amplicon sequencing was used to assess the bacterial community in cheeses produced by four farms (A, B, C, and D) over 60 days of ripening. Overall, Lactococcus lactis was the predominant species found, regardless of the producer/farm. Enterococcus, Streptococcus, Lactobacillus and Leuconostoc genera were also prevalent in the samples microbiota and their levels varied according to the producer/farm. Cheeses produced by Farms A and B presented high contaminant levels (mainly Enterobacteriaceae and S. aureus), which may be attributed to poor hygiene during cheese production and/or herd health management. Chao1 indices varied significantly when the estimated species richness values of the producers/farms were compared (p < 0.05). A principal coordinate analysis also revealed distinct microbial communities for some farms (p < 0.001). However, no statistical significance was identified when samples were grouped by ripening time. Core microbiota analysis indicated that "Entre Serras" MAC microbiota includes not only LAB, but also spoilage and potentially pathogenic bacteria. We provide the first insights on the bacterial diversity of "Entre Serras" MAC, helping the understanding of the inter-regional microbiological diversity of the samples.
Collapse
Affiliation(s)
- Anderson Carlos Camargo
- Inovaleite - Laboratório de Pesquisa em Leite e Derivados, Universidade Federal de Viçosa, Departamento de Tecnologia de Alimentos, Viçosa 36570 900, MG, Brazil
| | - Edite Andrade Costa
- Inovaleite - Laboratório de Pesquisa em Leite e Derivados, Universidade Federal de Viçosa, Departamento de Tecnologia de Alimentos, Viçosa 36570 900, MG, Brazil
| | - Andressa Fusieger
- Inovaleite - Laboratório de Pesquisa em Leite e Derivados, Universidade Federal de Viçosa, Departamento de Tecnologia de Alimentos, Viçosa 36570 900, MG, Brazil
| | - Rosângela de Freitas
- Inovaleite - Laboratório de Pesquisa em Leite e Derivados, Universidade Federal de Viçosa, Departamento de Tecnologia de Alimentos, Viçosa 36570 900, MG, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Departamento de Veterinária, Viçosa 36570 900, MG, Brazil.
| | - Antônio Fernandes de Carvalho
- Inovaleite - Laboratório de Pesquisa em Leite e Derivados, Universidade Federal de Viçosa, Departamento de Tecnologia de Alimentos, Viçosa 36570 900, MG, Brazil.
| |
Collapse
|
31
|
Silva JR, Mello GS, Moraes TP, Moreira LM, Gonçalves TG, Timm CD. Phenotypic characterization of
Staphylococcus aureus
isolated from foods of animal origin and other related sources. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julia Rosin Silva
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| | - Greyce Silveira Mello
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| | - Thamíris Pereira Moraes
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| | - Lauren Machado Moreira
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| | - Thaís Gonçalves Gonçalves
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| | - Cláudio Dias Timm
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| |
Collapse
|
32
|
Algammal AM, Hetta HF, Elkelish A, Alkhalifah DHH, Hozzein WN, Batiha GES, El Nahhas N, Mabrok MA. Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infect Drug Resist 2020; 13:3255-3265. [PMID: 33061472 PMCID: PMC7519829 DOI: 10.2147/idr.s272733] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major human pathogen and a historically emergent zoonotic pathogen with public health and veterinary importance. In humans, MRSA commonly causes severe infectious diseases, including food poisoning, pyogenic endocarditis, suppurative pneumonia, otitis media, osteomyelitis, and pyogenic infections of the skin, soft tissues. In the horse, MRSA could cause a localized purulent infection and botryomycosis; in cattle and ewe, localized pyogenic infection and severe acute mastitis with marked toxemia; in sheep, abscess disease resembles caseous lymphadenitis caused by anaerobic strains; in dogs and cats, pustular dermatitis and food poisoning; in pig, exudative epidermatitis “greasy pig disease; in birds, MRSA causes bumble-foot. The methicillin resistance could be determined by PCR-based detection of the mecA gene as well as resistance to cefoxitin. In Egypt, MRSA is one of the important occasions of subclinical and clinical bovine mastitis, and the prevalence of MRSA varies by geographical region. In this review, we are trying to illustrate variable data about the host susceptibility, diseases, epidemiology, virulence factors, antibiotic resistance, treatment, and control of MRSA infection.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt.,Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Dalal Hussien H Alkhalifah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11451, Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Nihal El Nahhas
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Mahmoud A Mabrok
- Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.,Fish Infectious Diseases Research Unit (FID RU), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
33
|
Spinelli E, Requena T, Caruso M, Parisi A, Capozzi L, Difato L, Normanno G. Fate of Methicillin-resistant Staphylococcus aureus (MRSA) under simulated acidic conditions of the human stomach. Food Sci Nutr 2020; 8:4739-4745. [PMID: 32994935 PMCID: PMC7500784 DOI: 10.1002/fsn3.1698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
A known amount (107 cfu/ml) of animal origin Methicillin-resistant Staphylococcus aureus (MRSA) ST398/t011/V and of human origin MRSA ST1/t127/IVa strains were individually inoculated into ricotta cheese and hamburger samples. The pH of each food matrix was gradually decreased from 6.0 down to 2.0 during a period of about 2 hr, under conditions simulating the mechanical digestion of the human stomach. Afterward, the MRSA strains were recovered by using a MRSA-specific plating medium. Although both strains showed a certain acidic resistance, they showed different responses at low pH values during the experiment: ST398 survived unharmed during the course of the experiments to the last stage at pH 2 where counts of 6.4 cfu/g for the hamburger and 7.5 log cfu/g for ricotta cheese assays were obtained. In contrast, the ST1 population was no longer detectable at pH 3 in the hamburger and at pH 2 in the ricotta cheese assays. To the best of our knowledge, this is the first study that investigates the ability of MRSA to overcome the acidic conditions of the human stomach and that adds new evidence that might contribute to expand the scientific knowledge on the significance of MRSA in the food safety debate.
Collapse
Affiliation(s)
- Elisa Spinelli
- Department of Science of Agriculture, Food and the Environment (SAFE) University of Foggia Foggia Italy
| | - Teresa Requena
- Research Institute of Food Science CIAL (CSIC-UAM) Madrid Spain
| | - Marta Caruso
- Experimental Zooprophylactic Institute of Apulia and Basilicata Matera Italy
| | - Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata Putignano Italy
| | - Loredana Capozzi
- Experimental Zooprophylactic Institute of Apulia and Basilicata Putignano Italy
| | - Laura Difato
- Experimental Zooprophylactic Institute of Apulia and Basilicata Matera Italy
| | - Giovanni Normanno
- Department of Science of Agriculture, Food and the Environment (SAFE) University of Foggia Foggia Italy
| |
Collapse
|
34
|
Rana EA, Das T, Dutta A, Rahman M, Bostami MB, Akter N, Barua H. Coagulase-positive methicillin-resistant Staphylococcus aureus circulating in clinical mastitic goats in Bangladesh. Vet World 2020; 13:1303-1310. [PMID: 32848304 PMCID: PMC7429371 DOI: 10.14202/vetworld.2020.1303-1310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIM Staphylococcus aureus is argued as one of the principal organisms responsible for mammary gland infection in lactating goats, causing both clinical and subclinical mastitis. Being highly zoonotic potential, pathogen emergence of methicillin-resistant S. aureus (MRSA) has a significant clinical impact on treatment and management of clinical mastitis. We conducted a cross-sectional study to investigate the prevalence of coagulase-positive S. aureus (CoPS), antimicrobial resistance profile of Staphylococcus spp., prevalence of MRSA, and association between different clinical parameters with CoPS. MATERIALS AND METHODS A total of 67 clinical mastitic goats were sampled based on clinical examination and California mastitis test. Standard bacteriological methods were performed to isolate and identify Staphylococcus spp. CoPS were confirmed by nuc gene using polymerase chain reaction (PCR). All staphylococcal isolates were further examined for antimicrobial susceptibility testing by disk diffusion method. MRSA was confirmed based on mecA gene-based PCR. RESULTS Here, 49 (73.13%; 95% confidence interval [CI], 61.41-82.35) samples were positive for Staphylococcus spp., of which 17 (34.69%; 95% CI, 22.88-48.73) isolates were CoPS and rest of the isolates (32; 65.30%; 95% CI, 51.27-77.12) were identified as coagulase-negative Staphylococcus spp. (coagulase-negative staphylococci [CNS]). Both, CoPS and CNS isolates displayed the highest resistance against tetracycline (76.47% and 75%, respectively) and oxacillin (70.58% and 68.75%, respectively). Notably, all staphylococcal isolates were multidrug-resistant (showed resistance to ≥3 classes of antimicrobials). mecA gene was found in 6 (8.96%; 95% CI, 3.84-18.52) CoPS isolates indicating MRSA strains. Among different clinical parameters, presence of high body temperature (p<0.05), firm udder consistency (p<0.01), bloodstained milk (p<0.00), and pus in milk (p<0.00) were significantly associated with the presence of CoPS in mastitic caprine milk. CONCLUSION To the best of our knowledge, this is the first report of MRSA isolated from clinical caprine mastitis cases in Bangladesh. The findings of this study would help in cautious selection as well as administration of antimicrobials for therapeutic management of mastitic goats.
Collapse
Affiliation(s)
- Eaftekhar Ahmed Rana
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Tridip Das
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Avijit Dutta
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mizanur Rahman
- Teaching and Training Pet Hospital and Research Center, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mohammad Bayazid Bostami
- Teaching and Training Pet Hospital and Research Center, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Nasima Akter
- Department of Dairy and Poultry Science, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Himel Barua
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
35
|
Gómez P, Aspiroz C, Hadjirin NF, Benito D, Zarazaga M, Torres C, Holmes MA. Simultaneous Nasal Carriage by Methicillin-Resistant and Methicillin Susceptible Staphylococcus aureus of Lineage ST398 in a Live Pig Transporter. Pathogens 2020; 9:E401. [PMID: 32455801 PMCID: PMC7281718 DOI: 10.3390/pathogens9050401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) sequence type (ST)398 is a livestock associated (LA) lineage with zoonotic potential, especially in humans with live pig contact. The objective of this study was to characterize two S. aureus strains of lineage ST398 (one methicillin-resistant (MRSA), one methicillin-susceptible (MSSA)) isolated from the same nasal sample of a patient admitted in the Intensive-Care Unit of a Spanish Hospital, and with previous occupational exposure to live pigs, by whole-genome-sequencing (WGS). The sample was obtained during routine surveillance for MRSA colonization. Purified genomic DNA was sequenced using Illumina HiSeq 2000 and processed using conventional bioinformatics software. The two isolates recovered were both S. aureus t011/ST398 and showed similar resistance-phenotypes, other than methicillin susceptibility. The possession of antibiotic resistance genes was the same, except for the mecA-gene located in SCCmecV in the MRSA isolate. The MSSA isolate harbored remnants of a SCCmec following the deletion of 17342bp from a recombination between two putative primases. Both isolates belonged to the livestock-associated clade as defined by three canonical single-nucleotide-polymorphisms, and neither possessed the human immune evasion cluster genes, chp, scn, or sak. The core genome alignment showed a similarity of 99.6%, and both isolates harbored the same mobile genetic elements. The two nasal ST398 isolates recovered from the patient with previous occupational exposure to pigs appeared to have a livestock origin and could represent different evolutionary steps of animal-human interface lineage. The MSSA strain was formed as a result of the loss of the mecA gene from the livestock-associated-MRSA lineage.
Collapse
Affiliation(s)
- Paula Gómez
- Area of Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (P.G.); (D.B.); (M.Z.)
| | - Carmen Aspiroz
- Department of Microbiology, Hospital Royo Villanova, 50015 Zaragoza, Spain;
| | - Nazreen F. Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (N.F.H.); (M.A.H.)
| | - Daniel Benito
- Area of Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (P.G.); (D.B.); (M.Z.)
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (P.G.); (D.B.); (M.Z.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (P.G.); (D.B.); (M.Z.)
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (N.F.H.); (M.A.H.)
| |
Collapse
|
36
|
Kittler S, Seinige D, Meemken D, Müller A, Wendlandt S, Ehricht R, Monecke S, Kehrenberg C. Characteristics of methicillin-resistant Staphylococcus aureus from broiler farms in Germany are rather lineage- than source-specific. Poult Sci 2020; 98:6903-6913. [PMID: 31376346 PMCID: PMC8913956 DOI: 10.3382/ps/pez439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/15/2019] [Indexed: 01/14/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) are a major concern for public health, and broiler farms are a potential source of MRSA isolates. In this study, a total of 56 MRSA isolates from 15 broiler farms from 4 different counties in Germany were characterised phenotypically and genotypically. Spa types, dru types, SCCmec types, and virulence genes as well as resistance genes were determined by using a DNA microarray or specific PCR assays. In addition, PFGE profiles of isolates were used for analysis of their epidemiological relatedness. While half of the isolates belonged to spa type t011, the other half was of spa types t1430 and t034. On 3 farms, more than 1 spa type was found. The most common dru type was dt10a (n = 19), followed by dt11a (n = 17). Susceptibility testing of all isolates by broth microdilution revealed 21 different resistance phenotypes and a wide range of resistance genes was present among the isolates. Up to 10 different resistance phenotypes were found on individual farms. Resistance to tetracyclines (n = 53), MLSB antibiotics (n = 49), trimethoprim (n = 38), and elevated MICs of tiamulin (n = 29) were most commonly observed. Microarray analysis detected genes for leucocidin (lukF/S), haemolysin gamma (hlgA), and other haemolysines in all isolates. In all t1430 isolates, the egc cluster comprising of genes encoding enterotoxin G, I, M, N, O, U, and/or Y was found. The splitstree analysis based on microarray and PCR gene profiles revealed that all CC9/SCCmec IV/t1430/dt10a isolates clustered apart from the other isolates. These findings confirm that genotypic patterns were specific for clonal lineages rather than for the origin of isolates from individual farms.
Collapse
Affiliation(s)
- Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Diana Seinige
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Section Meat Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Anja Müller
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Sarah Wendlandt
- Department of Clinical Microbiology, Medical Care Centre SYNLAB Leverkusen GmbH, Paracelsusstraße 13, 51375 Leverkusen, Germany
| | - Ralf Ehricht
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Stefan Monecke
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute for Medical Microbiology and Hygiene, Technical University of Dresden, Fiedlerstr. 42, 01307 Dresden, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig-University, Frankfurter Str. 92, 35392 Giessen, Germany
| |
Collapse
|
37
|
Rossi CC, Pereira MF, Giambiagi-deMarval M. Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet Mol Biol 2020; 43:e20190065. [PMID: 32052827 PMCID: PMC7198029 DOI: 10.1590/1678-4685-gmb-2019-0065] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023] Open
Abstract
The increasing threat of antimicrobial resistance has shed light on the interconnection between humans, animals, the environment, and their roles in the exchange and spreading of resistance genes. In this review, we present evidences that show that Staphylococcus species, usually referred to as harmless or opportunistic pathogens, represent a threat to human and animal health for acting as reservoirs of antimicrobial resistance genes. The capacity of genetic exchange between isolates of different sources and species of the Staphylococcus genus is discussed with emphasis on mobile genetic elements, the contribution of biofilm formation, and evidences obtained either experimentally or through genome analyses. We also discuss the involvement of CRISPR-Cas systems in the limitation of horizontal gene transfer and its suitability as a molecular clock to describe the history of genetic exchange between staphylococci.
Collapse
Affiliation(s)
- Ciro César Rossi
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Microbiologia Molecular, Rio de Janeiro, RJ, Brazil
| | | | - Marcia Giambiagi-deMarval
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Microbiologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
Bernier-Lachance J, Arsenault J, Usongo V, Parent É, Labrie J, Jacques M, Malouin F, Archambault M. Prevalence and characteristics of Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) isolated from chicken meat in the province of Quebec, Canada. PLoS One 2020; 15:e0227183. [PMID: 31923238 PMCID: PMC6953868 DOI: 10.1371/journal.pone.0227183] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/14/2019] [Indexed: 01/12/2023] Open
Abstract
This study was conducted to estimate the prevalence of Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) in retail chicken meat and broiler chickens from the Province of Quebec, Canada, and to characterize LA-MRSA isolates. A total of 309 chicken drumsticks and thighs were randomly selected in 2013 from 43 retail stores in the Monteregie. In addition, nasal swabs and caeca samples were collected in 2013-2014 from 200 broiler chickens of 38 different flocks. LA-MRSA was not detected in broiler chickens. Fifteen LA-MRSA isolates were recovered from four (1.3%) of the 309 chicken meat samples. Multi-Locus Sequence Typing (MLST) and SCCmec typing revealed two profiles (ST398-MRSA-V and ST8-MRSA-IVa), which were distinct using pulse-field gel electrophoresis (PFGE) and microarray (antimicrobial resistance and virulence genes) analyses. In addition to beta-lactam resistance, tetracycline and spectinomycin resistance was detected in all isolates from the 3 positive samples of the ST398 profile. Southern blot hybridization revealed that the resistance genes aad(D) and lnu(A), encoding resistances to aminoglycosides and lincosamides respectively, were located on plasmid. All isolates were able to produce biofilms, but biofilm production was not correlated with hld gene expression. Our results show the presence of two separate lineages of MRSA in retail chicken meat in Quebec, one of which is likely of human origin.
Collapse
Affiliation(s)
- Jocelyn Bernier-Lachance
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Julie Arsenault
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Valentine Usongo
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Éric Parent
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Josée Labrie
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Mario Jacques
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - François Malouin
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Département de biologie, Faculté des sciences, Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie Archambault
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| |
Collapse
|
39
|
Neradova K, Jakubu V, Pomorska K, Zemlickova H. Methicillin-resistant Staphylococcus aureus in veterinary professionals in 2017 in the Czech Republic. BMC Vet Res 2020; 16:4. [PMID: 31906922 PMCID: PMC6945690 DOI: 10.1186/s12917-019-2223-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Background Cases of colonization or infection caused by Methicillin-resistant Staphylococcus aureus (MRSA) are frequently reported in people who work with animals, including veterinary personnel. The aim of this study was to determine the prevalence of MRSA colonization among veterinary professionals. A total of 134 nasal swabs from healthy attendees of a veterinary conference held in the Czech Republic were tested for presence of MRSA. The stains were further genotypically and phenotypically characterized. Results Nine isolated MRSA strains were characterized with sequence type (ST), spa type (t) and Staphylococcal Cassette Chromosome mec type. Five different genotypes were described, including ST398-t011-IV (n = 5), ST398-t2330-IV (n = 1), ST398-t034-V (n = 1), ST225-t003-II (n = 1) and ST4894-t011-IV (n = 1). The carriage of the animal MRSA strain was confirmed in 8 cases, characteristics of one strain corresponded to the possible nosocomial origin. Among animal strains were described three spa types (t011, t034, t2330) belonging into one dominating clonal complex spa-CC11. Conclusion According to our results, the prevalence of nasal carriage of MRSA in veterinary personnel is 6.72%. Although we described an increase compared to the results of previous study (year 2008), the prevalence in the Czech Republic is still remaining lower than reported from neighboring countries. Our results also indicate that healthcare - associated MRSA strains are still not spread among animals.
Collapse
Affiliation(s)
- Katerina Neradova
- Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic.
| | - Vladislav Jakubu
- Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic.,National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| | - Katarina Pomorska
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| | - Helena Zemlickova
- Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic.,National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
40
|
Downregulated Expression of Virulence Factors Induced by Benzyl Isothiocyanate in Staphylococcus Aureus: A Transcriptomic Analysis. Int J Mol Sci 2019; 20:ijms20215441. [PMID: 31683671 PMCID: PMC6862589 DOI: 10.3390/ijms20215441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a common foodborne pathogen that leads to various diseases; therefore, we urgently need to identify different means to control this harmful pathogen in food. In this study, we monitored the transcriptional changes of S. aureus by RNA-seq analysis to better understand the effect of benzyl isothiocyanate (BITC) on the virulence inhibition of S. aureus and determined the bacteriostatic effect of BITC at subinhibitory concentrations. Our results revealed that, compared with the control group (SAC), the BITC-treated experimental group (SAQ_BITC) had 708 differentially expressed genes (DEGs), of which 333 genes were downregulated and the capsular polysaccharide (cp) was significantly downregulated. Furthermore, we screened five of the most virulent factors of S. aureus, including the capsular polysaccharide biosynthesis protein (cp5D), capsular polysaccharide synthesis enzyme (cp8F), thermonuclease (nuc), clumping factor (clf), and protein A (spa), and verified the accuracy of these significantly downregulated genes by qRT-PCR. At the same time, we used light microscopy, scanning electron microscopy (SEM) and inverted fluorescence microscopy (IFM) to observe changes in biofilm associated with the cp5D and cp8F. Therefore, these results will help to further study the basis of BITC for the antibacterial action of foodborne pathogenic bacteria.
Collapse
|
41
|
Neerukonda M, Pavuluri S, Sharma I, Kumar A, Sailasree P, Lakshmi JB, Sharp JA, Kumar S. Functional evaluation of a monotreme-specific antimicrobial protein, EchAMP, against experimentally induced mastitis in transgenic mice. Transgenic Res 2019; 28:573-587. [PMID: 31599375 DOI: 10.1007/s11248-019-00174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
Abstract
EchAMP, the tenth most abundant transcript expressed in the mammary gland of echidna, has in vitro broad-spectrum antibacterial effects. However, the effects of EchAMP on mastitis, a condition where inflammation is triggered following mammary gland infection, has not been investigated. To investigate the impact of EchAMP against mastitis, EchAMP transgenic mice were generated. In antibacterial assays, the whey fractions of milk from transgenic mice significantly reduced growth of Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa compared with whey fractions from wildtype mice. Furthermore, a mastitis model created by infecting mammary gland with these four bacterial strains displayed a significant reduction in bacterial load in transgenic mice injected with S. aureus and B. subtilis. On further confirmation, histomorphologic analysis showed absence of necrosis and cell infiltration in the mammary glands of transgenic mice. To understand the role of EchAMP against inflammation, we employed an LPS-injected mastitis mouse model. LPS is known to induce phopshorylation of NF-κB and MAPK pathways, which in turn activate downstream proinflammatory signaling mediators, to promote inflammation. In LPS-treated EchAMP transgenic mice, phosphorylation levels of NF-κB, p38 and ERK1/2 were significantly downregulated. Furthermore, in mammary gland of transgenic mice, there was a significant downregulation of mRNA levels of proinflammatory cytokines, namely TNF-α, IL-6 and IL-1β. Taken together, these data suggest that EchAMP has an antiinflammatory response and is effective against S. aureus and B. subtilis. We suggest that EchAMP may be a potential prophylactic protein against mastitis in dairy animals by expressing this gene in their mammary gland.
Collapse
Affiliation(s)
- Manjusha Neerukonda
- Centre for Cellular and Molecular Biology, Hyderabad, India.,University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | | | - Isha Sharma
- Centre for Cellular and Molecular Biology, Hyderabad, India.,Northwestern University, Chicago, IL, USA
| | - Alok Kumar
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Julie A Sharp
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Australia
| | - Satish Kumar
- Centre for Cellular and Molecular Biology, Hyderabad, India. .,Department of Biotechnology, School of Life Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
42
|
Rubio‐Garcia A, Rossen JWA, Wagenaar JA, Friedrich AW, Zeijl JH. Livestock‐associated meticillin‐resistant Staphylococcus aureusin a young harbour seal ( Phoca vitulina) with endocarditis. VETERINARY RECORD CASE REPORTS 2019. [DOI: 10.1136/vetreccr-2019-000886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ana Rubio‐Garcia
- Department of Infectious Diseases and ImmunologyUtrecht University Faculty of Veterinary MedicineUtrechtThe Netherlands
- Veterinary and Research DepartmentSealcentre PieterburenPieterburenThe Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection PreventionUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and ImmunologyUtrecht University Faculty of Veterinary MedicineUtrechtThe Netherlands
- Wageningen Bioveterinary ResearchLelystadThe Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection PreventionUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jan H Zeijl
- Department of Medical MicrobiologyIzore Center for Infectious DiseasesLeeuwardenThe Netherlands
| |
Collapse
|
43
|
Titouche Y, Hakem A, Houali K, Meheut T, Vingadassalon N, Ruiz-Ripa L, Salmi D, Chergui A, Chenouf N, Hennekinne J, Torres C, Auvray F. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) ST8 in raw milk and traditional dairy products in the Tizi Ouzou area of Algeria. J Dairy Sci 2019; 102:6876-6884. [DOI: 10.3168/jds.2018-16208] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
|
44
|
Characteristics of enterotoxin-producing methicillin-resistant Staphylococcus aureus strains isolated from meat in Tehran, Iran. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01239-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Kalupahana RS, Duim B, Verstappen KM, Gamage CD, Dissanayake N, Ranatunga L, Graveland H, Wagenaar JA. MRSA in Pigs and the Environment as a Risk for Employees in Pig-Dense Areas of Sri Lanka. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
46
|
Pirolo M, Gioffrè A, Visaggio D, Gherardi M, Pavia G, Samele P, Ciambrone L, Di Natale R, Spatari G, Casalinuovo F, Visca P. Prevalence, molecular epidemiology, and antimicrobial resistance of methicillin-resistant Staphylococcus aureus from swine in southern Italy. BMC Microbiol 2019; 19:51. [PMID: 30808302 PMCID: PMC6390553 DOI: 10.1186/s12866-019-1422-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Background Colonization by livestock-associated MRSA (LA-MRSA) has increasingly been reported in the swine population worldwide. The aim of this study was to assess the prevalence of MRSA nasal carriage in healthy pigs, including the black (Calabrese) breed, from farms in the Calabria Region (Southern Italy). Between January and March 2018, a total of 475 healthy pigs reared in 32 farms were sampled by nasal swabbing. MRSA isolates were characterized by spa, MLST and SCCmec typing, and susceptibility testing to 17 antimicrobials. Results 22 of 32 (66.8%) pig farms resulted positive for MRSA. The prevalence of MRSA was 46.1% (219 MRSA culture-positive out of 475 samples). MRSA colonization was significantly higher in intensive farms and in pigs with a recent or ongoing antimicrobial treatment. All 219 MRSA isolates were assigned to ST398. The most common spa types were t011 (37.0%), t034 (22.4%) and t899 (15.1%). A novel spa type (t18290) was detected in one isolate. An insertion of IS256 in the ST398-specific A07 fragment of the SAPIG2195 gene was detected in 10 out of 81 t011 isolates. Nearly all isolates carried the SCCmec type V element, except 11 isolates that carried the SCCmec type IVc. None of the isolates was positive for the Panton-Valentine leukocidin. All isolates were resistant to tetracycline. High resistance rates were also found for clindamycin (93.1%), trimethoprim/sulfamethoxazole (68.4%), fluoroquinolones (47.9–65.3%) and erythromycin (46.1%). None of the isolates was resistant to vancomycin and fusidic acid. Overall, a multidrug resistant phenotype was observed in 88.6% of isolates. Conclusions We report a high prevalence of MRSA among healthy swine in Southern Italy farms, with higher isolation frequency associated with intensive farming. The epidemiological types identified in our study reflect those reported in other European countries. Our findings underscore the importance of monitoring the evolution of LA-MRSA in pig farms in order to implement control measures and reduce the risk of spread in the animal population. Electronic supplementary material The online version of this article (10.1186/s12866-019-1422-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattia Pirolo
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | - Angela Gioffrè
- Department of Medicine, Epidemiology, Workplace and Environmental Hygiene, Lamezia Terme Research Centre, INAIL - National Institute for Insurance against Accidents at Work, Lamezia Terme, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | - Monica Gherardi
- Department of Medicine, Epidemiology, Workplace and Environmental Hygiene , Monte Porzio Catone Research Centre, INAIL - National Institute for Insurance against Accidents at Work, Rome, Italy
| | - Grazia Pavia
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Catanzaro, Italy
| | - Pasquale Samele
- Department of Medicine, Epidemiology, Workplace and Environmental Hygiene, Lamezia Terme Research Centre, INAIL - National Institute for Insurance against Accidents at Work, Lamezia Terme, Italy
| | - Lucia Ciambrone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Catanzaro, Italy
| | - Rossella Di Natale
- Department of Biomedical Sciences, Dental, Morphological and Functional Investigations, University of Messina, Messina, Italy
| | - Giovanna Spatari
- Department of Biomedical Sciences, Dental, Morphological and Functional Investigations, University of Messina, Messina, Italy
| | | | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
47
|
Wang Z, Bai H, Lu C, Hou C, Qiu Y, Zhang P, Duan J, Mu H. Light controllable chitosan micelles with ROS generation and essential oil release for the treatment of bacterial biofilm. Carbohydr Polym 2019; 205:533-539. [PMID: 30446137 DOI: 10.1016/j.carbpol.2018.10.095] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/19/2018] [Accepted: 10/27/2018] [Indexed: 12/11/2022]
Abstract
Bacterial biofilms are widely associated with persistent infections and food contamination. High resistance to conventional antimicrobial agents resulted in an urgent need for novel formulation to eliminate these bacterial communities. Herein we fabricated light controllable chitosan micelles loading with thymol (T-TCP) for elimination of biofilm. Due to the exterior chitosan, T-TCP micelles easily bind to negative biofilm through electrostatic interaction and efficiently deliver the essential oil payloads. Under irradiation, T-TCP micelles generated ROS, which triggered simultaneous thymol release and also resulted in additional ROS-inducing bactericidal effects, both effectively eradicating biofilms of Listeria monocytogenes and Staphylococcus aureus. This formulation provided a platform for other water-insoluble antimicrobials and might be used as a potent and controllable solution to biofilm fighting.
Collapse
Affiliation(s)
- Zhaojie Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Hu Bai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Chunbo Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Chunyan Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yuanhao Qiu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Peng Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jinyou Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Haibo Mu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
48
|
Otalu OJ, Kwaga JKP, Okolocha EC, Islam MZ, Moodley A. High Genetic Similarity of MRSA ST88 Isolated From Pigs and Humans in Kogi State, Nigeria. Front Microbiol 2018; 9:3098. [PMID: 30619177 PMCID: PMC6305073 DOI: 10.3389/fmicb.2018.03098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
We determined the prevalence and genetic characteristics of methicillin-resistant Staphylococcus aureus (MRSA) isolated from pigs and humans between September 2013 and February 2015 in Kogi State, a central region in Nigeria. A total of 680 nasal swabs were collected and analyzed from pigs (n = 425) and “pig-contact” humans (n = 55) on 35 farms, and “non-pig-contact” humans (n = 200). MRSA was recovered from 20 (4.7%) pigs on 12 farms and 18 (7.0%) humans. Six (2.4%) of the human isolates were recovered from “pig-contact” humans, of which only three work on farms also harboring MRSA positive pigs. All 38 MRSA were resistant to β-lactams only, belonged to spa type t1603, sequence type (ST) 88, and mecA was associated with a SCCmec IVa element. Four isolates from a pig, a pig-contact human from the same farm, a pig-contact human from a pig farm in a different district, and a non-pig-contact human were subjected to whole genome sequencing (WGS). Core genome SNP analysis revealed high genetic similarity between strains (3–11 SNP differences), despite the temporal (2 year gap) and geographic (165 km) differences between isolates. Furthermore, these Nigerian isolates form a distinct clade when compared to other African MRSA ST88 isolates. All but one porcine strain was positive for scn suggesting a possible human origin and that pigs were either transiently contaminated by humans or result of a very recent human-to-pig transmission event. To our knowledge, this is the first report of genetically confirmed MRSA in pigs in Nigeria, which appear to be a typical CA-MRSA clone present in the human population.
Collapse
Affiliation(s)
- Otalu Jnr Otalu
- Department of Microbiology, Faculty of Natural Sciences, Kogi State University, Anyigba, Nigeria
| | - Jacob K P Kwaga
- Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Emmanuel Chukuwdi Okolocha
- Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Md Zohorul Islam
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arshnee Moodley
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Reservoirs and Transmission Pathways of Resistant Indicator Bacteria in the Biotope Pig Stable and along the Food Chain: A Review from a One Health Perspective. SUSTAINABILITY 2018. [DOI: 10.3390/su10113967] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The holistic approach of “One Health” includes the consideration of possible links between animals, humans, and the environment. In this review, an effort was made to highlight knowledge gaps and various factors that contribute to the transmission of antibiotic-resistant bacteria between these three reservoirs. Due to the broad scope of this topic, we focused on pig production and selected “indicator bacteria”. In this context, the role of the bacteria livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) and extended spectrum beta-lactamases carrying Escherichia coli (ESBL-E) along the pig production was particularly addressed. Hotspots of their prevalence and transmission are, for example, pig stable air for MRSA, or wastewater and manure for ESBL-E, or even humans as vectors in close contact to pigs (farmers and veterinarians). Thus, this review focuses on the biotope “stable environment” where humans and animals are both affected, but also where the end of the food chain is not neglected. We provide basic background information about antibiotics in livestock, MRSA, and ESBL-bacteria. We further present studies (predominantly European studies) in tabular form regarding the risk potentials for the transmission of resistant bacteria for humans, animals, and meat differentiated according to biotopes. However, we cannot guarantee completeness as this was only intended to give a broad superficial overview. We point out sustainable biotope approaches to try to contribute to policy management as critical assessment points in pig housing conditions, environmental care, animal health, and food product safety and quality as well as consumer acceptance have already been defined.
Collapse
|
50
|
Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev 2018; 31:e00020-18. [PMID: 30209034 PMCID: PMC6148192 DOI: 10.1128/cmr.00020-18] [Citation(s) in RCA: 899] [Impact Index Per Article: 128.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus, a major human pathogen, has a collection of virulence factors and the ability to acquire resistance to most antibiotics. This ability is further augmented by constant emergence of new clones, making S. aureus a "superbug." Clinical use of methicillin has led to the appearance of methicillin-resistant S. aureus (MRSA). The past few decades have witnessed the existence of new MRSA clones. Unlike traditional MRSA residing in hospitals, the new clones can invade community settings and infect people without predisposing risk factors. This evolution continues with the buildup of the MRSA reservoir in companion and food animals. This review focuses on imparting a better understanding of MRSA evolution and its molecular characterization and epidemiology. We first describe the origin of MRSA, with emphasis on the diverse nature of staphylococcal cassette chromosome mec (SCCmec). mecA and its new homologues (mecB, mecC, and mecD), SCCmec types (13 SCCmec types have been discovered to date), and their classification criteria are discussed. The review then describes various typing methods applied to study the molecular epidemiology and evolutionary nature of MRSA. Starting with the historical methods and continuing to the advanced whole-genome approaches, typing of collections of MRSA has shed light on the origin, spread, and evolutionary pathways of MRSA clones.
Collapse
Affiliation(s)
- Sahreena Lakhundi
- Centre for Antimicrobial Resistance, Alberta Health Services/Calgary Laboratory Services/University of Calgary, Calgary, Alberta, Canada
| | - Kunyan Zhang
- Centre for Antimicrobial Resistance, Alberta Health Services/Calgary Laboratory Services/University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|