1
|
Peñarrubia L, Reister S, Jiménez-Guzmán S, Porco R, Congost-Teixidor C, Pueyo G, Camprubí-Font C, Vara K, Cardenosa MDLC, Contreras M, Mayorgas A, van Deursen F, Lueerssen D, Juanola-Falgarona M, Schwemmle M, Ciminski K, Manissero D. Molecular diagnostics using the QIAstat-Dx syndromic device for covering avian influenza pandemic preparedness. Heliyon 2024; 10:e40645. [PMID: 39687184 PMCID: PMC11647833 DOI: 10.1016/j.heliyon.2024.e40645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction A key factor in influenza pandemic preparedness is the ability to detect zoonotic influenza virus strains as they emerge in humans through spillover events, ideally before human-to-human transmission occurs. Design In this study, the utility of the QIAstat-Dx syndromic device for influenza surveillance was evaluated. Bioinformatic analysis was performed on all WHO-recommended influenza Candidate Vaccine Viruses (CVVs), including the common strains recommended for the 2023-2024 influenza vaccine composition in the northern hemisphere, and 16 different H5 highly pathogenic avian influenza virus (HPAIV) and two H9N2 low pathogenic avian influenza virus (LPAIV) strains. For laboratory validation, engineered gene fragments and real HPAIV and LPAIV samples were tested using the QIAstat-Dx Respiratory SARS-CoV-2 Panel. Results During the bioinformatic screening, common influenza strains were positive including influenza A subtypes, and all H5 HPAIV and LPAIV H9N2 were detected as Influenza A positive without subtype discrimination. In all cases, laboratory validation confirmed all bioinformatic results. Conclusion QIAstat-Dx can detect all tested potentially zoonotic influenza A virus strains, and discriminate them from human sesonal influenza A viruses, ensuring a correct diagnosis. Any tool available for surveillance and pandemic preparedness is essential for a rapid response to reduce healthcare costs and severity of future influenza pandemics.
Collapse
Affiliation(s)
- Luis Peñarrubia
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | | | - Sara Jiménez-Guzmán
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | - Roberto Porco
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | | | - Gemma Pueyo
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | - Carla Camprubí-Font
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | - Katariina Vara
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | | | - Maria Contreras
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | - Aida Mayorgas
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | | | - Dietrich Lueerssen
- STAT-Dx Life S.L. (A QIAGEN Company) Baldiri Reixac, 4 Barcelona 08028, Spain
| | | | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Davide Manissero
- QIAGEN Manchester Ltd, Citylabs 2.0, Hathersage Road, Manchester, M13 0BH, UK
| |
Collapse
|
2
|
Wang WC, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards the Development of a Universal Influenza Vaccine. Viruses 2022; 14:v14081684. [PMID: 36016306 PMCID: PMC9415875 DOI: 10.3390/v14081684] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Influenza viruses are responsible for millions of cases globally and significantly threaten public health. Since pandemic and zoonotic influenza viruses have emerged in the last 20 years and some of the viruses have resulted in high mortality in humans, a universal influenza vaccine is needed to provide comprehensive protection against a wide range of influenza viruses. Current seasonal influenza vaccines provide strain-specific protection and are less effective against mismatched strains. The rapid antigenic drift and shift in influenza viruses resulted in time-consuming surveillance and uncertainty in the vaccine protection efficacy. Most recent universal influenza vaccine studies target the conserved antigen domains of the viral surface glycoproteins and internal proteins to provide broader protection. Following the development of advanced vaccine technologies, several innovative strategies and vaccine platforms are being explored to generate robust cross-protective immunity. This review provides the latest progress in the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
3
|
Liu Y, Shen T, Zhou J, Chen L, Shi S, Wang X, Zhang M, Wang C, Liao C. Bursal peptide BP-IV as a novel immunoadjuvant enhances the protective efficacy of an epitope peptide vaccine containing T and B cell epitopes of the H9N2 avian influenza virus. Microb Pathog 2021; 158:105095. [PMID: 34280501 DOI: 10.1016/j.micpath.2021.105095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Short peptide antigens covering conserved T or B cell epitopes have been investigated in influenza vaccines. Bursal pentapeptide V (BPP-V) and bursal peptide IV (BP-IV) are small molecular peptides that were isolated and identified from the bursa of Fabricius (BF) and induce a strong immune response at both the humoural and cellular levels. To explore the molecular adjuvant potential of BPP-V and BP-IV with an epitope vaccine, an epitope peptide (HA284-298, GNCVVQCQTERGGLN) rich in T and B cell epitopes for the H9N2 avian influenza virus (AIV) haemagglutinin (HA) protein was selected. BPP-V and BP-IV were coupled with the epitope peptide sequence to form BPP-V and BP-IV-epitope vaccines, respectively. The immunoefficacy of BPP-V and BP-IV-epitope peptide vaccines was evaluated. The results showed that the epitope peptide had weak immunogenicity. The BPP-V-epitope peptide vaccine promoted only the secretion of anti-HA IgG and IgG1 antibodies. The BP-IV-epitope peptide vaccine not only promoted the production of anti-HA IgG and IgG1 antibodies but also significantly induced the production of the IgG2a antibody. The BP-IV-epitope peptide vaccine significantly promoted the production of interleukin (IL-4) and interferon-γ (IFN-γ) (the BPP-V epitope peptide vaccine promoted only the production of IL-4), enhanced the cytotoxic T lymphocyte (CTL) response, and increased the proportion of CD3+ T lymphocytes. Moreover, the BP-IV-epitope peptide vaccine promoted a cell-mediated immune response similar to that of the AIV vaccine group. Furthermore, BPP-V and BP-IV-epitope peptide vaccines could also accelerate the clearance of pulmonary virus and reduce pathological damage after the challenge with H9N2 AIV. This study demonstrates the potential of BP-IV as an effective adjuvant for the epitope peptide vaccine for the H9N2 AIV.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
4
|
Schmidt R, Holznagel E, Neumann B, Alex N, Sawatsky B, Enkirch T, Pfeffermann K, Kruip C, von Messling V, Wagner R. Squalene-containing licensed adjuvants enhance strain-specific antibody responses against the influenza hemagglutinin and induce subtype-specific antibodies against the neuraminidase. Vaccine 2016; 34:5329-5335. [DOI: 10.1016/j.vaccine.2016.08.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 11/24/2022]
|
5
|
A highly immunogenic vaccine against A/H7N9 influenza virus. Vaccine 2016; 34:744-9. [PMID: 26765287 DOI: 10.1016/j.vaccine.2015.12.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/09/2015] [Accepted: 12/24/2015] [Indexed: 11/23/2022]
Abstract
Since the first case of human infection in March 2013, continued reports of H7N9 cases highlight a potential pandemic threat. Highly immunogenic vaccines to this virus are urgently needed to protect vulnerable populations who lack protective immunity. In this study, an egg- and adjuvant-independent adenoviral vector-based, hemagglutinin H7 subtype influenza vaccine (HAd-H7HA) demonstrated enhanced cell-mediated immunity as well as serum antibody responses in a mouse model. Most importantly, this vaccine provided complete protection against homologous A/H7N9 viral challenge suggesting its potential utility as a pandemic vaccine.
Collapse
|
6
|
Amen O, Vemula SV, Zhao J, Ibrahim R, Hussein A, Hewlett IK, Moussa S, Mittal SK. Identification and characterization of a highly pathogenic H5N1 avian influenza A virus during an outbreak in vaccinated chickens in Egypt. Virus Res 2015; 210:337-43. [PMID: 26363196 DOI: 10.1016/j.virusres.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/07/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022]
Abstract
Highly pathogenic avian influenza A (HPAI) H5N1 viruses continue to be a major veterinary and public health problem in Egypt. Continued surveillance of these viruses is necessary to devise strategies to control the spread of the virus and to monitor its evolutionary patterns. This is a report of the identification of a variant strain of HPAI H5N1 virus during an outbreak in 2010 in vaccinated chicken flocks in a poultry farm in Assiut, Egypt. Vaccination of chickens with an oil-emulsified inactivated A/chicken/Mexico/232/94 (H5N2) vaccine induced high levels of hemagglutination inhibition (HI) antibody titers reaching up to 9 log2. However, all flocks irrespective of the number of vaccine doses and the resultant HI titer levels came down with severe influenza infections. The qRT-PCR and rapid antigen test confirmed the influenza virus to be from H5N1 subtype. Sequencing of the hemagglutinin (HA) gene fragment from ten independent samples demonstrated that a single H5N1 strain was involved. This strain belonged to clade 2.2.1 and had several mutations in the receptor-binding site of the HA protein, thereby producing a variant strain of HPAI H5N1 virus which was antigenically different from the parent clade 2.2.1 virus circulating in Egypt at that time. In order to define the variability in HPAI H5N1 viruses over time in Egypt, we sequenced another H5N1 virus that was causing infections in chickens in 2014. Phylogenetic analysis revealed that both viruses had further distanced from the parent virus circulating during 2010. This study highlights that the antigenic mutations in HPAI H5N1 viruses represent a definitive challenge for the development of an effective vaccine for poultry. Overall, the results emphasize the need for continued surveillance of H5N1 outbreaks and extensive characterization of virus isolates from vaccinated and non-vaccinated poultry populations to better understand genetic changes and their implications.
Collapse
Affiliation(s)
- O Amen
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - S V Vemula
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - J Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - R Ibrahim
- Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - A Hussein
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - I K Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - S Moussa
- Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - S K Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Lei H, Peng X, Ouyang J, Zhao D, Jiao H, Shu H, Ge X. Protective immunity against influenza H5N1 virus challenge in chickens by oral administration of recombinant Lactococcus lactis expressing neuraminidase. BMC Vet Res 2015; 11:85. [PMID: 25880824 PMCID: PMC4389297 DOI: 10.1186/s12917-015-0399-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Highly pathogenic H5N1 avian influenza viruses pose a debilitating pandemic threat in poultry. Current influenza vaccines predominantly focus on hemagglutinin (HA) which anti-HA antibodies are often neutralizing, and are used routinely to assess vaccine immunogenicity. However, Neuraminidase (NA), the other major glycoprotein on the surface of the influenza virus, has historically served as the target for antiviral drug therapy and is much less studied in the context of humoral immunity. The aim of this study was to evaluate the protective immunity of NA based on Lactococcus lactis (L.lactis) expression system against homologous H5N1 virus challenge in a chicken model. RESULTS L.lactis/pNZ2103-NA which NA is derived from A/Vietnam/1203/2004 (H5N1) (VN/1203/04) was constructed based on L.lactis constitutive expression system in this study. Chickens vaccinated orally with 10(12) colony-forming unit (CFU) of L.lactis/pNZ2103-NA could elicit significant NA-specific serum IgG and mucosa IgA antibodies, as well as neuraminidase inhibition (NI) titer compared with chickens administered orally with saline or L.lactis/pNZ2103 control. Most importantly, the results revealed that chickens administered orally with L.lactis/pNZ2103-NA were completely protected from a lethal H5N1 virus challenge. CONCLUSIONS The data obtained in the present study indicate that recombinant L.lactis/pNZ2103-NA in the absence of adjuvant can be considered an effective mucosal vaccine against H5N1 infection in chickens via oral administration. Further, these findings support that recombinant L.lactis/pNZ2103-NA can be used to perform mass vaccination in poultry during A/H5N1 pandemic.
Collapse
Affiliation(s)
- Han Lei
- School of Medicine, Southwest Jiaotong University, Chengdu, 6111756, China. .,Department of Biomedical Engineering, State University of New York, Binghamton, 13902, USA. .,Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Xiaojue Peng
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Jiexiu Ouyang
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Daxian Zhao
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Huifeng Jiao
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Handing Shu
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Xinqi Ge
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| |
Collapse
|
8
|
Abstract
H5N1 influenza continues to smolder in Southeast Asia over the past 5 years, but the emergence of H7N9 in China in 2012 raised concerns for a new avian influenza threat. In contrast with H5N1 with over 650 confirmed cases over 11 years, H7N9 has infected over 450 persons within 2 years. The case fatality rate for H7N9 (35 %) is lower than for H5N1 (60 %) or H10N8 (67 %) but is comparable to that for the Middle East respiratory syndrome coronavirus (MERS CoV), another emerging zoonosis with travel-associated importations. Exposure to poultry and fomites are considered the likely sources of infection for H7N9, H5N1, and H10N8, with limited human-to-human transmission in close contacts. Most cases have occurred in local populations of affected countries, and travel-related risk can be mitigated by avoiding exposure. Vaccines, antivirals, and other therapeutics remain in development stage or of modest benefit for dangerous infections carrying high morbidity and mortality.
Collapse
Affiliation(s)
- Rajeka Lazarus
- Department of Infectious Disease, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore
- Department Infectious Diseases and Microbiology, Oxford University Hospital Trust, Oxford, UK
| | - Poh Lian Lim
- Department of Infectious Disease, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Nafziger AN, Pratt DS. Seasonal influenza vaccination and technologies. J Clin Pharmacol 2014; 54:719-31. [PMID: 24691877 DOI: 10.1002/jcph.299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/26/2014] [Indexed: 11/06/2022]
Abstract
Seasonal influenza is a serious respiratory illness that causes annual worldwide epidemics resulting in significant morbidity and mortality. Influenza pandemics occur about every 40 yrs, and may carry a greater burden of illness and death than seasonal influenza. Both seasonal influenza and pandemic influenza have profound economic consequences. The combination of current vaccine efficacy and viral antigenic drifts and shifts necessitates annual vaccination. New manufacturing technologies in influenza vaccine development employ cell culture and recombinant techniques. Both allow more rapid vaccine creation and production. In the past 5 years, brisk, highly creative activity in influenza vaccine research and development has begun. New vaccine technologies and vaccination strategies are addressing the need for viable alternatives to egg production methods and improved efficacy. At present, stubborn problems of sub-optimal efficacy and the need for annual immunization persist. There is an obvious need for more efficacious vaccines and improved vaccination strategies to make immunization easier for providers and patients. Mitigating this serious annual health threat remains an important public health priority.
Collapse
MESH Headings
- Animals
- Antigenic Variation
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Health Priorities
- Humans
- Influenza A virus/immunology
- Influenza A virus/metabolism
- Influenza Vaccines/biosynthesis
- Influenza Vaccines/therapeutic use
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Betainfluenzavirus/immunology
- Betainfluenzavirus/metabolism
- Mass Vaccination
- Pandemics/prevention & control
- Seasons
- Technology, Pharmaceutical/trends
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/metabolism
- Vaccines, Synthetic/therapeutic use
Collapse
Affiliation(s)
- Anne N Nafziger
- Bertino Consulting, Schenectady, NY, USA; Adjunct Research Professor, School of Pharmacy & Pharmaceutical Sciences, Department of Pharmacy Practice, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | |
Collapse
|
10
|
Virtual screening of potential inhibitors from TCM for the CPSF30 binding site on the NS1A protein of influenza A virus. J Mol Model 2014; 20:2142. [PMID: 24562912 DOI: 10.1007/s00894-014-2142-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Inhibition of CPSF30 function by the effector domain of influenza A virus of non-structural protein 1 (NS1A) protein plays a critical role in the suppression of host key antiviral response. The CPSF30-binding site of NS1A appears to be a very attractive target for the development of new drugs against influenza A virus. In this study, structure-based molecular docking was utilized to screen more than 30,000 compounds from a Traditional Chinese Medicine (TCM) database. Four drug-like compounds were selected as potential inhibitors for the CPSF30-binding site of NS1A. Docking conformation analysis results showed that these potential inhibitors could bind to the CPSF30-binding site with strong hydrophobic interactions and weak hydrogen bonds. Molecular dynamics simulations and MM-PBSA calculations suggested that two of the inhibitors, compounds 32056 and 31674, could stably bind to the CPSF30-binding site with high binding free energy. These two compounds could be modified to achieve higher binding affinity, so that they may be used as potential leads in the development of new anti-influenza drugs.
Collapse
|
11
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
12
|
Jalilian B, Christiansen SH, Einarsson HB, Pirozyan MR, Petersen E, Vorup-Jensen T. Properties and prospects of adjuvants in influenza vaccination - messy precipitates or blessed opportunities? MOLECULAR AND CELLULAR THERAPIES 2013; 1:2. [PMID: 26056568 PMCID: PMC4448954 DOI: 10.1186/2052-8426-1-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 01/09/2023]
Abstract
Influenza is a major challenge to healthcare systems world-wide. While prophylactic vaccination is largely efficient, long-lasting immunity has not been achieved in immunized populations, at least in part due to the challenges arising from the antigen variation between strains of influenza A virus as a consequence of genetic drift and shift. From progress in our understanding of the immune system, the mode-of-action of vaccines can be divided into the stimulation of the adaptive system through inclusion of appropriate vaccine antigens and of the innate immune system by the addition of adjuvant to the vaccine formulation. A shared property of many vaccine adjuvants is found in their nature of water-insoluble precipitates, for instance the particulate material made from aluminum salts. Previously, it was thought that embedding of vaccine antigens in these materials provided a "depot" of antigens enabling a long exposure of the immune system to the antigen. However, more recent work points to a role of particulate adjuvants in stimulating cellular parts of the innate immune system. Here, we briefly outline the infectious medicine and immune biology of influenza virus infection and procedures to provide sufficient and stably available amounts of vaccine antigen. This is followed by presentation of the many roles of adjuvants, which involve humoral factors of innate immunity, notably complement. In a perspective of the ultrastructural properties of these humoral factors, it becomes possible to rationalize why these insoluble precipitates or emulsions are such a provocation of the immune system. We propose that the biophysics of particulate material may hold opportunities that could aid the development of more efficient influenza vaccines.
Collapse
Affiliation(s)
- Babak Jalilian
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Stig Hill Christiansen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Halldór Bjarki Einarsson
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark ; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehdi Rasoli Pirozyan
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Eskild Petersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark ; Department of Infectious Medicine (Q), Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
13
|
Jalilian B, Christiansen SH, Einarsson HB, Pirozyan MR, Petersen E, Vorup-Jensen T. Properties and prospects of adjuvants in influenza vaccination - messy precipitates or blessed opportunities? MOLECULAR AND CELLULAR THERAPIES 2013; 1:2. [PMID: 26056568 PMCID: PMC4448954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 11/21/2023]
Abstract
Influenza is a major challenge to healthcare systems world-wide. While prophylactic vaccination is largely efficient, long-lasting immunity has not been achieved in immunized populations, at least in part due to the challenges arising from the antigen variation between strains of influenza A virus as a consequence of genetic drift and shift. From progress in our understanding of the immune system, the mode-of-action of vaccines can be divided into the stimulation of the adaptive system through inclusion of appropriate vaccine antigens and of the innate immune system by the addition of adjuvant to the vaccine formulation. A shared property of many vaccine adjuvants is found in their nature of water-insoluble precipitates, for instance the particulate material made from aluminum salts. Previously, it was thought that embedding of vaccine antigens in these materials provided a "depot" of antigens enabling a long exposure of the immune system to the antigen. However, more recent work points to a role of particulate adjuvants in stimulating cellular parts of the innate immune system. Here, we briefly outline the infectious medicine and immune biology of influenza virus infection and procedures to provide sufficient and stably available amounts of vaccine antigen. This is followed by presentation of the many roles of adjuvants, which involve humoral factors of innate immunity, notably complement. In a perspective of the ultrastructural properties of these humoral factors, it becomes possible to rationalize why these insoluble precipitates or emulsions are such a provocation of the immune system. We propose that the biophysics of particulate material may hold opportunities that could aid the development of more efficient influenza vaccines.
Collapse
Affiliation(s)
- Babak Jalilian
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Stig Hill Christiansen
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Halldór Bjarki Einarsson
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
- />Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehdi Rasoli Pirozyan
- />Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Eskild Petersen
- />Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- />Department of Infectious Medicine (Q), Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
14
|
Vemula SV, Pandey A, Singh N, Katz JM, Donis R, Sambhara S, Mittal SK. Adenoviral vector expressing murine β-defensin 2 enhances immunogenicity of an adenoviral vector based H5N1 influenza vaccine in aged mice. Virus Res 2013; 177:55-61. [PMID: 23892144 DOI: 10.1016/j.virusres.2013.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/18/2013] [Accepted: 07/11/2013] [Indexed: 11/27/2022]
Abstract
The ability to resist infections and respond to vaccinations is greatly reduced in the older adult population owing to a general decline in innate and adaptive immune functions with aging. Over the years several strategies such as increasing the vaccine dose, number of immunizations and using adjuvants have been evaluated to improve the immunogenicity and efficacy of vaccines in the older adult population. Murine β-defensin 2 (Mbd2) has been shown to function as a molecular adjuvant by recruiting and activating immature dendritic cells (DCs), professional antigen-presenting cells (APC), to the site of the immunization. In this study, we evaluated the potential utility of Mbd2 to enhance the efficacy of an adenoviral vector-based H5N1 influenza vaccine expressing hemagglutinin (HA) and nucleoprotein (NP) (HAd-HA-NP) in an aged mouse model. Our results indicated that immunostimulation with an adenoviral vector expressing Mbd2 (HAd-Mbd2) activated DCs and significantly enhanced the humoral and cellular immune responses induced by HAd-HA-NP. Furthermore, immunostimulation with HAd-Mbd2 followed by immunization with HAd-HA-NP resulted in significantly lower virus titers in the lungs following challenge with a H5N1 influenza virus compared to the group immunized with HAd-HA-NP without immunostimulation. Overall, our results highlight the potential utility of Mbd2 as a molecular adjuvant to enhance the immunogenicity and protective efficacy of vaccines for the elderly.
Collapse
Affiliation(s)
- Sai V Vemula
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Vemula SV, Ahi YS, Swaim AM, Katz JM, Donis R, Sambhara S, Mittal SK. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness. PLoS One 2013; 8:e62496. [PMID: 23638099 PMCID: PMC3640067 DOI: 10.1371/journal.pone.0062496] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced.
Collapse
Affiliation(s)
- Sai V. Vemula
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yadvinder S. Ahi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Anne-Marie Swaim
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Jacqueline M. Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (SM); (SS)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (SM); (SS)
| |
Collapse
|
16
|
Khalili I, Ghadimipour R, Ameghi A, Sedigh-Eteghad S. Optimization of incubation temperature in embryonated chicken eggs inoculated with H9N2 vaccinal subtype of avian influenza virus. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2013; 4:145-8. [PMID: 25653788 PMCID: PMC4312372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 12/01/2012] [Accepted: 09/15/2013] [Indexed: 11/09/2022]
Abstract
There are little information about growth properties of low pathogenic (LP) avian influenza virus (AIV) in embryonated chicken eggs (ECEs) at different incubation temperatures. Knowledge of this information increases the quantity and quality of antigen in vaccine production process. For this purpose, 10(-5) dilution of AIV (A/Chicken/Iran/99/H9N2) was inoculated (Intra-allantoic) into 400, 11-day old specific pathogen free (SPF) ECEs in the 0.1 mL per ECE rate and incubated in 32, 33, 34, 35, 36, 37.5, 38, 39 ˚C for 72 hr in 65% humidity. Early death embryos in first 24 hr were removed. Amnio-allantoic fluid was withdrawn into the measuring cylinder, and tested for hemagglutination (HA) activity and egg infective dose 50 (EID50). The utilizable ECEs and amnio-allantoic fluid volume was significantly increased in 35 ˚C, (p < 0.05). Significant difference in HA and EID50 titers, were seen only in 39 ˚C group. Therefore, 35°C is an optimum temperature for incubation of inoculated ECEs.
Collapse
Affiliation(s)
- Iraj Khalili
- Correspondence: Iraj Khalili. DVM, PhD, Department of Research and Development, Razi Vaccine and Serum Research Institute, Marand, Iran. E-mail:
| | | | | | | |
Collapse
|
17
|
Abstract
The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.
Collapse
|
18
|
Mukherjee DV, Cohen B, Bovino ME, Desai S, Whittier S, Larson EL. Survival of influenza virus on hands and fomites in community and laboratory settings. Am J Infect Control 2012; 40:590-4. [PMID: 22264744 DOI: 10.1016/j.ajic.2011.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 01/24/2023]
Abstract
BACKGROUND Transmission dynamics modeling provides a practical method for virtual evaluation of the impact of public health interventions in response to prospective influenza pandemics and also may help determine the relative contribution of different modes of transmission to overall infection rates. Accurate estimates of longevity for all forms of viral particles are needed for such models to be useful. METHODS We conducted a time course study to determine the viability and longevity of H1N1 virus on naturally contaminated hands and household surfaces of 20 individuals with laboratory-confirmed infection. Participants coughed or sneezed into their hands, which were sampled immediately and again after 5, 10, and 30 minutes. Samples also were obtained from household surfaces handled by the participants immediately after coughing/sneezing. Clinically obtained H1N1 isolates were used to assess the viability and longevity of the virus on various artificially inoculated common household surfaces and human hands in a controlled laboratory setting. Viral detection was achieved by culture and real-time reverse-transcriptase polymerase chain reaction. RESULTS The results suggest that H1N1 does not survive long on naturally contaminated skin and fomites, and that secretions deposited on hands by coughing or sneezing have a concentration of <2.15 × 10 to 2.94 × 10 TCID(50)/mL. CONCLUSIONS These data can be used to estimate the relative contribution of direct and indirect contact transmission on overall infection rates.
Collapse
|
19
|
Müller KH, Kakkola L, Nagaraj AS, Cheltsov AV, Anastasina M, Kainov DE. Emerging cellular targets for influenza antiviral agents. Trends Pharmacol Sci 2012; 33:89-99. [DOI: 10.1016/j.tips.2011.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 01/23/2023]
|
20
|
Infection with seasonal influenza virus elicits CD4 T cells specific for genetically conserved epitopes that can be rapidly mobilized for protective immunity to pandemic H1N1 influenza virus. J Virol 2011; 85:13310-21. [PMID: 21976658 DOI: 10.1128/jvi.05728-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent years, influenza viruses with pandemic potential have been a major concern worldwide. One unresolved issue is how infection or vaccination with seasonal influenza virus strains influences the ability to mount a protective immune response to novel pandemic strains. In this study, we developed a mouse model of primary and secondary influenza infection by using a widely circulating seasonal H1N1 virus and the pandemic strain of H1N1 that emerged in Mexico in 2009, and we evaluated several key issues. First, using overlapping peptide libraries encompassing the entire translated sequences of 5 major influenza virus proteins, we assessed the specificity of CD4 T cell reactivity toward epitopes conserved among H1N1 viruses or unique to the seasonal or pandemic strain by enzyme-linked immunospot (ELISpot) assays. Our data show that CD4 T cells reactive to both virus-specific and genetically conserved epitopes are elicited, allowing separate tracking of these responses. Populations of cross-reactive CD4 T cells generated from seasonal influenza infection were found to expand earlier after secondary infection with the pandemic H1N1 virus than CD4 T cell populations specific for new epitopes. Coincident with this rapid CD4 T cell response was a potentiated neutralizing-antibody response to the pandemic strain and protection from the pathological effects of infection with the pandemic virus. This protection was not dependent on CD8 T cells. Together, our results indicate that exposure to seasonal vaccines and infection elicits CD4 T cells that promote the ability of the mammalian host to mount a protective immune response to pandemic strains of influenza virus.
Collapse
|
21
|
Penney CA, Thomas DR, Deen SS, Walmsley AM. Plant-made vaccines in support of the Millennium Development Goals. PLANT CELL REPORTS 2011; 30:789-98. [PMID: 21243362 PMCID: PMC3075396 DOI: 10.1007/s00299-010-0995-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 05/02/2023]
Abstract
Vaccines are one of the most successful public health achievements of the last century. Systematic immunisation programs have reduced the burden of infectious diseases on a global scale. However, there are limitations to the current technology, which often requires costly infrastructure and long lead times for production. Furthermore, the requirement to keep vaccines within the cold-chain throughout manufacture, transport and storage is often impractical and prohibitively expensive in developing countries-the very regions where vaccines are most needed. In contrast, plant-made vaccines (PMVs) can be produced at a lower cost using basic greenhouse agricultural methods, and do not need to be kept within such narrow temperature ranges. This increases the feasibility of developing countries producing vaccines locally at a small-scale to target the specific needs of the region. Additionally, the ability of plant-production technologies to rapidly produce large quantities of strain-specific vaccine demonstrates their potential use in combating pandemics. PMVs are a proven technology that has the potential to play an important role in increasing global health, both in the context of the 2015 Millennium Development Goals and beyond.
Collapse
Affiliation(s)
- Claire A. Penney
- Department of Biological Sciences, Monash University, Clayton, VIC Australia
| | - David R. Thomas
- Department of Biological Sciences, Monash University, Clayton, VIC Australia
| | - Sadia S. Deen
- Department of Biological Sciences, Monash University, Clayton, VIC Australia
| | - Amanda M. Walmsley
- Department of Biological Sciences, Monash University, Clayton, VIC Australia
| |
Collapse
|