1
|
Lugert R, Laukat Y, Rabenda S, Weig M, Groß U, Bohne W. Evaluation of the DiaSorin NxTAG gastrointestinal pathogen panel (GPP) and its integration into routine diagnostics. Diagn Microbiol Infect Dis 2025; 111:116717. [PMID: 39894005 DOI: 10.1016/j.diagmicrobio.2025.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
This study evaluated the performance of the DiaSorin NxTAG GPP multiplex PCR system, the advanced successor of the Luminex-xTAG-GPP, in comparison to classical diagnostic techniques for stool samples. In a testing phase, we investigated 505 specimens using both the DiaSorin system and our conventional approach consisting of culture techniques, PCR detection and microscopic analysis. The multiplex PCR system proved to be superior in sensitivity, time efficiency, and pathogen range. The analysis of 2,462 stool samples after the system's implementation into routine diagnostics further confirmed its effectiveness. However, we encountered several Salmonella-positive samples, which could neither be confirmed by culture techniques nor by an independently performed Salmonella-specific PCR. This let us to permanently incorporate a confirmatory PCR assay for Salmonella-positive samples, in order to avoid false positives. Our findings indicate that the DiaSorin NxTAG GPP is a reliable and efficient diagnostic tool for most gastrointestinal pathogens, with the exception of Salmonella.
Collapse
Affiliation(s)
- Raimond Lugert
- University Medical Center Göttingen, Institute for Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Yvonne Laukat
- University Medical Center Göttingen, Institute for Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Sabine Rabenda
- University Medical Center Göttingen, Institute for Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Michael Weig
- University Medical Center Göttingen, Institute for Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Institute for Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Wolfgang Bohne
- University Medical Center Göttingen, Institute for Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany.
| |
Collapse
|
2
|
Weme ET, Brandal LT, Jenum PA, Wester AL, Müller F. Prevalence and characteristics of 11 potentially diarrhoeagenic microbes in asymptomatic individuals in Norway, 2015-2020. APMIS 2024; 132:797-806. [PMID: 39370710 DOI: 10.1111/apm.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
We aimed to estimate the prevalence of potentially diarrhoeagenic microbes (PDMs) in faecal samples from asymptomatic individuals in a high-income country, identify risk factors for carriage and to identify microbial factors that differ between PDMs in asymptomatic versus symptomatic individuals. Samples from 1000 asymptomatic participants were collected, together with a questionnaire, between 2015 and 2020 and examined by PCR for 11 PDMs. Isolates were characterised and potential risk factors were registered. Atypical enteropathogenic Escherichia coli (aEPEC), Yersinia enterocolitica, Shiga toxin-producing E. coli (STEC), enterotoxigenic E. coli (ETEC) and Campylobacter spp. were found in 163 (16%), 20 (2.0%), 17 (1.7%), 12 (1.2%) and 11 (1.1%) asymptomatic individuals, respectively. Other PDMs were rare. Only low virulent STEC, with stx1c, stx2b or stx2f, was detected. Travels outside Europe was a significant risk factor for detecting Campylobacter spp. (odds ratio (OR) 6.99; 95% CI 1.12-43.6) and ETEC (OR 11.4; 95% CI 1.26-102). Individuals ≥65 years of age had lower odds of carrying STEC (OR 0.11; 95% CI 0.02-0.57) or EPEC (OR 0.09; 95% CI 0.05-0.16) than individuals ≤5 years of age. The common finding of PDMs in asymptomatic individuals could have implications for the interpretation of positive findings in clinical samples and infection control measures.
Collapse
Affiliation(s)
| | - Lin Thorstensen Brandal
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Arne Jenum
- Department of Laboratory Medicine, Vestre Viken Hospital Trust, Drammen, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Fredrik Müller
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Sayk F, Hauswaldt S, Knobloch JK, Rupp J, Nitschke M. Do asymptomatic STEC-long-term carriers need to be isolated or decolonized? New evidence from a community case study and concepts in favor of an individualized strategy. Front Public Health 2024; 12:1364664. [PMID: 38699424 PMCID: PMC11064650 DOI: 10.3389/fpubh.2024.1364664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Asymptomatic long-term carriers of Shigatoxin producing Escherichia coli (STEC) are regarded as potential source of STEC-transmission. The prevention of outbreaks via onward spread of STEC is a public health priority. Accordingly, health authorities are imposing far-reaching restrictions on asymptomatic STEC carriers in many countries. Various STEC strains may cause severe hemorrhagic colitis complicated by life-threatening hemolytic uremic syndrome (HUS), while many endemic strains have never been associated with HUS. Even though antibiotics are generally discouraged in acute diarrheal STEC infection, decolonization with short-course azithromycin appears effective and safe in long-term shedders of various pathogenic strains. However, most endemic STEC-strains have a low pathogenicity and would most likely neither warrant antibiotic decolonization therapy nor justify social exclusion policies. A risk-adapted individualized strategy might strongly attenuate the socio-economic burden and has recently been proposed by national health authorities in some European countries. This, however, mandates clarification of strain-specific pathogenicity, of the risk of human-to-human infection as well as scientific evidence of social restrictions. Moreover, placebo-controlled prospective interventions on efficacy and safety of, e.g., azithromycin for decolonization in asymptomatic long-term STEC-carriers are reasonable. In the present community case study, we report new observations in long-term shedding of various STEC strains and review the current evidence in favor of risk-adjusted concepts.
Collapse
Affiliation(s)
- Friedhelm Sayk
- Department of Medicine I, Division of Gastroenterology and Nephrology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susanne Hauswaldt
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Johannes K. Knobloch
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute for Medical Microbiology, Virology and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Martin Nitschke
- Department of Medicine I, Division of Gastroenterology and Nephrology, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
4
|
Fernandez-Brando RJ, Sacerdoti F, Amaral MM, Bernal AM, Da Rocha M, Belardo M, Palermo MS, Ibarra CA. Detection of plasma anti-lipopolysaccharide (LPS) antibodies against enterohemorrhagic Escherichia coli (EHEC) in asymptomatic kindergarten teachers from Buenos Aires province. Rev Argent Microbiol 2024; 56:25-32. [PMID: 37704516 DOI: 10.1016/j.ram.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 09/15/2023] Open
Abstract
In Argentina, hemolytic uremic syndrome (HUS) caused by EHEC has the highest incidence in the world. EHEC infection has an endemo-epidemic behavior, causing 20-30% of acute bloody diarrhea syndrome in children under 5 years old. In the period 2016-2020, 272 new cases per year were notified to the National Health Surveillance System. Multiple factors are responsible for HUS incidence in Argentina including person-to-person transmission. In order to detect possible EHEC carriers, we carried out a preliminary study of the frequency of kindergarten teachers with anti-LPS antibodies against the most prevalent EHEC serotypes in Argentina. We analyzed 61 kindergarten teachers from 26 institutions from José C. Paz district, located in the suburban area of Buenos Aires province, Argentina. Fifty-one percent of the plasma samples had antibodies against O157, O145, O121 and O103 LPS: 6.4% of the positive samples had IgM isotype (n=2), 61.3% IgG isotype (n=19) and 32.3% IgM and IgG (n=10). Given that antibodies against LPS antigens are usually short-lived specific IgM detection may indicate a recent infection. In addition, the high percentage of positive samples may indicate a frequent exposure to EHEC strains in the cohort studied, as well as the existence of a large non-symptomatic population of adults carrying pathogenic strains that could contribute to the endemic behavior through person-to-person transmission. The improvement of continuous educational programs in kindergarten institutions could be a mandatory measure to reduce HUS cases not only in Argentina but also globally.
Collapse
Affiliation(s)
- Romina J Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina
| | - María M Amaral
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina
| | - Alan M Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina
| | - Marcelo Da Rocha
- Asociación Lucha contra el Síndrome Urémico Hemolítico (LUSUH), Carlos Pellegrini 781 Piso 8, C1009 CABA, Argentina
| | - Marcela Belardo
- Instituto de Estudios Sociales en Contexto de Desigualdades (IESCODE-CONICET), Universidad Nacional de José C. Paz, Leandro N. Alem 4731, B1665, José C. Paz, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina.
| | - Cristina A Ibarra
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina.
| |
Collapse
|
5
|
Nouws S, Verhaegen B, Denayer S, Crombé F, Piérard D, Bogaerts B, Vanneste K, Marchal K, Roosens NHC, De Keersmaecker SCJ. Transforming Shiga toxin-producing Escherichia coli surveillance through whole genome sequencing in food safety practices. Front Microbiol 2023; 14:1204630. [PMID: 37520372 PMCID: PMC10381951 DOI: 10.3389/fmicb.2023.1204630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Shiga toxin-producing Escherichia coli (STEC) is a gastrointestinal pathogen causing foodborne outbreaks. Whole Genome Sequencing (WGS) in STEC surveillance holds promise in outbreak prevention and confinement, in broadening STEC epidemiology and in contributing to risk assessment and source attribution. However, despite international recommendations, WGS is often restricted to assist outbreak investigation and is not yet fully implemented in food safety surveillance across all European countries, in contrast to for example in the United States. Methods In this study, WGS was retrospectively applied to isolates collected within the context of Belgian food safety surveillance and combined with data from clinical isolates to evaluate its benefits. A cross-sector WGS-based collection of 754 strains from 1998 to 2020 was analyzed. Results We confirmed that WGS in food safety surveillance allows accurate detection of genomic relationships between human cases and strains isolated from food samples, including those dispersed over time and geographical locations. Identifying these links can reveal new insights into outbreaks and direct epidemiological investigations to facilitate outbreak management. Complete WGS-based isolate characterization enabled expanding epidemiological insights related to circulating serotypes, virulence genes and antimicrobial resistance across different reservoirs. Moreover, associations between virulence genes and severe disease were determined by incorporating human metadata into the data analysis. Gaps in the surveillance system were identified and suggestions for optimization related to sample centralization, harmonizing isolation methods, and expanding sampling strategies were formulated. Discussion This study contributes to developing a representative WGS-based collection of circulating STEC strains and by illustrating its benefits, it aims to incite policymakers to support WGS uptake in food safety surveillance.
Collapse
Affiliation(s)
- Stéphanie Nouws
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- IDlab, Department of Information Technology, Ghent University—IMEC, Ghent, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC) and for Foodborne Outbreaks (NRL FBO), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC) and for Foodborne Outbreaks (NRL FBO), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Florence Crombé
- National Reference Centre for Shiga Toxin-Producing Escherichia coli (NRC STEC), Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Denis Piérard
- National Reference Centre for Shiga Toxin-Producing Escherichia coli (NRC STEC), Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kathleen Marchal
- IDlab, Department of Information Technology, Ghent University—IMEC, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
6
|
Milani G, Belloso Daza MV, Cortimiglia C, Bassi D, Cocconcelli PS. Genome engineering of Stx1-and Stx2-converting bacteriophages unveils the virulence of the dairy isolate Escherichia coli O174:H2 strain UC4224. Front Microbiol 2023; 14:1156375. [PMID: 37426006 PMCID: PMC10326431 DOI: 10.3389/fmicb.2023.1156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
The past decade witnessed the emergence in Shiga toxin-producing Escherichia coli (STEC) infections linked to the consumption of unpasteurized milk and raw milk cheese. The virulence of STEC is primarily attributed to the presence of Shiga toxin genes (stx1 and stx2) carried by Stx-converting bacteriophages, along with the intimin gene eae. Most of the available information pertains to the "Top 7" serotypes associated with STEC infections. The objectives of this study were to characterize and investigate the pathogenicity potential of E. coli UC4224, a STEC O174:H2 strain isolated from semi-hard raw milk cheese and to develop surrogate strains with reduced virulence for use in food-related studies. Complete genome sequence analysis of E. coli UC4224 unveiled the presence of a Stx1a bacteriophage, a Stx2a bacteriophage, the Locus of Adhesion and Autoaggregation (LAA) pathogenicity island, plasmid-encoded virulence genes, and other colonization facilitators. In the Galleria mellonella animal model, E. coli UC4224 demonstrated high pathogenicity potential with an LD50 of 6 CFU/10 μL. Upon engineering E. coli UC4224 to generate single and double mutant derivatives by inactivating stx1a and/or stx2a genes, the LD50 increased by approximately 1 Log-dose in the single mutants and 2 Log-doses in the double mutants. However, infectivity was not completely abolished, suggesting the involvement of other virulence factors contributing to the pathogenicity of STEC O174:H2. Considering the possibility of raw milk cheese serving as a reservoir for STEC, cheesemaking model was developed to evaluate the survival of UC4224 and the adequacy of the respective mutants as reduced-virulence surrogates. All tested strains exhibited the ability to survive the curd cooking step at 48°C and multiplied (3.4 Log CFU) in cheese within the subsequent 24 h. These findings indicate that genomic engineering did not exert any unintended effect on the double stx1-stx2 mutant behaviour, making it as a suitable less-virulent surrogate for conducting studies during food processing.
Collapse
|
7
|
Bonino MP, Crivelli XB, Petrina JF, Galateo S, Gomes TAT, Navarro A, Cundon C, Broglio A, Sanin M, Bentancor A. Detection and analysis of Shiga toxin producing and enteropathogenic Escherichia coli in cattle from Tierra del Fuego, Argentina. Braz J Microbiol 2023; 54:1257-1266. [PMID: 37041346 PMCID: PMC10235289 DOI: 10.1007/s42770-023-00958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
Shiga toxin producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are pathovars that affect mainly infants' health. Cattle are the main reservoir of STEC. Uremic hemolytic syndrome and diarrheas can be found at high rates in Tierra del Fuego (TDF). This study aimed to establish the prevalence of STEC and EPEC in cattle at slaughterhouses in TDF and to analyze the isolated strains. Out of 194 samples from two slaughterhouses, STEC prevalence was 15%, and EPEC prevalence was 5%. Twenty-seven STEC strains and one EPEC were isolated. The most prevalent STEC serotypes were O185:H19 (7), O185:H7 (6), and O178:H19 (5). There were no STEC eae + strains (AE-STEC) or serogroup O157 detected in this study. The prevalent genotype was stx2c (10/27) followed by stx1a/stx2hb (4/27). Fourteen percent of the strains presented at least one stx non-typeable subtype (4/27). Shiga toxin production was detected in 25/27 STEC strains. The prevalent module for the Locus of Adhesion and Autoaggregation (LAA) island was module III (7/27). EPEC strain was categorized as atypical and with the ability to cause A/E lesion. The ehxA gene was present in 16/28 strains, 12 of which were capable of producing hemolysis. No hybrid strains were detected in this work. Antimicrobial susceptibility tests showed that all strains were resistant to ampicillin and 20/28 were resistant to aminoglycosides. No statistical differences could be seen in the detection of STEC or EPEC either by slaughterhouse location or by production system (extensive grass or feedlot). The rate of STEC detection was lower than the one reported for the rest of Argentina. STEC/EPEC relation was 3 to 1. This is the first study on cattle from TDF as reservoir for strains that are potentially pathogenic to humans.
Collapse
Affiliation(s)
- Maria Paz Bonino
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ximena Blanco Crivelli
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Juan Facundo Petrina
- Departamento de Epidemiología, Ministerio de Salud de Tierra del Fuego, Ushuaia, Argentina
| | - Sebastian Galateo
- Dirección de Fiscalización Sanitaria, Ministerio de Salud de Tierra del Fuego, Ushuaia, Argentina
| | | | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Cecilia Cundon
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Alicia Broglio
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Sanin
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Adriana Bentancor
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| |
Collapse
|
8
|
Fiorentino GA, Miliwebsky E, Ramos MV, Zolezzi G, Chinen I, Guzmán G, Nocera R, Fernández-Brando R, Santiago A, Exeni R, Palermo MS. Etiological diagnosis of post-diarrheal hemolytic uremic syndrome (HUS): humoral response contribution. Pediatr Nephrol 2023; 38:739-748. [PMID: 35802271 DOI: 10.1007/s00467-022-05671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolysis, thrombocytopenia, and thrombus formation leading to tissue injury. HUS is classified according to its etiology as post-diarrheal or atypical HUS. Differential diagnosis of both entities continues to be a challenge for pediatric physicians. METHODS The aim was to improve the rapid etiological diagnosis of post-diarrheal HUS cases based on the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection by screening of stx1/stx2 and rfbO157 in cultured stools by multiplex PCR, and the additional detection of anti-lipopolysaccharide (anti-LPS) O157, O145, and O121 antibodies by Glyco-iELISA test. In addition, we studied patients' relatives to detect circulating pathogenic strains that could contribute to HUS diagnosis and/or lead to the implementation of measures to prevent dissemination of familial outbreaks. This study describes the diagnosis of 31 HUS patients admitted to Hospital Municipal de Niños Prof Dr Ramón Exeni during the 2017-2020 period. RESULTS Stool PCR confirmed the diagnosis of STEC associated with HUS in 38.7% of patients (12/31), while anti-LPS serology did in 88.9% (24/27). In those patients in which both methods were carried out (n = 27), a strong association between the results obtained was found. We found that 30.4% of HUS patients had at least one relative positive for STEC. CONCLUSIONS We could identify 96.3% (26/27) of HUS cases as secondary to STEC infections when both methods (genotyping and serology) were used. The results demonstrated a high circulation of STEC in HUS families and the prevalence of the STEC O157 serotype (83%) in our pediatric cohort. A higher-resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Gabriela A Fiorentino
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Elizabeth Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - María Victoria Ramos
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gisela Zolezzi
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Isabel Chinen
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Glenda Guzmán
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Rubén Nocera
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Romina Fernández-Brando
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Adriana Santiago
- Departamento de Nefrología, Hospital Municipal de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Ramón Exeni
- Departamento de Nefrología, Hospital Municipal de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Marina S Palermo
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Allué-Guardia A, Koenig SSK, Martinez RA, Rodriguez AL, Bosilevac JM, Feng† P, Eppinger M. Pathogenomes and variations in Shiga toxin production among geographically distinct clones of Escherichia coli O113:H21. Microb Genom 2022; 8. [PMID: 35394418 PMCID: PMC9453080 DOI: 10.1099/mgen.0.000796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections with globally disseminated Shiga toxin-producing Escherichia coli (STEC) of the O113:H21 serotype can progress to severe clinical complications, such as hemolytic uremic syndrome (HUS). Two phylogeographically distinct clonal complexes have been established by multi locus sequence typing (MLST). Infections with ST-820 isolates circulating exclusively in Australia have caused severe human disease, such as HUS. Conversely, ST-223 isolates prevalent in the US and outside Australia seem to rarely cause severe human disease but are frequent contaminants. Following a genomic epidemiology approach, we wanted to gain insights into the underlying cause for this disparity. We examined the plasticity in the genome make-up and Shiga toxin production in a collection of 20 ST-820 and ST-223 strains isolated from produce, the bovine reservoir, and clinical cases. STEC are notorious for assembly into fragmented draft sequences when using short-read sequencing technologies due to the extensive and partly homologous phage complement. The application of long-read technology (LRT) sequencing yielded closed reference chromosomes and plasmids for two representative ST-820 and ST-223 strains. The established high-resolution framework, based on whole genome alignments, single nucleotide polymorphism (SNP)-typing and MLST, includes the chromosomes and plasmids of other publicly available O113:H21 sequences and allowed us to refine the phylogeographical boundaries of ST-820 and ST-223 complex isolates and to further identify a historic non-shigatoxigenic strain from Mexico as a quasi-intermediate. Plasmid comparison revealed strong correlations between the strains' featured pO113 plasmid genotypes and chromosomally inferred ST, which suggests coevolution of the chromosome and virulence plasmids. Our pathogenicity assessment revealed statistically significant differences in the Stx2a-production capabilities of ST-820 as compared to ST-223 strains under RecA-induced Stx phage mobilization, a condition that mimics Stx-phage induction. These observations suggest that ST-820 strains may confer an increased pathogenic potential in line with the strain-associated epidemiological metadata. Still, some of the tested ST-223 cultures sourced from contaminated produce or the bovine reservoir also produced Stx at levels comparable to those of ST-820 isolates, which calls for awareness and for continued surveillance of this lineage.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Ricardo A. Martinez
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Armando L. Rodriguez
- University of Texas at San Antonio, Research Computing Support Group, San Antonio, TX, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Peter Feng†
- U.S. Food and Drug Administration (FDA), College Park, MD, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
- *Correspondence: Mark Eppinger,
| |
Collapse
|
10
|
Shen J, Zhi S, Guo D, Jiang Y, Xu X, Zhao L, Lv J. Prevalence, Antimicrobial Resistance, and Whole Genome Sequencing Analysis of Shiga Toxin-Producing Escherichia coli (STEC) and Enteropathogenic Escherichia coli (EPEC) from Imported Foods in China during 2015-2021. Toxins (Basel) 2022; 14:68. [PMID: 35202096 PMCID: PMC8875648 DOI: 10.3390/toxins14020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) are foodborne pathogens that cause hemolytic uremic syndrome and fatal infant diarrhea, respectively, but the characterization of these bacteria from imported food in China are unknown. A total of 1577 food samples from various countries during 2015-2021 were screened for STEC and EPEC, and the obtained isolates were tested for antimicrobial resistance and whole genome sequencing analysis was performed. The prevalence of STEC and EPEC was 1.01% (16/1577) and 0.51% (8/1577), respectively. Antimicrobial resistances to tetracycline (8%), chloramphenicol (8%), ampicillin (4%), ceftazidime (4%), cefotaxime (4%), and trimethoprim-sulfamethoxazole (4%) were observed. The antimicrobial resistance phenotypes corresponded with genotypes for most strains, and some resistance genes were related to mobile genetic elements. All 16 STEC isolates were eae negative, two solely contained stx1 (stx1a or stx1c), 12 merely carried stx2 (stx2a, stx2d, or stx2e), and two had both stx1 and stx2 (stx1c + stx2b, stx1a + stx2a + stx2c). Although they were eae negative, several STEC isolates carried other adherence factors, such as iha (5/16), sab (1/16), and lpfA (8/16), and belonged to serotypes (O130:H11, O8:H19, and O100:H30) or STs (ST297, ST360), which have caused human infections. All the eight EPEC isolates were atypical EPEC; six serotypes and seven STs were found, and clinically relevant EPEC serotypes O26:H11, O103:H2, and O145:H28 were identified. Two STEC/ETEC (enterotoxigenic E. coli) hybrids and one EPEC/ETEC hybrid were observed, since they harbored sta1 and/or stb. The results revealed that food can act as a reservoir of STEC/EPEC with pathogenic potential, and had the potential ability to transfer antibiotic resistance and virulence genes.
Collapse
Affiliation(s)
- Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo 315211, China;
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Yuan Jiang
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Xuebin Xu
- Shanghai Centers for Disease Prevention and Control, Shanghai 200336, China
| | - Lina Zhao
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Jingzhang Lv
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China;
| |
Collapse
|
11
|
Lodato PB. The effect of two ribonucleases on the production of Shiga toxin and stx-bearing bacteriophages in Enterohaemorrhagic Escherichia coli. Sci Rep 2021; 11:18372. [PMID: 34526533 PMCID: PMC8443680 DOI: 10.1038/s41598-021-97736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) comprise a group of intestinal pathogens responsible for a range of illnesses, including kidney failure and neurological compromise. EHEC produce critical virulence factors, Shiga toxin (Stx) 1 or 2, and the synthesis of Stx2 is associated with worse disease manifestations. Infected patients only receive supportive treatment because some conventional antibiotics enable toxin production. Shiga toxin 2 genes (stx2) are carried in λ-like bacteriophages (stx2-phages) inserted into the EHEC genome as prophages. Factors that cause DNA damage induce the lytic cycle of stx2-phages, leading to Stx2 production. The phage Q protein is critical for transcription antitermination of stx2 and phage lytic genes. This study reports that deficiency of two endoribonucleases (RNases), E and G, significantly delayed cell lysis and impaired production of both Stx2 and stx2-phages, unlike deficiency of either enzyme alone. Moreover, scarcity of both enzymes reduced the concentrations of Q and stx2 transcripts and slowed cell growth.
Collapse
Affiliation(s)
- Patricia B Lodato
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA.
| |
Collapse
|
12
|
Carroll KJ, Jenkins C, Harvey-Vince L, Mohan K, Balasegaram S. Shiga toxin-producing Escherichia coli diagnosed by Stx PCR: assessing the public health risk of non-O157 strains. Eur J Public Health 2021; 31:576-582. [PMID: 33411922 DOI: 10.1093/eurpub/ckaa232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The implementation by diagnostic laboratories in England of polymerase chain reaction (PCR) to screen faecal specimens for Shiga toxin-producing Escherichia coli (STEC) has resulted in a significant increase in notifications mainly due to non-O157 strains. The purpose of this study was to develop an approach to public health risk assessment that prioritizes follow-up to cases caused by haemolytic uraemic syndrome (HUS) associated E. coli (HUSEC) strains and minimizes unnecessary actions. METHODS Epidemiological and microbiological data were prospectively collected from 1 November 2013 to 31 March 2017 and used to compare three risk assessment approaches. RESULTS A history of HUS/bloody diarrhoea/age under 6 years and faecal specimens positive for stx-predicted HUSEC with a diagnostic accuracy of 84% (95% CI; 81-88%). STEC isolated by Gastrointestinal Bacteria Reference Unit (GBRU) and stx2 and eae positive predicted HUSEC with a diagnostic accuracy of 99% (95% CI; 98-100%). Risk assessment combining these two tests predicts the most efficient use of resources, predicting that 18% (97/552) of cases would be eligible for follow-up at some stage, 16% (86/552) following local stx PCR results, 1% (7/552) following GBRU results of stx2 and eae status and 0.7% (4/552) following whole-genome sequencing. Follow-up could be stopped in 78% (76/97) of these cases, 97% (74/76) following second stage risk assessment. CONCLUSIONS This three-stage risk assessment approach prioritizes follow-up to HUSEC and minimizes unnecessary public health actions. We developed it into the algorithm for public health actions included in the updated PHE Guidance for management of STEC published in August 2018.
Collapse
Affiliation(s)
- K J Carroll
- Surrey and Sussex Health Protection Team, Public Health England South East, Horsham, UK
| | - C Jenkins
- National Infection Service, Public Health England, London, UK
| | - L Harvey-Vince
- Surrey County Council Public Health Department, Kingston-Upon-Thames, UK
| | - K Mohan
- Thames Valley Health Protection Team, Public Health England South East, Chilton, UK
| | - S Balasegaram
- Field Service South East & London, Public Health England, London, UK
| |
Collapse
|
13
|
Byrne L, Adams N, Jenkins C. Association between Shiga Toxin-Producing Escherichia coli O157:H7 stx Gene Subtype and Disease Severity, England, 2009-2019. Emerg Infect Dis 2021; 26:2394-2400. [PMID: 32946720 PMCID: PMC7510717 DOI: 10.3201/eid2610.200319] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Signs and symptoms of Shiga toxin–producing Escherichia coli (STEC) serogroup O157:H7 infection range from mild gastrointestinal to bloody diarrhea and hemolytic uremic syndrome (HUS). We assessed the association between Shiga toxin gene (stx) subtype and disease severity for »3,000 patients with STEC O157:H7 in England during 2009–2019. Odds of bloody diarrhea, HUS, or both, were significantly higher for patients infected with STEC O157:H7 possessing stx2a only or stx2a combined with other stx subtypes. Odds of severe signs/symptoms were significantly higher for isolates encoding stx2a only and belonging to sublineage Ic and lineage I/II than for those encoding stx2a only and belonging to sublineage IIb, indicating that stx2a is not the only driver causing HUS. Strains of STEC O157:H7 that had stx1a were also significantly more associated with severe disease than strains with stx2c only. This finding confounds public health risk assessment algorithms based on detection of stx2 as a predictor of severe disease.
Collapse
|
14
|
Cortimiglia C, Borney MF, Bassi D, Cocconcelli PS. Genomic Investigation of Virulence Potential in Shiga Toxin Escherichia coli (STEC) Strains From a Semi-Hard Raw Milk Cheese. Front Microbiol 2021; 11:629189. [PMID: 33597935 PMCID: PMC7882498 DOI: 10.3389/fmicb.2020.629189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) represents a significant cause of foodborne disease. In the last years, an increasing number of STEC infections associated with the consumption of raw and pasteurized milk cheese have been reported, contributing to raise the public awareness. The aim of this study is to evaluate the main genomic features of STEC strains isolated from a semi-hard raw milk cheese, focusing on their pathogenic potential. The analysis of 75 cheese samples collected during the period between April 2019 and January 2020 led to the isolation of seven strains from four stx-positive enrichment. The genome investigation evidenced the persistence of two serotypes, O174:H2 and O116:H48. All strains carried at least one stx gene and were negative for eae gene. The virulence gene pattern was homogeneous among the serogroup/ST and included adherence factors (lpfA, iha, ompT, papC, saa, sab, hra, and hes), enterohemolysin (ehxA), serum resistance (iss, tra), cytotoxin-encoding genes like epeA and espP, and the Locus of Adhesion and Autoaggregation Pathogenicity Islands (LAA PAIs) typically found in Locus of Enterocyte Effacement (LEE)-negative STEC. Genome plasticity indicators, namely, prophagic sequences carrying stx genes and plasmid replicons, were detected, leading to the possibility to share virulence determinants with other strains. Overall, our work adds new knowledge on STEC monitoring in raw milk dairy products, underlining the fundamental role of whole genome sequencing (WGS) for typing these unknown isolates. Since, up to now, some details about STEC pathogenesis mechanism is lacking, the continuous monitoring in order to protect human health and increase knowledge about STEC genetic features becomes essential.
Collapse
Affiliation(s)
- Claudia Cortimiglia
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maria Francesca Borney
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Daniela Bassi
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
15
|
Su Z, Zhang L, Sun H, Hu Y, Fanning S, Du P, Cui S, Bai L. Characterization of Non-O157 Shiga Toxin-Producing Escherichia coli Cultured from Cattle Farms in Xinjiang Uygur Autonomous Region, China, During 2016-2017. Foodborne Pathog Dis 2021; 18:761-770. [PMID: 33524305 DOI: 10.1089/fpd.2020.2843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Most outbreaks of Shiga toxin-producing Escherichia coli (STEC) are attributed to consumption of contaminated foodstuffs including beef and dairy products. In this study, we evaluated the prevalence of non-O157 STEC cultured from beef and dairy cattle and collected in Xinjiang Uygur Autonomous Region in China. Results identified 67 non-O157 STEC recovered from the 793 samples including beef cattle (10.28%, 43/418) and dairy cattle (6.40%, 24/375). A total of 67 non-O157 STEC was sequenced allowing for in silico analyses of their serotypes, virulence genes, and identification of the corresponding multilocus sequence types (STs). Twenty-one O serogroups and nine H serotypes were identified and the dominant serotype identified was O22:H8. One stx1 subtype (stx1a) and four stx2 subtypes (2a, 2b, 2c, and 2d) were found in the 67 non-O157 STEC isolates. The results revealed that stx1a+stx2a-positive STEC isolates were predominant (32.83%, 22/67), followed by stx1a+stx2d (29.85%, 20/67) and stx2a alone (17.91%, 12/67). Non-O157 STEC isolates carried virulence genes ehxA (98.51%), subA (53.73%), and cdtB (17.91%). Of the four adherence-associated genes tested, eaeA was absent, whereas lpfA and iha were present in 67 and 55 non-O157 STEC isolates, respectively. The STEC isolates were divided into 48 pulsed-field gel electrophoresis patterns and 10 STs, and ST446 (O22:H8) was the dominant clone (22.38%). Our results revealed that there was a high genetic diversity among non-O157 STEC isolated from beef and dairy cattle, some of which have potential to cause human diseases.
Collapse
Affiliation(s)
- Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang Uygur Autonomous Region, China
| | - Ling Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang Uygur Autonomous Region, China.,National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Honghu Sun
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,Food Microbiology Lab, Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Ying Hu
- Department of Food Science, National Institutes for Food and Drug Control, Beijing, China.,School of Public Health, Zunyi Medical University, Zunyi, China
| | - Séamus Fanning
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shenghui Cui
- Department of Food Science, National Institutes for Food and Drug Control, Beijing, China
| | - Li Bai
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
16
|
Nyong EC, Zaia SR, Allué-Guardia A, Rodriguez AL, Irion-Byrd Z, Koenig SSK, Feng P, Bono JL, Eppinger M. Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes. Front Microbiol 2020; 11:619. [PMID: 32351476 PMCID: PMC7175801 DOI: 10.3389/fmicb.2020.00619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
The toxigenic conversion of Escherichia coli strains by Shiga toxin-converting (Stx) bacteriophages were prominent and recurring events in the stepwise evolution of enterohemorrhagic E. coli (EHEC) O157:H7 from an enteropathogenic (EPEC) O55:H7 ancestor. Atypical, attenuated isolates have been described for both non-sorbitol fermenting (NSF) O157:H7 and SF O157:NM serotypes, which are distinguished by the absence of Stx, the characteristic virulence hallmark of Stx-producing E. coli (STEC). Such atypical isolates either never acquired Stx-phages or may have secondarily lost stx during the course of infection, isolation, or routine subculture; the latter are commonly referred to as LST (Lost Shiga Toxin)-isolates. In this study we analyzed the genomes of 15 NSF O157:H7 and SF O157:NM strains from North America, Europe, and Asia that are characterized by the absence of stx, the virulence hallmark of STEC. The individual genomic basis of the Stx (-) phenotype has remained largely undetermined as the majority of STEC genomes in public genome repositories were generated using short read technology and are in draft stage, posing a major obstacle for the high-resolution whole genome sequence typing (WGST). The application of LRT (long-read technology) sequencing provided us with closed genomes, which proved critical to put the atypical non-shigatoxigenic NSF O157:H7 and SF O157:NM strains into the phylogenomic context of the stepwise evolutionary model. Availability of closed chromosomes for representative Stx (-) NSF O157:H7 and SF O157:NM strains allowed to describe the genomic basis and individual evolutionary trajectories underlying the absence of Stx at high accuracy and resolution. The ability of LRT to recover and accurately assemble plasmids revealed a strong correlation between the strains' featured plasmid genotype and chromosomally inferred clade, which suggests the coevolution of the chromosome and accessory plasmids. The identified ancestral traits in the pSFO157 plasmid of NSF O157:H7 strain LSU-61 provided additional evidence for its intermediate status. Taken together, these observations highlight the utility of LRTs for advancing our understanding of EHEC O157:H7/NM pathogenome evolution. Insights into the genomic and phenotypic plasticity of STEC on a lineage- and genome-wide scale are foundational to improve and inform risk assessment, biosurveillance, and prevention strategies.
Collapse
Affiliation(s)
- Emmanuel C. Nyong
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sam R. Zaia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Armando L. Rodriguez
- Research Computing Support Group, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zaina Irion-Byrd
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | | | - James L. Bono
- United States Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture (ARS-USDA), Clay Center, NE, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| |
Collapse
|