1
|
Flynn A, Leech J, McFadden M, McAloon C, Paul-Murphy J, Crispie F, Cotter PD, McAloon C, Kennedy E. The effects of offering adequate-quality or high-quality colostrum on the passive immunity, health, growth and fecal microbiome development of dairy heifer calves. J Dairy Sci 2025:S0022-0302(25)00222-X. [PMID: 40221038 DOI: 10.3168/jds.2024-26165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/05/2025] [Indexed: 04/14/2025]
Abstract
Colostrum quality is influenced by multiple factors, including its microbial load, which is determined by the cleanliness of collection and storage conditions. Additionally, the dam's diet and immune status play a crucial role in shaping colostrum quality by affecting immunoglobulin (IgG) concentrations. While many factors contribute to colostrum quality, this study will specifically use IgG content as the primary measure of quality. It is well established that feeding low-quality colostrum negatively affects calf health and growth, while feeding good-quality colostrum leads to better outcomes. However, it remains unclear if feeding colostrum above the recommended quality threshold offers additional benefits for calf health and growth. This study compared the effects of adequate versus high-quality colostrum on dairy heifer calf growth, health, and the development of the fecal microbiome during the first 15 weeks of life. We also measured the levels of apparent efficacy of absorption of IgG in both groups. Colostrum quality was initially determined and measured before feeding using a Brix refractometer (only feeding a minimum of 21% Brix); 93 heifer calves were assigned to treatment based on this data. Subsequently, laboratory analyses were conducted using radial immunodiffusion assays to measure the exact IgG levels in the colostrum; 72 calves were selected for continuation in the experiment based on the highest (n = 36) and lowest (n = 36) IgG levels in the colostrum. For these 72 calves, laboratory analyses were conducted using radial immunodiffusion assays to measure the exact IgG levels in the colostrum at the point of feeding and in the calf serum at 24 h post-feeding. To ensure a fair comparison, the groups were balanced for calf birthweight, breed, and dam parity. Serum IgG at 24 h, weight, and health data were analyzed in SAS using linear mixed models and logistic regression. Alpha and β diversity were analyzed using R with ANOVA, PERMANOVA, and Benjamini-Hochberg p-value adjustments. Calves fed colostrum with a high IgG content (123.0 mg/ml IgG) exhibited higher rates of passive transfer compared with those fed adequate-quality colostrum (85.2 mg/ml IgG). Both groups had passive transfer rates > 23 mg/ml IgG. Health outcomes were similar between the 2 groups, and average daily gain during the pre-weaning period was comparable, with calves gaining an average of 0.62 kg per day. Measures of α and β diversity in the fecal microbiome showed similar development in both groups. Apparent absorption efficacy was lower in calves fed high-quality colostrum (24.9%) compared with those fed adequate-quality colostrum (29.3%). The findings of this study support current recommendations for colostrum quality and suggest that calves may have a limited capacity to absorb higher concentrations of IgG. While feeding higher-quality colostrum did not lead to significant improvements in growth, health, or microbiome diversity, it demonstrated that adequate-quality colostrum can be equally effective when combined with best practice management. Further research is needed to better understand the relationships between immunoglobulin absorption efficiency, calf health, microbiome development, and growth performance.
Collapse
Affiliation(s)
- Anna Flynn
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland; School of Veterinary Medicine, University College Dublin, Dublin, Ireland; VistaMilk, Ireland
| | - John Leech
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Marie McFadden
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland; VistaMilk, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Paul-Murphy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Co. Cork, Ireland; VistaMilk, Ireland
| | - Conor McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Emer Kennedy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland; VistaMilk, Ireland.
| |
Collapse
|
2
|
Carroll A, Bell MJ, Bleach ECL, Turner D, Williams LK. Impact of dairy calf management practices on the intestinal tract microbiome pre-weaning. J Med Microbiol 2025; 74. [PMID: 39879083 DOI: 10.1099/jmm.0.001957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Introduction. Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves.Discussion. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life. The colonization of the calf intestinal microbiome dynamically changes from birth, increasing microbial richness and diversity until weaning, where further dynamic and drastic microbiome change occurs. In dairy calves, neonatal microbiome development prior to weaning is influenced by direct and indirect factors, some of which could be considered stressors, such as maternal interaction, environment, diet, husbandry and weaning practices. The specific impact of these can dictate intestinal microbial colonization, with potential lifelong consequences.Conclusion. Evidence suggests the potential detrimental effect that sudden changes and stress may have on calf health and growth due to management and husbandry practices, and the importance of establishing a stable yet diverse intestinal microbiome population at an early age is essential for calf success. The possibility of improving the health of calves through intestinal microbiome modulation and using alternative strategies including probiotic use, faecal microbiota transplantation and novel approaches of microbiome tracking should be considered to support animal health and sustainability of dairy production systems.
Collapse
Affiliation(s)
- Aisling Carroll
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Matt J Bell
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Emma C L Bleach
- Animal Science Research Centre, Harper Adams University, Edgmond, Newport, TF10 8NB, Shropshire, UK
| | - Dann Turner
- University of the West of England, Bristol, Coldharbour Lane, BS16 1QY, UK
| | - Lisa K Williams
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| |
Collapse
|
3
|
Müller CB, Tümmler LM, Reyer H, Viergutz T, Kuhla B. Interactions between rumen epithelium-associated microbiota and host immunological and metabolic adaptations in response to different milk replacer feeding intensities in dairy calves. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:287-300. [PMID: 39640544 PMCID: PMC11617301 DOI: 10.1016/j.aninu.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/06/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024]
Abstract
The milk replacer feeding regime in dairy calves has a great impact on metabolic and immunological functioning and affects animal welfare and lifetime performance. The feeding regime influences the rumen microbial composition, and epithelium-associated microbes may interact with the immune system of the host. We examined the correlations between blood leukocyte counts and the rumen epithelium-associated microbiome in dairy calves fed 2 different milk replacer feeding intensities and if these factors related to metabolic traits. Fourteen newborn female dairy calves were allocated to a group receiving either 10% (n = 7) or 20% (n = 7) milk replacer of their body weight (on average 41 kg) and provided ad libitum access to grass hay and concentrate pellets. At 3 weeks of life, all calves were fitted with a rumen cannula. Calves were weaned at 12 weeks of life and received a total mixed ration for ad libitum intake. Pre- (8-10 weeks of life) and post-weaning (21-23 weeks of life), methane production was measured in respiration chambers, and rumen epithelium and blood were sampled for 16S rRNA sequencing and leukocyte analyses, respectively. Pre-weaning, the reduced milk replacer feeding intensity was accompanied with higher concentrate intake but lower growth performance (P < 0.001), a higher abundance of amylolytic and lower abundance of cellulolytic epimural microbes. The group fed a low milk replacer intensity had also greater portions of monocytes (P = 0.031), CD8+ (P < 0.001), and CD14+ (P = 0.044) leukocytes, suggesting elevated inflammatory conditions. Correlations between CD8+ T cells and rumen methanogens, Ruminococcaceae, and Lachnospiraceae were recorded, but these were not consistent throughout maturation. Post-weaning, differences in feed intake and rumen microbial composition converged among milk replacer groups, while differences in growth performance (P = 0.040) and CD8+ cells (P < 0.001) were still present. In conclusion, a reduced milk replacer feeding intensity in dairy calves compromised growth performance and immunity and this effect persisted in the long-term. Significant correlations between the proportion of leukocytes and distinct epimural microbe taxa indicated an interplay between rumen epimural colonization and immune functioning of the host. However, further research is required addressing this interplay between rumen epimural microbes and immune functioning in dairy calves.
Collapse
Affiliation(s)
| | | | - Henry Reyer
- Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Torsten Viergutz
- Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Björn Kuhla
- Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| |
Collapse
|
4
|
Wang Z, Chen P, Liang Y, Wang F, Zhang Y. Negative energy balance affects perinatal ewe performance, rumen morphology, rumen flora structure, and placental function. J Anim Physiol Anim Nutr (Berl) 2024; 108:1747-1760. [PMID: 38958108 DOI: 10.1111/jpn.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
This study investigated the effects of negative energy balance (NEB) on perinatal ewes, with a focus on changes in growth performance, serum biochemical parameters, rumen fermentation, ruminal bacteria composition, placental phenotype-related indicators, and expression levels of genes related to placental function. Twenty ewes at 130 days of gestation were randomly allocated to either the positive energy balance (PEB) or NEB groups. In the experiment, ewes in the PEB group were fed the same amount as their intake during the pre-feeding baseline period, while ewes in the NEB group were restricted to 70% of their individual baseline feed intake. The experiment was conducted until 42 days postpartum, and five double-lamb ewes per group were selected for slaughter. The results demonstrated that NEB led to a significant decrease in body weight, carcass weight, and the birth and weaning weights of lambs (P < 0.05). Additionally, NEB caused alterations in serum biochemical parameters, such as increased non-esterified fatty acids and β-hydroxybutyrate levels and decreased cholesterol and albumin levels (P < 0.05). Rumen fermentation and epithelial parameters were also affected, with a reduction in the concentrations of acetic acid, butyric acid, total acid and a decrease in the length of the rumen papilla (P < 0.05). Moreover, NEB induced changes in the structure and composition of ruminal bacteria, with significant differences in α-diversity indices and rumen microbial community composition (P < 0.05). Gene expression in rumen papilla and ewe placenta was also affected, impacting genes associated with glucose and amino acid transport, proliferation, apoptosis, and angiogenesis (P < 0.05). These findings screened the key microbiota in the rumen of ewes following NEB and highlighted the critical genes associated with rumen function. Furthermore, this study revealed the impact of NEB on placental function in ewes, providing a foundation for investigating how nutrition in ewes influences reproductive performance. This research demonstrates how nutrition regulates reproductive performance by considering the combined perspectives of rumen microbiota and placental function.
Collapse
Affiliation(s)
- Zhibo Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Peiyong Chen
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Yaxu Liang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Víquez-R L, Henrich M, Riegel V, Bader M, Wilhelm K, Heurich M, Sommer S. A taste of wilderness: supplementary feeding of red deer (Cervus elaphus) increases individual bacterial microbiota diversity but lowers abundance of important gut symbionts. Anim Microbiome 2024; 6:28. [PMID: 38745212 PMCID: PMC11094858 DOI: 10.1186/s42523-024-00315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays a crucial role in the health and well-being of animals. It is especially critical for ruminants that depend on this bacterial community for digesting their food. In this study, we investigated the effects of management conditions and supplemental feeding on the gut bacterial microbiota of red deer (Cervus elaphus) in the Bavarian Forest National Park, Germany. Fecal samples were collected from free-ranging deer, deer within winter enclosures, and deer in permanent enclosures. The samples were analyzed by high-throughput sequencing of the 16 S rRNA gene. The results showed that the gut bacterial microbiota differed in diversity, abundance, and heterogeneity within and between the various management groups. Free-ranging deer exhibited lower alpha diversity compared with deer in enclosures, probably because of the food supplementation available to the animals within the enclosures. Free-living individuals also showed the highest beta diversity, indicating greater variability in foraging grounds and plant species selection. Moreover, free-ranging deer had the lowest abundance of potentially pathogenic bacterial taxa, suggesting a healthier gut microbiome. Winter-gated deer, which spent some time in enclosures, exhibited intermediate characteristics between free-ranging and all-year-gated deer. These findings suggest that the winter enclosure management strategy, including supplementary feeding with processed plants and crops, has a significant impact on the gut microbiome composition of red deer. Overall, this study provides important insights into the effects of management conditions, particularly winter enclosure practices, on the gut microbiome of red deer. Understanding these effects is crucial for assessing the potential health implications of management strategies and highlights the value of microbiota investigations as health marker.
Collapse
Affiliation(s)
- Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany.
- Department of Biology, Bucknell University, Lewisburg, PA, USA.
| | - Maik Henrich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Bayern, Germany
- Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Vanessa Riegel
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Marvin Bader
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
- Albert-Ludwigs University, Freiburg, Baden-Württemberg, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Marco Heurich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Bayern, Germany
- Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Baden-Württemberg, Germany
- Institute for Forest and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, NO-34, Norway
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany.
| |
Collapse
|
6
|
Cangiano LR, Lamers K, Olmeda MF, Villot C, Hodgins DC, Mallard BA, Steele MA. Developmental adaptations of γδ T cells and B cells in blood and intestinal mucosa from birth until weaning in Holstein bull calves. J Dairy Sci 2024; 107:1734-1750. [PMID: 37806632 DOI: 10.3168/jds.2023-23943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
This study aimed to characterize the development of systemic and colon tissue resident B and γδ T cells in newborn calves from birth until weaning. At birth, calves have limited capacity to initiate immune responses, and the immune system gradually matures over time. Gamma delta (γδ) T cells are an important lymphocyte subset in neonatal calves that confer protection and promote immune tolerance. A total of 36 newborn calves were enrolled in a longitudinal study to characterize how systemic and colon tissue resident B and γδ T cells develop from birth until weaning. Blood and colon biopsy samples were collected on d 2, 28, and 42 to determine the proportions of various B and γδ T cell subsets by flow cytometry. We classified γδ T cells into different functional subsets according to the level of expression intensity of the coreceptors WC1.1 (effector function) and WC1.2 (regulatory function). Furthermore, naive B cells were classified based on the expression IgM receptor, and activation state was determined based on expression of CD21 and CD32, 2 receptors with opposing signals involved in B cell activation in early life. Additional colon biopsy samples were used for 16S sequencing, and microbial diversity data are reported. At birth, γδ T cells were the most abundant lymphocyte population in blood, accounting for 58.5% of the lymphocyte pool, after which the proportions of these cells declined to 38.2% after weaning. The proportion of γδ T cells expressing WC1.1 decreased by 50% from d 2 to d 28, whereas no change was observed in the expression of WC1.2. In the colon, there was a 50% increase of γδ T cells after weaning and the proportion of WC1.2+ γδ T cells doubled from d 28 to 42. The proportion of IgM+ B lymphocytes in blood increased from 23.6% at birth to 30% after weaning, were the proportion of B cells expressing CD21 increased by 25%, while the proportion of B cells expressing CD32 decreased by 30%. While no changes were observed for the overall proportion of IgM+ B lymphocytes in the colon, there was a 6-fold increase in the proportion of CD21+ B cells from pre- (d 28) to postweaning (d 42). Microbial diversity increased from d 2 of life to 28 and declined abruptly after weaning. The reduction in microbial diversity during weaning was negatively correlated with the increase in all γδ T cell subsets and CD21+ B cells. These data suggest that developmental adaptations after birth coordinate expansion of γδ T cells to provide early systemic protection, as well as to steer immune tolerance, while B cells mature over time. Additionally, the increase of colonic γδ T cells on d 42 suggests a protective role of these cells during weaning.
Collapse
Affiliation(s)
- L R Cangiano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - K Lamers
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M F Olmeda
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - C Villot
- Lallemand Animal Nutrition, F-31702 Blagnac, France, and Milwaukee, WI 53218
| | - D C Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph ON, N1G-2W1 Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph ON, N1G-2W1 Canada
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
7
|
Du Y, Gao Y, Hu M, Hou J, Yang L, Wang X, Du W, Liu J, Xu Q. Colonization and development of the gut microbiome in calves. J Anim Sci Biotechnol 2023; 14:46. [PMID: 37031166 PMCID: PMC10082981 DOI: 10.1186/s40104-023-00856-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/16/2023] [Indexed: 04/10/2023] Open
Abstract
Colonization and development of the gut microbiome are crucial for the growth and health of calves. In this review, we summarized the colonization, beneficial nutrition, immune function of gut microbiota, function of the gut barrier, and the evolution of core microbiota in the gut of calves of different ages. Homeostasis of gut microbiome is beneficial for nutritional and immune system development of calves. Disruption of the gut microbiome leads to digestive diseases in calves, such as diarrhea and intestinal inflammation. Microbiota already exists in the gut of calf fetuses, and the colonization of microbiota continues to change dynamically under the influence of various factors, which include probiotics, diet, age, and genotype. Colonization depends on the interaction between the gut microbiota and the immune system of calves. The abundance and diversity of these commensal microbiota stabilize and play a critical role in the health of calves.
Collapse
Affiliation(s)
- Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ya Gao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiu Hou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linhai Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghuang Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianxin Liu
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
In Vitro Modulation of Rumen Fermentation by Microbiota from the Recombination of Rumen Fluid and Solid Phases. Microbiol Spectr 2023; 11:e0338722. [PMID: 36475888 PMCID: PMC9927485 DOI: 10.1128/spectrum.03387-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rumen microbiota transplantation (RMT) can improve rumen fermentation and ruminant performance. However, due to the microbial distinction in the fluid and solid phases, the current understanding of their specific roles in RMT is insufficient. Thus, this study was conducted to determine the effects of the microbiota from the recombination of the rumen fluid and solid phases on in vitro fermentation. The rumen fresh fluid (FF) and fresh solid (FS) phases were collected, and FS was washed for the fresh solid washing solution (FW). The fractions of FF, FS, and FW were autoclaved to obtain autoclaved fluid (AF), solid (AS), and washing solution (AW). Then, these phases were recombined to form eight treatments: FFFS, FFAS, FFFW, FFAW, AFFS, AFAS, AFFW, and AFAW. After 24 h of fermentation, the gas production in AFFS, FFFS, and FFAS was significantly higher than that of other groups. AFAS and AFAW had significantly lower alpha diversity than did other groups. The solid phase was enriched with fiber-degrading bacteria, including Treponema, Succinivibrio, and Ruminococcus. The fluid phase was dominated by Prevotella, Christensenellaceae R-7 group, and Rikenellaceae RC9 gut group. The washing solution had more Ruminobacter, Lachnospiraceae, and Fibrobacter. Moreover, the double-autoclaved phases displayed increased abundances of harmful bacteria, as AFAS and AFAW had higher Streptococcus and Prevotellaceae YAB2003 group abundances. A network analysis showed that the signature microbiota in AFAS and AFAW were negatively associated with the keystone microbiota in the other groups. In summary, the recombination of the solid phase and the autoclaved fluid phase had the best in vitro fermentation result, which provided certain references for RMT. IMPORTANCE This is the first study to systematically evaluate the in vitro fermentation efficiency of diets by bacteria harvested and recombined from the fluid and solid phases of rumen contents, and it took into account the effect of washing the rumen solid phase. Using "reconstituted rumen content", this study confirmed that bacteria from different fractions of the rumen digesta resulted in different fermentation production of diets and found the characteristic bacteria in each phase of rumen contents. Our data reveal that the bacteria in the solid phase have more positive effects on the in vitro fermentation parameters, that the combination of the autoclaved fluid phase and the fresh solid phase have the most ideal fermentation effect, and that the autoclave process significantly influenced the microbial composition and increased the abundance of harmful bacteria. This study provides a landmark reference for the future use of rumen microbiota transplantation to improve animal feed utilization and growth performance.
Collapse
|
9
|
Robles-Rodríguez C, Muley VY, González-Dávalos ML, Shimada A, Varela-Echavarría A, Mora O. Microbial colonization dynamics of the postnatal digestive tract of Bos indicus calves. Anim Sci J 2023; 94:e13872. [PMID: 37666790 DOI: 10.1111/asj.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
The rumen and the jejunum of calves have distinct functional roles; the former is in the storage and fermentation of feed, and the latter is in transporting digesta to the ileum. It is unknown how nutrition changes the evolution of the microbiome of these organs after birth. We sequenced and characterized the entire microbiome of the rumen and the jejunum from Bos indicus calves of the Mexican Tropics to study their dynamics at Days 0, 7, 28, and 42 after birth. Operational taxonomic units (OTUs) belonging to 185 and 222 genera from 15 phylum were observed in the organs, respectively. The most abundant OTUs were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. We observed that proteobacterial species were outcompeted after the first week of life by Bacteroidetes and Firmicutes in the rumen and the jejunum, respectively. Moreover, Prevotella species were found to predominate in the rumen (36% of total OTUs), while the jejunum microbiome is composed of small proportions of several genera. Presumably, their high relative abundance assists in specialized functions and is more likely in fermentation since they are anaerobes. In summary, the rumen and the jejunum microbiomes were outcompeted by new microbiomes in a dynamic process that begins at birth.
Collapse
Affiliation(s)
- Carolina Robles-Rodríguez
- Posgrado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - María Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
10
|
Loor JJ, Elolimy AA. Immunometabolism in livestock: triggers and physiological role of transcription regulators, nutrients, and microbiota. Anim Front 2022; 12:13-22. [PMID: 36268165 PMCID: PMC9564998 DOI: 10.1093/af/vfac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Ahmed A Elolimy
- Department of Animal Production, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
11
|
Excretory-secretory products from the brown stomach worm, Teladorsagia circumcincta, exert antimicrobial activity in in vitro growth assays. Parasit Vectors 2022; 15:354. [PMID: 36184586 PMCID: PMC9528173 DOI: 10.1186/s13071-022-05443-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past decade, evidence has emerged of the ability of gastrointestinal (GI) helminth parasites to alter the composition of the host gut microbiome; however, the mechanism(s) underpinning such interactions remain unclear. In the current study, we (i) undertake proteomic analyses of the excretory-secretory products (ESPs), including secreted extracellular vesicles (EVs), of the 'brown stomach worm' Teladorsagia circumcincta, one of the major agents causing parasite gastroenteritis in temperate areas worldwide; (ii) conduct bioinformatic analyses to identify and characterise antimicrobial peptides (AMPs) with putative antimicrobial activity; and (iii) assess the bactericidal and/or bacteriostatic properties of T. circumcincta EVs, and whole and EV-depleted ESPs, using bacterial growth inhibition assays. METHODS Size-exclusion chromatography was applied to the isolation of EVs from whole T. circumcincta ESPs, followed by EV characterisation via nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of EVs and EV-depleted ESPs was conducted using liquid chromatography-tandem mass spectrometry, and prediction of putative AMPs was performed using available online tools. The antimicrobial activities of T. circumcincta EVs and of whole and EV-depleted ESPs against Escherichia coli were evaluated using bacterial growth inhibition assays. RESULTS Several molecules with putative antimicrobial activity were identified in both EVs and EV-depleted ESPs from adult T. circumcincta. Whilst exposure of E. coli to whole ESPs resulted in a significant reduction of colony-forming units over 3 h, bacterial growth was not reduced following exposure to worm EVs or EV-depleted ESPs. CONCLUSIONS Our data points towards a bactericidal and/or bacteriostatic function of T. circumcincta ESPs, likely mediated by molecules with antimicrobial activity.
Collapse
|
12
|
Kazlauskaite R, Cheaib B, Humble J, Heys C, Ijaz UZ, Connelly S, Sloan WT, Russell J, Martinez-Rubio L, Sweetman J, Kitts A, McGinnity P, Lyons P, Llewellyn MS. Deploying an In Vitro Gut Model to Assay the Impact of the Mannan-Oligosaccharide Prebiotic Bio-Mos on the Atlantic Salmon ( Salmo salar) Gut Microbiome. Microbiol Spectr 2022; 10:e0195321. [PMID: 35532227 PMCID: PMC9241627 DOI: 10.1128/spectrum.01953-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022] Open
Abstract
Alpha mannose-oligosaccharide (MOS) prebiotics are widely deployed in animal agriculture as immunomodulators as well as to enhance growth and gut health. Their mode of action is thought to be mediated through their impact on host microbial communities and their associated metabolism. Bio-Mos is a commercially available prebiotic currently used in the agri-feed industry, but studies show contrasting results of its effect on fish performance and feed efficiency. Thus, detailed studies are needed to investigate the effect of MOS supplements on the fish microbiome to enhance our understanding of the link between MOS and gut health. To assess Bio-Mos for potential use as a prebiotic growth promoter in salmonid aquaculture, we have modified an established Atlantic salmon in vitro gut model, SalmoSim, to evaluate its impact on the host microbial communities. The microbial communities obtained from ceca compartments from four adult farmed salmon were inoculated in biological triplicate reactors in SalmoSim. Prebiotic treatment was supplemented for 20 days, followed by a 6-day washout period. Inclusion of Bio-Mos in the media resulted in a significant increase in formate (P = 0.001), propionate (P = 0.037) and 3-methyl butanoic acid (P = 0.024) levels, correlated with increased abundances of several, principally, anaerobic microbial genera (Fusobacterium, Agarivorans, Pseudoalteromonas). DNA metabarcoding with the 16S rDNA marker confirmed a significant shift in microbial community composition in response to Bio-Mos supplementation with observed increase in lactic acid producing Carnobacterium. In conjunction with previous in vivo studies linking enhanced volatile fatty acid production alongside MOS supplementation to host growth and performance, our data suggest that Bio-Mos may be of value in salmonid production. Furthermore, our data highlights the potential role of in vitro gut models to complementin vivo trials of microbiome modulators. IMPORTANCE In this paper we report the results of the impact of a prebiotic (alpha-MOS supplementation) on microbial communities, using an in vitro simulator of the gut microbial environment of the Atlantic salmon. Our data suggest that Bio-Mos may be of value in salmonid production as it enhances volatile fatty acid production by the microbiota from salmon pyloric ceca and correlates with a significant shift in microbial community composition with observed increase in lactic acid producing Carnobacterium. In conjunction with previous in vivo studies linking enhanced volatile fatty acid production alongside MOS supplementation to host growth and performance, our data suggest that Bio-Mos may be of value in salmonid production. Furthermore, our data highlights the potential role of in vitro gut models to augment in vivo trials of microbiome modulators.
Collapse
Affiliation(s)
- Raminta Kazlauskaite
- Institute of Behaviour, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, Scotland
| | - Bachar Cheaib
- Institute of Behaviour, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, Scotland
| | - Joseph Humble
- Institute of Behaviour, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, Scotland
| | - Chloe Heys
- Institute of Behaviour, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, Scotland
| | | | | | | | - Julie Russell
- School of Engineering, University of Glasgow, Glasgow, Scotland
| | | | | | - Alex Kitts
- Institute of Behaviour, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, Scotland
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Marine Institute, Foras na Mara, Newport, Ireland
| | | | - Martin S. Llewellyn
- Institute of Behaviour, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
13
|
Liermann W, Wissing KL, Reyer H, Trakooljul N, Dannenberger D, Tröscher A, Hammon HM. Maternal Conjugated Linoleic Acid Supply in Combination With or Without Essential Fatty Acids During Late Pregnancy and Early Lactation: Investigations on Physico-Chemical Characteristics of the Jejunal Content and Jejunal Microbiota in Neonatal Calves. Front Vet Sci 2022; 9:839860. [PMID: 35411305 PMCID: PMC8994029 DOI: 10.3389/fvets.2022.839860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
Conjugated linoleic acids (CLAs) modulate the fatty acid composition in dairy cow milk, which represents the most important nutrient source of neonatal calves. In turn, dietary fatty acids are known to influence the gut microbiota. The current preliminary study investigated effects of a maternal fatty acid supplementation (MFAS) during transition period with coconut oil (CON, control), CLA (Lutalin®), or CLA + EFA (Lutalin® + essential fatty acids–linseed oil; safflower oil) on physico-chemical characteristics of jejunal content and microbiota of 5-day-old calves. MFAS of CLA + EFA increased α-linolenic, eicosapentaenoic, docosapentaenoic, and n-3 fatty acid proportions in jejunum compared to the other groups (P < 0.05). Proportions of n-6 and polyunsaturated fatty acids increased by MFAS of CLA + EFA compared to CON (P < 0.05). Most abundant phyla in the jejunum were Proteobacteria, Firmicutes, and Bacteroidota. CLA + EFA decreased the relative abundance of Diplorickettsiales (Proteobacteria) compared to CON and CLA (P < 0.05). CLA calves showed a lower abundance of Enterobacterales (Proteobacteria) compared to CON calves (P = 0.001). The abundance of Veillonellales-Selenomonadales and RF39 (Firmicutes) decreased in CLA + EFA calves compared to CON calves (P < 0.05). Bacteroidales (Bacteroidota) decreased in CLA + EFA calves compared to CLA calves (P < 0.05). The relative abundance of Cyanobacteria and Euryarchaeota decreased and the abundance of Chloroflexi increased in CLA + EFA calves compared to CON and CLA calves (P < 0.05). MFAS alters the fatty acid composition and microbial milieu in the intestinal content of neonatal calves due to their ability to modulate colostral fatty acid composition of dams.
Collapse
Affiliation(s)
- Wendy Liermann
- Institute of Nutritional Physiology "Oskar Kellner", Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Katrin Lena Wissing
- Institute of Nutritional Physiology "Oskar Kellner", Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Harald Michael Hammon
- Institute of Nutritional Physiology "Oskar Kellner", Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
14
|
Cristobal-Carballo O, McCoard SA, Cookson AL, Laven RA, Ganesh S, Lewis SJ, Muetzel S. Effect of Divergent Feeding Regimes During Early Life on the Rumen Microbiota in Calves. Front Microbiol 2021; 12:711040. [PMID: 34745024 PMCID: PMC8565576 DOI: 10.3389/fmicb.2021.711040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine whether divergent feeding regimes during the first 41 weeks of the life of a calf are associated with long-term changes in the rumen microbiota and the associated fermentation end-products. Twenty-four calves (9 ± 5 days of age) were arranged in a 2 × 2 factorial design with two divergent treatments across three dietary phases. In phase 1 (P01), calves were offered a low-milk volume/concentrate starter diet with early weaning (CO) or high-milk volume/pasture diet and late weaning (FO). In phase 2 (P02), calves from both groups were randomly allocated to either high-quality (HQ) or low-quality (LQ) pasture grazing groups. In phase 3 (P03), calves were randomly allocated to one of two grazing groups and offered the same pasture-only diet. During each dietary phase, methane (CH4) and hydrogen (H2) emissions and dry matter intake (DMI) were measured in respiration chambers, and rumen samples for the evaluation of microbiota and short-chain fatty acid (SCFA) characterizations were collected. In P01, CO calves had a higher solid feed intake but a lower CH4 yield (yCH4) and acetate:propionate ratio (A:P) compared with FO calves. The ruminal bacterial community had lower proportions of cellulolytic bacteria in CO than FO calves. The archaeal community was dominated by Methanobrevibacter boviskoreani in CO calves and by Mbb. gottschalkii in FO calves. These differences, however, did not persist into P02. Calves offered HQ pastures had greater DMI and lower A:P ratio than calves offered LQ pastures, but yCH4 was similar between groups. The cellulolytic bacteria had lower proportions in HQ than LQ calves. In all groups, the archaeal community was dominated by Mbb. gottschalkii. No treatment interactions were observed in P02. In P03, all calves had similar DMI, CH4 and H2 emissions, SCFA proportions, and microbial compositions, and no interactions with previous treatments were observed. These results indicate that the rumen microbiota and associated fermentation end-products are driven by the diet consumed at the time of sampling and that previous dietary interventions do not lead to a detectable long-term microbial imprint or changes in rumen function.
Collapse
Affiliation(s)
- Omar Cristobal-Carballo
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Sue A McCoard
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Adrian L Cookson
- Food System Integrity Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Richard A Laven
- School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Siva Ganesh
- Biostatistics Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Sarah J Lewis
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Stefan Muetzel
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| |
Collapse
|
15
|
Gebeyew K, Yang C, He Z, Tan Z. Low-protein diets supplemented with methionine and lysine alter the gut microbiota composition and improve the immune status of growing lambs. Appl Microbiol Biotechnol 2021; 105:8393-8410. [PMID: 34617138 DOI: 10.1007/s00253-021-11620-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Feeding low-protein (LP) diets with essential amino acids could be an effective strategy for ruminants from economic, health and environmental perspectives. This study was conducted to investigate the effects of rumen-protected methionine and lysine (RML) in the LP diet on growth performance, innate immunity, and gut health of growing lambs. After 15 days of adaption, sixty-three male Hulunbuir lambs aged approximately 4 months were allotted to three dietary groups and each group had three pens with seven lambs for 60 days. The dietary treatments were as follows: a normal protein diet (14.5% CP, positive control; NP), LP diet (12.5% CP, negative control; LP), and LP diet with RML (12.5% CP, LP + RML). Lambs fed with LP + RML diet showed improved villus architecture and gut barrier function than those fed with the other two diets. The mRNA expressions of interleukin-1β, tumor necrosis factor-α, interferon-γ, toll-like receptor-4, and myeloid differentiation primary response 88 were downregulated in most regions of the intestinal segments by feeding the LP + RML diet. Compared with the NP diet, feeding lambs with the LP diet increased the abundance of Candidatus_Saccharimonas in all regions of the intestinal tract and reversed by feeding the LP + RML diet. Lambs in the LP + RML diet group had lower abundance of Erysipelotrichaceae_UCG-009 and Clostridium_sensu_stricto_1 than those in the LP diet group. The results showed that supplementing RML in the LP diet exhibited beneficial effects on host immune function, intestinal mucosal integrity, and microbiota composition. KEY POINTS: • Adding methionine and lysine in a low-protein diet improve the intestinal mucosal growth and integrity. • Feeding a low-protein diet with methionine and lysine enhance the innate immune status. • Adding methionine and lysine in a low-protein diet alter the intestinal microbiota composition.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- University of Chinese Academy of Science, Beijing, 100049, China.
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| |
Collapse
|
16
|
Fernández-Ciganda S, Fraga M, Zunino P. Probiotic Lactobacilli Administration Induces Changes in the Fecal Microbiota of Preweaned Dairy Calves. Probiotics Antimicrob Proteins 2021; 14:804-815. [PMID: 34390476 DOI: 10.1007/s12602-021-09834-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/06/2023]
Abstract
Early microbial colonization is a determinant factor in animal health, and probiotic administration has been demonstrated to modulate intestinal microbiota and promote health in dairy calves. The objective of this study was to evaluate changes in calves' fecal microbiota after the administration of two probiotic lactobacilli strains that had previously exhibited beneficial effects in calves' health in relation to neonatal calf diarrhea. An in vivo assay was performed with 30 newborn male Holstein calves that were divided into three groups. Two groups were orally administered with two different lactobacilli strains (Lactobacillus johnsonii TP1.6 or Limosilactobacillus reuteri TP1.3B), and the third was the control group. Calves (5 to 9 days old) were administered with freeze-dried bacteria once a day for 10 consecutive days. Feces samples were taken before the first administration (day 0) and then again on days 10 and 21, and the V4 region of the bacterial 16S ribosomal gene was sequenced with an Illumina MiSeq 250 paired-end platform. The administration of both strains significantly affected the total bacterial community composition, and the effect lasted for 11 days after the last dose. In particular, amplicon sequence variants related to Bifidobacterium and Akkermansia genera were significantly higher in both treated groups. Therefore, modulation of the intestinal microbiota is a potential mechanism of action behind the beneficial effects of these probiotic strains.
Collapse
Affiliation(s)
- Sofía Fernández-Ciganda
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay. .,Unidad de Investigación de Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA-LE), Colonia, Uruguay.
| | - Martín Fraga
- Unidad de Investigación de Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA-LE), Colonia, Uruguay
| | - Pablo Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
17
|
Zhang Y, Choi SH, Nogoy KM, Liang S. Review: The development of the gastrointestinal tract microbiota and intervention in neonatal ruminants. Animal 2021; 15:100316. [PMID: 34293582 DOI: 10.1016/j.animal.2021.100316] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022] Open
Abstract
The complex microbiome colonizing the gastrointestinal tract (GIT) of ruminants plays an important role in the development of the immune system, nutrient absorption and metabolism. Hence, understanding GIT microbiota colonization in neonatal ruminants has positive impacts on host health and productivity. Microbes rapidly colonize the GIT after birth and gradually develop into a complex microbial community, which allows the possibility of GIT microbiome manipulation to enhance newborn health and growth and perhaps induce lasting effects in adult ruminants. This paper reviews recent advances in understanding how host-microbiome interactions affect the GIT development and health of neonatal ruminants. Following initial GIT microbiome colonization, continuous exposure to host-specific microorganisms is necessary for GIT development and immune system maturation. Furthermore, the early GIT microbial community structure is significantly affected by early life events, such as maternal microbiota exposure, dietary changes, age and the addition of prebiotics, probiotics and synbiotics, supporting the idea of microbial programming in early life. However, the time window in which interventions can optimally improve production and reduce gastrointestinal disease as well as the role of key host-specific microbiota constituents and host immune regulation requires further study.
Collapse
Affiliation(s)
- Y Zhang
- Department of Animal Science, College of Animal Sciences, Jilin University, Changchun 130062, China; Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| | - S H Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| | - K M Nogoy
- Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| | - S Liang
- Department of Animal Science, College of Animal Sciences, Jilin University, Changchun 130062, China.
| |
Collapse
|
18
|
Microbial colonization of the gastrointestinal tract of dairy calves - a review of its importance and relationship to health and performance. Anim Health Res Rev 2021; 22:97-108. [PMID: 34132191 DOI: 10.1017/s1466252321000062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review aims to explain how microbial colonization of the gastrointestinal tract (GIT) in young dairy calves is related to health and, consequently, to the performance of these animals. The review addresses everything from the fundamental aspects of microbial colonization to the current understanding about the microbiota manipulation to improve performance in adult animals. The ruminal microbiota is the most studied, mainly due to the high interest in the fermentative aspects, the production of short-chain fatty acids, and microbial proteins, and its effects on animal production. However, in recent years, the intestinal microbiota has gained space between studies, mainly due to the relationship to the host health and how it affects performance. Understanding how the GIT's microbiota looks like and how it is colonized may allow future studies to predict the best timing for dietary interventions as a way to manipulate it and, consequently, improve the health and performance of young ruminants.
Collapse
|
19
|
Amin N, Seifert J. Dynamic progression of the calf's microbiome and its influence on host health. Comput Struct Biotechnol J 2021; 19:989-1001. [PMID: 33613865 PMCID: PMC7868804 DOI: 10.1016/j.csbj.2021.01.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The first year of a calf's life is a critical phase as its digestive system and immunity are underdeveloped. A high level of stress caused by separation from mothers, transportation, antibiotic treatments, dietary shifts, and weaning can have long-lasting health effects, which can reduce future production parameters, such as milk yield and reproduction, or even increase the mortality of calves. The early succession of microbes throughout the gastrointestinal tract of neonatal calves follows a sequential pattern of colonisation and is greatly influenced by their physiological state, age, diet, and environmental factors; this leads to the establishment of region- and site-specific microbial communities. This review summarises the current information on the various potential factors that may affect the early life microbial colonisation pattern in the gastrointestinal tract of calves. The possible role of host-microbe interactions in the development and maturation of host gut, immune system, and health are described. Additionally, the possibility of improving the health of calves through gut microbiome modulation and using antimicrobial alternatives is discussed. Finally, the trends, challenges, and limitations of the current research are summarised and prospective directions for future studies are highlighted.
Collapse
Affiliation(s)
- Nida Amin
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
20
|
Multiplexed Competition in a Synthetic Squid Light Organ Microbiome Using Barcode-Tagged Gene Deletions. mSystems 2020; 5:5/6/e00846-20. [PMID: 33323415 PMCID: PMC7771539 DOI: 10.1128/msystems.00846-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microbes play essential roles in the health and development of their hosts. However, the complexity of animal microbiomes and general genetic intractability of their symbionts have made it difficult to study the coevolved mechanisms for establishing and maintaining specificity at the microbe-animal host interface. Beneficial symbioses between microbes and their eukaryotic hosts are ubiquitous and have widespread impacts on host health and development. The binary symbiosis between the bioluminescent bacterium Vibrio fischeri and its squid host Euprymna scolopes serves as a model system to study molecular mechanisms at the microbe-animal interface. To identify colonization factors in this system, our lab previously conducted a global transposon insertion sequencing (INSeq) screen and identified over 300 putative novel squid colonization factors in V. fischeri. To pursue mechanistic studies on these candidate genes, we present an approach to quickly generate barcode-tagged gene deletions and perform high-throughput squid competition experiments with detection of the proportion of each strain in the mixture by barcode sequencing (BarSeq). Our deletion approach improves on previous techniques based on splicing by overlap extension PCR (SOE-PCR) and tfoX-based natural transformation by incorporating a randomized barcode that results in unique DNA sequences within each deletion scar. Amplicon sequencing of the pool of barcoded strains before and after colonization faithfully reports on known colonization factors and provides increased sensitivity over colony counting methods. BarSeq enables rapid and sensitive characterization of the molecular factors involved in establishing the Vibrio-squid symbiosis and provides a valuable tool to interrogate the molecular dialogue at microbe-animal host interfaces. IMPORTANCE Beneficial microbes play essential roles in the health and development of their hosts. However, the complexity of animal microbiomes and general genetic intractability of their symbionts have made it difficult to study the coevolved mechanisms for establishing and maintaining specificity at the microbe-animal host interface. Model symbioses are therefore invaluable for studying the mechanisms of beneficial microbe-host interactions. Here, we present a combined barcode-tagged deletion and BarSeq approach to interrogate the molecular dialogue that ensures specific and reproducible colonization of the Hawaiian bobtail squid by Vibrio fischeri. The ability to precisely manipulate the bacterial genome, combined with multiplex colonization assays, will accelerate the use of this valuable model system for mechanistic studies of how environmental microbes—both beneficial and pathogenic—colonize specific animal hosts.
Collapse
|
21
|
Guzman CE, Wood JL, Egidi E, White-Monsant AC, Semenec L, Grommen SVH, Hill-Yardin EL, De Groef B, Franks AE. A pioneer calf foetus microbiome. Sci Rep 2020; 10:17712. [PMID: 33077862 PMCID: PMC7572361 DOI: 10.1038/s41598-020-74677-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Foetus sterility until parturition is under debate due to reports of microorganisms in the foetal environment and meconium. Sufficient controls to overcome sample contamination and provide direct evidence of microorganism viability in the pre-rectal gastrointestinal tract (GIT) have been lacking. We conducted molecular and culture-based analyses to investigate the presence of a microbiome in the foetal GIT of calves at 5, 6 and 7 months gestation, while controlling for contamination. The 5 components of the GIT (ruminal fluid, ruminal tissue, caecal fluid, caecal tissue and meconium) and amniotic fluid were found to contain a pioneer microbiome of distinct bacterial and archaeal communities. Bacterial and archaeal richness varied between GIT components. The dominant bacterial phyla in amniotic fluid differed to those in ruminal and caecal fluids and meconium. The lowest bacterial and archaeal abundances were associated with ruminal tissues. Viable bacteria unique to the ruminal fluids, which were not found in the controls from 5, 6 and 7 months gestation, were cultured, subcultured, sequenced and identified. We report that the foetal GIT is not sterile but is spatially colonised before birth by a pioneer microbiome.
Collapse
Affiliation(s)
- Cesar E Guzman
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jennifer L Wood
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia.,Centre for Future Landscapes, La Trobe University, Melbourne, VIC, 3086, Australia.,Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Eleonora Egidi
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia.,Centre for Future Landscapes, La Trobe University, Melbourne, VIC, 3086, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Alison C White-Monsant
- Department of Animal, Plant and Soil Sciences, Centre for Agribiosciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Lucie Semenec
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sylvia V H Grommen
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, Clements Drive, Bundoora, VIC, 3083, Australia
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia. .,Centre for Future Landscapes, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
22
|
Xue Y, Lin L, Hu F, Zhu W, Mao S. Disruption of ruminal homeostasis by malnutrition involved in systemic ruminal microbiota-host interactions in a pregnant sheep model. MICROBIOME 2020; 8:138. [PMID: 32972462 PMCID: PMC7517653 DOI: 10.1186/s40168-020-00916-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/01/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Undernutrition is a prevalent and spontaneous condition in animal production which always affects microbiota-host interaction in gastrointestinal tract. However, how undernutrition affects crosstalk homeostasis is largely unknown. Here, we discover how undernutrition affects microbial profiles and subsequently how microbial metabolism affects the signal transduction and tissue renewal in ruminal epithelium, clarifying the detrimental effect of undernutrition on ruminal homeostasis in a pregnant sheep model. RESULTS Sixteen pregnant ewes (115 days of gestation) were randomly and equally assigned to the control (CON) and severe feed restriction (SFR) groups. Ewes on SFR treatment were restricted to a 30% level of ad libitum feed intake while the controls were fed normally. After 15 days, all ewes were slaughtered to collect ruminal digesta for 16S rRNA gene and metagenomic sequencing and ruminal epithelium for transcriptome sequencing. Results showed that SFR diminished the levels of ruminal volatile fatty acids and microbial proteins and repressed the length, width, and surface area of ruminal papillae. The 16S rRNA gene analysis indicated that SFR altered the relative abundance of ruminal bacterial community, showing decreased bacteria about saccharide degradation (Saccharofermentans and Ruminococcus) and propionate genesis (Succiniclasticum) but increased butyrate producers (Pseudobutyrivibrio and Papillibacter). Metagenome analysis displayed that genes related to amino acid metabolism, acetate genesis, and succinate-pathway propionate production were downregulated upon SFR, while genes involved in butyrate and methane genesis and acrylate-pathway propionate production were upregulated. Transcriptome and real-time PCR analysis of ruminal epithelium showed that downregulated collagen synthesis upon SFR lowered extracellular matrix-receptor interaction, inactivated JAK3-STAT2 signaling pathway, and inhibited DNA replication and cell cycle. CONCLUSIONS Generally, undernutrition altered rumen bacterial community and function profile to decrease ruminal energy retention, promoted epithelial glucose and fatty acid catabolism to elevate energy supply, and inhibited the proliferation of ruminal epithelial cells. These findings provide the first insight into the systemic microbiota-host interactions that are involved in disrupting the ruminal homeostasis under a malnutrition pattern. Video Abstract.
Collapse
Affiliation(s)
- Yanfeng Xue
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Limei Lin
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fan Hu
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyun Zhu
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shengyong Mao
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
23
|
Bronzo V, Lopreiato V, Riva F, Amadori M, Curone G, Addis MF, Cremonesi P, Moroni P, Trevisi E, Castiglioni B. The Role of Innate Immune Response and Microbiome in Resilience of Dairy Cattle to Disease: The Mastitis Model. Animals (Basel) 2020; 10:E1397. [PMID: 32796642 PMCID: PMC7459693 DOI: 10.3390/ani10081397] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
Animal health is affected by many factors such as metabolic stress, the immune system, and epidemiological features that interconnect. The immune system has evolved along with the phylogenetic evolution as a highly refined sensing and response system, poised to react against diverse infectious and non-infectious stressors for better survival and adaptation. It is now known that high genetic merit for milk yield is correlated with a defective control of the inflammatory response, underlying the occurrence of several production diseases. This is evident in the mastitis model where high-yielding dairy cows show high disease prevalence of the mammary gland with reduced effectiveness of the innate immune system and poor control over the inflammatory response to microbial agents. There is growing evidence of epigenetic effects on innate immunity genes underlying the response to common microbial agents. The aforementioned agents, along with other non-infectious stressors, can give rise to abnormal activation of the innate immune system, underlying serious disease conditions, and affecting milk yield. Furthermore, the microbiome also plays a role in shaping immune functions and disease resistance as a whole. Accordingly, proper modulation of the microbiome can be pivotal to successful disease control strategies. These strategies can benefit from a fundamental re-appraisal of native cattle breeds as models of disease resistance based on successful coping of both infectious and non-infectious stressors.
Collapse
Affiliation(s)
- Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Vincenzo Lopreiato
- Dipartimento di Scienze animali, Alimentazione e Nutrizione, Facoltà di Agraria, Scienze Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.L.); (E.T.)
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Massimo Amadori
- Rete Nazionale di Immunologia Veterinaria, 25125 Brescia, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Paola Cremonesi
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), 26900 Lodi, Italy; (P.C.); (B.C.)
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA
| | - Erminio Trevisi
- Dipartimento di Scienze animali, Alimentazione e Nutrizione, Facoltà di Agraria, Scienze Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.L.); (E.T.)
| | - Bianca Castiglioni
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), 26900 Lodi, Italy; (P.C.); (B.C.)
| |
Collapse
|
24
|
Holman DB, Gzyl KE. A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiol Ecol 2020; 95:5497297. [PMID: 31116403 DOI: 10.1093/femsec/fiz072] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023] Open
Abstract
The bovine gastrointestinal (GI) tract microbiota has important influences on animal health and production. Presently, a large number of studies have used high-throughput sequencing of the archaeal and bacteria 16S rRNA gene to characterize these microbiota under various experimental parameters. By aggregating publically available archaeal and bacterial 16S rRNA gene datasets from 52 studies we were able to determine taxa that are common to nearly all microbiota samples from the bovine GI tract as well as taxa that are strongly linked to either the rumen or feces. The methanogenic genera Methanobrevibacter and Methanosphaera were identified in nearly all fecal and rumen samples (> 99.1%), as were the bacterial genera Prevotella and Ruminococcus (≥ 92.9%). Bacterial genera such as Alistipes, Bacteroides, Clostridium, Faecalibacterium and Escherichia/Shigella were associated with feces and Fibrobacter, Prevotella, Ruminococcus and Succiniclasticum with the rumen. As expected, individual study strongly affected the bacterial community structure, however, fecal and rumen samples did appear separated from each other. This meta-analysis provides the first comparison of high-throughput sequencing 16S rRNA gene datasets generated from the bovine GI tract by multiple studies and may serve as a foundation for improving future microbial community research with cattle.
Collapse
Affiliation(s)
- Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB, Canada, T4L 1W1
| | - Katherine E Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB, Canada, T4L 1W1
| |
Collapse
|
25
|
Zhang Y, Cheng J, Zheng N, Zhang Y, Jin D. Different milk replacers alter growth performance and rumen bacterial diversity of dairy bull calves. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Maturation of the Goat Rumen Microbiota Involves Three Stages of Microbial Colonization. Animals (Basel) 2019; 9:ani9121028. [PMID: 31775375 PMCID: PMC6941170 DOI: 10.3390/ani9121028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Considerable attention has recently been focused on the rumen microbiome, which has been implicated in regulating a ruminant’s nutrient metabolism. From birth onwards, the colonization of the rumen microbial community is thus of crucial importance for growth and fiber digestion of goats. In this study, we have provided details of the progression of changes and colonization of ruminal bacteria and fungi before weaning. We have also predicted the molecular functions of the bacterial microbiota using CowPi. Our finding confirmed that maturation of the goat rumen microbiota involves three stages of core microbial colonization. The study of rumen microbial of young ruminants will benefit the optimization of feeding strategies to promote the development and digestion of a healthy rumen microbiota in later life. Abstract With increasing age, the rumen microbiota of new-born ruminants become central in the translation of fibrous feed substances into essential nutrients. However, the colonization process of the microbial community (especially fungal community) remains poorly understood in ruminants at pre-weaning stages. In this study, the rumen bacterial and fungal colonization processes were investigated in goats at eight stages using amplicon sequencing. For bacteria, we found 36 common core genera at D0, D3, D14, D28, and D56, including mainly Bacillus, Alloprevotella, Bacteroides, Prevotella_1, Lactococcus, and Ruminococcaceae_NK4A214. Firmicutes was the dominant phylum among the total microbiota in newborn goat kids (prior to nursing), while Bacillus, Lactococcus, and Pseudomonas were predominant genera. Interestingly, the proportion of Bacillus was as high as 55% in newborn animals. After milk nursing, the predominant phylum changed to Bacteroidetes, while the proportion of Bacillus and Lactobacillus was very low. CowPi was used to predict the functional gene pathways and we found increases in the abundance of genes associated with amino acid related enzymes, DNA repair and recombination proteins, aminoacyl tRNA biosynthesis, and peptidases after D3. With regard to fungi, we found that there were 51 common genera at day 0 (D0), D3, D14, D28, and D56, including mainly Cryptococcus, Aspergillus, and Caecomyces. Aspergillus occupied approximately 47% at day 0, but then it decreased from day 3 to day 14. This study indicates that the core microbes of rumen emerged shortly after birth, but the abundance was very different from the core genus of the adult rumen. In addition, we also report a detailed scheme of the bacterial and fungal colonization process in rumens and propose three distinct stages during the rumen colonization process in pre-weaning goats, which will offer a reference for the development of milk substitutes for small ruminants.
Collapse
|
27
|
Abstract
This article discusses key concepts important for mucosal immunity. The mucosa is the largest immune organ of the body. The mucosal barrier (the tight junctions and the "kill zone") along with the mucosa epithelial cells maintaining an anti-inflammatory state are essential for the mucosal firewall. The microbiome (the microorganisms that are in the gastrointestinal, respiratory, and reproductive tract) is essential for immune development, homeostasis, immune response, and maximizing animal productivity. Mucosal vaccination provides an opportunity to protect animals from most infectious diseases because oral, gastrointestinal, respiratory, and reproductive mucosa are the main portals of entry for infectious disease.
Collapse
Affiliation(s)
- Christopher Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, PO Box 2175, SAR Room 125, North Campus Drive, Brookings, SD 57007, USA.
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
28
|
Li Z, Si H, Nan W, Wang X, Zhang T, Li G. Bacterial community and metabolome shifts in the cecum and colon of captive sika deer (Cervus nippon) from birth to post weaning. FEMS Microbiol Lett 2019; 366:5289407. [PMID: 30649337 DOI: 10.1093/femsle/fnz010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Ruminant productivity is associated with the gastrointestinal tract bacterial community, which matures progressively with animal growth. However, knowledge of the bacteriome and metabolome dynamics in cecum and colon during the early lives of neonatal ruminants is limited. Thus, we examined the bacteriome and metabolomes of the cecum and colon in neonatal sika deer at days 1, 42 and 70. The bacterial diversity and richness in the cecum and colon increased with age, and the bacterial community significantly changed across three time points. For cecum and colon, the proportions of Bacteroides spp., Escherichia-Shigella, Clostridium sensu stricto 1, Lachnoclostridium spp. and Lactobacillus spp. were predominated at day 1 and decreased with age, while the proportions of Ruminococcaceae UCG 005, Ruminococcaceae UCG 010, Rikenellaceae RC9 and Prevotellaceae UCG 003 were predominated at days 42 and 70 and increased with age. The concentrations of creatine and serine were significantly decreased, whereas the concentrations of total short-chain volatile fatty acids, pelargonic acid and leucine were increased in both the cecum and colon during development. These data document the development of the bacterial community and the metabolites in the cecum and colon of sika deer, and suggest a possible importance of ecology niche on gut development.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun 130112, China
| | - Huazhe Si
- Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun 130112, China
| | - Weixiao Nan
- Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun 130112, China
| | - Xiaoxu Wang
- Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun 130112, China
| | - Ting Zhang
- Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun 130112, China
| | - Guangyu Li
- Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun 130112, China
| |
Collapse
|
29
|
Ricci S, Sandfort R, Pinior B, Mann E, Wetzels SU, Stalder G. Impact of supplemental winter feeding on ruminal microbiota of roe deer Capreolus capreolus. WILDLIFE BIOLOGY 2019. [DOI: 10.2981/wlb.00572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sara Ricci
- S. Ricci and G. Stalder ✉ , Res. Inst. of Wildlife Ecology, Dept of Interdisciplinary Life Sciences, Univ. of Veterinary Medicine, Austria, Savoyenstraße 1, AU-1160 Vienna, Austria. SR also at: Univ. of Camerino, Ca
| | - Robin Sandfort
- R. Sandfort, Inst. of Wildlife Biology and Game Management, Univ. of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Beate Pinior
- B. Pinior, Inst. for Veterinary Public Health, Dept for Farm Animals and Veterinary Public Health, Univ. of Veterinary Medicine, Vienna, Austria
| | - Evelyne Mann
- E. Mann and S. U. Wetzels, Inst. of Milk Hygiene, Milk Technology and Food Science, Dept for Farm Animal and Public Health in Veterinary Medicine, Univ. of Veterinary Medicine, Vienna, Austria
| | - Stefanie U. Wetzels
- E. Mann and S. U. Wetzels, Inst. of Milk Hygiene, Milk Technology and Food Science, Dept for Farm Animal and Public Health in Veterinary Medicine, Univ. of Veterinary Medicine, Vienna, Austria
| | - Gabrielle Stalder
- S. Ricci and G. Stalder ✉ , Res. Inst. of Wildlife Ecology, Dept of Interdisciplinary Life Sciences, Univ. of Veterinary Medicine, Austria, Savoyenstraße 1, AU-1160 Vienna, Austria. SR also at: Univ. of Camerino, Ca
| |
Collapse
|
30
|
Dynamic Variations in Fecal Bacterial Community and Fermentation Profile of Holstein Steers in Response to Three Stepwise Density Diets. Animals (Basel) 2019; 9:ani9080560. [PMID: 31443265 PMCID: PMC6719243 DOI: 10.3390/ani9080560] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The gastrointestinal microbial ecosystem of cattle impacts their health and productivity. Collection of fecal samples provides a non-invasive and practicable way to explore the relationships between fecal microbiota and host productivity or health. Fecal bacteria are influenced by diet, feeding regime, animal age, and health status. However, dynamic variations in the fecal fermentation profile and microbiota composition of finishing steers in response to variable diets are limited. In the current study, we conducted an 11-month tracking investigation to uncover the dynamic variations in fecal fermentation profile and bacterial community in steers fed three stepwise density diets. We found that fecal bacterial diversity decreased as dietary density increased and as the fattening phase continued. Our results revealed that fecal organic acids and bacterial composition were influenced by diet and fattening period. Our results also indicated that time-dependent variations of fecal fermentation profile and microbiota composition exist in the long-term fattening of steers in addition to diet stimulation. This study will be beneficial to reducing fecal contamination from the origin by optimizing diet and fattening time. Abstract The objective of this study was to track the dynamic variations in fecal bacterial composition and fermentation profile of finishing steers in response to three stepwise diets varied in energy and protein density. A total of 18 Holstein steers were divided into three groups in such a way that each group contained six animals and received one of three stepwise dietary treatments. Dietary treatments were C = standard energy and protein diet, H = high energy and protein diet, and L = low energy and protein diet. Animals were fattened for 11 months with a three-phase fattening strategy. Fecal samples were collected to evaluate the dynamics of fecal fermentation and bacterial composition in response to dietary treatments and fattening phases using 16S rRNA gene sequencing. Fecal acetate, propionate, and butyrate increased with increasing density of diet and as the fattening phase continued. The relative abundances of Firmicutes and Bacteroidetes dominated and showed 56.19% and 33.58%, respectively. Higher dietary density decreased the fecal bacterial diversity, Firmicutes to Bacteroidetes ratio, and the relative abundances of Ruminococcaceae_UCG-005, Rikenellaceae_RC9_gut_group, and Bacteroides, whereas higher dietary density increased the abundance of Prevotella_9. Our results indicated that both fecal fermentation profile and bacterial composition share a time-dependent variation in response to different dietary densities. This knowledge highlights that both diet and fattening phase impact fecal fermentation profile and bacterial composition, and may provide insight into strategies to reduce fecal contamination from the origin by optimizing diet and fattening time.
Collapse
|
31
|
Clemmons BA, Martino C, Schneider LG, Lefler J, Embree MM, Myer PR. Temporal Stability of the Ruminal Bacterial Communities in Beef Steers. Sci Rep 2019; 9:9522. [PMID: 31266992 PMCID: PMC6606625 DOI: 10.1038/s41598-019-45995-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/21/2019] [Indexed: 01/17/2023] Open
Abstract
Nutritional studies involving ruminants have traditionally relied on relatively short transition or wash-out periods between dietary treatments, typically two to four weeks. However, little is known about adequate adaptation periods required to reach stabilization of the rumen microbiome that could provide more accurate results from nutritional studies in ruminants. This study determined the rumen bacterial communities and rumen environment parameters over ten weeks following transition from a forage-based to concentrate-based diet. Several α-diversity metrics, including observed OTUs and Simpson’s Evenness fluctuated throughout the trial, but were typically either greatest (observed OTUs) or lowest (Simpson’s) at week 5 of the trial contrasted from weeks 1 and 10 (P < 0.05). At week 4, several orders associated with the shift to the final bacterial community composition, including Pasteurellales, Aeromonadales, and Bacteroidales. At week 5, rumen pH was correlated with α-diversity (P = 0.005) and predictive of the rumen microbiome signature at week 10 (R2 = 0.48; P = 0.04). Rumen microbiome stability did not occur until approximately 9 weeks following adaptation to the diet and was associated with changes in specific bacterial populations and rumen environment. The results of this study suggest that adaptation and wash-out periods must be re-evaluated in order to accommodate necessary rumen microbiome acclimation.
Collapse
Affiliation(s)
- Brooke A Clemmons
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | | | - Liesel G Schneider
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | | | | | - Phillip R Myer
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
32
|
Cunningham HC, Austin KJ, Cammack KM. Influence of maternal factors on the rumen microbiome and subsequent host performance. Transl Anim Sci 2018; 2:S101-S105. [PMID: 32704752 PMCID: PMC7200922 DOI: 10.1093/tas/txy058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
| | | | - Kristi M Cammack
- West River Ag Center, South Dakota State University, Rapid City, SD
| |
Collapse
|
33
|
Ricaud K, Rey M, Plagnes-Juan E, Larroquet L, Even M, Quillet E, Skiba-Cassy S, Panserat S. Composition of Intestinal Microbiota in Two Lines of Rainbow Trout ( Oncorhynchus Mykiss) Divergently Selected for Muscle Fat Content. Open Microbiol J 2018; 12:308-320. [PMID: 30288186 PMCID: PMC6142665 DOI: 10.2174/1874285801812010308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background Recently, studies suggest that gut microbiota contributes to the development of obesity in mammals. In rainbow trout, little is known about the role of intestinal microbiota in host physiology. Objective The aim of this study was to investigate the link between intestinal microbiota and adiposity, by high-throughput 16S RNA gene based illumina Miseq sequencing in two rainbow trout lines divergently selected for muscle lipid content. Fish from these two lines of rainbow trout are known to have a differing lipid metabolism. Methods Samples from the two lines (L for lean and F for fat) were collected from Midgut (M) and Hindgut (H) in juvenile fish (18 months) to compare intestinal microbiota diversity. Results Whatever the lines and intestinal localisation, Proteobacteria, Firmicutes and Actinobacteria are the dominant phyla in the bacterial community of rainbow trout (at least 97%). The results indicate that richness and diversity indexes as well as bacterial composition are comparable between all groups even though 6 specific OTUs were identified in the intestinal microbiota of fish from the fat line and 2 OTUs were specific to the microbiota of fish from the lean line. Our work contributes to a better understanding in microbial diversity in intestinal microbiota of rainbow trout. Conclusion Altogether, our study indicates that no major modification of the intestinal microbiota is induced by selection for muscle lipid content and associated metabolic changes. Finally, we identified members of core microbiota in rainbow trout.
Collapse
Affiliation(s)
- Karine Ricaud
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Mickael Rey
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Elisabeth Plagnes-Juan
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Laurence Larroquet
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Maxime Even
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Edwige Quillet
- UMR 1313 INRA, AgroParisTech, Université Paris-Saclay, GABI, 78350 Jouy-en-Josas, France
| | - Sandrine Skiba-Cassy
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Stéphane Panserat
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| |
Collapse
|
34
|
Characterisation of the bacterial community in the gastrointestinal tracts of elk (Cervus canadensis). Antonie van Leeuwenhoek 2018; 112:225-235. [PMID: 30155662 DOI: 10.1007/s10482-018-1150-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
The resident bacteria of the gastrointestinal tract (GIT) and the behaviour of these microbes have been poorly characterised in elk as compared to other ruminant animal species such as sheep and cattle. In addition, most microbial community studies of deer gut have focused on rumen or faeces, while other parts of the GIT such as the small and large intestine have received little attention. To address this issue, the present study investigated the diversity of the GIT bacterial community in elk (Cervus canadensis) by 16S rRNA pyrosequencing analysis. Eight distinct GIT segments including the stomach (rumen, omasum, and abomasum), small intestine (duodenum and jejunum), and large intestine (cecum, colon, and rectum) obtained from four elks were examined. We found that bacterial richness and diversity were higher in the stomach and large intestine than in the small intestine (P < 0.05). A total of 733 genera belonging to 26 phyla were distributed throughout elk GITs, with Firmicutes, Bacteroidetes, and Proteobacteria identified as the predominant phyla. In addition, there was spatial heterogeneity in the composition, diversity, and species abundance of microbiota in the GIT (P < 0.0001). To the best of our knowledge, this is the first study to characterise bacterial communities from eight GIT regions of elk by 16S rRNA pyrosequencing.
Collapse
|
35
|
Lee SM, Kim N, Park JH, Nam RH, Yoon K, Lee DH. Comparative Analysis of Ileal and Cecal Microbiota in Aged Rats. J Cancer Prev 2018; 23:70-76. [PMID: 30003066 PMCID: PMC6037205 DOI: 10.15430/jcp.2018.23.2.70] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Background Gut microbiota contributes to intestinal and immune homeostasis through host-microbiota interactions. Distribution of the gut microbiota differs according to the location in the gastrointestinal tract. Although the microbiota properties change with age, evidence for the regional difference of gut microbiota has been restricted to the young. The aim of this study is to compare the gut microbiota between terminal ileum and cecum of old rats. Methods We analyzed gut microbiome of luminal contents from ileum and cecum of 74-week-old and 2-year-old rats (corresponding to 60-year and 80-year-old of human age) by metagenome sequencing of 16S rRNA. Results Inter-individual variation (beta diversity) of microbiota was higher in ileum than in cecum. Conversely, alpha diversity of microbiota composition was higher in cecum than in ileum. Lactobacillaceae were more abundant in ileum compared to cecum while Ruminococcaceae and Lachnospiraceae were more enriched in cecum. The proportions of Deltaproteobacteria were increased in cecal microbiota of 2-year-old rats compared to 74-week-old rats. Conclusions Major regional distinctions of microbiota between ileum and cecum of old rats appear consistent with those of young rats. Age-related alterations of gut microbiota in old rats seem to occur in minor compositions.
Collapse
Affiliation(s)
- Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kichul Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
36
|
Affiliation(s)
- Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, PO Box 2175, SAR Room 125, North Campus Drive, Brookings, SD 57007, USA.
| |
Collapse
|
37
|
Frutos J, Andrés S, Trevisi E, Yáñez-Ruiz DR, López S, Santos A, Giráldez FJ. Early Feed Restriction Programs Metabolic Disorders in Fattening Merino Lambs. Animals (Basel) 2018; 8:ani8060083. [PMID: 29857527 PMCID: PMC6025537 DOI: 10.3390/ani8060083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/26/2018] [Accepted: 05/26/2018] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Inadequate nutrition of lambs during early life may compromise their health status during their whole lifetime. The aim of this study was to investigate the long-term effects of milk restriction during the suckling period on biochemical, immunological, hepatic, and ruminal parameters of fattening lambs. The results obtained reveal that early feed restriction during the suckling period of merino lambs promotes systemic metabolic disorders during the fattening phase that are not related to ruminal acidosis occurrence. This information may contribute to design strategies to enhance the health status of lambs undergoing milk restriction due to low milk production (e.g., udder problems) or lack of lamb vitality. Abstract Early postnatal nutrition may have a significant subsequent impact on metabolic disorders during the entire lifespan of lambs. The aim of the present study was to describe the changes in biochemical, immunological, hepatic, and ruminal parameters of fattening lambs derived from early feed restriction during the suckling phase. Twenty-four merino lambs (average body weight, BW, 4.81 ± 0.256 kg) were used, 12 of them were milk-fed ad libitum (ADL) remaining permanently with their dams, whereas the other 12 lambs (restricted, RES) were subjected to milk restriction. After weaning, all the lambs were fed 35 g/kg BW per day of the same complete pelleted diet to ensure no differences between groups in dry matter intake (603 vs. 607 g/day for ADL and RES lambs, respectively, p = 0.703), and were slaughtered at a BW of 27 kg. Biochemical profiles revealed higher concentrations of ceruloplasmin and low-density lipoproteins, whereas insulin concentration was lower in the RES lambs compared to the ADL group. Liver thiobarbituric acid reactive substances were lower in the RES lambs. No significant differences in ruminal or blood immunological parameters were found. In conclusion, early feed restriction promoted metabolic disorders not related to ruminal acidosis occurrence, which can compromise the health status during the fattening period of merino lambs.
Collapse
Affiliation(s)
- Javier Frutos
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - Sonia Andrés
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - Erminio Trevisi
- Faculty of Agriculture, Food and Environmental Science, Institute of Zootechnics, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - David R Yáñez-Ruiz
- Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.
| | - Secundino López
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - Alba Santos
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - Francisco Javier Giráldez
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| |
Collapse
|
38
|
Early feed restriction of lambs modifies ileal epimural microbiota and affects immunity parameters during the fattening period. Animal 2018; 12:2115-2122. [PMID: 29679995 DOI: 10.1017/s1751731118000836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria firmly attached to the gastrointestinal epithelium during the pre-weaning phase may show a significant impact on nutrient processing, immunity parameters, health and feed efficiency of lambs during post-weaning phases. Thus, the aim of this study was to describe the differences in the ileal epimural microbiota (e.g. total bacteria, Prevotella spp., Bifidobacterium spp. and Lactobacillus spp.) of fattening lambs promoted by early feed restriction during the suckling phase trying to elucidate some of the underlying mechanisms behind changes in feed efficiency during the fattening period. A total of 24 Merino lambs (average BW 4.81±0.256 kg) were used, 12 of them (ad libitum, ADL) kept permanently in individual pens with their mothers, whereas the other 12 lambs were separated from their dams for 9 h each day to be exposed to milk restriction (RES). After weaning (BW=15 kg) all the animals were penned individually, offered the same complete pelleted diet (35 g/kg BW per day) and slaughtered at a BW of 27 kg. During the fattening period, reduced gain : feed ratio (0.320 v. 0.261, P<0.001) was observed for the RES group. Moreover, increments of Prevotella spp. were detected in the ileal epimural microbiota of RES lambs (P<0.05). There were also higher numbers of infiltrated lymphocytes (T and B cells) in the ileal lamina propria (P<0.05), a higher M-cell labelling intensity in ileal Peyer's patches domes (P<0.05) and a trend towards a thickening of the submucosa layer when compared with the ADL group (P=0.057). Some other immunological parameters, such as an increased immunoglobulin A (IgA) production (pg IgA/µg total protein) and increments in CD45+ cells were also observed in the ileum of RES group (P<0.05), whereas transforming growth factor β and toll-like receptor gene expression was reduced (P<0.05). In conclusion, early feed restriction during the suckling phase promoted changes in ileal epimural microbiota and several immunity parameters that could be related to differences in feed efficiency traits during the fattening period of Merino lambs.
Collapse
|
39
|
Bacterial Community Dynamics across the Gastrointestinal Tracts of Dairy Calves during Preweaning Development. Appl Environ Microbiol 2018; 84:AEM.02675-17. [PMID: 29475865 DOI: 10.1128/aem.02675-17] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/12/2018] [Indexed: 01/21/2023] Open
Abstract
Microbial communities play critical roles in the gastrointestinal tracts (GIT) of preruminant calves by influencing performance and health. However, little is known about the establishment of microbial communities in the calf GIT or their dynamics during development. In this study, next-generation sequencing was used to assess changes in the bacterial communities of the rumen, jejunum, cecum, and colon in 26 crossbred calves at four developmental stages (7, 28, 49, and 63 days old). Alpha diversity differed among GIT regions with the lowest diversity and evenness in the jejunum, whereas no changes in alpha diversity were observed across developmental stage. Beta diversity analysis showed both region and age effects, with low numbers of operational taxonomic units (OTUs) shared between regions within a given age group or between ages in a given region. Taxonomic analysis revealed that several taxa coexisted in the rumen, jejunum, cecum, and colon but that their abundances differed considerably by GIT region and age. As calves aged, we observed lower abundances of taxa such as Bacteroides, Parabacteroides, and Paraprevotella with higher abundances of Bulleidia and Succiniclasticum in the rumen. The jejunum also displayed taxonomic changes with increases in Clostridiaceae and Turicibacter taxa in older calves. In the lower gut, taxa such as Lactobacillus, Blautia, and Faecalibacterium decreased and S24-7, Paraprevotella, and Prevotella increased as calves aged. These data support a model whereby early and successive colonization by bacteria occurs across the GIT of calves and provides insights into the temporal dynamics of the GIT microbiota of dairy calves during preweaning development.IMPORTANCE The gastrointestinal tracts (GIT) of ruminants, such as dairy cows, house complex microbial communities that contribute to their overall health and support their ability to produce milk. For example, the rumen microbiota converts feed into usable nutrients, while the jejunal microbiota provides access to protein. Thus, establishing a properly functioning GIT microbiota in dairy calves is critical to their productivity as adult cows. However, little is known about the establishment, maintenance, and dynamics of the calf GIT microbiota in early life. In this study, we evaluated the bacterial communities in the rumen, jejunum, cecum, and colon in dairy calves across preweaning development and show that they are highly variable early on in life before transitioning to a stable community. Understanding the dairy calf GIT microbiota has implications for ensuring proper health during early life and will aid in efforts to develop strategies for improving downstream production.
Collapse
|
40
|
Cammack KM, Austin KJ, Lamberson WR, Conant GC, Cunningham HC. RUMINANT NUTRITION SYMPOSIUM: Tiny but mighty: the role of the rumen microbes in livestock production. J Anim Sci 2018; 96:752-770. [PMID: 29385535 PMCID: PMC6140983 DOI: 10.1093/jas/skx053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
The microbes inhabiting the rumen convert low-quality, fibrous, plant material into useable energy for the host ruminant. Consisting of bacteria, protozoa, fungi, archaea, and viruses, the rumen microbiome composes a sophisticated network of symbiosis essential to maintenance, immune function, and overall production efficiency of the host ruminant. Robert Hungate laid the foundation for rumen microbiome research. This area of research has expanded immensely with advances in methodology and technology that have not only improved the ability to describe microbes in taxonomic and density terms but also characterize populations of microbes, their functions, and their interactions with each other and the host. The interplay between the rumen microbiome and the host contributes to variation in many phenotypic traits expressed by the host animal. A better understanding of how the rumen microbiome influences host health and performance may lead to novel strategies and treatments for trait improvement. Furthermore, elucidation of maternal, genetic, and environmental factors that influence rumen microbiome establishment and development may provide novel insights into possible mechanisms for manipulating the rumen microbial composition to enhance long-term host health and performance. The potential for these tiny but mighty rumen microbes to play a role in improving livestock production is appreciated despite being relatively obscure.
Collapse
Affiliation(s)
- Kristi M Cammack
- Department of Animal Science and West River Ag Center, South Dakota State University, Rapid City, SD
| | | | | | - Gavin C Conant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | |
Collapse
|
41
|
Yeoman CJ, Ishaq SL, Bichi E, Olivo SK, Lowe J, Aldridge BM. Biogeographical Differences in the Influence of Maternal Microbial Sources on the Early Successional Development of the Bovine Neonatal Gastrointestinal tract. Sci Rep 2018; 8:3197. [PMID: 29453364 PMCID: PMC5816665 DOI: 10.1038/s41598-018-21440-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
The impact of maternal microbial influences on the early choreography of the neonatal calf microbiome were investigated. Luminal content and mucosal scraping samples were collected from ten locations in the calf gastrointestinal tract (GIT) over the first 21 days of life, along with postpartum maternal colostrum, udder skin, and vaginal scrapings. Microbiota were found to vary by anatomical location, between the lumen and mucosa at each GIT location, and differentially enriched for maternal vaginal, skin, and colostral microbiota. Most calf sample sites exhibited a gradual increase in α-diversity over the 21 days beginning the first few days after birth. The relative abundance of Firmicutes was greater in the proximal GIT, while Bacteroidetes were greater in the distal GIT. Proteobacteria exhibited greater relative abundances in mucosal scrapings relative to luminal content. Forty-six percent of calf luminal microbes and 41% of mucosal microbes were observed in at-least one maternal source, with the majority being shared with microbes on the skin of the udder. The vaginal microbiota were found to harbor and uniquely share many common and well-described fibrolytic rumen bacteria, as well as methanogenic archaea, potentially indicating a role for the vagina in populating the developing rumen and reticulum with microbes important to the nutrition of the adult animal.
Collapse
Affiliation(s)
- Carl J Yeoman
- Montana State University, Department of Animal and Range Science, Bozeman, MT, USA.
| | - Suzanne L Ishaq
- Montana State University, Department of Animal and Range Science, Bozeman, MT, USA
| | - Elena Bichi
- Integrated Food Animal Systems, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, USA
| | - Sarah K Olivo
- Montana State University, Department of Animal and Range Science, Bozeman, MT, USA
| | - James Lowe
- Integrated Food Animal Systems, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, USA
| | - Brian M Aldridge
- Integrated Food Animal Systems, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
42
|
Dias J, Marcondes MI, Noronha MF, Resende RT, Machado FS, Mantovani HC, Dill-McFarland KA, Suen G. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves. Front Microbiol 2017; 8:1553. [PMID: 28861065 PMCID: PMC5559706 DOI: 10.3389/fmicb.2017.01553] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023] Open
Abstract
At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative anaerobic fungal abundances did not change significantly in response to diet or age, likely due to high inter-animal variation and the low fiber content of starter concentrate. This study provides new insights into the colonization of archaea, bacteria, and anaerobic fungi communities in pre-ruminant calves that may be useful in designing strategies to promote colonization of target communities to improve functional development.
Collapse
Affiliation(s)
- Juliana Dias
- Department of Animal Science, Universidade Federal de ViçosaViçosa, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da EducaçãoBrasília, Brazil
| | - Marcos I Marcondes
- Department of Animal Science, Universidade Federal de ViçosaViçosa, Brazil
| | - Melline F Noronha
- Division of Microbial Resources, Research Centre for Chemistry, Biology and Agriculture, University of CampinasCampinas, Brazil
| | - Rafael T Resende
- Forestry Department, Universidade Federal de ViçosaViçosa, Brazil
| | | | | | | | - Garret Suen
- Department of Bacteriology, University of Wisconsin-MadisonMadison, WI, United States
| |
Collapse
|
43
|
Krueger LA, Beitz DC, Humphrey SB, Stabel JR. Gamma delta T cells are early responders to Mycobacterium avium ssp. paratuberculosis in colostrum-replete Holstein calves. J Dairy Sci 2016; 99:9040-9050. [PMID: 27614838 DOI: 10.3168/jds.2016-11144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022]
Abstract
Peripheral blood mononuclear cells (PBMC) and mesenteric node lymphocytes (MNL) were obtained from 30 calves that were assigned randomly at birth to 1 of 6 treatment groups with 5 calves per treatment in a 14-d study: (1) colostrum-deprived (CD), no vitamins; (2) colostrum-replacer (CR), no vitamins; (3) CR, vitamin A; (4) CR, vitamin D3; (5) CR, vitamin E; (6) CR, vitamins A, D3, E. Calves were injected with appropriate vitamin supplements and fed pasteurized whole milk (CD calves) or fractionated colostrum replacer (CR calves) at birth. Thereafter, all calves were fed pasteurized whole milk fortified with vitamins according to treatment group. Calves were orally inoculated with 108 cfu of Mycobacterium avium ssp. paratuberculosis (MAP) on d 1 and 3. The PBMC and MNL harvested on d 13 were analyzed by flow cytometry as fresh cells, after 3-d culture with phytohemagglutinin (PHA), and after 6-d culture with a whole-cell sonicate of MAP (MPS). Peripheral γδ T cells were a predominant lymphocyte subset in neonatal calves, with a decreased percentage noted in CD calves compared with CR calves. As well, CD25 expression was higher in γδ T cells compared with other cell subsets, regardless of treatment group. Stimulation of PBMC with PHA resulted in increased CD4+ and CD8+ subsets, whereas MNL response was dominated by expansion of B-cell subpopulations. Stimulation with PHA and MPS decreased the relative abundance of PBMC γδ T cells, but MNL γδ T cells increased upon stimulation with MPS. These results identify γδ T cells as key early responders to intracellular infection in neonatal calves and suggest that colostrum may be an important mediator of this response.
Collapse
Affiliation(s)
- L A Krueger
- Department of Animal Science, Iowa State University, Ames 50011; Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA 50010
| | - D C Beitz
- Department of Animal Science, Iowa State University, Ames 50011
| | - S B Humphrey
- Microscopy Services, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA 50010
| | - J R Stabel
- Department of Animal Science, Iowa State University, Ames 50011; Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA 50010.
| |
Collapse
|
44
|
Loor JJ, Vailati-Riboni M, McCann JC, Zhou Z, Bionaz M. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in livestock: Systems biology meets nutrition. J Anim Sci 2016; 93:5554-74. [PMID: 26641165 DOI: 10.2527/jas.2015-9225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The advent of high-throughput technologies to study an animal's genome, proteome, and metabolome (i.e., "omics" tools) constituted a setback to the use of reductionism in livestock research. More recent development of "next-generation sequencing" tools was instrumental in allowing in-depth studies of the microbiome in the rumen and other sections of the gastrointestinal tract. Omics, along with bioinformatics, constitutes the foundation of modern systems biology, a field of study widely used in model organisms (e.g., rodents, yeast, humans) to enhance understanding of the complex biological interactions occurring within cells and tissues at the gene, protein, and metabolite level. Application of systems biology concepts is ideal for the study of interactions between nutrition and physiological state with tissue and cell metabolism and function during key life stages of livestock species, including the transition from pregnancy to lactation, in utero development, or postnatal growth. Modern bioinformatic tools capable of discerning functional outcomes and biologically meaningful networks complement the ever-increasing ability to generate large molecular, microbial, and metabolite data sets. Simultaneous visualization of the complex intertissue adaptations to physiological state and nutrition can now be discerned. Studies to understand the linkages between the microbiome and the absorptive epithelium using the integrative approach are emerging. We present examples of new knowledge generated through the application of functional analyses of transcriptomic, proteomic, and metabolomic data sets encompassing nutritional management of dairy cows, pigs, and poultry. Published work to date underscores that the integrative approach across and within tissues may prove useful for fine-tuning nutritional management of livestock. An important goal during this process is to uncover key molecular players involved in the organismal adaptations to nutrition.
Collapse
|
45
|
O'Callaghan TF, Ross RP, Stanton C, Clarke G. The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domest Anim Endocrinol 2016; 56 Suppl:S44-55. [PMID: 27345323 DOI: 10.1016/j.domaniend.2016.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
The gut microbiome exerts a marked influence on host physiology, and manipulation of its composition has repeatedly been shown to influence host metabolism and body composition. This virtual endocrine organ also has a role in the regulation of the plasma concentrations of tryptophan, an essential amino acid and precursor to serotonin, a key neurotransmitter within both the enteric and central nervous systems. Control over the hypothalamic-pituitary-adrenal axis also appears to be under the influence of the gut microbiota. This is clear from studies in microbiota-deficient germ-free animals with exaggerated responses to psychological stress that can be normalized by monocolonization with certain bacterial species including Bifidobacterium infantis. Therapeutic targeting of the gut microbiota may thus be useful in treating or preventing stress-related microbiome-gut-brain axis disorders and metabolic diseases, much the same way as redirections of metabolopathies can be achieved through more traditional endocrine hormone-based interventions. Moreover, the implications of these findings need to be considered in the context of farm and domestic animal physiology, behavior, and food safety.
Collapse
Affiliation(s)
- T F O'Callaghan
- Department of Biosciences, Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Microbiology, University College Cork, Cork, Ireland
| | - R P Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland; College of Science Engineering and Food Science, University College Cork, Cork, Ireland
| | - C Stanton
- Department of Biosciences, Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - G Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland.
| |
Collapse
|
46
|
Steele MA, Penner GB, Chaucheyras-Durand F, Guan LL. Development and physiology of the rumen and the lower gut: Targets for improving gut health. J Dairy Sci 2016; 99:4955-4966. [DOI: 10.3168/jds.2015-10351] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/15/2016] [Indexed: 01/12/2023]
|
47
|
Raszek MM, Guan LL, Plastow GS. Use of Genomic Tools to Improve Cattle Health in the Context of Infectious Diseases. Front Genet 2016; 7:30. [PMID: 27014337 PMCID: PMC4780072 DOI: 10.3389/fgene.2016.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/18/2016] [Indexed: 12/15/2022] Open
Abstract
Although infectious diseases impose a heavy economic burden on the cattle industry, the etiology of many disorders that affect livestock is not fully elucidated, and effective countermeasures are often lacking. The main tools available until now have been vaccines, antibiotics and antiparasitic drugs. Although these have been very successful in some cases, the appearance of parasite and microbial resistance to these treatments is a cause of concern. Next-generation sequencing provides important opportunities to tackle problems associated with pathogenic illnesses. This review describes the rapid gains achieved to track disease progression, identify the pathogens involved, and map pathogen interactions with the host. Use of novel genomic tools subsequently aids in treatment development, as well as successful creation of breeding programs aimed toward less susceptible livestock. These may be important tools for mitigating the long term effects of combating infection and helping reduce the reliance on antibiotic treatment.
Collapse
Affiliation(s)
- Mikolaj M Raszek
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Le L Guan
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Graham S Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
48
|
Escherichia coli Population Structure and Antibiotic Resistance at a Buffalo/Cattle Interface in Southern Africa. Appl Environ Microbiol 2015; 82:1459-1467. [PMID: 26712551 DOI: 10.1128/aem.03771-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 01/18/2023] Open
Abstract
At a human/livestock/wildlife interface, Escherichia coli populations were used to assess the risk of bacterial and antibiotic resistance dissemination between hosts. We used phenotypic and genotypic characterization techniques to describe the structure and the level of antibiotic resistance of E. coli commensal populations and the resistant Enterobacteriaceae carriage of sympatric African buffalo (Syncerus caffer caffer) and cattle populations characterized by their contact patterns in the southern part of Hwange ecosystem in Zimbabwe. Our results (i) confirmed our assumption that buffalo and cattle share similar phylogroup profiles, dominated by B1 (44.5%) and E (29.0%) phylogroups, with some variability in A phylogroup presence (from 1.9 to 12%); (ii) identified a significant gradient of antibiotic resistance from isolated buffalo to buffalo in contact with cattle and cattle populations expressed as the Murray score among Enterobacteriaceae (0.146, 0.258, and 0.340, respectively) and as the presence of tetracycline-, trimethoprim-, and amoxicillin-resistant subdominant E. coli strains (0, 5.7, and 38%, respectively); (iii) evidenced the dissemination of tetracycline, trimethoprim, and amoxicillin resistance genes (tet, dfrA, and blaTEM-1) in 26 isolated subdominant E. coli strains between nearby buffalo and cattle populations, that led us (iv) to hypothesize the role of the human/animal interface in the dissemination of genetic material from human to cattle and toward wildlife. The study of antibiotic resistance dissemination in multihost systems and at anthropized/natural interface is necessary to better understand and mitigate its multiple threats. These results also contribute to attempts aiming at using E. coli as a tool for the identification of pathogen transmission pathway in multihost systems.
Collapse
|
49
|
Gruse J, Görs S, Tuchscherer A, Otten W, Weitzel JM, Metges CC, Wolffram S, Hammon HM. The Effects of Oral Quercetin Supplementation on Splanchnic Glucose Metabolism in 1-Week-Old Calves Depend on Diet after Birth. J Nutr 2015; 145:2486-95. [PMID: 26400967 DOI: 10.3945/jn.115.218271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inadequate colostrum supply results in insufficient intake of macronutrients and bioactive factors, thereby impairing gastrointestinal development and the maturation of glucose metabolism in neonatal calves. The flavonoid quercetin has been shown to have health-promoting properties, including effects in diabetic animals. However, quercetin interacts with intestinal glucose absorption and might therefore exert negative effects in neonates. OBJECTIVE We evaluated the interaction between neonatal diet and quercetin feeding on splanchnic glucose metabolism in neonatal calves. METHODS Calves (n = 28) were assigned to 4 groups and fed either colostrum or a milk-based formula on days 1 and 2 and supplemented daily with 148 μmol quercetin aglycone/kg body weight [colostrum with quercetin (CQ+)/formula with quercetin (FQ+)] or without this substance [colostrum without quercetin (CQ-)/formula with quercetin (FQ-)] from days 2-8. From day 3 onward, all calves received milk replacer. A xylose absorption test was performed on day 3, and on day 7, blood samples were collected to study glucose first-pass uptake after [(13)C6]-glucose feeding and intravenous [6,6-(2)H2]-glucose bolus injection. Plasma concentrations of metabolites and hormones were measured by taking additional blood samples. A biopsy specimen of the liver was harvested on day 8 to measure the mRNA expression of gluconeogenic enzymes. RESULTS Higher postprandial plasma concentrations of glucose, lactate, urea, adrenaline, noradrenaline, insulin, and glucagon on day 7 in colostrum-fed calves indicate that metabolic processes were stimulated. Postabsorptive xylose and glucose plasma concentrations each increased by an additional 26%, and splanchnic glucose turnover decreased by 35% in colostrum-fed calves, suggesting improved glucose absorption and lower splanchnic glucose utilization in colostrum-fed calves. Quercetin supplementation resulted in higher noradrenaline concentrations and enhanced peak absorption and oxidation of [(13)C6]-glucose by 10%. Liver mitochondrial phosphoenolpyruvate carboxykinase mRNA abundance was reduced by 34% in colostrum-deprived calves. CONCLUSIONS Feeding colostrum during the first 2 d of life is crucial for maturation of splanchnic glucose metabolism in calves. Supplementing quercetin improves gastrointestinal absorption capacity, particularly in colostrum-deprived calves.
Collapse
Affiliation(s)
| | - Solvig Görs
- Institutes of Nutritional Physiology "Oskar Kellner"
| | | | | | - Joachim M Weitzel
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; and
| | | | - Siegfried Wolffram
- Institute of Animal Nutrition and Physiology, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | |
Collapse
|
50
|
Britton LE, Cassidy JP, O'Donovan J, Gordon SV, Markey B. Potential application of emerging diagnostic techniques to the diagnosis of bovine Johne's disease (paratuberculosis). Vet J 2015; 209:32-9. [PMID: 26831164 DOI: 10.1016/j.tvjl.2015.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/15/2015] [Accepted: 10/10/2015] [Indexed: 12/19/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease (paratuberculosis), a chronic wasting disease in cattle with important welfare, economic and potential public health implications. Current tests are unable to recognise all stages of the disease, which makes it difficult to diagnose and control. This review explores emerging diagnostic techniques that could complement and enhance the diagnosis of MAP infection, including bacteriophage analysis, new MAP-specific antigens, host protein expression in response to infection, transcriptomic studies, analysis of microRNAs and investigation of the gastrointestinal microbiome. It emphasises the inherent challenges of diagnosing bovine Johne's disease and investigates novel areas which may have the potential both to advance our understanding of the immunopathology of MAP infection and to augment current diagnostic tests.
Collapse
Affiliation(s)
| | | | - Jim O'Donovan
- Department of Agriculture, Food and the Marine, Model Farm Road, Cork, Ireland
| | | | - Bryan Markey
- University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|