1
|
Mielke MM, Fielding RA, Atkinson EJ, Aversa Z, Schafer MJ, Cummings SR, Pahor M, Leeuwenburgh C, LeBrasseur NK. Biomarkers of cellular senescence predict risk of mild cognitive impairment: Results from the lifestyle interventions for elders (LIFE) study. J Nutr Health Aging 2025; 29:100529. [PMID: 40056496 PMCID: PMC12067485 DOI: 10.1016/j.jnha.2025.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
OBJECTIVES Cellular senescence, characterized by a marked and multifactorial senescence-associated secretory phenotype (SASP), is a potential unifying mechanism of aging and chronic disease. Most studies of the SASP have focused on frailty and other functional outcomes. Senescent cells have been detected in the brains of patients with Alzheimer's disease, but few studies have examined associations between plasma SASP markers and cognition. The objective of this study was to examine the cross-sectional and longitudinal associations between plasma SASP markers and mild cognitive impairment among older adults at high risk of mobility disability. DESIGN The Lifestyle Interventions for Elders (LIFE) study was a randomized controlled trial of a group-based physical activity program compared to a "successful aging" health education program to assess effects on major mobility disability that was conducted from February 2010 to December 2013. SETTING Recruitment occurred at eight centers in the United States. PARTICIPANTS We included 1,373 participants enrolled in the study with baseline measures of 27 biomarkers of cellular senescence and adjudication of mild cognitive impairment (MCI) and dementia at baseline and 24-month follow-up. At baseline, participants were aged 70-80, sedentary, and at high risk of mobility disability. MEASUREMENTS A neuropsychological assessment was administered at baseline and 24 months post-randomization. At both timepoints, a clinical adjudication committee determined whether individuals had a diagnosis of cognitively normal, MCI, or dementia; individuals with dementia at baseline were excluded. The concentrations of 26 of the 27 plasma proteins identified as components of the SASP were measured with commercially available Luminex xMAP multiplex magnetic bead-based immunoassays analyzed on the MAGPIX System while 1 protein (Activin A) was measured using an enzyme-linked immunosorbent assay. RESULTS Logistic regression models were used to examine the associations of each senescence biomarker, in quartiles, with baseline or incident MCI. Models stratified by clinical site and adjusted for intervention assignment, age, gender, race, and education. Among 1,373 participants, 117 (8.5%) were diagnosed with MCI at baseline. Increasing quartiles of myeloperoxidase (MPO) was associated with higher odds of MCI compared to quartile 1 (Q2: OR = 1.34, 95% CI: 0.74-2.45; Q3: OR = 1.43, 95% CI: 0.80-2.59; Q4: OR = 1.79, 95% CI: 1.02-3.22). Additionally, matrix metalloproteinase 1 (MMP1) quartiles 2-4 had lower odds of MCI compared to quartile 1 (Q2: OR = 0.61, 95% CI: 0.35-1.02; Q3: OR = 0.58, 95% CI: 0.33-0.98; Q4: OR = 0.64, 95% CI: 0.37-1.08). Of the 1,256 cognitively unimpaired participants at baseline, 141 (11.2%) were diagnosed with incident MCI or dementia at the 24-month follow-up. Compared to quartile 1, increasing baseline quartiles of MPO (Q2: OR = 1.10, 95% CI: 0.63-1.92; Q3: OR = 1.36, 95% CI: 0.80-2.33; Q4: OR = 1.92, 95% CI: 1.16-3.25) and matrix metalloproteinase 7 (MMP7, Q2: OR = 0.88, 95% CI: 0.47-1.62; Q3: OR = 1.46, 95% CI: 0.85-2.55; Q4: OR = 2.14, 95% CI: 1.28-3.65) were associated with increased odds of MCI or dementia at 24 months. CONCLUSIONS Among older adults at high risk of mobility disability, high plasma MPO was cross-sectionally and, along with MMP7, longitudinally associated with increased odds of MCI and dementia. In contrast, high MMP1 was cross-sectionally associated with reduced odds of MCI.
Collapse
Affiliation(s)
- Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| | - Roger A Fielding
- Metabolism and Basic Biology of Aging Directive, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.
| | - Elizabeth J Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States.
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States.
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.
| | - Steven R Cummings
- Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States; Research Institute, California Pacific Medical Center, San Francisco, CA, United States.
| | - Marco Pahor
- Principle Investigator of the LIFE Study, Independent Scholar, Miami, FL, United States.
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, Institute on Aging, University of Florida, Gainesville, FL, United States.
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
2
|
Jiang J, Wu Q, Rajasekaran S, Wu R. MMP3 at the crossroads: Linking molecular pathways to disease diagnosis and therapy. Pharmacol Res 2025; 216:107750. [PMID: 40311957 DOI: 10.1016/j.phrs.2025.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Matrix metalloproteinase 3 (MMP-3) is a multifaceted enzyme that plays a critical role in the regulation of extracellular matrix (ECM) dynamics, influencing both normal physiological and pathological processes. In addition to its established role in ECM degradation, MMP-3 is gaining recognition for modulating cellular behaviors such as inflammation, migration, and proliferation. Recent research has uncovered its capacity to activate latent signaling molecules, release growth factors from the ECM and interact with various cell surface receptors, linking MMP-3 to the progression of various diseases, including inflammatory diseases, infection diseases, cardiovascular diseases, neurodegenerative disorders, and cancer. The review provides an overview of MMP-3's molecular regulation, emphasizing the mechanisms controlling its expression and activity. We discuss MMP3's involvement in both ECM-dependent and independent pathways, and its potential as a diagnostic, prognostic biomarker in various diseases. Additionally, we explore therapeutic strategies targeting MMP-3, summarizing ongoing efforts to develop specific inhibitors and modulate its activity in different pathologic conditions. Through this review, we aim to consolidate the diverse functions of MMP-3 and provide new insights into future research directions, particularly in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jing Jiang
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Binzhou Medical University, Yantai, China
| | - Qiong Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Snekha Rajasekaran
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
3
|
Li W, Yong-Yan X, Jia-Xin M, Shu-Chao G, Li-Ping H. Senescent microglia: The hidden culprits accelerating Alzheimer's disease. Brain Res 2025; 1851:149480. [PMID: 39884491 DOI: 10.1016/j.brainres.2025.149480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/07/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ageing is a major risk factor for neurodegenerative diseases like Alzheimer's disease (AD). Microglia, as the principal innate immune cells within the brain, exert homeostatic and active immunological defense functions throughout human lifespan. The age-related dysfunction of microglia is currently recognized as a pivotal trigger for brain diseases associated with aging. In AD, microglia exhibit alterations in gene expression, cellular morphology, and functional behavior. By focusing on the immunomodulatory functions of factors secreted by senescent microglia, such as cytokines, chemokines, complement factors, and reactive oxygen species (ROS), we explore the diverse detrimental effects of microglia in aging and AD pathogenesis, including Aβ accumulation, Tau deposition, synaptic dysfunction, and neuroinflammation. These collectively contribute to hastening the progression of. In this review, we highlight the key role of senescent microglia in the pathological processes of AD. Then we propose that targeting senescent microglia holds great promise for therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wu Li
- School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, NanChang, China
| | - Xie Yong-Yan
- School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, NanChang, China
| | - Mu Jia-Xin
- School of Pharmacy, Jiangxi University of Chinese Medicine, NanChang, China
| | - Ge Shu-Chao
- School of Pharmacy, Jiangxi University of Chinese Medicine, NanChang, China.
| | - Huang Li-Ping
- Jiangxi Provincial Key Laboratory of Pharmacology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, NanChang, China; School of Pharmacy, Jiangxi University of Chinese Medicine, NanChang, China.
| |
Collapse
|
4
|
Radosinska D, Radosinska J. The Link Between Matrix Metalloproteinases and Alzheimer's Disease Pathophysiology. Mol Neurobiol 2025; 62:885-899. [PMID: 38935232 PMCID: PMC11711632 DOI: 10.1007/s12035-024-04315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a major contributor to dementia and the most common neurodegenerative disorder. In AD pathophysiology, matrix metalloproteinases (MMPs)-proteolytic enzymes, best known to be responsible for remodeling and degradation of the extracellular matrix-were suggested to play an important role. Due to the diverse nature of the published data and frequent inconsistent results presented in available papers, it was considered essential to analyze all aspects of MMP literature with respect to AD pathophysiology and attempt to outline a unifying concept for understanding their role in AD. Thus, the main contribution of this review article is to summarize the most recent research on the participation of MMP in AD pathophysiology obtained using the cell cultures to understand the molecular principles of their action. Furthermore, an updated comprehensive view regarding this topic based exclusively on papers from human studies is provided as well. It can be concluded that determining the exact role of any particular MMPs in the AD pathophysiology holds promise for establishing their role as potential biomarkers reflecting the severity or progression of this disease or for developing new therapeutic agents targeting the processes that lead to AD.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 81372, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Tang J, Cao Z, Lei M, Yu Q, Mai Y, Xu J, Liao W, Ruan Y, Shi L, Yang L, Liu J. Heterogeneity of cerebral atrophic rate in mild cognitive impairment and its interactive association with proteins related to microglia activity on longitudinal cognitive changes. Arch Gerontol Geriatr 2024; 127:105582. [PMID: 39079281 DOI: 10.1016/j.archger.2024.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Heterogeneity of cerebral atrophic rate commonly exists in mild cognitive impairment (MCI), which may be associated with microglia-involved neuropathology and have an influence on cognitive outcomes. OBJECTIVE We aim to explore the heterogeneity of cerebral atrophic rate among MCI and its association with plasma proteins related to microglia activity, with further investigation of their interaction effects on long-term cognition. SUBJECTS A total of 630 MCI subjects in the ADNI database were included, of which 260 subjects were available with baseline data on plasma proteins. METHODS Group-based multi-trajectory modeling (GBMT) was used to identify the latent classes with heterogeneous cerebral atrophic rates. Associations between latent classes and plasma proteins related to microglia activity were investigated with generalized linear models. Linear mixed effect models (LME) were implemented to explore the interaction effects between proteins related to microglia activity and identified latent classes on longitudinal cognitive changes. RESULTS Two latent classes were identified and labeled as the slow-atrophy class and the fast-atrophy class. Associations were found between such heterogeneity of atrophic rates and plasma proteins related to microglia activity, especially AXL receptor tyrosine kinase (AXL), CD40 antigen (CD40), and tumor necrosis factor receptor-like 2 (TNF-R2). Interaction effects on longitudinal cognitive changes showed that higher CD40 was associated with faster cognitive decline in the slow-atrophy class and higher AXL or TNF-R2 was associated with slower cognitive decline in the fast-atrophy class. CONCLUSIONS Heterogeneity of atrophic rates at the MCI stage is associated with several plasma proteins related to microglia activity, which show either protective or adverse effects on long-term cognition depending on the variability of atrophic rates.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China
| | - Zhiyu Cao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Ming Lei
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China
| | - Qun Yu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Yingren Mai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Jiaxin Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China
| | - Wang Liao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Yuting Ruan
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen City, Guangdong Province, MN 518000, China; Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, MN 999077, China
| | - Lianhong Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China.
| | - Jun Liu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China.
| |
Collapse
|
6
|
Bernocchi F, Bonomi CG, Assogna M, Moreschini A, Mercuri NB, Koch G, Martorana A, Motta C. Astrocytic-derived vascular remodeling factors are independently associated with blood brain barrier permeability in Alzheimer's disease. Neurobiol Aging 2024; 141:66-73. [PMID: 38823205 DOI: 10.1016/j.neurobiolaging.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Astrocytes in Alzheimer's disease (AD) exert a pivotal role in the maintenance of blood-brain barrier (BBB) integrity essentially through structural support and release of soluble factors. This study provides new insights into the vascular remodeling processes occurring in AD, and reveals, in vivo, a pathological profile of astrocytic secretion involving Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinases (MMP)-9, MMP-2 and Endothelin-1 (ET-1). Cerebrospinal fluid (CSF) levels of VEGF, MMP-2/-9 were lower in patients belonging to the AD continuum, compared to aged-matched controls. CSF levels of VEGF and ET-1 positively correlated with MMP-9 but negatively with MMP-2, suggesting a complex vascular remodeling process occurring in AD. Only MMP-2 levels were significantly associated with CSF AD biomarkers. Conversely, higher MMP-2 (β = 0.411, p < 0.001), ET-1 levels (β = 0.344, p < 0.001) and VEGF (β = 0.221, p = 0.022), were associated with higher BBB permeability. Astrocytic-derived vascular remodeling factors are altered in AD, disclosing the failure of important protective mechanisms which proceed independently alongside AD pathology.
Collapse
Affiliation(s)
- Francesca Bernocchi
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Chiara Giuseppina Bonomi
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Martina Assogna
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, via Ardeatina 306/354, Rome 00179, Italy
| | - Alessandra Moreschini
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Medicine, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, via Ardeatina 306/354, Rome 00179, Italy; Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Caterina Motta
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy.
| |
Collapse
|
7
|
Gong J, Williams DM, Scholes S, Assaad S, Bu F, Hayat S, Zaninotto P, Steptoe A. Unraveling the role of plasma proteins in dementia: insights from two cohort studies in the UK, with causal evidence from Mendelian randomization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.04.24308415. [PMID: 38883777 PMCID: PMC11177911 DOI: 10.1101/2024.06.04.24308415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Population-based proteomics offer a groundbreaking avenue to predict dementia onset. This study employed a proteome-wide, data-driven approach to investigate protein-dementia associations in 229 incident all-cause dementia (ACD) among 3,249 participants from the English Longitudinal Study of Ageing (ELSA) over a median 9.8-year follow-up, then validated in 1,506 incident ACD among 52,745 individuals from the UK Biobank (UKB) over median 13.7 years. NEFL and RPS6KB1 were robustly associated with incident ACD; MMP12 was associated with vascular dementia in ELSA. Additional markers EDA2R and KIM1 (HAVCR1) were identified from sensitivity analyses. Combining NEFL and RPS6KB1 with other factors yielded high predictive accuracy (area under the curve (AUC)=0.871) for incident ACD. Replication in the UKB confirmed associations between identified proteins with various dementia subtypes. Results from reverse Mendelian Randomization also supported the role of several proteins as early dementia biomarkers. These findings underscore proteomics' potential in identifying novel risk screening targets for dementia.
Collapse
|
8
|
Bašić J, Milošević V, Djordjević B, Stojiljković V, Živanović M, Stefanović N, Aracki Trenkić A, Stojanov D, Jevtović Stoimenov T, Stojanović I. Matrix Remodeling Enzymes as Potential Fluid Biomarkers of Neurodegeneration in Alzheimer's Disease. Int J Mol Sci 2024; 25:5703. [PMID: 38891891 PMCID: PMC11171655 DOI: 10.3390/ijms25115703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
This study investigated the diagnostic accuracy of plasma biomarkers-specifically, matrix metalloproteinase (MMP-9), tissue inhibitor of metalloproteinase (TIMP-1), CD147, and the MMP-/TIMP-1 ratio in patients with Alzheimer's disease (AD) dementia. The research cohort comprised patients diagnosed with probable AD dementia and a control group of cognitively unimpaired (CU) individuals. Neuroradiological assessments included brain magnetic resonance imaging (MRI) following dementia protocols, with subsequent volumetric analysis. Additionally, cerebrospinal fluid (CSF) AD biomarkers were classified using the A/T/N system, and apolipoprotein E (APOE) ε4 carrier status was determined. Findings revealed elevated plasma levels of MMP-9 and TIMP-1 in AD dementia patients compared to CU individuals. Receiver operating characteristic (ROC) curve analysis demonstrated significant differences in the areas under the curve (AUC) for MMP-9 (p < 0.001) and TIMP-1 (p < 0.001). Notably, plasma TIMP-1 levels were significantly lower in APOE ε4+ patients than in APOE ε4- patients (p = 0.041). Furthermore, APOE ε4+ patients exhibited reduced hippocampal volume, particularly in total, right, and left hippocampal measurements. TIMP-1 levels exhibited a positive correlation, while the MMP-9/TIMP-1 ratio showed a negative correlation with hippocampal volume parameters. This study sheds light on the potential use of TIMP-1 as a diagnostic marker and its association with hippocampal changes in AD.
Collapse
Affiliation(s)
- Jelena Bašić
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (B.D.); (V.S.); (T.J.S.); (I.S.)
| | - Vuk Milošević
- Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (V.M.); (A.A.T.); (D.S.)
- Clinic of Neurology, University Clinical Center Niš, 18000 Niš, Serbia
| | - Branka Djordjević
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (B.D.); (V.S.); (T.J.S.); (I.S.)
| | - Vladana Stojiljković
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (B.D.); (V.S.); (T.J.S.); (I.S.)
| | - Milica Živanović
- Center for Radiology, University Clinical Center Niš, 18000 Niš, Serbia;
| | - Nikola Stefanović
- Department of Pharmacy, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Aleksandra Aracki Trenkić
- Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (V.M.); (A.A.T.); (D.S.)
- Center for Radiology, University Clinical Center Niš, 18000 Niš, Serbia;
| | - Dragan Stojanov
- Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (V.M.); (A.A.T.); (D.S.)
- Center for Radiology, University Clinical Center Niš, 18000 Niš, Serbia;
| | - Tatjana Jevtović Stoimenov
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (B.D.); (V.S.); (T.J.S.); (I.S.)
| | - Ivana Stojanović
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (B.D.); (V.S.); (T.J.S.); (I.S.)
| |
Collapse
|
9
|
Shreeya T, Ansari MS, Kumar P, Saifi M, Shati AA, Alfaifi MY, Elbehairi SEI. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. FRONTIERS IN AGING 2024; 4:1292053. [PMID: 38596783 PMCID: PMC11002673 DOI: 10.3389/fragi.2023.1292053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Senescence is a complicated, multi-factorial, irreversible cell cycle halt that has a tumor-suppressing effect in addition to being a significant factor in aging and neurological diseases. Damaged DNA, neuroinflammation, oxidative stress and disrupted proteostasis are a few of the factors that cause senescence. Senescence is triggered by DNA damage which initiates DNA damage response. The DNA damage response, which includes the formation of DNA damage foci containing activated H2AX, which is a key factor in cellular senescence, is provoked by a double strand DNA break. Oxidative stress impairs cognition, inhibits neurogenesis, and has an accelerated aging effect. Senescent cells generate pro-inflammatory mediators known as senescence-associated secretory phenotype (SASP). These pro-inflammatory cytokines and chemokines have an impact on neuroinflammation, neuronal death, and cell proliferation. While it is tempting to think of neurodegenerative diseases as manifestations of accelerated aging and senescence, this review will present information on brain ageing and neurodegeneration as a result of senescence and DNA damage response.
Collapse
Affiliation(s)
- Tejal Shreeya
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Mohd Saifullah Ansari
- Institute of Genetics, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Prabhat Kumar
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | | | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
10
|
Saatian B, Deshpande K, Herrera R, Sedighi S, Eisenbarth R, Iyer M, Das D, Julian A, Martirosian V, Lowman A, LaViolette P, Remsik J, Boire A, Sankey E, Fecci PE, Shiroishi MS, Chow F, Hurth K, Neman J. Breast-to-brain metastasis is exacerbated with chemotherapy through blood-cerebrospinal fluid barrier and induces Alzheimer's-like pathology. J Neurosci Res 2023; 101:1900-1913. [PMID: 37787045 PMCID: PMC10769085 DOI: 10.1002/jnr.25249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Control of breast-to-brain metastasis remains an urgent unmet clinical need. While chemotherapies are essential in reducing systemic tumor burden, they have been shown to promote non-brain metastatic invasiveness and drug-driven neurocognitive deficits through the formation of neurofibrillary tangles (NFT), independently. Now, in this study, we investigated the effect of chemotherapy on brain metastatic progression and promoting tumor-mediated NFT. Results show chemotherapies increase brain-barrier permeability and facilitate enhanced tumor infiltration, particularly through the blood-cerebrospinal fluid barrier (BCSFB). This is attributed to increased expression of matrix metalloproteinase 9 (MMP9) which, in turn, mediates loss of Claudin-6 within the choroid plexus cells of the BCSFB. Importantly, increased MMP9 activity in the choroid epithelium following chemotherapy results in cleavage and release of Tau from breast cancer cells. This cleaved Tau forms tumor-derived NFT that further destabilize the BCSFB. Our results underline for the first time the importance of the BCSFB as a vulnerable point of entry for brain-seeking tumor cells post-chemotherapy and indicate that tumor cells themselves contribute to Alzheimer's-like tauopathy.
Collapse
Affiliation(s)
- B Saatian
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
- Brain Tumor Center, University of Southern California
| | - K Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
- Brain Tumor Center, University of Southern California
| | - R Herrera
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
- Brain Tumor Center, University of Southern California
| | - S Sedighi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
- Brain Tumor Center, University of Southern California
| | - R Eisenbarth
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
- Brain Tumor Center, University of Southern California
| | - M Iyer
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
| | - D Das
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
| | - A Julian
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
- Brain Tumor Center, University of Southern California
| | - V Martirosian
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
- Brain Tumor Center, University of Southern California
| | - A Lowman
- Department of Radiology and Biomedical Engineering, Medical College of Wisconsin
| | - P LaViolette
- Department of Radiology and Biomedical Engineering, Medical College of Wisconsin
| | - J Remsik
- Department of Neurology, Memorial Sloan Kettering Cancer Center
| | - A Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center
| | - E Sankey
- Department of Neurosurgery, Duke University School of Medicine
| | - PE Fecci
- Department of Neurosurgery, Duke University School of Medicine
| | - MS Shiroishi
- Brain Tumor Center, University of Southern California
- Department of Pathology, Keck School of Medicine, University of Southern California
| | - F Chow
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
- Brain Tumor Center, University of Southern California
- Norris Comprehensive Cancer Center, University of Southern California
| | - K Hurth
- Brain Tumor Center, University of Southern California
- Department of Neuroscience and Physiology, Keck School of Medicine, University of Southern California
- Norris Comprehensive Cancer Center, University of Southern California
| | - J Neman
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
- Brain Tumor Center, University of Southern California
- Department of Neuroscience and Physiology, Keck School of Medicine, University of Southern California
- Department of Radiology, Keck School of Medicine, University of Southern California
- Norris Comprehensive Cancer Center, University of Southern California
| |
Collapse
|
11
|
Liu J, Li X, Qu J. Plasma MMP-9/TIMP-1 ratio serves as a novel potential biomarker in Alzheimer's disease. Neuroreport 2023; 34:767-772. [PMID: 37695608 DOI: 10.1097/wnr.0000000000001952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This study aimed to explore the diagnostic potential of plasma MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio for Alzheimer's disease (AD). This retrospective study was performed in a cohort consisting of patients with AD (AD group) and cognitive normal subjects (HC group). Cerebrospinal fluid (CSF) classic biomarkers including Aβ42, Aβ40, total tau (t-tau), and phosphorylated tau (p-tau) levels, and plasma MMP-9 and TIMP-1 levels were measured by commercially available ELISA kits, respectively. The differential diagnostic potential of plasma MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio was evaluated using the receiver operating characteristic curve analysis. It was observed that significantly elevated levels of plasma MMP-9 and MMP-9/TIMP-1 ratio in patients with AD than HC. Both MMP-9 and MMP-9/TIMP-1 ratios were negatively correlated with CSF Aβ42/Aβ40 ratio and positively correlated with CSF p-tau in AD group. ROC curve analysis showed better diagnostic accuracy of MMP-9/TIMP-1 ratio than MMP-9 for AD at a cutoff value of 1.35 with an area under the curve of 0.906 and sensitivity and specificity of 95.8% and 75%, respectively. Our findings encourage the use of plasma MMP-9/TIMP-1 ratio as a biomarker in the diagnosis of AD.
Collapse
Affiliation(s)
| | - Xing Li
- Department of Neurology, Beijing Hepingli Hospital, Beijing, China
| | - Ji Qu
- Department of Neurology, Beijing Hepingli Hospital, Beijing, China
| |
Collapse
|
12
|
Jin J, Guang M, Li S, Liu Y, Zhang L, Zhang B, Cheng M, Schmalz G, Huang X. Immune-related signature of periodontitis and Alzheimer's disease linkage. Front Genet 2023; 14:1230245. [PMID: 37849501 PMCID: PMC10577303 DOI: 10.3389/fgene.2023.1230245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Background: Periodontits (PD) and Alzheimer's disease (AD) are both associated with ageing and clinical studies increasingly evidence their association. However, specific mechanisms underlying this association remain undeciphered, and immune-related processes are purported to play a signifcant role. The accrual of publicly available transcriptomic datasets permits secondary analysis and the application of data-mining and bioinformatic tools for biological discovery. Aim: The present study aimed to leverage publicly available transcriptomic datasets and databases, and apply a series of bioinformatic analysis to identify a robust signature of immune-related signature of PD and AD linkage. Methods: We downloaded gene-expresssion data pertaining PD and AD and identified crosstalk genes. We constructed a protein-protein network analysis, applied immune cell enrichment analysis, and predicted crosstalk immune-related genes and infiltrating immune cells. Next, we applied consisent cluster analysis and performed immune cell bias analysis, followed by LASSO regression to select biomarker immune-related genes. Results: The results showed a 3 gene set comprising of DUSP14, F13A1 and SELE as a robust immune-related signature. Macrophages M2 and NKT, B-cells, CD4+ memory T-cells and CD8+ naive T-cells emerged as key immune cells linking PD with AD. Conclusion: Candidate immune-related biomarker genes and immune cells central to the assocation of PD with AD were identified, and merit investigation in experimental and clinical research.
Collapse
Affiliation(s)
- Jieqi Jin
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mengkai Guang
- Department of Stomatology, China-Japan Friendship Hospital, Beijing, China
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yong Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Zhang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Menglin Cheng
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, Leipzig University, Leipzig, Germany
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Holloway K, Neherin K, Dam KU, Zhang H. Cellular senescence and neurodegeneration. Hum Genet 2023; 142:1247-1262. [PMID: 37115318 DOI: 10.1007/s00439-023-02565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Advancing age is a major risk factor of Alzheimer's disease (AD). The worldwide prevalence of AD is approximately 50 million people, and this number is projected to increase substantially. The molecular mechanisms underlying the aging-associated susceptibility to cognitive impairment in AD are largely unknown. As a hallmark of aging, cellular senescence is a significant contributor to aging and age-related diseases including AD. Senescent neurons and glial cells have been detected to accumulate in the brains of AD patients and mouse models. Importantly, selective elimination of senescent cells ameliorates amyloid beta and tau pathologies and improves cognition in AD mouse models, indicating a critical role of cellular senescence in AD pathogenesis. Nonetheless, the mechanisms underlying when and how cellular senescence contributes to AD pathogenesis remain unclear. This review provides an overview of cellular senescence and discusses recent advances in the understanding of the impact of cellular senescence on AD pathogenesis, with brief discussions of the possible role of cellular senescence in other neurodegenerative diseases including Down syndrome, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kashfia Neherin
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kha Uyen Dam
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Hong Zhang
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
14
|
Mitroshina EV, Krivonosov MI, Pakhomov AM, Yarullina LE, Gavrish MS, Mishchenko TA, Yarkov RS, Vedunova MV. Unravelling the Collective Calcium Dynamics of Physiologically Aged Astrocytes under a Hypoxic State In Vitro. Int J Mol Sci 2023; 24:12286. [PMID: 37569663 PMCID: PMC10419080 DOI: 10.3390/ijms241512286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Astrocytes serve many functions in the brain related to maintaining nerve tissue homeostasis and regulating neuronal function, including synaptic transmission. It is assumed that astrocytes are crucial players in determining the physiological or pathological outcome of the brain aging process and the development of neurodegenerative diseases. Therefore, studies on the peculiarities of astrocyte physiology and interastrocytic signaling during aging are of utmost importance. Calcium waves are one of the main mechanisms of signal transmission between astrocytes, and in the present study we investigated the features of calcium dynamics in primary cultures of murine cortical astrocytes in physiological aging and hypoxia modeling in vitro. Specifically, we focused on the assessment of calcium network dynamics and the restructuring of the functional network architecture in primary astrocytic cultures. Calcium imaging was performed on days 21 ("young" astrocyte group) and 150 ("old" astrocyte group) of cultures' development in vitro. While the number of active cells and frequency of calcium events were decreased, we observed a reduced degree of correlation in calcium dynamics between neighboring cells, which was accompanied by a reduced number of functionally connected cells with fewer and slower signaling events. At the same time, an increase in the mRNA expression of anti-apoptotic factor Bcl-2 and connexin 43 was observed in "old" astrocytic cultures, which can be considered as a compensatory response of cells with a decreased level of intercellular communication. A hypoxic episode aggravates the depression of the connectivity of calcium dynamics of "young" astrocytes rather than that of "old" ones.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Mikhail I. Krivonosov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Alexander M. Pakhomov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 603950 Nizhny Novgorod, Russia
| | - Laysan E. Yarullina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Maria S. Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Roman S. Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| |
Collapse
|
15
|
Aksnes M, Edwin TH, Saltvedt I, Eldholm RS, Chaudhry FA, Halaas NB, Myrstad M, Watne LO, Knapskog AB. Sex-specific associations of matrix metalloproteinases in Alzheimer's disease. Biol Sex Differ 2023; 14:35. [PMID: 37221606 DOI: 10.1186/s13293-023-00514-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) can be characterised in vivo by biomarkers reflecting amyloid-β (Aβ) and tau pathology. However, there is a need for biomarkers reflecting additional pathological pathways. Matrix metalloproteinases (MMPs) have recently been highlighted as candidate biomarkers for sex-specific mechanisms and progression in AD. METHODS In this cross-sectional study, we investigated nine MMPs and four tissue inhibitors of metalloproteinases (TIMPs) in the cerebrospinal fluid of 256 memory clinic patients with mild cognitive impairment or dementia due to AD and 100 cognitively unimpaired age-matched controls. We studied group differences in MMP/TIMP levels and examined the associations with established markers of Aβ and tau pathology as well as disease progression. Further, we studied sex-specific interactions. RESULTS MMP-10 and TIMP-2 levels differed significantly between the memory clinic patients and the cognitively unimpaired controls. Furthermore, MMP- and TIMP-levels were generally strongly associated with tau biomarkers, whereas only MMP-3 and TIMP-4 were associated with Aβ biomarkers; these associations were sex-specific. In terms of progression, we found a trend towards higher MMP-10 at baseline predicting more cognitive and functional decline over time exclusively in women. CONCLUSION Our results support the use of MMPs/TIMPs as markers of sex differences and progression in AD. Our findings show sex-specific effects of MMP-3 and TIMP-4 on amyloid pathology. Further, this study highlights that the sex-specific effects of MMP-10 on cognitive and functional decline should be studied further if MMP-10 is to be used as a prognostic biomarker for AD.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway.
| | - Trine H Edwin
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030, Trondheim, Norway
| | - Rannveig S Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030, Trondheim, Norway
| | - Farrukh A Chaudhry
- Department of Molecular Medicine, University of Oslo, 0315, Oslo, Norway
| | - Nathalie B Halaas
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Marius Myrstad
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, 1346, Gjettum, Norway
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, 1346, Gjettum, Norway
| | - Leiv O Watne
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| |
Collapse
|
16
|
Custodia A, Aramburu-Núñez M, Rodríguez-Arrizabalaga M, Pías-Peleteiro JM, Vázquez-Vázquez L, Camino-Castiñeiras J, Aldrey JM, Castillo J, Ouro A, Sobrino T, Romaus-Sanjurjo D. Biomarkers Assessing Endothelial Dysfunction in Alzheimer's Disease. Cells 2023; 12:cells12060962. [PMID: 36980302 PMCID: PMC10047803 DOI: 10.3390/cells12060962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common degenerative disorder in the elderly in developed countries. Currently, growing evidence is pointing at endothelial dysfunction as a key player in the cognitive decline course of AD. As a main component of the blood-brain barrier (BBB), the dysfunction of endothelial cells driven by vascular risk factors associated with AD allows the passage of toxic substances to the cerebral parenchyma, producing chronic hypoperfusion that eventually causes an inflammatory and neurotoxic response. In this process, the levels of several biomarkers are disrupted, such as an increase in adhesion molecules that allow the passage of leukocytes to the cerebral parenchyma, increasing the permeability of the BBB; moreover, other vascular players, including endothelin-1, also mediate artery inflammation. As a consequence of the disruption of the BBB, a progressive neuroinflammatory response is produced that, added to the astrogliosis, eventually triggers neuronal degeneration (possibly responsible for cognitive deterioration). Recently, new molecules have been proposed as early biomarkers for endothelial dysfunction that can constitute new therapeutic targets as well as early diagnostic and prognostic markers for AD.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mariña Rodríguez-Arrizabalaga
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Vázquez-Vázquez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Camino-Castiñeiras
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel Aldrey
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Nguyen YT, Kim N, Lee HJ. Metal Complexes as Promising Matrix Metalloproteinases Regulators. Int J Mol Sci 2023; 24:ijms24021258. [PMID: 36674771 PMCID: PMC9861486 DOI: 10.3390/ijms24021258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, cancers and dementia, such as Alzheimer's disease, are the most fatal causes of death. Many studies tried to understand the pathogenesis of those diseases clearly and develop a promising way to treat the diseases. Matrix metalloproteinases (MMPs) have been reported to be involved in the pathology of cancers and AD through tumor cell movement and amyloid degradation. Therefore, control of the levels and actions of MMPs, especially MMP-2 and MMP-9, is necessary to care for and/or cure cancer and AD. Various molecules have been examined for their potential application as regulators of MMPs expression and activity. Among the molecules, multiple metal complexes have shown advantages, including simple synthesis, less toxicity and specificity toward MMPs in cancer cells or in the brain. In this review, we summarize the recent studies and knowledge of metal complexes (e.g., Pt-, Ru-, Au-, Fe-, Cu-, Ni-, Zn-, and Sn-complexes) targeting MMPs and their potentials for treating and/or caring the most fatal human diseases, cancers and AD.
Collapse
Affiliation(s)
- Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| |
Collapse
|
18
|
Liu CZ, Guo DS, Ma JJ, Dong LR, Chang QQ, Yang HQ, Liang KK, Li XH, Yang DW, Fan YY, Gu Q, Chen SY, Li DS. Correlation of matrix metalloproteinase 3 and matrix metalloproteinase 9 levels with non-motor symptoms in patients with Parkinson’s disease. Front Aging Neurosci 2022; 14:889257. [PMID: 36072482 PMCID: PMC9444063 DOI: 10.3389/fnagi.2022.889257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Matrix metalloproteinases (MMPs) are essential for tissue formation, neuronal network remodeling, and blood–brain barrier integrity. MMPs have been widely studied in acute brain diseases. However, the relationship with Parkinson’s disease (PD) remains unclear. The purpose of this study was to evaluate the serum MMP3 and MMP9 levels of PD patients and analyze their correlation with non-motor symptoms. Methods In this cross-sectional study, we recruited 73 patients with idiopathic PD and 64 healthy volunteers. Serum MMP3 and MMP9 levels were measured by enzyme-linked immunosorbent assay (ELISA). Patients with PD were assessed for non-motor symptoms using the Non-motor Symptoms Scale (NMSS) and Parkinson’s disease sleep scale (PDSS) and Mini Mental State Examination (MMSE). Results Serum MMP3 levels were significantly decreased in PD patients, predominantly those with early-stage PD, compared with controls [12.56 (9.30, 17.44) vs. 15.37 (11.33, 24.41) ng/ml; P = 0.004], and the serum MMP9 levels of PD patients were significantly higher than those of healthy controls [522 (419, 729) vs. 329 (229, 473) ng/ml; P < 0.001]. MMP3 levels were positively correlated with the NMSS total score (r = 0.271, P = 0.020) and the single-item scores for item six, assessing the gastrointestinal tract (r = 0.333, P = 0.004), and there was an inverse correlation between serum MMP3 levels and PDSS score (r = –0.246, P = 0.036); meanwhile, MMP9 levels were positively correlated with the NMSS total score (r = 0.234, P = 0.047), and higher serum MMP9 levels were detected in the cognitive dysfunction subgroup than in the cognitively intact subgroup [658 (504, 877) vs. 502 (397, 608) ng/ml, P = 0.008]. Conclusion The serum MMP3 level of PD patients (especially early-stage patients) was significantly lower than that of the healthy control group, and the MMP9 level was significantly higher than that of the healthy control group. MMP3 and MMP9 levels correlate with sleep disturbance and cognitive function in PD patients, respectively.
Collapse
Affiliation(s)
- Chuan Ze Liu
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Da Shuai Guo
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jian Jun Ma
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
- *Correspondence: Jian Jun Ma,
| | - Lin Rui Dong
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Qing Qing Chang
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Hong Qi Yang
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ke Ke Liang
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiao Huan Li
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Da Wei Yang
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Yong Yan Fan
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Qi Gu
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Si Yuan Chen
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Dong Sheng Li
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
19
|
Devina T, Wong YH, Hsiao CW, Li YJ, Lien CC, Cheng IHJ. Endoplasmic reticulum stress induces Alzheimer's disease-like phenotypes in the neuron derived from the induced pluripotent stem cell with D678H mutation on amyloid precursor protein. J Neurochem 2022; 163:26-39. [PMID: 35943292 DOI: 10.1111/jnc.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/12/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is mainly caused by the interaction of genetic and environmental factors. The impact of environmental factors on the genetic mutation in the amyloid precursor protein (APP) is not well characterized. We hypothesized that Endoplasmic Reticulum (ER) stress would promote disease for the patient carrying the APP D678H mutation. Therefore, we analyzed the impact of a familial AD mutation on amyloid precursor protein (APP D678H) under ER stress. Induced pluripotent stem cell (iPSC) from APP D678H mutant carrier was differentiated into neurons, which were then analyzed for AD-like changes. Immunocytochemistry and whole-cell patch-clamp recording revealed that the derived neurons on day 28 after differentiation showed neuronal markers and electrophysiological properties similar to those of mature neurons. However, the APP D678H mutant neurons did not have significant alterations in the levels of amyloid-β (Aβ) and phosphorylated tau (pTau) compared to its isogenic wild-type neuron. Only under ER stress, the neurons with the APP D678H mutation had more Aβ and pTau via immune detection assays. The higher level of Aβ in the APP D678H mutant neurons was probably due to the increased level of β-site APP cleaving enzyme (BACE1) and decreased level of Aβ degrading enzymes under ER stress. Increased Aβ and pTau under ER stress reduced the N-methyl-D-aspartate receptor (NMDAR) in Western blot analysis and altered electrophysiological properties in the mutant neurons. Our study provides evidence that the interaction between genetic mutation and ER stress would induce AD-like changes.
Collapse
Affiliation(s)
- Tania Devina
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hui Wong
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Life Science and Institute of Genome Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiao-Wan Hsiao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Jui Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Irene Han-Juo Cheng
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Gong M, Jia J. Contribution of blood-brain barrier-related blood-borne factors for Alzheimer’s disease vs. vascular dementia diagnosis: A pilot study. Front Neurosci 2022; 16:949129. [PMID: 36003963 PMCID: PMC9393528 DOI: 10.3389/fnins.2022.949129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background Alzheimer’s disease (AD) and vascular dementia (VaD) are the two most common types of neurodegenerative dementia among the elderly with similar symptoms of cognitive decline and overlapping neuropsychological profiles. Biological markers to distinguish patients with VaD from AD would be very useful. We aimed to investigate the expression of blood-brain barrier (BBB)-related blood-borne factors of soluble low-density lipoprotein receptor-related protein 1 (sLRP1), cyclophilin A (CyPA), and matrix metalloproteinase 9 (MMP9) and its correlation with cognitive function between patients with AD and VaD. Materials and methods Plasma levels of sLRP1, CyPA, and MMP9 were analyzed in 26 patients with AD, 27 patients with VaD, and 27 normal controls (NCs). Spearman’s rank correlation analysis was used to explore the relationships among biomarker levels, cognitive function, and imaging references. Receiver operating characteristic (ROC) curve analysis was used to discriminate the diagnosis of AD and VaD. Results Among these BBB-related factors, plasma CyPA levels in the VaD group were significantly higher than that in the AD group (p < 0.05). Plasma sLRP1 levels presented an increasing trend in VaD while maintaining slightly low levels in patients with AD (p > 0.05). Plasma MMP9 in different diagnostic groups displayed the following trend: VaD group > AD group > NC group, but the difference was not statistically significant (p > 0.05). Furthermore, plasma sLRP1 levels were positively related to MoCA scores, and plasma CyPA levels were significantly correlated with MTA scores (p < 0.05) in the AD group. Plasma MMP9 levels were negatively correlated with MoCA scores (p < 0.05) in the VaD groups. No significant correlation was detected between the other factors and different cognitive scores (p > 0.05). ROC analysis showed a good preference of plasma CyPA [AUC = 0.725, 95% CI (0.586–0.865); p = 0.0064] in diagnosis. Conclusion The plasma CyPA level is a reference index when distinguishing between an AD and subcortical ischemic vascular dementia (SIVD) diagnosis. Blood-derived factors associated with the BBB may provide new insights into the differential diagnosis of neurodegenerative dementia and warrant further investigation.
Collapse
Affiliation(s)
- Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- *Correspondence: Jianping Jia,
| |
Collapse
|
21
|
Preininger MK, Kaufer D. Blood-Brain Barrier Dysfunction and Astrocyte Senescence as Reciprocal Drivers of Neuropathology in Aging. Int J Mol Sci 2022; 23:6217. [PMID: 35682895 PMCID: PMC9180977 DOI: 10.3390/ijms23116217] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/27/2023] Open
Abstract
As the most abundant cell types in the brain, astrocytes form a tissue-wide signaling network that is responsible for maintaining brain homeostasis and regulating various brain activities. Here, we review some of the essential functions that astrocytes perform in supporting neurons, modulating the immune response, and regulating and maintaining the blood-brain barrier (BBB). Given their importance in brain health, it follows that astrocyte dysfunction has detrimental effects. Indeed, dysfunctional astrocytes are implicated in age-related neuropathology and participate in the onset and progression of neurodegenerative diseases. Here, we review two mechanisms by which astrocytes mediate neuropathology in the aging brain. First, age-associated blood-brain barrier dysfunction (BBBD) causes the hyperactivation of TGFβ signaling in astrocytes, which elicits a pro-inflammatory and epileptogenic phenotype. Over time, BBBD-associated astrocyte dysfunction results in hippocampal and cortical neural hyperexcitability and cognitive deficits. Second, senescent astrocytes accumulate in the brain with age and exhibit a decreased functional capacity and the secretion of senescent-associated secretory phenotype (SASP) factors, which contribute to neuroinflammation and neurotoxicity. Both BBBD and senescence progressively increase during aging and are associated with increased risk of neurodegenerative disease, but the relationship between the two has not yet been established. Thus, we discuss the potential relationship between BBBD, TGFβ hyperactivation, and senescence with respect to astrocytes in the context of aging and disease and identify future areas of investigation in the field.
Collapse
Affiliation(s)
- Marcela K. Preininger
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA;
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Schmidt S, Holzer M, Arendt T, Sonntag M, Morawski M. Tau Protein Modulates Perineuronal Extracellular Matrix Expression in the TauP301L-acan Mouse Model. Biomolecules 2022; 12:biom12040505. [PMID: 35454094 PMCID: PMC9027016 DOI: 10.3390/biom12040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Tau mutations promote the formation of tau oligomers and filaments, which are neuropathological signs of several tau-associated dementias. Types of neurons in the CNS are spared of tau pathology and are surrounded by a specialized form of extracellular matrix; called perineuronal nets (PNs). Aggrecan, the major PN proteoglycans, is suggested to mediate PNs neuroprotective function by forming an external shield preventing the internalization of misfolded tau. We recently demonstrated a correlation between aggrecan amount and the expression and phosphorylation of tau in a TauP310L-acan mouse model, generated by crossbreeding heterozygous aggrecan mice with a significant reduction of aggrecan and homozygous TauP301L mice. Neurodegenerative processes have been associated with changes of PN structure and protein signature. In this study, we hypothesized that the structure and protein expression of PNs in this TauP310L-acan mouse is regulated by tau. Immunohistochemical and biochemical analyses demonstrate that protein levels of PN components differ between TauP301LHET-acanWT and TauP301LHET-acanHET mice, accompanied by changes in the expression of protein phosphatase 2 A. In addition, tau can modulate PN components such as brevican. Co-immunoprecipitation experiments revealed a physical connection between PN components and tau. These data demonstrate a complex, mutual interrelation of tau and the proteoglycans of the PN.
Collapse
|
23
|
Yao Y, Jia Y, Wen Y, Cheng B, Cheng S, Liu L, Yang X, Meng P, Chen Y, Li C, Zhang J, Zhang Z, Pan C, Zhang H, Wu C, Wang X, Ning Y, Wang S, Zhang F. Genome-Wide Association Study and Genetic Correlation Scan Provide Insights into Its Genetic Architecture of Sleep Health Score in the UK Biobank Cohort. Nat Sci Sleep 2022; 14:1-12. [PMID: 35023977 PMCID: PMC8747788 DOI: 10.2147/nss.s326818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Most previous genetic studies of sleep behaviors were conducted individually, without comprehensive consideration of the complexity of various sleep behaviors. Our aim is to identify the genetic architecture and potential biomarker of the sleep health score, which more powerfully represents overall sleep traits. PATIENTS AND METHODS We conducted a genome-wide association study (GWAS) of sleep health score (overall assessment of sleep duration, snoring, insomnia, chronotype, and daytime dozing) using 336,463 participants from the UK Biobank. Proteome-wide association study (PWAS) and transcriptome-wide association study (TWAS) were then performed to identify candidate genes at the protein and mRNA level, respectively. We finally used linkage disequilibrium score regression (LDSC) to estimate the genetic correlations between sleep health score and other functionally relevance traits. RESULTS GWAS identified multiple variants near known candidate genes associated with sleep health score, such as MEIS1, FBXL13, MED20 and SMAD5. HDHD2 (PPWAS = 0.0146) and GFAP (PPWAS = 0.0236) were identified associated with sleep health score by PWAS. TWAS identified ORC4 (PTWAS = 0.0212) and ZNF732 (PTWAS = 0.0349) considering mRNA expression level. LDSC found significant genetic correlations of sleep health score with 3 sleep behaviors (including insomnia, snoring, dozing), 4 psychiatry disorders (major depressive disorder, attention deficit/hyperactivity disorder, schizophrenia, autism spectrum disorder), and 9 plasma protein (such as Stabilin-1, Stromelysin-2, Cytochrome c) (all LDSC PLDSC < 0.05). CONCLUSION Our results advance the comprehensive understanding of the aetiology and genetic architecture of the sleep health score, refine the understanding of the relationship of sleep health score with other traits and diseases, and may serve as potential targets for future mechanistic studies of sleep phenotype.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
24
|
Choi H, Kim E, Choi JY, Park E, Lee HJ. Potent therapeutic targets for treatment of Alzheimer's disease: Amyloid degrading enzymes. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hang Choi
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Eungchan Kim
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Jae Yoon Choi
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Eunsik Park
- Department of Life Sport Education Kongju National University Gongju Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| |
Collapse
|
25
|
Brelstaff JH, Mason M, Katsinelos T, McEwan WA, Ghetti B, Tolkovsky AM, Spillantini MG. Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates. SCIENCE ADVANCES 2021; 7:eabg4980. [PMID: 34669475 PMCID: PMC8528424 DOI: 10.1126/sciadv.abg4980] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/26/2021] [Indexed: 05/03/2023]
Abstract
The microtubule-associated protein tau aggregates in multiple neurodegenerative diseases, causing inflammation and changing the inflammatory signature of microglia by unknown mechanisms. We have shown that microglia phagocytose live neurons containing tau aggregates cultured from P301S tau mice due to neuronal tau aggregate-induced exposure of the “eat me” signal phosphatidylserine. Here, we show that after phagocytosing tau aggregate-bearing neurons, microglia become hypophagocytic while releasing seed-competent insoluble tau aggregates. These microglia express a senescence-like phenotype, demonstrated by acidic β-galactosidase activity, secretion of paracrine senescence-associated cytokines, and maturation of matrix remodeling enzymes, results that are corroborated in P301S mouse brains and ex vivo brain slices. In particular, the nuclear factor κB–dependent activation of matrix metalloprotease 3 (MMP3/stromelysin1) was replicated in brains from patients with tauopathy. These data show that microglia that have been activated to ingest live tau aggregates-bearing neurons behave hormetically, becoming hypofunctional while acting as vectors of tau aggregate spreading.
Collapse
Affiliation(s)
- Jack H. Brelstaff
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge CB2 0AH, UK
| | - Matthew Mason
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge CB2 0AH, UK
| | - Taxiarchis Katsinelos
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge CB2 0AH, UK
- UK Dementia Research Institute Cambridge, Island Research Building, University of Cambridge, Cambridge CB2 0AH, UK
| | - William A. McEwan
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge CB2 0AH, UK
- UK Dementia Research Institute Cambridge, Island Research Building, University of Cambridge, Cambridge CB2 0AH, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Aviva M. Tolkovsky
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge CB2 0AH, UK
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge CB2 0AH, UK
| |
Collapse
|
26
|
Sasaki Y, Kimura N, Aso Y, Yabuuchi K, Aikawa M, Matsubara E. Relationship between Cerebrospinal Fluid Matrix Metalloproteinases Levels and Brain Amyloid Deposition in Mild Cognitive Impairment. Biomolecules 2021; 11:biom11101496. [PMID: 34680129 PMCID: PMC8533797 DOI: 10.3390/biom11101496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore whether cerebrospinal fluid (CSF) levels of matrix metalloproteinases (MMPs), and their inhibitors (TIMPs) were associated with brain amyloid deposition, cortical glucose metabolism, and white matter lesions (WMLs) in individuals with amnestic mild cognitive impairment (MCI). A total of 33 individuals with amnestic MCI (mean age, 75.6 years) underwent 11C-Pittsburgh compound B positron emission tomography (PiB-PET), 18F-fluorodeoxyglucose positron emission tomography, magnetic resonance imaging or computed tomography, and CSF analysis. PET uptake of the frontal and temporoparietal lobes and posterior cingulate gyrus was assessed using the cerebellar cortex as the reference region. WMLs were assessed by the Fazekas scale. CSF levels of MMPs and TIMPs were measured with bead-based multiplex assays. After adjusting for covariates, multiple linear regression analysis showed that CSF levels of MMP-2 were negatively correlated with global PiB uptake (p = 0.035), especially in the parietotemporal lobe and posterior cingulate gyrus (p = 0.016 and p = 0.041, respectively). Moreover, CSF levels of MMP-7 were positively correlated with the severity of WMLs (p = 0.033). CSF levels of MMP-2 and MMP-7 are associated with brain amyloid deposition and severity of WMLs, respectively. These findings provide valuable insights into the role of MMPs in amyloid β catabolism and blood-brain barrier integration at the MCI stage.
Collapse
Affiliation(s)
- Yuuki Sasaki
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| | - Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
- Correspondence: ; Tel.: +81-97-586-5814
| | - Yasuhiro Aso
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| | - Kenichi Yabuuchi
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| | - Miki Aikawa
- Kameda Medical Center, Chiba 296-8602, Japan;
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| |
Collapse
|
27
|
Broekaart DW, Bertran A, Jia S, Korotkov A, Senkov O, Bongaarts A, Mills JD, Anink JJ, Seco J, Baayen JC, Idema S, Chabrol E, Becker AJ, Wadman WJ, Tarragó T, Gorter JA, Aronica E, Prades R, Dityatev A, van Vliet EA. The matrix metalloproteinase inhibitor IPR-179 has antiseizure and antiepileptogenic effects. J Clin Invest 2021; 131:138332. [PMID: 33141761 DOI: 10.1172/jci138332] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are synthesized by neurons and glia and released into the extracellular space, where they act as modulators of neuroplasticity and neuroinflammatory agents. Development of epilepsy (epileptogenesis) is associated with increased expression of MMPs, and therefore, they may represent potential therapeutic drug targets. Using quantitative PCR (qPCR) and immunohistochemistry, we studied the expression of MMPs and their endogenous inhibitors tissue inhibitors of metalloproteinases (TIMPs) in patients with status epilepticus (SE) or temporal lobe epilepsy (TLE) and in a rat TLE model. Furthermore, we tested the MMP2/9 inhibitor IPR-179 in the rapid-kindling rat model and in the intrahippocampal kainic acid mouse model. In both human and experimental epilepsy, MMP and TIMP expression were persistently dysregulated in the hippocampus compared with in controls. IPR-179 treatment reduced seizure severity in the rapid-kindling model and reduced the number of spontaneous seizures in the kainic acid model (during and up to 7 weeks after delivery) without side effects while improving cognitive behavior. Moreover, our data suggest that IPR-179 prevented an MMP2/9-dependent switch-off normally restraining network excitability during the activity period. Since increased MMP expression is a prominent hallmark of the human epileptogenic brain and the MMP inhibitor IPR-179 exhibits antiseizure and antiepileptogenic effects in rodent epilepsy models and attenuates seizure-induced cognitive decline, it deserves further investigation in clinical trials.
Collapse
Affiliation(s)
- Diede Wm Broekaart
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | | | - Shaobo Jia
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anatoly Korotkov
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Oleg Senkov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anika Bongaarts
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - James D Mills
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Jasper J Anink
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Jesús Seco
- Accure Therapeutics S.L., Barcelona, Spain
| | - Johannes C Baayen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Sander Idema
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Elodie Chabrol
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Wytse J Wadman
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | | | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | | | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Germany
| | - Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Hearst S, Bednářová A, Draughn B, Johnson K, Mills D, Thomas C, Scales J, Keenan ET, Welcher JV, Krishnan N. Expression of Drosophila Matrix Metalloproteinases in Cultured Cell Lines Alters Neural and Glial Cell Morphology. Front Cell Dev Biol 2021; 9:610887. [PMID: 34055768 PMCID: PMC8155609 DOI: 10.3389/fcell.2021.610887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc- and calcium- dependent endopeptidases that play pivotal roles in many biological processes. The expression of several MMPs in the central nervous system (CNS) have been shown to change in response to injury and various neurological/neurodegenerative disorders. While extracellular MMPs degrade the extracellular matrix (ECM) and regulate cell surface receptor signaling, the intracellular functions of MMPs or their roles in CNS disorders is unclear. Around 23 different MMPs are found in the human genome with overlapping function, making analysis of the intracellular role of human MMPs a daunting task. However, the fruit fly Drosophila melanogaster genome encodes only two MMPs: dMMP1 and dMMP2. To better understand the intracellular role of MMPs in the CNS, we expressed Green Fluorescent Protein (GFP)- tagged dMMPs in SH-SY5Y neuroblastoma cells and C6 glioblastoma cell lines. Lipofection of GFP-dMMPs in SH-SY5Y cells enhanced nuclear rupture and reduced cell viability (coupled with increased apoptosis) as compared to GFP alone. In non-liposomal transfection experiments, dMMP1 localizes to both the cytoplasm and the nucleus whereas dMMP2 had predominantly cytoplasmic localization in both neural and glial cell lines. Cytoplasmic localization demonstrated co-localization of dMMPs with cytoskeleton proteins which suggests a possible role of dMMPs in cell morphology. This was further supported by transient dMMP expression experiments that showed that dMMPs significantly increased neurite formation and length in neuronal cell lines. Inhibition of endogenous MMPs decreased neurite formation, length and βIII Tubulin protein levels in differentiated SH-SY5Y cells. Further, transient expression experiments showed similar changes in glial cell morphology, wherein dMMP expression increased glial process formation and process length. Interestingly, C6 cells expressing dMMPs had a glia-like appearance, suggesting MMPs may be involved in intracellular glial differentiation. Inhibition or suppression of endogenous MMPs in C6 cells increased process formation, increased process length, modulated GFAP protein expression, and induced distinct glial-like phenotypes. Taken together, our results strongly support the intracellular role that dMMPs can play in apoptosis, cytoskeleton remodeling, and cell differentiation. Our studies further reinforce the use of Drosophila MMPs to dissect out the precise mechanisms whereby they exert their intracellular roles in CNS disorders.
Collapse
Affiliation(s)
- Scoty Hearst
- Department of Biology, Tougaloo College, Tougaloo, MS, United States.,Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Andrea Bednářová
- Department of Biochemistry and Physiology, Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Benjamin Draughn
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Kennadi Johnson
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Desiree Mills
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Cendonia Thomas
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Jendaya Scales
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Eadie T Keenan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Jewellian V Welcher
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
29
|
Impact of MMP2 rs243865 and MMP3 rs3025058 Polymorphisms on Clinical Findings in Alzheimer's Disease Patients. Mediators Inflamm 2021; 2021:5573642. [PMID: 33986628 PMCID: PMC8079184 DOI: 10.1155/2021/5573642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease of the central nervous system with higher prevalence in elderly people. Despite numerous research studies, the etiopathogenesis of AD remains unclear. Matrix metalloproteinases (MMPs) are endopeptidases involved in the cleavage of extracellular matrix proteins and basement membrane compounds. In the brain, the pathological role of MMPs includes the disruption of the blood-brain barrier leading to the induction of neuroinflammation. Among various MMPs, MMP-2 and MMP-3 belong to candidate molecules related to AD pathology. In our study, we aimed to evaluate the association of MMP2 rs243865 and MMP3 rs3025058 polymorphisms with AD susceptibility and their influence on age at onset and MoCA score in patients from Slovakia. Both MMP gene promoter polymorphisms were genotyped in 171 AD patients and 308 controls by the PCR-RFLP method. No statistically significant differences in the distribution of MMP2 rs243865 (-1306 C>T) and MMP3 rs3025058 (-1171 5A>6A) alleles/genotypes were found between AD patients and the control group. However, correlation with clinical findings revealed later age at disease onset in MMP2 rs243865 CC carriers in the dominant model as compared to T allele carriers (CC vs. CT+TT: 78.44 ± 6.28 vs. 76.36 ± 6.39, p = 0.036). The results of MMP3 rs3025058 analysis revealed that 5A/6A carriers in the overdominant model tended to have earlier age at disease onset as compared to other MMP3 genotype carriers (5A/6A vs. 5A/5A+6A/6A: 76.61 ± 5.88 vs. 78.57 ± 6.79, p = 0.045). In conclusion, our results suggest that MMP2 rs243865 and MMP3 rs3025058 promoter polymorphisms may have influence on age at onset in AD patients.
Collapse
|
30
|
Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22031413. [PMID: 33573368 PMCID: PMC7866808 DOI: 10.3390/ijms22031413] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is the pathological condition, in which the nervous system or neuron loses its structure, function, or both, leading to progressive degeneration or the death of neurons, and well-defined associations of tissue system, resulting in clinical manifestations. Neuroinflammation has been shown to precede neurodegeneration in several neurodegenerative diseases (NDs). No drug is yet known to delay or treat neurodegeneration. Although the etiology and potential causes of NDs remain widely indefinable, matrix metalloproteinases (MMPs) evidently have a crucial role in the progression of NDs. MMPs, a protein family of zinc (Zn2+)-containing endopeptidases, are pivotal agents that are involved in various biological and pathological processes in the central nervous system (CNS). The current review delineates the several emerging evidence demonstrating the effects of MMPs in the progression of NDs, wherein they regulate several processes, such as (neuro)inflammation, microglial activation, amyloid peptide degradation, blood brain barrier (BBB) disruption, dopaminergic apoptosis, and α-synuclein modulation, leading to neurotoxicity and neuron death. Published papers to date were searched via PubMed, MEDLINE, etc., while using selective keywords highlighted in our manuscript. We also aim to shed a light on pathophysiological effect of MMPs in the CNS and focus our attention on its detrimental and beneficial effects in NDs, with a special focus on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), and Huntington's disease (HD), and discussed various therapeutic strategies targeting MMPs, which could serve as potential modulators in NDs. Over time, several agents have been developed in order to overcome challenges and open up the possibilities for making selective modulators of MMPs to decipher the multifaceted functions of MMPs in NDs. There is still a greater need to explore them in clinics.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Shaveta Bhardwaj
- Department of Pharmacology, GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, Punjab, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Claudia Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
31
|
Wang M, Xie Y, Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull 2021; 166:172-184. [PMID: 33202257 DOI: 10.1016/j.brainresbull.2020.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in pathophysiological mechanisms in neuropsychiatric diseases, including depression, anxiety, and schizophrenia (SZ), as well as neurodegenerative diseases like Parkinson's disease (PD) and Alzheimer's disease (AD). An imbalance or insufficient pro-brain-derived neurotrophic factor (proBDNF) transformation into mature BDNF (mBDNF) is potentially critical to the disease pathogenesis by impairing neuronal plasticity as suggested by results from many studies. Thus, promoting proBDNF transformation into mBDNF is therefore hypothesized as beneficial for the treatment of neuropsychiatric and neurodegenerative diseases. ProBDNF is proteolytically cleaved into the mBDNF by intracellular furin/proprotein convertases and extracellular proteases (plasmin/matrix metallopeptidases). This article reviews the mechanisms of the conversion of proBDNF to mBDNF and the research status of intracellular/extracellular proteolytic proteases for neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mingyue Wang
- School of Traditional Chinese Pharmacy, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Yuhuan Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
32
|
Pentz R, Iulita MF, Mikutra-Cencora M, Ducatenzeiler A, Bennett DA, Cuello AC. A new role for matrix metalloproteinase-3 in the NGF metabolic pathway: Proteolysis of mature NGF and sex-specific differences in the continuum of Alzheimer's pathology. Neurobiol Dis 2021; 148:105150. [PMID: 33130223 PMCID: PMC7856186 DOI: 10.1016/j.nbd.2020.105150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) has been associated with risk of Alzheimer's disease (AD). In this study we introduce a novel role for MMP-3 in degrading nerve growth factor (NGF) in vivo and examine its mRNA and protein expression across the continuum of AD pathology. We provide evidence that MMP-3 participates in the degradation of mature NGF in vitro and in vivo and that it is secreted from the rat cerebral cortex in an activity-dependent manner. We show that cortical MMP-3 is upregulated in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis. A similar upregulation was found in AD and MCI brains as well as in cognitively normal individuals with elevated amyloid deposition. We also observed that frontal cortex MMP-3 protein levels are higher in males. MMP-3 protein correlated with more AD neuropathology, markers of NGF metabolism, and lower cognitive scores in males but not in females. These results suggest that MMP-3 upregulation in AD might contribute to NGF dysmetabolism, and therefore to cholinergic atrophy and cognitive deficits, in a sex-specific manner. MMP-3 should be further investigated as a biomarker candidate or as a therapeutic target in AD.
Collapse
Affiliation(s)
- Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| | - M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Maya Mikutra-Cencora
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
33
|
Baka R, Eckersall D, Horvatic A, Gelemanovic A, Mrljak V, McLaughlin M, Athanasiou LV, Papaioannou N, Stylianaki I, Hanh HQ, Chadwick CC, Polizopoulou Z. Quantitative proteomics of cerebrospinal fluid using tandem mass tags in dogs with recurrent epileptic seizures. J Proteomics 2020; 231:103997. [PMID: 33011347 DOI: 10.1016/j.jprot.2020.103997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/12/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
This prospective study included four dog groups (group A: healthy dogs, groups B: dogs with idiopathic epilepsy under antiepileptic medication (AEM), C: idiopathic epilepsy dogs without AEM administration, D: dogs with structural epilepsy). The purpose of the study was to compare the proteomic profile among the four groups. Samples were analyzed by a quantitative Tandem Mass Tags approach using a Q-Exactive-Plus mass-spectrometer. Identification and relative quantification were performed using Proteome Discoverer, and data were analyzed using R. Gene ontology terms were analyzed based on Canis lupus familiaris database. Data are available via ProteomeXchange with identifier PXD018893. Eighteen proteins were statistically significant among the four groups (P < 0.05). MMP2 and EFEMP2 appeared down-regulated whereas HP and APO-A1 were up-regulated (groups B, D). CLEC3B and PEBP4 were up-regulated whereas APO-A1 was down-regulated (group C). IGLL1 was down-regulated (groups B, C) and up-regulated (group D). EFEMP2 was the only protein detected among the four groups and PEBP4 was significantly different among the epileptic dogs. Western blot and SPARCL immunoassay were used to quantify HP abundance change, validating proteomic analysis. Both, showed good correlation with HP levels identified through proteomic analysis (r = 0.712 and r = 0.703, respectively). SIGNIFICANCE: The proteomic analysis from CSF of dogs with epileptic seizures could reflect that MMP2, HP and APO-A1 may contribute to a blood-brain barrier disruption through the seizure-induced inflammatory process in the brain. MMP2 change may indicate the activation of protective mechanisms within the brain tissue. Antiepileptic medication could influence several cellular responses and alter the CSF proteome composition.
Collapse
Affiliation(s)
- Rania Baka
- Diagnostic Laboratory, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - David Eckersall
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Anita Horvatic
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Vladimir Mrljak
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Mark McLaughlin
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Labrini V Athanasiou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Nikolaos Papaioannou
- Department of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Stylianaki
- Department of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Han Quang Hanh
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | | | - Zoe Polizopoulou
- Diagnostic Laboratory, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
34
|
Abe K, Chiba Y, Hattori S, Yoshimi A, Asami T, Katsuse O, Suda A, Hishimoto A. Influence of plasma matrix metalloproteinase levels on longitudinal changes in Alzheimer's disease (AD) biomarkers and cognitive function in patients with mild cognitive impairment due to AD registered in the Alzheimer's Disease Neuroimaging Initiative database. J Neurol Sci 2020; 416:116989. [PMID: 32603972 DOI: 10.1016/j.jns.2020.116989] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The present study investigated the effects of plasma matrix metalloproteinases (MMPs) on longitudinal changes in Alzheimer's disease (AD)-related biomarkers in cerebrospinal fluid (CSF), brain atrophy, and cognitive function in patients with mild cognitive impairment due to AD (MCI-AD). METHODS We used data from the Alzheimer's Disease Neuroimaging Initiative database. We included 95 ApoE4-positive patients with MCI-AD who were confirmed to have low Aβ42 and/or high phosphorylated-tau (p-tau) in CSF. We obtained baseline demographic data, plasma MMP levels, including MMP-1, -2, -7, -9, -10, and tissue inhibitor of MMP-1 (TIMP-1), longitudinal annual data on Aβ42, total tau, and p-tau in CSF, MRI-measured hippocampal volumes, and cognitive function evaluated by the Mini-Mental State Examination (MMSE) and AD Assessment Scale-11 (ADAS-11) over 4 years. We examined the effects of baseline MMP levels on longitudinal changes in CSF AD biomarkers, hippocampal volumes, and cognitive function using a linear mixed regression analysis. RESULTS No significant differences were observed in baseline plasma MMP levels between MCI-AD patients and control subjects, except for MMP-10, which was significantly lower in MCI-AD than in controls. The baseline levels of MMPs did not correlate with longitudinal changes in CSF biomarkers. Declines in hippocampal volumes and cognitive function evaluated by MMSE and ADAS-11 were significantly faster in MCI-AD patients with high-MMP-9 levels at baseline than in those with middle and low MMP-9 levels at baseline. CONCLUSION High plasma MMP-9 levels in MCI-AD patients might enhance neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Kie Abe
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Japan
| | - Yuhei Chiba
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Japan.
| | - Saki Hattori
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Japan
| | - Asuka Yoshimi
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Japan
| | - Takeshi Asami
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Japan
| | - Omi Katsuse
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Japan
| | - Akira Suda
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Japan
| | -
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Japan
| |
Collapse
|
35
|
Han X, Zhang T, Liu H, Mi Y, Gou X. Astrocyte Senescence and Alzheimer's Disease: A Review. Front Aging Neurosci 2020; 12:148. [PMID: 32581763 PMCID: PMC7297132 DOI: 10.3389/fnagi.2020.00148] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 01/10/2023] Open
Abstract
Astrocytes are the largest group of glial cells in the brain and participate in several essential functions of the central nervous system (CNS). Disruption of their normal physiological function can lead to metabolism disequilibrium and the pathology of CNS. As an important mechanism of aging, cellular senescence has been considered as a primary inducing factor of age-associated neurodegenerative disorders. Senescent astrocytes showed decreased normal physiological function and increased secretion of senescence-associated secretory phenotype (SASP) factors, which contribute to Aβ accumulation, tau hyperphosphorylation, and the deposition of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD). Astrocyte senescence also leads to a number of detrimental effects, including induced glutamate excitotoxicity, impaired synaptic plasticity, neural stem cell loss, and blood–brain barrier (BBB) dysfunction. In this review article, we have summarized the growing findings regarding astrocyte senescence and its putative role in the pathologic progress of AD. Additionally, we also focus on the significance of targeting astrocyte senescence as a novel and feasible therapeutic approach for AD.
Collapse
Affiliation(s)
- Xiaojuan Han
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Huanhuan Liu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
36
|
Koskelainen S, Zhao F, Kalimo H, Baumann M, Kiuru-Enari S. Severe elastolysis in hereditary gelsolin (AGel) amyloidosis. Amyloid 2020; 27:81-88. [PMID: 31814469 DOI: 10.1080/13506129.2019.1699785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AGel amyloidosis is a dominantly inherited systemic amyloidosis caused by mutations p.D214N or p.D214Y resulting in gelsolin amyloid (AGel) formation. AGel accumulates extracellularly in many tissues and alongside elastic fibres. AGel deposition associates with elastic fibre degradation leading to severe clinical manifestations, such as cutis laxa and angiopathic complications. We analysed elastic fibre pathology in dermal and vascular tissue and plasma samples from 35 patients with AGel amyloidosis and 40 control subjects by transmission electron microscopy, immunohistochemistry and ELISA methods. To clarify the pathomechanism(s) of AGel-related elastolysis, we studied the roles of MMP-2, -7, -9, -12 and -14, TIMP-1 and TGFβ. We found massive accumulation of amyloid fibrils along elastic fibres as well as fragmentation and loss of elastic fibres in all dermal and vascular samples of AGel patients. Fibrils of distinct types formed fibrous matrix. The degradation pattern of elastic fibres in AGel patients was different from the age-related degradation in controls. The elastin of elastic fibres in AGel patients was strongly decreased compared to controls. MMP-9 was expressed at lower and TGFβ at higher levels in AGel patients than in controls. The accumulation of amyloid fibrils with severe elastolysis characterises both dermal and vascular derangement in AGel amyloidosis.
Collapse
Affiliation(s)
- Susanna Koskelainen
- Faculty of Medicine, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Fang Zhao
- Faculty of Medicine, Advanced Microscopy Unit, University of Helsinki, Helsinki, Finland
| | - Hannu Kalimo
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Marc Baumann
- Faculty of Medicine, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Sari Kiuru-Enari
- Department of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Martínez-Cué C, Rueda N. Cellular Senescence in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:16. [PMID: 32116562 PMCID: PMC7026683 DOI: 10.3389/fncel.2020.00016] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a homeostatic biological process characterized by a permanent state of cell cycle arrest that can contribute to the decline of the regenerative potential and function of tissues. The increased presence of senescent cells in different neurodegenerative diseases suggests the contribution of senescence in the pathophysiology of these disorders. Although several factors can induce senescence, DNA damage, oxidative stress, neuroinflammation, and altered proteostasis have been shown to play a role in its onset. Oxidative stress contributes to accelerated aging and cognitive dysfunction stages affecting neurogenesis, neuronal differentiation, connectivity, and survival. During later life stages, it is implicated in the progression of cognitive decline, synapse loss, and neuronal degeneration. Also, neuroinflammation exacerbates oxidative stress, synaptic dysfunction, and neuronal death through the harmful effects of pro-inflammatory cytokines on cell proliferation and maturation. Both oxidative stress and neuroinflammation can induce DNA damage and alterations in DNA repair that, in turn, can exacerbate them. Another important feature associated with senescence is altered proteostasis. Because of the disruption in the function and balance of the proteome, senescence can modify the proper synthesis, folding, quality control, and degradation rate of proteins producing, in some diseases, misfolded proteins or aggregation of abnormal proteins. There is an extensive body of literature that associates cellular senescence with several neurodegenerative disorders including Alzheimer’s disease (AD), Down syndrome (DS), and Parkinson’s disease (PD). This review summarizes the evidence of the shared neuropathological events in these neurodegenerative diseases and the implication of cellular senescence in their onset or aggravation. Understanding the role that cellular senescence plays in them could help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
38
|
Boguszewska-Czubara A, Budzynska B, Skalicka-Wozniak K, Kurzepa J. Perspectives and New Aspects of Metalloproteinases' Inhibitors in the Therapy of CNS Disorders: From Chemistry to Medicine. Curr Med Chem 2019; 26:3208-3224. [PMID: 29756562 DOI: 10.2174/0929867325666180514111500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/31/2017] [Accepted: 04/05/2018] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) play a key role in remodeling of the extracellular matrix (ECM) and, at the same time, influence cell differentiation, migration, proliferation, and survival. Their importance in a variety of human diseases including cancer, rheumatoid arthritis, pulmonary emphysema and fibrotic disorders has been known for many years but special attention should be paid on the role of MMPs in the central nervous system (CNS) disorders. Till now, there are not many well documented physiological MMP target proteins in the brain but only some pathological ones. Numerous neurodegenerative diseases are a consequence of or result in disturbed remodeling of brain ECM, therefore proper action of MMPs as well as control of their activity may play crucial roles in the development of these diseases. In the present review, we discuss the role of metalloproteinase inhibitors, from the wellknown natural endogenous tissue inhibitors of metalloproteinases (TIMPs) to the exogenous synthetic ones like (4-phenoxyphenylsulfonyl)methylthiirane (SB-3CT), tetracyclines, batimastat (BB-94) and FN-439. As the MMP-TIMP system has been well described in physiological development as well as in pathological conditions mainly in neoplastic diseases, the knowledge about the enzymatic system in mammalian brain tissue still remains poorly understood in this context. Therefore, we focus on MMPs inhibition in the context of the physiological function of the adult brain as well as pathological conditions including neurodegenerative diseases, brain injuries, and others.
Collapse
Affiliation(s)
| | - Barbara Budzynska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Krystyna Skalicka-Wozniak
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
39
|
Tuna G, Yener GG, Oktay G, İşlekel GH, Kİrkalİ FG. Evaluation of Matrix Metalloproteinase-2 (MMP-2) and -9 (MMP-9) and Their Tissue Inhibitors (TIMP-1 and TIMP-2) in Plasma from Patients with Neurodegenerative Dementia. J Alzheimers Dis 2019; 66:1265-1273. [PMID: 30412498 DOI: 10.3233/jad-180752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are substantial regulators of learning and memory and might be involved in neurodegeneration. It is known that MMPs are involved in pathogenesis of Alzheimer's disease (AD) and are particularly involved in the amyloid-β processing pathway. However, information on circulating levels of these proteins and their tissue inhibitors (TIMPs) in AD and other neurodegenerative dementia (ND) diseases such as dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD) is not clear. Therefore, this study was directed toward finding out how plasma levels of MMP-2, MMP-9, TIMP-1, and TIMP-2 vary in AD, DLB, and FTD; and investigating the correlation of the levels of MMPs and their inhibitors with clinical parameters of the patients. MMP-2, MMP-9, TIMP-1, and TIMP-2 levels were measured by enzyme linked immunosorbent assay (ELISA). Plasma MMP-2 levels were significantly lower in all the patient groups than in the age-matched healthy controls (HCs) (p < 0.05). MMP-9 levels were significantly lower in the FTD patients than in the HCs (p < 0.05). Also, TIMP-1 levels were lower in the AD and FTD patients than in the HCs (p < 0.05). TIMP-2 levels were similar in all the groups. These findings highlight the importance of circulating MMPs in ND and suggest that MMPs and their inhibitors might play a role in impaired amyloid-β peptide metabolism which is responsible for the genesis and progression of ND. Furthermore, measurement of MMP-2 and MMP-9 and their inhibitors may be of great importance for large scale basic research and clinical studies of ND.
Collapse
Affiliation(s)
- Gamze Tuna
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Görsev Gülmen Yener
- Department of Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.,Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey.,Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Gülgün Oktay
- Department of Medical Biochemistry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Gül Hüray İşlekel
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Department of Medical Biochemistry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Fatoş Güldal Kİrkalİ
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute/NIH, Bethesda, MD, USA
| |
Collapse
|
40
|
Rivera S, García-González L, Khrestchatisky M, Baranger K. Metalloproteinases and their tissue inhibitors in Alzheimer's disease and other neurodegenerative disorders. Cell Mol Life Sci 2019; 76:3167-3191. [PMID: 31197405 PMCID: PMC11105182 DOI: 10.1007/s00018-019-03178-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
As life expectancy increases worldwide, age-related neurodegenerative diseases will increase in parallel. The lack of effective treatment strategies may soon lead to an unprecedented health, social and economic crisis. Any attempt to halt the progression of these diseases requires a thorough knowledge of the pathophysiological mechanisms involved to facilitate the identification of new targets and the application of innovative therapeutic strategies. The metzincin superfamily of metalloproteinases includes matrix metalloproteinases (MMP), a disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS). These multigenic and multifunctional proteinase families regulate the functions of an increasing number of signalling and scaffolding molecules involved in neuroinflammation, blood-brain barrier disruption, protein misfolding, synaptic dysfunction or neuronal death. Metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), are therefore, at the crossroads of molecular and cellular mechanisms that support neurodegenerative processes, and emerge as potential new therapeutic targets. We provide an overview of current knowledge on the role and regulation of metalloproteinases and TIMPs in four major neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease.
Collapse
Affiliation(s)
- Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| | | | | | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
41
|
Kaminari A, Tsilibary EC, Tzinia A. A New Perspective in Utilizing MMP-9 as a Therapeutic Target for Alzheimer's Disease and Type 2 Diabetes Mellitus. J Alzheimers Dis 2019; 64:1-16. [PMID: 29865065 DOI: 10.3233/jad-180035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Matrix metalloprotease 9 (MMP-9) is a 92 kDa type IV collagenase and a member of the family of endopeptidases. MMP-9 is involved in the degradation of extracellular matrix components, tissue remodeling, cellular receptor stripping, and processing of various signaling molecules. In the CNS, the effects of MMP-9 are quite complex, since it exerts beneficial effects including neurogenesis, angiogenesis, myelogenesis, axonal growth, and inhibition of apoptosis, or destructive effects including apoptosis, blood-brain barrier disorder, and demyelination. Likewise, in the periphery, physiological events, as the involvement of MMP-9 in angiogenesis, for instance in wound healing, can be turned into pathological, such as in tumor metastasis, depending on the state of the organism. Alzheimer's disease is a neurodegenerative disorder, characterized by amyloid accumulation and deposition in the brain. Amyloidogenesis, however, also occurs in diseases of the periphery, such as type II diabetes mellitus, where an analogous type of amyloid, is deposited in the pancreas. Interestingly, both diseases exhibit similar pathology and disease progression, with insulin resistance being a major common denominator. Hence, combinatorial strategies searching new or existing molecules to apply for therapeutic use for both diseases are gaining momentum. MMP-9 is extensively studied due to its association with a variety of physiological and pathological processes. Consequently, meticulous design could render MMP-9 into a potential therapeutic target for Alzheimer's disease and type 2 diabetes mellitus; two seemingly unrelated diseases.
Collapse
Affiliation(s)
- Archontia Kaminari
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Effie C Tsilibary
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Athina Tzinia
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
42
|
Rababa’h AM, Bsoul RW, Alkhatatbeh MJ, Alzoubi KH, Khabour OF. Waterpipe tobacco smoke distresses cardiovascular biomarkers in mice: alterations in protein expression of metalloproteinases, endothelin and myeloperoxidase. Inhal Toxicol 2019; 31:99-106. [DOI: 10.1080/08958378.2019.1606366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Abeer M. Rababa’h
- Department of Clinical Pharmacy Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Raghad W. Bsoul
- Department of Clinical Pharmacy Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad J. Alkhatatbeh
- Department of Clinical Pharmacy Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
43
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
44
|
Lanza V, Bellia F, Rizzarelli E. An inorganic overview of natural Aβ fragments: Copper(II) and zinc(II)-mediated pathways. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Shibasaki C, Itagaki K, Abe H, Kajitani N, Okada-Tsuchioka M, Takebayashi M. Possible Association between Serum Matrix Metalloproteinase-9 (MMP-9) Levels and Relapse in Depressed Patients following Electroconvulsive Therapy (ECT). Int J Neuropsychopharmacol 2017; 21:236-241. [PMID: 29025075 PMCID: PMC5838816 DOI: 10.1093/ijnp/pyx086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases are involved in neuroinflammatory processes, which could underlie depression. Serum levels of MMP-9 and MMP-2 in depressed patients are significantly altered following electroconvulsive therapy, but an association between altered matrix metalloproteinases after successful ECT and possible relapse has yet to be investigated. METHODS Serum was obtained twice, before and immediately after a course of electroconvulsive therapy, from 38 depressed patients. Serum was also collected, once, from two groups of age- and gender-matched healthy controls, 40 volunteers in each group. Possible associations between levels of matrix metalloproteinases and relapse during a 1-year follow-up period were analyzed. RESULTS Excluding patients who did not respond to electroconvulsive therapy and patients lost to follow-up, data from 28 patients were evaluated. Eighteen of the patients (64.3%) relapsed within 1 year. In the group that did not relapse, serum levels of MMP-9 were significantly decreased after a course of electroconvulsive therapy, but not in the group that relapsed. No association between MMP-2 and relapse was observed. CONCLUSION The degree of change in serum MMP-9 change could be associated with relapse following electroconvulsive therapy in depressed patients.
Collapse
Affiliation(s)
- Chiyo Shibasaki
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan,Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Itagaki
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan,Department of Psychiatry, NHO Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Hiromi Abe
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Naoto Kajitani
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Minoru Takebayashi
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan,Department of Psychiatry, NHO Kure Medical Center and Chugoku Cancer Center, Kure, Japan,Correspondence: Minoru Takebayashi, MD, PhD, Department of Psychiatry, NHO Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama, Kure, Hiroshima 737-0023, Japan ()
| |
Collapse
|
46
|
Brzdak P, Nowak D, Wiera G, Mozrzymas JW. Multifaceted Roles of Metzincins in CNS Physiology and Pathology: From Synaptic Plasticity and Cognition to Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:178. [PMID: 28713245 PMCID: PMC5491558 DOI: 10.3389/fncel.2017.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) and membrane proteolysis play a key role in structural and functional synaptic plasticity associated with development and learning. A growing body of evidence underscores the multifaceted role of members of the metzincin superfamily, including metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs), A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTSs) and astacins in physiological and pathological processes in the central nervous system (CNS). The expression and activity of metzincins are strictly controlled at different levels (e.g., through the regulation of translation, limited activation in the extracellular space, the binding of endogenous inhibitors and interactions with other proteins). Thus, unsurprising is that the dysregulation of proteolytic activity, especially the greater expression and activation of metzincins, is associated with neurodegenerative disorders that are considered synaptopathies, especially Alzheimer's disease (AD). We review current knowledge of the functions of metzincins in the development of AD, mainly the proteolytic processing of amyloid precursor protein, the degradation of amyloid β (Aβ) peptide and several pathways for Aβ clearance across brain barriers (i.e., blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB)) that contain specific receptors that mediate the uptake of Aβ peptide. Controlling the proteolytic activity of metzincins in Aβ-induced pathological changes in AD patients' brains may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Patrycja Brzdak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Daria Nowak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Grzegorz Wiera
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| |
Collapse
|
47
|
Wallin A, Kapaki E, Boban M, Engelborghs S, Hermann DM, Huisa B, Jonsson M, Kramberger MG, Lossi L, Malojcic B, Mehrabian S, Merighi A, Mukaetova-Ladinska EB, Paraskevas GP, Popescu BO, Ravid R, Traykov L, Tsivgoulis G, Weinstein G, Korczyn A, Bjerke M, Rosenberg G. Biochemical markers in vascular cognitive impairment associated with subcortical small vessel disease - A consensus report. BMC Neurol 2017; 17:102. [PMID: 28535786 PMCID: PMC5442599 DOI: 10.1186/s12883-017-0877-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
Background Vascular cognitive impairment (VCI) is a heterogeneous entity with multiple aetiologies, all linked to underlying vascular disease. Among these, VCI related to subcortical small vessel disease (SSVD) is emerging as a major homogeneous subtype. Its progressive course raises the need for biomarker identification and/or development for adequate therapeutic interventions to be tested. In order to shed light in the current status on biochemical markers for VCI-SSVD, experts in field reviewed the recent evidence and literature data. Method The group conducted a comprehensive search on Medline, PubMed and Embase databases for studies published until 15.01.2017. The proposal on current status of biochemical markers in VCI-SSVD was reviewed by all co-authors and the draft was repeatedly circulated and discussed before it was finalized. Results This review identifies a large number of biochemical markers derived from CSF and blood. There is a considerable overlap of VCI-SSVD clinical symptoms with those of Alzheimer’s disease (AD). Although most of the published studies are small and their findings remain to be replicated in larger cohorts, several biomarkers have shown promise in separating VCI-SSVD from AD. These promising biomarkers are closely linked to underlying SSVD pathophysiology, namely disruption of blood-CSF and blood–brain barriers (BCB-BBB) and breakdown of white matter myelinated fibres and extracellular matrix, as well as blood and brain inflammation. The leading biomarker candidates are: elevated CSF/blood albumin ratio, which reflects BCB/BBB disruption; altered CSF matrix metalloproteinases, reflecting extracellular matrix breakdown; CSF neurofilment as a marker of axonal damage, and possibly blood inflammatory cytokines and adhesion molecules. The suggested SSVD biomarker deviations contrasts the characteristic CSF profile in AD, i.e. depletion of amyloid beta peptide and increased phosphorylated and total tau. Conclusions Combining SSVD and AD biomarkers may provide a powerful tool to identify with greater precision appropriate patients for clinical trials of more homogeneous dementia populations. Thereby, biomarkers might promote therapeutic progress not only in VCI-SSVD, but also in AD.
Collapse
Affiliation(s)
- A Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden. .,Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University Hospital, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Wallinsgatan 6, SE-431 41, Mölndal, Sweden.
| | - E Kapaki
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - M Boban
- Department of Neurology, University Hospital Centre Zagreb, Medical School, University of Zagreb, Zagreb, Croatia
| | - S Engelborghs
- Memory Clinic and Department of Neurology, Hospital Network Antwerp (ZNA) Middelheim and HogeBeuken, Antwerp, Belgium.,Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - D M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - B Huisa
- Department of Neurology, University of California, Irvine, California, USA
| | - M Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - M G Kramberger
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - L Lossi
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - B Malojcic
- Department of Neurology, University Hospital Centre Zagreb, Medical School, University of Zagreb, Zagreb, Croatia
| | - S Mehrabian
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - A Merighi
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - E B Mukaetova-Ladinska
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - G P Paraskevas
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - B O Popescu
- Department of Neurology, Colentina Clinical Hospital, School of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - R Ravid
- Brain Bank Consultants, Amsterdam, The Netherlands
| | - L Traykov
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - G Tsivgoulis
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - G Weinstein
- School of Public Health, University of Haifa, Haifa, Israel
| | - A Korczyn
- Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Bjerke
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - G Rosenberg
- University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| |
Collapse
|
48
|
Iulita MF, Ower A, Barone C, Pentz R, Gubert P, Romano C, Cantarella RA, Elia F, Buono S, Recupero M, Romano C, Castellano S, Bosco P, Di Nuovo S, Drago F, Caraci F, Cuello AC. An inflammatory and trophic disconnect biomarker profile revealed in Down syndrome plasma: Relation to cognitive decline and longitudinal evaluation. Alzheimers Dement 2016; 12:1132-1148. [PMID: 27452424 DOI: 10.1016/j.jalz.2016.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/01/2016] [Accepted: 05/05/2016] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Given that Alzheimer's pathology develops silently over decades in Down syndrome (DS), prognostic biomarkers of dementia are a major need. METHODS We investigated the plasma levels of Aβ, proNGF, tPA, neuroserpin, metallo-proteases and inflammatory molecules in 31 individuals with DS (with and without dementia) and in 31 healthy controls. We examined associations between biomarkers and cognitive decline. RESULTS Aβ40 and Aβ42 were elevated in DS plasma compared to controls, even in DS individuals without dementia. Plasma Aβ correlated with the rate of cognitive decline across 2 years. ProNGF, MMP-1, MMP-3, MMP-9 activity, TNF-α, IL-6, and IL-10 were higher in DS plasma, even at AD-asymptomatic stages. Declining plasma Aβ42 and increasing proNGF levels correlated with cognitive decline. A combined measure of Aβ and inflammatory molecules was a strong predictor of prospective cognitive deterioration. CONCLUSIONS Our findings support the combination of plasma and cognitive assessments for the identification of DS individuals at risk of dementia.
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Alison Ower
- Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom
| | - Concetta Barone
- IRCCS Associazione Oasi Maria SS, Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Palma Gubert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Corrado Romano
- IRCCS Associazione Oasi Maria SS, Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | | | - Flaviana Elia
- IRCCS Associazione Oasi Maria SS, Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Serafino Buono
- IRCCS Associazione Oasi Maria SS, Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Marilena Recupero
- IRCCS Associazione Oasi Maria SS, Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Carmelo Romano
- IRCCS Associazione Oasi Maria SS, Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Paolo Bosco
- IRCCS Associazione Oasi Maria SS, Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Santo Di Nuovo
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- IRCCS Associazione Oasi Maria SS, Institute for Research on Mental Retardation and Brain Aging, Troina, Italy; Department of Drug Sciences, University of Catania, Catania, Italy
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
49
|
Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016; 36:1481-507. [PMID: 27323783 PMCID: PMC5012524 DOI: 10.1177/0271678x16655551] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/26/2016] [Indexed: 02/01/2023]
Abstract
Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood-brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood-brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer's disease, Parkinson's disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood-brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood-brain barrier in brain disorders.
Collapse
Affiliation(s)
- Ralf G Rempe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
50
|
Matrix Metalloproteinases in Non-Neoplastic Disorders. Int J Mol Sci 2016; 17:ijms17071178. [PMID: 27455234 PMCID: PMC4964549 DOI: 10.3390/ijms17071178] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 07/04/2016] [Indexed: 12/23/2022] Open
Abstract
The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action.
Collapse
|