1
|
Phenotype Characterization of a Mice Genetic Model of Absolute Blindness. Int J Mol Sci 2022; 23:ijms23158152. [PMID: 35897728 PMCID: PMC9331777 DOI: 10.3390/ijms23158152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Recent technological development requires new approaches to address the problem of blindness. Such approaches need to be able to ensure that no cells with photosensitive capability remain in the retina. The presented model, Opn4−/− × Pde6brd10/rd10 (O×Rd) double mutant murine, is a combination of a mutation in the Pde6b gene (photoreceptor degeneration) together with a deletion of the Opn4 gene (responsible for the expression of melanopsin in the intrinsically photosensitive retinal ganglion cells). This model has been characterized and compared with those of WT mice and murine animal models displaying both mutations separately. A total loss of pupillary reflex was observed. Likewise, behavioral tests demonstrated loss of rejection to illuminated spaces and a complete decrease in visual acuity (optomotor test). Functional recordings showed an absolute disappearance of various wave components of the full-field and pattern electroretinogram (fERG, pERG). Likewise, visual evoked potential (VEP) could not be recorded. Immunohistochemical staining showed marked degeneration of the outer retinal layers and the absence of melanopsin staining. The combination of both mutations has generated an animal model that does not show any photosensitive element in its retina. This model is a potential tool for the study of new ophthalmological approaches such as optosensitive agents.
Collapse
|
2
|
Zaman S, Kane T, Katta M, Georgiou M, Michaelides M. Photoaversion in inherited retinal diseases: clinical phenotypes, biological basis, and qualitative and quantitative assessment. Ophthalmic Genet 2021; 43:143-151. [PMID: 34957896 DOI: 10.1080/13816810.2021.2015789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Severe light sensitivity is a feature common to a range of ophthalmological and neurological diseases. In inherited retinal diseases (IRDs) particularly, this may be accompanied by significant visual disruption. These symptoms are extremely debilitating for affected individuals and have significant implications in terms of day-to-day activities. Underlying mechanisms remain to be fully elucidated. Currently, there are many assessments of photoaversion (PA), however, all have limitations, with quantitative measurement in particular needing further evaluation. To understand the complexities associated with photoaversion from different pathologies, qualitative and quantitative assessments of the light aversion response must be standardized. There is no treatment to date, and strategies to alleviate symptoms focus on light avoidance. With respect to IRDs, however, gene therapy is currently being investigated in clinical trials and promising and further treatments may be on the horizon. The better characterization of these symptoms is an important end point measure in IRD gene therapy trials.
Collapse
Affiliation(s)
- Serena Zaman
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, University College London, London, UK
| | - Thomas Kane
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, University College London, London, UK
| | - Mohamed Katta
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, University College London, London, UK
| | - Michalis Georgiou
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, University College London, London, UK
| | - Michel Michaelides
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
3
|
Seiler MJ. hESC-derived photoreceptors survive and integrate better in immunodeficient retina. Stem Cell Investig 2017; 4:70. [PMID: 28920063 DOI: 10.21037/sci.2017.08.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Magdalene J Seiler
- Department of Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, USA
| |
Collapse
|
4
|
Laprell L, Hüll K, Stawski P, Schön C, Michalakis S, Biel M, Sumser MP, Trauner D. Restoring Light Sensitivity in Blind Retinae Using a Photochromic AMPA Receptor Agonist. ACS Chem Neurosci 2016; 7:15-20. [PMID: 26495755 PMCID: PMC4722500 DOI: 10.1021/acschemneuro.5b00234] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/23/2015] [Indexed: 12/15/2022] Open
Abstract
Retinal degenerative diseases can have many possible causes and are currently difficult to treat. As an alternative to therapies that require genetic manipulation or the implantation of electronic devices, photopharmacology has emerged as a viable approach to restore visual responses. Here, we present a new photopharmacological strategy that relies on a photoswitchable excitatory amino acid, ATA. This freely diffusible molecule selectively activates AMPA receptors in a light-dependent fashion. It primarily acts on amacrine and retinal ganglion cells, although a minor effect on bipolar cells has been observed. As such, it complements previous pharmacological approaches based on photochromic channel blockers and increases the potential of photopharmacology in vision restoration.
Collapse
Affiliation(s)
- L. Laprell
- Center
of Integrated Protein Science Munich (CIPSM) at the Department of
Chemistry Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - K. Hüll
- Center
of Integrated Protein Science Munich (CIPSM) at the Department of
Chemistry Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - P. Stawski
- Center
of Integrated Protein Science Munich (CIPSM) at the Department of
Chemistry Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - C. Schön
- Center
for Integrated Protein Science Munich (CIPSM) at the Department of
Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - S. Michalakis
- Center
for Integrated Protein Science Munich (CIPSM) at the Department of
Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - M Biel
- Center
for Integrated Protein Science Munich (CIPSM) at the Department of
Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - M. P. Sumser
- Center
of Integrated Protein Science Munich (CIPSM) at the Department of
Chemistry Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - D. Trauner
- Center
of Integrated Protein Science Munich (CIPSM) at the Department of
Chemistry Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| |
Collapse
|
5
|
Díaz NM, Morera LP, Guido ME. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates. Photochem Photobiol 2015; 92:29-44. [DOI: 10.1111/php.12545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolás M. Díaz
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Luis P. Morera
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Mario E. Guido
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| |
Collapse
|
6
|
All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells. Curr Biol 2015; 25:2763-2773. [PMID: 26441349 DOI: 10.1016/j.cub.2015.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/15/2015] [Accepted: 09/05/2015] [Indexed: 11/22/2022]
Abstract
Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.
Collapse
|
7
|
Walmsley L, Hanna L, Mouland J, Martial F, West A, Smedley AR, Bechtold DA, Webb AR, Lucas RJ, Brown TM. Colour as a signal for entraining the mammalian circadian clock. PLoS Biol 2015; 13:e1002127. [PMID: 25884537 PMCID: PMC4401556 DOI: 10.1371/journal.pbio.1002127] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue–yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision. Environmental measurements and physiological recordings reveal that mice not only use changes in the intensity of sunlight to entrain their circadian clock, but also employ blue–yellow color discrimination to detect spectral changes associated with dawn and dusk. Animals use an internal brain clock to keep track of time and adjust their behaviour in anticipation of the coming day or night. To be useful, however, this clock must be synchronised to external time. Assessing external time is typically thought to rely on measuring large changes in ambient light intensity that occur over dawn/dusk. The colour of light also changes over these twilight transitions, but it is currently unknown whether such changes in colour are important for synchronising biological clocks to the solar cycle. Here we show that the mammalian blue–yellow colour discrimination axis provides a more reliable indication of twilight progression than a system solely measuring changes in light intensity. We go on to use electrical recordings from the brain clock to reveal the presence of many neurons that can track changes in blue–yellow colour occurring during natural twilight. Finally, using mice housed under lighting regimes with simulated dawn/dusk transitions, we show that changes in colour are required for appropriate biological timing with respect to the solar cycle. In sum, our data reveal a new sensory mechanism for estimating time of day that should be available to all mammals capable of chromatic vision, including humans.
Collapse
Affiliation(s)
- Lauren Walmsley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lydia Hanna
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Josh Mouland
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Alexander West
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew R. Smedley
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - David A. Bechtold
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ann R. Webb
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (RJL); (TMB)
| | - Timothy M. Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (RJL); (TMB)
| |
Collapse
|
8
|
Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci 2014; 15:23448-500. [PMID: 25526564 PMCID: PMC4284776 DOI: 10.3390/ijms151223448] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/02/2014] [Accepted: 11/09/2014] [Indexed: 12/14/2022] Open
Abstract
Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.
Collapse
Affiliation(s)
| | | | | | - Russel Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany.
| | - Maria Angeles Rol
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Juan Antonio Madrid
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
9
|
BARRETT JOHNMARTIN, BERLINGUER-PALMINI ROLANDO, DEGENAAR PATRICK. Optogenetic approaches to retinal prosthesis. Vis Neurosci 2014; 31:345-54. [PMID: 25100257 PMCID: PMC4161214 DOI: 10.1017/s0952523814000212] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/07/2014] [Indexed: 01/14/2023]
Abstract
The concept of visual restoration via retinal prosthesis arguably started in 1992 with the discovery that some of the retinal cells were still intact in those with the retinitis pigmentosa disease. Two decades later, the first commercially available devices have the capability to allow users to identify basic shapes. Such devices are still very far from returning vision beyond the legal blindness. Thus, there is considerable continued development of electrode materials, and structures and electronic control mechanisms to increase both resolution and contrast. In parallel, the field of optogenetics--the genetic photosensitization of neural tissue holds particular promise for new approaches. Given that the eye is transparent, photosensitizing remaining neural layers of the eye and illuminating from the outside could prove to be less invasive, cheaper, and more effective than present approaches. As we move toward human trials in the coming years, this review explores the core technological and biological challenges related to the gene therapy and the high radiance optical stimulation requirement.
Collapse
Affiliation(s)
- JOHN MARTIN BARRETT
- Institute of Neuroscience,
Newcastle University, Newcastle upon
Tyne, United Kingdom
| | | | - PATRICK DEGENAAR
- School of EEE,
Newcastle University, Newcastle upon
Tyne, United Kingdom
| |
Collapse
|
10
|
Lupi D, Semo M, Foster RG. Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiol Aging 2012; 33:383-92. [DOI: 10.1016/j.neurobiolaging.2010.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 02/02/2010] [Accepted: 03/09/2010] [Indexed: 12/19/2022]
|
11
|
Semo M, Gias C, Ahmado A, Sugano E, Allen AE, Lawrence JM, Tomita H, Coffey PJ, Vugler AA. Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PLoS One 2010; 5:e15009. [PMID: 21124784 PMCID: PMC2993953 DOI: 10.1371/journal.pone.0015009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/11/2010] [Indexed: 01/03/2023] Open
Abstract
Melanopsin photoreception plays a vital role in irradiance detection for non-image forming responses to light. However, little is known about the involvement of melanopsin in emotional processing of luminance. When confronted with a gradient in light, organisms exhibit spatial movements relative to this stimulus. In rodents, behavioural light aversion (BLA) is a well-documented but poorly understood phenomenon during which animals attribute salience to light and remove themselves from it. Here, using genetically modified mice and an open field behavioural paradigm, we investigate the role of melanopsin in BLA. While wildtype (WT), melanopsin knockout (Opn4−/−) and rd/rd cl (melanopsin only (MO)) mice all exhibit BLA, our novel methodology reveals that isolated melanopsin photoreception produces a slow, potentiating response to light. In order to control for the involvement of pupillary constriction in BLA we eliminated this variable with topical atropine application. This manipulation enhanced BLA in WT and MO mice, but most remarkably, revealed light aversion in triple knockout (TKO) mice, lacking three elements deemed essential for conventional photoreception (Opn4−/− Gnat1−/− Cnga3−/−). Using a number of complementary strategies, we determined this response to be generated at the level of the retina. Our findings have significant implications for the understanding of how melanopsin signalling may modulate aversive responses to light in mice and humans. In addition, we also reveal a clear potential for light perception in TKO mice.
Collapse
Affiliation(s)
- Ma'ayan Semo
- Department of Ocular Biology and Therapeutics, University College London-Institute of Ophthalmology, London, United Kingdom
- * E-mail: (AAV); (MS)
| | - Carlos Gias
- Department of Ocular Biology and Therapeutics, University College London-Institute of Ophthalmology, London, United Kingdom
| | - Ahmad Ahmado
- Department of Ocular Biology and Therapeutics, University College London-Institute of Ophthalmology, London, United Kingdom
| | - Eriko Sugano
- Institute for International Advanced Interdisciplinary Research, Tohoku University, Aoba-ku, Sendai, Japan
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jean M. Lawrence
- Department of Ocular Biology and Therapeutics, University College London-Institute of Ophthalmology, London, United Kingdom
| | - Hiroshi Tomita
- Institute for International Advanced Interdisciplinary Research, Tohoku University, Aoba-ku, Sendai, Japan
| | - Peter J. Coffey
- Department of Ocular Biology and Therapeutics, University College London-Institute of Ophthalmology, London, United Kingdom
| | - Anthony A. Vugler
- Department of Ocular Biology and Therapeutics, University College London-Institute of Ophthalmology, London, United Kingdom
- * E-mail: (AAV); (MS)
| |
Collapse
|
12
|
Abstract
Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.
Collapse
Affiliation(s)
- Michael Tri Hoang Do
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
13
|
Abstract
Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratory of Chronobiology, Department of Science and Technology, University of Quilmes/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Quilmes, Argentina.
| | | |
Collapse
|
14
|
Danilenko KV, Plisov IL, Wirz‐Justice A, Hébert M. Human Retinal Light Sensitivity and Melatonin Rhythms Following Four Days in Near Darkness. Chronobiol Int 2009; 26:93-107. [DOI: 10.1080/07420520802689814] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Thompson S, Lupi D, Hankins MW, Peirson SN, Foster RG. The effects of rod and cone loss on the photic regulation of locomotor activity and heart rate. Eur J Neurosci 2008; 28:724-9. [PMID: 18702692 PMCID: PMC3001038 DOI: 10.1111/j.1460-9568.2008.06388.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Behavioral responses to light indirectly affect cardiovascular output, but in anesthetized rodents a direct effect of light on heart rate has also been described. Both the basis for this response and the contribution of rods, cones and melanopsin-based photosensitive retinal ganglion cells (pRGCs) remains unknown. To understand how light acutely regulates heart rate we studied responses to light in mice lacking all rod and cone photoreceptors (rd/rd cl ) along with wild-type controls. Our initial experiments delivered light to anesthetized mice at Zeitgeber time (ZT)16 (4 h after lights off, mid-activity phase) and produced an increase in heart rate in wild-type mice, but not in rd/rd cl animals. By contrast, parallel experiments in freely-moving mice demonstrated that light exposure at this time suppressed heart rate and activity in both genotypes. Because of the effects of anesthesia, all subsequent studies were conducted in freely-moving animals. The effects of light were also assessed at ZT6 (mid-rest phase). At this timepoint, wild-type mice showed an irradiance-dependent increase in heart rate and activity. By contrast, rd/rd cl mice failed to show any modulation of heart rate or activity, even at very high irradiances. Increases in heart rate preceded increases in locomotor activity and remained elevated when locomotor activity ceased, suggesting that these two responses are at least partially uncoupled. Collectively, our results show an acute and phase-dependent effect of light on cardiovascular output in mice. Surprisingly, this irradiance detection response is dependent upon rod and cone photoreceptors, with no apparent contribution from melanopsin pRGCs.
Collapse
Affiliation(s)
- Stewart Thompson
- Nuffield Laboratory of Ophthalmology, The John Radcliffe Hospital, Headley Way, University of Oxford, Roosevelt Drive, Oxford OX3 9DU, UK
| | | | | | | | | |
Collapse
|
16
|
Abstract
PURPOSE To investigate the ability of a technique employing pupillometry and functionally-shaped stimuli to assess loss of visual function due to glaucomatous optic neuropathy. METHODS Pairs of large stimuli, mirror images about the horizontal meridian, were displayed alternately in the upper and lower visual field. Pupil diameter was recorded and analyzed in terms of the "contrast balance" (relative sensitivity to the upper and lower stimuli), and the pupil constriction amplitude to upper and lower stimuli separately. A group of 40 patients with glaucoma was tested twice in a first session, and twice more in a second session, 1 to 3 weeks later. A group of 40 normal subjects was tested with the same protocol. RESULTS Results for the normal subjects indicated functional symmetry in upper/lower retina, on average. Contrast balance results for the patients with glaucoma differed from normal: half the normal subjects had contrast balance within 0.06 log unit of equality and 80% had contrast balance within 0.1 log unit. Half the patients had contrast balances more than 0.1 log unit from equality. Patient contrast balances were moderately correlated with predictions from perimetric data (r = 0.37, p < 0.00001). Contrast balances correctly classified visual field damage in 28 patients (70%), and response amplitudes correctly classified 24 patients (60%). When contrast balance and response amplitude were combined, receiver operating characteristic area for discriminating glaucoma from normal was 0.83. CONCLUSIONS Pupillary evaluation of retinal asymmetry provides a rapid method for detecting and classifying visual field defects. In this patient population, classification agreed with perimetry in 70% of eyes.
Collapse
Affiliation(s)
- Yanjun Chen
- Department of Biological Sciences, SUNY State College of Optometry, New York, New York, USA
| | | | | | | |
Collapse
|
17
|
Thompson S, Philp AR, Stone EM. Visual function testing: A quantifiable visually guided behavior in mice. Vision Res 2008; 48:346-52. [PMID: 17825348 DOI: 10.1016/j.visres.2007.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 11/22/2022]
Abstract
A measure of improved vision remains the most meaningful way to demonstrate the efficacy of a therapy. Animal models allow us to describe the pathology of inherited retinal degenerations and to evaluate emerging therapies in specific disorders in ways not possible in human subjects. The potential use of mice in this role has been limited by the lack of a simple, unambiguous and practical test of an innate visually guided behavior. To begin to address this need, we have developed equipment and protocols to measure a performance enhancing effect of vision on use of a running wheel; a scotopic visually guided behavior termed positive masking. This assay is objective, quantitative, automated and can be adapted for in-depth studies of visual thresholds, longitudinal studies of visual pathology or treatment efficacy, and large scale screening programs. Proof-of-principle experiments show that our equipment and protocols are able to characterize the full range of masking responses in normal mice in an informative and efficient manner. A sustained activity increase across a range of dim light irradiances was consistent with scotopic visual guidance of behavior, while at higher irradiances a dose dependent suppression of activity was apparent. This study also describes for the first time the interaction of experience and vision in performing a task. Specifically, we identified an experience dependent acclimatization to wheel use in scotopic conditions; a performance reduction in complete darkness; and a partial but not complete recovery of performance levels with experience in complete darkness. This suggests that where visual guidance is performance enhancing but not essential, loss of the contribution of visual guidance to the tasks might be compensated for by experience or training.
Collapse
Affiliation(s)
- Stewart Thompson
- Howard Hughes Medical Institute and The Carver Family Center for Macular Degeneration, Department of Ophthalmology and Visual Sciences, 4111 MERF, 375 Newton Road, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
18
|
Kumbalasiri T, Provencio I. Melanopsin and other novel mammalian opsins. Exp Eye Res 2005; 81:368-75. [PMID: 16005867 DOI: 10.1016/j.exer.2005.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Revised: 04/12/2005] [Accepted: 05/19/2005] [Indexed: 12/14/2022]
Abstract
Within the past decade, several non-canonical opsins have been identified in mammals. These include RGR, peropsin, melanopsin, encephalopsin, and neuropsin. Although all are expressed in the eye, it is likely that they serve to mediate non-visual effects of light on physiology. Some of these opsins, however, may play an indirect role in vision by generating appropriate retinoid chromophores for the rod and cone visual pigments or by regulating the sensitivity of the visual system. Here, we survey the current state of knowledge regarding these opsins.
Collapse
Affiliation(s)
- Tida Kumbalasiri
- Graduate Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814-4712, USA
| | | |
Collapse
|