1
|
Benazza R, Letissier L, Papadakos G, Thom J, Diemer H, Cotton G, Cianférani S, Hernandez-Alba O. Development of Top-Down Mass Spectrometry Strategies in the Chromatographic Time Scale (LC-TD-MS) for the Extended Characterization of an Anti-EGFR Single-Domain Antibody-Drug Conjugate in Both Reduced and Nonreduced Forms. Anal Chem 2025; 97:2639-2647. [PMID: 39889214 DOI: 10.1021/acs.analchem.4c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Even though mAbs have attracted the biggest interest in the development of therapeutic proteins, next-generation therapeutics such as single-domain antibodies (sdAb) are propelling increasing attention as new alternatives with appealing applications in different clinical areas. These constructs are small therapeutic proteins formed by a variable domain of the heavy chain of an antibody with multiple therapeutic and production benefits compared with their mAb counterparts. These proteins can be subjected to different bioconjugation processes to form single-domain antibody-drug conjugates (sdADCs) and hence increase their therapeutic potency, and akin to other therapeutic proteins, nanobodies and related products require dedicated analytical strategies to fully characterize their primary structure prior to their release to the market. In this study, we report for the first time the extensive sequence characterization of a conjugated anti-EGFR 14 kDa sdADC by using state-of-the-art top-down mass spectrometry strategies in combination with liquid chromatography (LC-TD-MS). Mass analysis revealed a highly homogeneous sample with one conjugated molecule. Subsequently, the reduced sdADC was submitted to different fragmentation techniques, namely, higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer higher-energy collision dissociation, allowing to unambiguously assess the conjugation site with 24 diagnostic fragment ions and 85% of global sequence coverage. The sequence coverage of the nonreduced protein was significantly lower (around 16%); however, the analysis of the fragmentation spectra corroborated the presence of the intramolecular disulfide bridge along with the localization of the conjugation site. Altogether, our results pinpoint the difficulties and challenges associated with the fragmentation of sdAb-derived formats in the LC time scale due to their remarkable stability as a consequence of the intramolecular disulfide bridge. However, the use of complementary activation techniques along with the identification of specific ion fragments allows an improved sequence coverage, the characterization of the intramolecular disulfide bond, and the unambiguous localization of the conjugation site.
Collapse
Affiliation(s)
- Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Léa Letissier
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Greg Papadakos
- Edinburgh Technopole, Almac Discovery, Milton Bridge, Penicuik, Scotland EH26 0BE, United Kingdom
| | - Jen Thom
- Edinburgh Technopole, Almac Discovery, Milton Bridge, Penicuik, Scotland EH26 0BE, United Kingdom
| | - Helene Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Graham Cotton
- Edinburgh Technopole, Almac Discovery, Milton Bridge, Penicuik, Scotland EH26 0BE, United Kingdom
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| |
Collapse
|
2
|
Oates RN, Lieu LB, Srzentić K, Damoc E, Fornelli L. Characterization of a Monoclonal Antibody by Native and Denaturing Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2197-2208. [PMID: 39105725 PMCID: PMC11774622 DOI: 10.1021/jasms.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Established in recent years as an important approach to unraveling the heterogeneity of intact monoclonal antibodies, native mass spectrometry has been rarely utilized for sequencing these complex biomolecules via tandem mass spectrometry. Typically, top-down mass spectrometry has been performed starting from highly charged precursor ions obtained via electrospray ionization under denaturing conditions (i.e., in the presence of organic solvents and acidic pH). Here we systematically benchmark four distinct ion dissociation methods─namely, higher-energy collisional dissociation, electron transfer dissociation, electron transfer dissociation/higher-energy collisional dissociation, and 213 nm ultraviolet photodissociation─in their capability to characterize a therapeutic monoclonal antibody, trastuzumab, starting from denatured and native-like precursor ions. Interestingly, native top-down mass spectrometry results in higher sequence coverage than the experiments carried out under denaturing conditions, with the exception of ultraviolet photodissociation. Globally, electron transfer dissociation followed by collision-based activation of product ions generates the largest number of backbone cleavages in disulfide protected regions, including the complementarity determining regions, regardless of electrospray ionization conditions. Overall, these findings suggest that native mass spectrometry can certainly be used for the gas-phase sequencing of whole monoclonal antibodies, although the dissociation of denatured precursor ions still returns a few backbone cleavages not identified in native experiments. Finally, a comparison of the fragmentation maps obtained under denaturing and native conditions strongly points toward disulfide bonds as the primary reason behind the largely overlapping dissociation patterns.
Collapse
Affiliation(s)
- Ryan N. Oates
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
| | - Linda B. Lieu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
| | | | - Eugen Damoc
- Thermo Fisher Scientific, Bremen, DE-HB 28199 Germany
| | - Luca Fornelli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019 USA
| |
Collapse
|
3
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
4
|
Townsend DR, Towers DM, Lavinder JJ, Ippolito GC. Innovations and trends in antibody repertoire analysis. Curr Opin Biotechnol 2024; 86:103082. [PMID: 38428225 DOI: 10.1016/j.copbio.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 03/03/2024]
Abstract
Monoclonal antibodies have revolutionized the treatment of human diseases, which has made them the fastest-growing class of therapeutics, with global sales expected to reach $346.6 billion USD by 2028. Advances in antibody engineering and development have led to the creation of increasingly sophisticated antibody-based therapeutics (e.g. bispecific antibodies and chimeric antigen receptor T cells). However, approaches for antibody discovery have remained comparatively grounded in conventional yet reliable in vitro assays. Breakthrough developments in high-throughput single B-cell sequencing and immunoglobulin proteomic serology, however, have enabled the identification of high-affinity antibodies directly from endogenous B cells or circulating immunoglobulin produced in vivo. Moreover, advances in artificial intelligence offer vast potential for antibody discovery and design with large-scale repertoire datasets positioned as the optimal source of training data for such applications. We highlight advances and recent trends in how these technologies are being applied to antibody repertoire analysis.
Collapse
Affiliation(s)
- Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Dalton M Towers
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Dhenin J, Lafont V, Dupré M, Krick A, Mauriac C, Chamot-Rooke J. Monitoring mAb proteoforms in mouse plasma using an automated immunocapture combined with top-down and middle-down mass spectrometry. Proteomics 2024; 24:e2300069. [PMID: 37480175 DOI: 10.1002/pmic.202300069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. Once the developability of a mAb drug candidate has been assessed, an important step is to check its in vivo stability through pharmacokinetics (PK) studies. The gold standard is ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) performed at the peptide level (bottom-up approach). However, these analytical techniques do not allow to address the different mAb proteoforms that can arise from biotransformation. In recent years, top-down and middle-down mass spectrometry approaches have gained popularity to characterize proteins at the proteoform level but are not yet widely used for PK studies. We propose here a workflow based on an automated immunocapture followed by top-down and middle-down liquid chromatography-tandem mass spectrometry (LC-MS/MS) approaches to characterize mAb proteoforms spiked in mouse plasma. We demonstrate the applicability of our workflow on a large concentration range using pembrolizumab as a model. We also compare the performance of two state-of-the-art Orbitrap platforms (Tribrid Eclipse and Exploris 480) for these studies. The added value of our workflow for an accurate and sensitive characterization of mAb proteoforms in mouse plasma is highlighted.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi R&D, Chilly-Mazarin, France
| | | | | | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
| |
Collapse
|
6
|
Kline JT, Melani RD, Fornelli L. Mass spectrometry characterization of antibodies at the intact and subunit levels: from targeted to large-scale analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 492:117117. [PMID: 38855125 PMCID: PMC11160972 DOI: 10.1016/j.ijms.2023.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Antibodies are one of the most formidable molecular weapons available to our immune system. Their high specificity against a target (antigen) and capability of triggering different immune responses (e.g., complement system activation and antibody-dependent cell-mediated cytotoxicity) make them ideal drugs to fight many different human diseases. Currently, both monoclonal antibodies and more complex molecules based on the antibody scaffold are used as biologics. Naturally, such highly heterogeneous molecules require dedicated analytical methodologies for their accurate characterization. Mass spectrometry (MS) can define the presence and relative abundance of multiple features of antibodies, including critical quality attributes. The combination of small and large variations within a single molecule can only be determined by analyzing intact antibodies or their large (25 to 100 kDa) subunits. Hence, top-down (TD) and middle-down (MD) MS approaches have gained popularity over the last decade. In this Young Scientist Feature we discuss the evolution of TD and MD MS analysis of antibodies, including the new frontiers that go beyond biopharma applications. We will show how this field is now moving from the "quality control" analysis of a known, single antibody to the high-throughput investigation of complex antibody repertoires isolated from clinical samples, where the ultimate goal is represented by the complete gas-phase sequencing of antibody molecules without the need of any a priori knowledge.
Collapse
Affiliation(s)
- Jake T. Kline
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Rafael D. Melani
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
7
|
Dhenin J, Dupré M, Druart K, Krick A, Mauriac C, Chamot-Rooke J. A multiparameter optimization in middle-down analysis of monoclonal antibodies by LC-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4909. [PMID: 36822210 DOI: 10.1002/jms.4909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In antibody-based drug research, a complete characterization of antibody proteoforms covering both the amino acid sequence and all posttranslational modifications remains a major concern. The usual mass spectrometry-based approach to achieve this goal is bottom-up proteomics, which relies on the digestion of antibodies but does not allow the diversity of proteoforms to be assessed. Middle-down and top-down approaches have recently emerged as attractive alternatives but are not yet mastered and thus used in routine by many analytical chemistry laboratories. The work described here aims at providing guidelines to achieve the best sequence coverage for the fragmentation of intact light and heavy chains generated from a simple reduction of intact antibodies using Orbitrap mass spectrometry. Three parameters were found crucial to this aim: the use of an electron-based activation technique, the multiplex selection of precursor ions of different charge states, and the combination of replicates.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi, Chilly-Mazarin, 91385, France
| | - Mathieu Dupré
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Karen Druart
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| |
Collapse
|
8
|
Seeing the complete picture: proteins in top-down mass spectrometry. Essays Biochem 2022; 67:283-300. [PMID: 36468679 DOI: 10.1042/ebc20220098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Abstract
Top-down protein mass spectrometry can provide unique insights into protein sequence and structure, including precise proteoform identification and study of protein–ligand and protein–protein interactions. In contrast with the commonly applied bottom-up approach, top-down approaches do not include digestion of the protein of interest into small peptides, but instead rely on the ionization and subsequent fragmentation of intact proteins. As such, it is fundamentally the only way to fully characterize the composition of a proteoform. Here, we provide an overview of how a top-down protein mass spectrometry experiment is performed and point out recent applications from the literature to the reader. While some parts of the top-down workflow are broadly applicable, different research questions are best addressed with specific experimental designs. The most important divide is between studies that prioritize sequence information (i.e., proteoform identification) versus structural information (e.g., conformational studies, or mapping protein–protein or protein–ligand interactions). Another important consideration is whether to work under native or denaturing solution conditions, and the overall complexity of the sample also needs to be taken into account, as it determines whether (chromatographic) separation is required prior to MS analysis. In this review, we aim to provide enough information to support both newcomers and more experienced readers in the decision process of how to answer a potential research question most efficiently and to provide an overview of the methods that exist to answer these questions.
Collapse
|
9
|
Lee ST, Park H, Jang I, Lee CS, Moon B, Oh HB. New free radical-initiated peptide sequencing (FRIPS) mass spectrometry reagent with high conjugation efficiency enabling single-step peptide sequencing. Sci Rep 2022; 12:9494. [PMID: 35680949 PMCID: PMC9184593 DOI: 10.1038/s41598-022-13624-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
A newly designed TEMPO-FRIPS reagent, 4-(2,2,6,6-tetramethylpiperidine-1-oxyl) methyl benzyl succinic acid N-hydroxysuccinimide ester or p-TEMPO–Bn–Sc–NHS, was synthesized to achieve single-step free radical-initiated peptide sequencing mass spectrometry (FRIPS MS) for a number of model peptides, including phosphopeptides. The p-TEMPO–Bn–Sc–NHS reagent was conjugated to target peptides, and the resulting peptides were subjected to collisional activation. The peptide backbone dissociation behaviors of the MS/MS and MS3 experiments were monitored in positive ion mode. Fragment ions were observed even at the single-step thermal activation of the p-TEMPO–Bn–Sc–peptides, showing mainly a-/x- and c-/z-type fragments and neutral loss ions. This confirms that radical-driven peptide backbone dissociations occurred with the p-TEMPO–Bn–Sc–peptides. Compared to the previous version of the TEMPO reagent, i.e., o-TEMPO–Bz–C(O)–NHS, the newly designed p-TEMPO–Bn–Sc–NHS has better conjugation efficiency for the target peptides owing to its improved structural flexibility and solubility in the experimental reagents. An energetic interpretation using the survival fraction as a function of applied normalized collision energy (NCE) ascertained the difference in the thermal activation between p-TEMPO–Bn–Sc– and o-TEMPO–Bz–C(O)– radical initiators. This study clearly demonstrates that the application of the p-TEMPO–Bn–Sc– radical initiator can improve the duty cycle, and this FRIPS MS approach has the potential to be implemented in proteomics studies, including phosphoproteomics.
Collapse
Affiliation(s)
- Sang Tak Lee
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Hyemi Park
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Inae Jang
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Choong Sik Lee
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.,Department of Toxicology and Chemistry, Scientific Investigation Laboratory, Criminal Investigation Command, Ministry of National Defense, Seoul, 04351, Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|
10
|
de Graaf SC, Hoek M, Tamara S, Heck AJR. A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies. MAbs 2022; 14:2079449. [PMID: 35699511 PMCID: PMC9225641 DOI: 10.1080/19420862.2022.2079449] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A key step in therapeutic and endogenous humoral antibody characterization is identifying the amino acid sequence. So far, this task has been mainly tackled through sequencing of B-cell receptor (BCR) repertoires at the nucleotide level. Mass spectrometry (MS) has emerged as an alternative tool for obtaining sequence information directly at the – most relevant – protein level. Although several MS methods are now well established, analysis of recombinant and endogenous antibodies comes with a specific set of challenges, requiring approaches beyond the conventional proteomics workflows. Here, we review the challenges in MS-based sequencing of both recombinant as well as endogenous humoral antibodies and outline state-of-the-art methods attempting to overcome these obstacles. We highlight recent examples and discuss remaining challenges. We foresee a great future for these approaches making de novo antibody sequencing and discovery by MS-based techniques feasible, even for complex clinical samples from endogenous sources such as serum and other liquid biopsies.
Collapse
Affiliation(s)
- Sebastiaan C de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|
11
|
Kline JT, Mullen C, Durbin KR, Oates RN, Huguet R, Syka JEP, Fornelli L. Sequential Ion-Ion Reactions for Enhanced Gas-Phase Sequencing of Large Intact Proteins in a Tribrid Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2334-2345. [PMID: 33900069 DOI: 10.1021/jasms.1c00062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Obtaining extensive sequencing of an intact protein is essential in order to simultaneously determine both the nature and exact localization of chemical and genetic modifications which distinguish different proteoforms arising from the same gene. To effectively achieve such characterization, it is necessary to take advantage of the analytical potential offered by the top-down mass spectrometry approach to protein sequence analysis. However, as a protein increases in size, its gas-phase dissociation produces overlapping, low signal-to-noise fragments. The application of advanced ion dissociation techniques such as electron transfer dissociation (ETD) and ultraviolet photodissociation (UVPD) can improve the sequencing results compared to slow-heating techniques such as collisional dissociation; nonetheless, even ETD- and UVPD-based approaches have thus far fallen short in their capacity to reliably enable extensive sequencing of proteoforms ≥30 kDa. To overcome this issue, we have applied proton transfer charge reduction (PTCR) to limit signal overlap in tandem mass spectra (MS2) produced by ETD (alone or with supplemental ion activation, EThcD). Compared to conventional MS2 experiments, following ETD/EThcD MS2 with PTCR MS3 prior to m/z analysis of deprotonated product ions in the Orbitrap mass analyzer proved beneficial for the identification of additional large protein fragments (≥10 kDa), thus improving the overall sequencing and in particular the coverage of the central portion of all four analyzed proteins spanning from 29 to 56 kDa. Specifically, PTCR-based data acquisition led to 39% sequence coverage for the 56 kDa glutamate dehydrogenase, which was further increased to 44% by combining fragments obtained via HCD followed by PTCR MS3.
Collapse
Affiliation(s)
- Jake T Kline
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma 73019, United States
| | - Christopher Mullen
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | | | - Ryan N Oates
- Department of Chemistry and Biochemistry, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma 73019, United States
| | - Romain Huguet
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - John E P Syka
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma 73019, United States
| |
Collapse
|
12
|
Campuzano IDG, Sandoval W. Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1861-1885. [PMID: 33886297 DOI: 10.1021/jasms.1c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mass spectrometry (MS) plays a key role throughout all stages of drug development and is now as ubiquitous as other analytical techniques such as surface plasmon resonance, nuclear magnetic resonance, and supercritical fluid chromatography, among others. Herein, we aim to discuss the history of MS, both electrospray and matrix-assisted laser desorption ionization, specifically for the analysis of antibodies, evolving through to denaturing and native-MS analysis of newer biologic moieties such as antibody-drug conjugates, multispecific antibodies, and interfering nucleic acid-based therapies. We discuss challenging therapeutic target characterization such as membrane protein receptors. Importantly, we compare and contrast the MS and hyphenated analytical chromatographic methods used to characterize these therapeutic modalities and targets within biopharmaceutical research and highlight the importance of appropriate MS deconvolution software and its essential contribution to project progression. Finally, we describe emerging applications and MS technologies that are still predominantly within either a development or academic stage of use but are poised to have significant impact on future drug development within the biopharmaceutic industry once matured. The views reflected herein are personal and are not meant to be an exhaustive list of all relevant MS performed within biopharmaceutical research but are what we feel have been historically, are currently, and will be in the future the most impactful for the drug development process.
Collapse
MESH Headings
- Antibodies, Monoclonal/analysis
- Automation, Laboratory
- Biopharmaceutics/methods
- Chromatography, Liquid
- Drug Discovery/methods
- Drug Industry/history
- History, 20th Century
- History, 21st Century
- Humans
- Immunoconjugates/analysis
- Immunoconjugates/chemistry
- Protein Denaturation
- Protein Processing, Post-Translational
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/history
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/history
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 92130, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Cejkov M, Greer T, Johnson RO, Zheng X, Li N. Electron Transfer Dissociation Parameter Optimization Using Design of Experiments Increases Sequence Coverage of Monoclonal Antibodies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:762-771. [PMID: 33596068 DOI: 10.1021/jasms.0c00458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Middle-down analysis of monoclonal antibodies (mAbs) by tandem mass spectrometry (MS2) can provide detailed insight into their primary structure with minimal sample preparation. The middle-down approach uses an enzyme to cleave mAbs into Fc/2, LC, and Fd subunits that are then analyzed by reversed phase liquid chromatography tandem mass spectrometry (RPLC-MS2). As maximum sequence coverage is desired to obtain meaningful structural information at the subunit level, a host of dissociation methods have been developed, and sometimes combined, to bolster fragmentation and increase the number of identified fragments. Here, we present a design of experiments (DOE) approach to optimize MS2 parameters, in particular those that may influence electron transfer dissociation (ETD) efficiency to increase the sequence coverage of antibody subunits. Applying this approach to the NIST monoclonal antibody standard (NISTmAb) using three RPLC-MS2 runs resulted in high sequence coverages of 67%, 67%, and 52% for Fc/2, LC, and Fd subunits, respectively. In addition, we apply this DOE strategy to model the parameters required to maximize the number of fragments produced in "low", "medium", and "high" mass ranges, which ultimately resulted in even higher sequence coverages of NISTmAb subunits (75%, 78%, and 64% for Fc/2, LC, and Fd subunits, respectively). The DOE approach provides high sequence coverage percentages utilizing only one fragmentation method, ETD, and could be extended to other state-of-the-art techniques that combine multiple fragmentation mechanisms to increase coverage.
Collapse
Affiliation(s)
- Milos Cejkov
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Tyler Greer
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Reid O'Brien Johnson
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaojing Zheng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
14
|
Srzentić K, Fornelli L, Tsybin YO, Loo JA, Seckler H, Agar JN, Anderson LC, Bai DL, Beck A, Brodbelt JS, van der Burgt YEM, Chamot-Rooke J, Chatterjee S, Chen Y, Clarke DJ, Danis PO, Diedrich JK, D'Ippolito RA, Dupré M, Gasilova N, Ge Y, Goo YA, Goodlett DR, Greer S, Haselmann KF, He L, Hendrickson CL, Hinkle JD, Holt MV, Hughes S, Hunt DF, Kelleher NL, Kozhinov AN, Lin Z, Malosse C, Marshall AG, Menin L, Millikin RJ, Nagornov KO, Nicolardi S, Paša-Tolić L, Pengelley S, Quebbemann NR, Resemann A, Sandoval W, Sarin R, Schmitt ND, Shabanowitz J, Shaw JB, Shortreed MR, Smith LM, Sobott F, Suckau D, Toby T, Weisbrod CR, Wildburger NC, Yates JR, Yoon SH, Young NL, Zhou M. Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1783-1802. [PMID: 32812765 PMCID: PMC7539639 DOI: 10.1021/jasms.0c00036] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Consortium for Top-Down Proteomics (www.topdownproteomics.org) launched the present study to assess the current state of top-down mass spectrometry (TD MS) and middle-down mass spectrometry (MD MS) for characterizing monoclonal antibody (mAb) primary structures, including their modifications. To meet the needs of the rapidly growing therapeutic antibody market, it is important to develop analytical strategies to characterize the heterogeneity of a therapeutic product's primary structure accurately and reproducibly. The major objective of the present study is to determine whether current TD/MD MS technologies and protocols can add value to the more commonly employed bottom-up (BU) approaches with regard to confirming protein integrity, sequencing variable domains, avoiding artifacts, and revealing modifications and their locations. We also aim to gather information on the common TD/MD MS methods and practices in the field. A panel of three mAbs was selected and centrally provided to 20 laboratories worldwide for the analysis: Sigma mAb standard (SiLuLite), NIST mAb standard, and the therapeutic mAb Herceptin (trastuzumab). Various MS instrument platforms and ion dissociation techniques were employed. The present study confirms that TD/MD MS tools are available in laboratories worldwide and provide complementary information to the BU approach that can be crucial for comprehensive mAb characterization. The current limitations, as well as possible solutions to overcome them, are also outlined. A primary limitation revealed by the results of the present study is that the expert knowledge in both experiment and data analysis is indispensable to practice TD/MD MS.
Collapse
Affiliation(s)
- Kristina Srzentić
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Luca Fornelli
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Joseph A Loo
- University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Henrique Seckler
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Jeffrey N Agar
- Northeastern University, Boston, Massachusetts 02115, United States
| | - Lissa C Anderson
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Dina L Bai
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Alain Beck
- Centre d'immunologie Pierre Fabre, 74160 Saint-Julien-en-Genevois, France
| | | | | | | | | | - Yunqiu Chen
- Biogen, Inc., Cambridge, Massachusetts 02142-1031, United States
| | - David J Clarke
- The University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | - Paul O Danis
- Consortium for Top-Down Proteomics, Cambridge, Massachusetts 02142, United States
| | - Jolene K Diedrich
- The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ying Ge
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Young Ah Goo
- University of Maryland, Baltimore, Maryland 21201, United States
| | - David R Goodlett
- University of Maryland, Baltimore, Maryland 21201, United States
| | - Sylvester Greer
- University of Texas at Austin, Austin, Texas 78712-1224, United States
| | | | - Lidong He
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | | | - Joshua D Hinkle
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Matthew V Holt
- Baylor College of Medicine, Houston, Texas 77030-3411, United States
| | - Sam Hughes
- The University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | - Donald F Hunt
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Neil L Kelleher
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Anton N Kozhinov
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Ziqing Lin
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Alan G Marshall
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Florida State University, Tallahassee, Florida 32310-4005, United States
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Robert J Millikin
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Simone Nicolardi
- Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Neil R Quebbemann
- University of California-Los Angeles, Los Angeles, California 90095, United States
| | | | - Wendy Sandoval
- Genentech, Inc., South San Francisco, California 94080-4990, United States
| | - Richa Sarin
- Biogen, Inc., Cambridge, Massachusetts 02142-1031, United States
| | | | | | - Jared B Shaw
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Lloyd M Smith
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Frank Sobott
- University of Antwerp, 2000 Antwerp, Belgium
- University of Leeds, LS2 9JT Leeds, United Kingdom
| | | | - Timothy Toby
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Norelle C Wildburger
- Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John R Yates
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sung Hwan Yoon
- University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicolas L Young
- Baylor College of Medicine, Houston, Texas 77030-3411, United States
| | - Mowei Zhou
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
15
|
D’Ippolito RA, Panepinto MC, Mahoney KE, Bai DL, Shabanowitz J, Hunt DF. Sequencing a Bispecific Antibody by Controlling Chain Concentration Effects When Using an Immobilized Nonspecific Protease. Anal Chem 2020; 92:10470-10477. [PMID: 32597636 PMCID: PMC8106826 DOI: 10.1021/acs.analchem.0c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complete sequence coverage of monospecific antibodies was previously achieved using immobilized aspergillopepsin I in a single LC-MS/MS analysis. Bispecific antibodies are asymmetrical compared to their monospecific antibody counterparts, resulting in a decrease in the concentration of individual subunits. Four standard proteins were used to characterize the effect of a decrease in concentration when using this immobilized enzyme reactor. Low concentration samples resulted in the elimination of large peptide products due to a greater number of enzymatic cleavages. A competitive inhibitor rich in arginine residues reduced the number of enzymatic cleavages to the protein and retained large molecular weight products. The digestion of a bispecific antibody with competitive inhibition of aspergillopepsin I maintained large peptide products better suited for sequence reconstruction, resulting in complete sequence coverage from a single LC-MS/MS analysis.
Collapse
Affiliation(s)
- Robert A. D’Ippolito
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Maria C. Panepinto
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Keira E. Mahoney
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Dina L. Bai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Donald F. Hunt
- Department of Chemistry and Department of Pathology, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
16
|
Lodge JM, Schauer KL, Brademan DR, Riley NM, Shishkova E, Westphall MS, Coon JJ. Top-Down Characterization of an Intact Monoclonal Antibody Using Activated Ion Electron Transfer Dissociation. Anal Chem 2020; 92:10246-10251. [PMID: 32608969 DOI: 10.1021/acs.analchem.0c00705] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies (mAbs) are important therapeutic glycoproteins, but their large size and structural complexity make them difficult to rapidly characterize. Top-down mass spectrometry (MS) has the potential to overcome challenges of other common approaches by minimizing sample preparation and preserving endogenous modifications. However, comprehensive mAb characterization requires generation of many, well-resolved fragments and remains challenging. While ETD retains modifications and cleaves disulfide bonds-making it attractive for mAb characterization-it can be less effective for precursors having high m/z values. Activated ion electron transfer dissociation (AI-ETD) uses concurrent infrared photoactivation to promote product ion generation and has proven effective in increasing sequence coverage of intact proteins. Here, we present the first application of AI-ETD to mAb sequencing. For the standard NIST mAb, we observe a high degree of complementarity between fragments generated using standard ETD with a short reaction time and AI-ETD with a long reaction time. Most importantly, AI-ETD reveals disulfide-bound regions that have been intractable, thus far, for sequencing with top-down MS. We conclude AI-ETD has the potential to rapidly and comprehensively analyze intact mAbs.
Collapse
|
17
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
18
|
Chi B, Veyssier C, Kasali T, Uddin F, Sellick CA. At-line high throughput site-specific glycan profiling using targeted mass spectrometry. ACTA ACUST UNITED AC 2020; 25:e00424. [PMID: 32071892 PMCID: PMC7016254 DOI: 10.1016/j.btre.2020.e00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/24/2019] [Accepted: 01/21/2020] [Indexed: 11/26/2022]
Abstract
High throughput, site-specific glycan profiling using targeted mass spectrometry. Rapid analysis of glycan profiles directly from culture media. Methodology is fully compatible with automation. Methodology can be integrated into cell line selection and process development. Strategy can be used for multi-attribute product quality screening/monitoring.
Protein post-translational modification (PTM) plays an important role in many biological processes; of which glycosylation is arguably one of the most complex and diverse modifications and is crucial for the safety and efficacy of biotherapeutic proteins. Mass spectrometric characterization of protein glycosylation is well established with clear advantages and disadvantages; on one hand it is precise and information-rich, as well as being relative inexpensive in terms of the reagents and consumables despite the instrumentation cost and, depending on the method, can give site specific information; on the other hand it generally suffers from low throughput, restriction to largely purified samples and is less quantitative, especially for sialylated glycan species. Here, we describe a high throughput, site-specific, targeted mass spectrometric peptide mapping approach to quickly screen/rank candidate production cell lines and culture conditions that give favourable glycosylation profiles directly from conditioned culture media for an Fc-fusion protein. The methodology is fully compatible with automation and combines the speed of ‘top-down’ mass spectrometry with the site-specific information of ‘bottom-up’ mass spectrometry. In addition, this strategy can be used for multi-attribute product quality screening/monitoring as an integral part of cell line selection and process development.
Collapse
Affiliation(s)
- Bertie Chi
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | | | - Toyin Kasali
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Faisal Uddin
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | | |
Collapse
|
19
|
Feng L, Gong X, Song J, Zhai R, Huang Z, Jiang Y, Fang X, Dai X. Strong Acid Anions Significantly Increasing the Charge State of Proteins during Electrospray Ionization. Anal Chem 2020; 92:1770-1779. [PMID: 31769658 DOI: 10.1021/acs.analchem.9b03416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of protein's charge state in electrospray is of great importance to the analysis of proteins. Different methods have been developed so far to increase the charge state of proteins. In this work, we investigated the influence of different anions on the charge state of proteins. Both strong acid anions and weak acid anions were taken into consideration. The results showed that the presence of 5 mM strong acid anions in acidic solutions could significantly increase the charge state of proteins. In comparison, weak acid anions with the same concentration in solution had little impact on the charge state of proteins. The species of the cations in the samples had very limited influence on the charge state. The presence of a certain amount of acid in sample solution was critical to the effect of strong acid anions. Almost no increase of the charge state was observed when no acid was added to the samples. However, remarkable increase of the charge state of myoglobin (Mb) was observed when 0.001% (v/v) acetic acid (HAc) was added to the sample together with 5 mM sodium chloride (NaCl). A higher concentration of acid in samples would further enhance the effect of strong acid anions on the increase of the charge state. Further investigations into the mechanism revealed that the effect of the strong acid anions on the charge state of proteins was based on the unfolding of the protein molecules during electrospray ionization (ESI). The interactions among H+, anions, and protein molecules were so strong that it caused the unfolding of protein molecules and resulted in the increasing of proteins' charge states. The key factor that made strong acid anions and weak acid anions different in the results was the hydrolysis of the weak acid anions in acidic solutions. The present work furthers our understanding about electrospray, as well as the regulation of protein charge state. The presence of strong acid anions in acidic solutions can significantly influence the charge state of proteins in electrospray. Attention should be paid to this when regulating the charge state of proteins.
Collapse
Affiliation(s)
- Lulu Feng
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xiaoyun Gong
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Jiafeng Song
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Rui Zhai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Zejian Huang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - You Jiang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| |
Collapse
|
20
|
Shaw JB, Liu W, Vasil′ev YV, Bracken CC, Malhan N, Guthals A, Beckman JS, Voinov VG. Direct Determination of Antibody Chain Pairing by Top-down and Middle-down Mass Spectrometry Using Electron Capture Dissociation and Ultraviolet Photodissociation. Anal Chem 2020; 92:766-773. [PMID: 31769659 PMCID: PMC7819135 DOI: 10.1021/acs.analchem.9b03129] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One challenge associated with the discovery and development of monoclonal antibody (mAb) therapeutics is the determination of heavy chain and light chain pairing. Advances in MS instrumentation and MS/MS methods have greatly enhanced capabilities for the analysis of large intact proteins yielding much more detailed and accurate proteoform characterization. Consequently, direct interrogation of intact antibodies or F(ab')2 and Fab fragments has the potential to significantly streamline therapeutic mAb discovery processes. Here, we demonstrate for the first time the ability to efficiently cleave disulfide bonds linking heavy and light chains of mAbs using electron capture dissociation (ECD) and 157 nm ultraviolet photodissociation (UVPD). The combination of intact mAb, Fab, or F(ab')2 mass, intact LC and Fd masses, and CDR3 sequence coverage enabled determination of heavy chain and light chain pairing from a single experiment and experimental condition. These results demonstrate the potential of top-down and middle-down proteomics to significantly streamline therapeutic antibody discovery.
Collapse
Affiliation(s)
- Jared B. Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Weijing Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Yury V. Vasil′ev
- e-MSion Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Carter C. Bracken
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Neha Malhan
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Adrian Guthals
- Mapp Biopharmaceutical Inc., 6160 Lusk Boulevard #105, San Diego, California 92121, United States
| | - Joseph S. Beckman
- e-MSion Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Valery G. Voinov
- e-MSion Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
21
|
Wei B, Han G, Tang J, Sandoval W, Zhang YT. Native Hydrophobic Interaction Chromatography Hyphenated to Mass Spectrometry for Characterization of Monoclonal Antibody Minor Variants. Anal Chem 2019; 91:15360-15364. [DOI: 10.1021/acs.analchem.9b04467] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bingchuan Wei
- Department of Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guanghui Han
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jia Tang
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yonghua Taylor Zhang
- Department of Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
22
|
Mao F, Yu K, He J, Zhou Q, Zhang G, Wang W, Li N, Zhang H, Jiang J. Real-time monitoring of electroreduction and labelling of disulfide-bonded peptides and proteins by mass spectrometry. Analyst 2019; 144:6898-6904. [PMID: 31638109 DOI: 10.1039/c9an01420a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accurate determination of disulfide bonds for protein identification is in high demand. In this study, a simple electrochemical-mass spectrometry (EC-MS) method that possesses advantages of real-time information, simultaneous disulfide bond electroreduction and tagging was developed. In this EC-MS, an ITO glass corner functions as a counter electrode and spray system, and allows the direct sampling of the droplet-scale reacting solution in real-time. The application of this method was successfully demonstrated by electrochemical reduction of oxidized glutathione (GSSG) with one disulfide bond as well as insulin with multiple disulfide bonds. The preferred electroreduction of intermolecular-bonded disulfides for insulin has been observed and the intramolecular bond was not favored. Moreover, simultaneously tagging the formed thiol residues from electroreduction of GSSG using electrogenerated intermediates such as dopamine orthoquinone (DQ) and benzoquinone (Q) was performed. A proof-of-concept was also demonstrated with a large molecule, β-lactoglobulin A. The relationship between signal strength and operating parameters was also studied. This method successfully detected the reduction reaction of the disulfide bond in the polypeptide and protein. The detection limit (S/N ≥ 3) is 0.398 μg mL-1. These results suggest that this EC-MS platform can count cysteine moieties in proteins using a single drop of sample and in real-time and is promising for protein identification experiments.
Collapse
Affiliation(s)
- Fengjiao Mao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hernandez-Alba O, Houel S, Hessmann S, Erb S, Rabuka D, Huguet R, Josephs J, Beck A, Drake PM, Cianférani S. A Case Study to Identify the Drug Conjugation Site of a Site-Specific Antibody-Drug-Conjugate Using Middle-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2419-2429. [PMID: 31429052 DOI: 10.1007/s13361-019-02296-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Middle-down mass spectrometry (MD MS) has emerged as a promising alternative to classical bottom-up approaches for protein characterization. Middle-level experiments after enzymatic digestion are routinely used for subunit analysis of monoclonal antibody (mAb)-related compounds, providing information on drug load distribution and average drug-to-antibody ratio (DAR). However, peptide mapping is still the gold standard for primary amino acid sequence assessment, post-translational modifications (PTM), and drug conjugation identification and localization. However, peptide mapping strategies can be challenging when dealing with more complex and heterogeneous mAb formats, like antibody-drug conjugates (ADCs). We report here, for the first time, MD MS analysis of a third-generation site-specific DAR4 ADC using different fragmentation techniques, including higher-energy collisional- (HCD), electron-transfer (ETD) dissociation and 213 nm ultraviolet photodissociation (UVPD). UVPD used as a standalone technique for ADC subunit analysis afforded, within the same liquid chromatography-MS/MS run, enhanced performance in terms of primary sequence coverage compared to HCD- or ETD-based MD approaches, and generated substantially more MS/MS fragments containing either drug conjugation or glycosylation site information, leading to confident drug/glycosylation site identification. In addition, our results highlight the complementarity of ETD and UVPD for both primary sequence validation and drug conjugation/glycosylation site assessment. Altogether, our results highlight the potential of UVPD for ADC MD MS analysis for drug conjugation/glycosylation site assessment, and indicate that MD MS strategies can improve structural characterization of empowered next-generation mAb-based formats, especially for PTMs and drug conjugation sites validation.
Collapse
Affiliation(s)
- Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France
| | - Stéphane Houel
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France
| | - David Rabuka
- Catalent Biologics West, 5703 Hollis Street, Emeryville, CA, 94530, USA
| | - Romain Huguet
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - Jonathan Josephs
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - Alain Beck
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Penelope M Drake
- Catalent Biologics West, 5703 Hollis Street, Emeryville, CA, 94530, USA
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France.
| |
Collapse
|
24
|
Melani RD, Srzentić K, Gerbasi VR, McGee JP, Huguet R, Fornelli L, Kelleher NL. Direct measurement of light and heavy antibody chains using ion mobility and middle-down mass spectrometry. MAbs 2019; 11:1351-1357. [PMID: 31607219 PMCID: PMC6816405 DOI: 10.1080/19420862.2019.1668226] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The analysis of monoclonal antibodies (mAbs) by a middle-down mass spectrometry (MS) approach is a growing field that attracts the attention of many researchers and biopharmaceutical companies. Usually, liquid fractionation techniques are used to separate mAbs polypeptides chains before MS analysis. Gas-phase fractionation techniques such as high-field asymmetric waveform ion mobility spectrometry (FAIMS) can replace liquid-based separations and reduce both analysis time and cost. Here, we present a rapid FAIMS tandem MS method capable of characterizing the polypeptide sequence of mAbs light and heavy chains in an unprecedented, easy, and fast fashion. This new method uses commercially available instruments and takes ~24 min, which is 40-60% faster than regular liquid chromatography-MS/MS analysis, to acquire fragmentation data using different dissociation methods.
Collapse
Affiliation(s)
- Rafael D Melani
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | | | - Vincent R Gerbasi
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | - John P McGee
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | | | - Luca Fornelli
- Department of Biology, University of Oklahoma , Norman , OK , USA
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| |
Collapse
|
25
|
Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 2019; 51:1409-1431. [DOI: 10.1007/s00726-019-02787-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
AbstractPeptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.
Collapse
|
26
|
Révész Á, Rokob TA, Jeanne Dit Fouque D, Hüse D, Háda V, Turiák L, Memboeuf A, Vékey K, Drahos L. Optimal Collision Energies and Bioinformatics Tools for Efficient Bottom-up Sequence Validation of Monoclonal Antibodies. Anal Chem 2019; 91:13128-13135. [PMID: 31518108 DOI: 10.1021/acs.analchem.9b03362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rigorous validation of amino acid sequence is fundamental in the characterization of original and biosimilar protein biopharmaceuticals. Widely accepted workflows are based on bottom-up mass spectrometry, and they often require multiple techniques and significant manual work. Here, we demonstrate that optimization of a set of tandem mass spectroscopy (MS/MS) collision energies and automated combination of all available information in the measurements can increase the sequence validated by one technique close to the inherent limits. We created a software (called "Serac") that consumes results of the Mascot database search engine and identifies the amino acids validated by bottom-up MS/MS experiments using the most rigorous, industrially acceptable definition of sequence coverage (we term this "confirmed sequence coverage"). The software can combine spectra at the level of amino acids or fragment ions to exploit complementarity, provides full transparency to justify validation, and reduces manual effort. With its help, we investigated collision energy dependence of confirmed sequence coverage of individual peptides and full proteins on trypsin-digested monoclonal antibody samples (rituximab and trastuzumab). We found the energy dependence to be modest, but we demonstrated the benefit of using spectra taken at multiple energies. We describe a workflow based on 2-3 LC-MS/MS runs, carefully selected collision energies, and a fragment ion level combination, which yields ∼85% confirmed sequence coverage, 25%-30% above that from a basic proteomics protocol. Further increase can mainly be expected from alternative digestion enzymes or fragmentation techniques, which can be seamlessly integrated to the processing, thereby allowing effortless validation of full sequences.
Collapse
Affiliation(s)
- Ágnes Révész
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Tibor András Rokob
- Theoretical Chemistry Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Dany Jeanne Dit Fouque
- UMR CNRS 6521, CEMCA , Université de Bretagne Occidentale , 6 Av. Le Gorgeu , 29238 Brest Cedex 3 , France
| | - Dániel Hüse
- Analytical Department of Biotechnology , Gedeon Richter Plc , POB 27, H-1475 Budapest 10 , Hungary
| | - Viktor Háda
- Analytical Department of Biotechnology , Gedeon Richter Plc , POB 27, H-1475 Budapest 10 , Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Antony Memboeuf
- UMR CNRS 6521, CEMCA , Université de Bretagne Occidentale , 6 Av. Le Gorgeu , 29238 Brest Cedex 3 , France
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| |
Collapse
|
27
|
Chen B, Lin Z, Zhu Y, Jin Y, Larson E, Xu Q, Fu C, Zhang Z, Zhang Q, Pritts WA, Ge Y. Middle-Down Multi-Attribute Analysis of Antibody-Drug Conjugates with Electron Transfer Dissociation. Anal Chem 2019; 91:11661-11669. [PMID: 31442030 DOI: 10.1021/acs.analchem.9b02194] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antibody-drug conjugates (ADCs) are designed to combine the target specificity of monoclonal antibodies and potent cytotoxin drugs to achieve better therapeutic outcomes. Comprehensive evaluation of the quality attributes of ADCs is critical for drug development but remains challenging due to heterogeneity of the construct. Currently, peptide mapping with reversed-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the predominant approach to characterize ADCs. However, it is suboptimal for sequence characterization and quantification of ADCs because it lacks a comprehensive view of coexisting variants and suffers from varying ionization effects of drug-conjugated peptides compared to unconjugated counterparts. Here, we present the first middle-down RPLC-MS analysis of both cysteine (Adcetris; BV) and lysine (Kadcyla; T-DM1) conjugated ADCs at the subunit level (∼25 kDa) with electron transfer dissociation (ETD). We successfully achieved high-resolution separation of subunit isomers arising from different drug conjugation and subsequently localized the conjugation sites. Moreover, we obtained a comprehensive overview of the microvariants associated with each subunits and characterized them such as oxidized variants with different sites. Furthermore, we observed relatively high levels of conjugation near complementarity-determining regions (CDRs) from the heavy chain but no drug conjugation near CDRs of light chain (Lc) from lysine conjugated T-DM1. Based on the extracted ion chromatograms, we accurately measured average drug to antibody ratio (DAR) values and relative occupancy of drug-conjugated subunits. Overall, the middle-down MS approach enables the evaluation of multiple quality attributes including DAR, positional isomers, conjugation sites, occupancy, and microvariants, which potentially opens up a new avenue to characterize ADCs.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yutong Jin
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Eli Larson
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Qingge Xu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Cexiong Fu
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Zhaorui Zhang
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Qunying Zhang
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Wayne A Pritts
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
28
|
Mao Y, Zhang L, Kleinberg A, Xia Q, Daly TJ, Li N. Fast protein sequencing of monoclonal antibody by real-time digestion on emitter during nanoelectrospray. MAbs 2019; 11:767-778. [PMID: 30919719 PMCID: PMC6601538 DOI: 10.1080/19420862.2019.1599633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Growth in the pharmaceutical industry has led to an increasing demand for rapid characterization of therapeutic monoclonal antibodies. The current methods for antibody sequence confirmation (e.g., N-terminal Edman sequencing and traditional peptide mapping methods) are not sufficient; thus, we developed a fast method for sequencing recombinant monoclonal antibodies using a novel digestion-on-emitter technology. Using this method, a monoclonal antibody can be denatured, reduced, digested, and sequenced in less than an hour. High throughput and satisfactory protein sequence coverage were achieved by using a non-specific protease from Aspergillus saitoi, protease XIII, to digest the denatured and reduced monoclonal antibody on an electrospray emitter, while electrospray high voltage was applied to the digestion mixture through the emitter. Tandem mass spectrometry data was acquired over the course of enzyme digestion, generating similar information compared to standard peptide mapping experiments in much less time. We demonstrated that this fast protein sequencing method provided sufficient sequence information for bovine serum albumin and two commercially available monoclonal antibodies, mouse IgG1 MOPC21 and humanized IgG1 NISTmAb. For two monoclonal antibodies, we obtained sequence coverage of 90.5–95.1% for the heavy chains and 98.6–99.1% for the light chains. We found that on-emitter digestion by protease XIII generated peptides of various lengths during the digestion process, which was critical for achieving sufficient sequence coverage. Moreover, we discovered that the enzyme-to-substrate ratio was an important parameter that affects protein sequence coverage. Due to its highly automatable and efficient design, our method offers a major advantage over N-terminal Edman sequencing and traditional peptide mapping methods in the identification of protein sequence, and is capable of meeting an ever-increasing demand for monoclonal antibody sequence confirmation in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Yuan Mao
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Lichao Zhang
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Andrew Kleinberg
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Qiangwei Xia
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Thomas J Daly
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Ning Li
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| |
Collapse
|
29
|
Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 2019; 16:337-362. [DOI: 10.1080/14789450.2019.1578215] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alain Beck
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuel Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Yannis François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
30
|
Gong X, Li C, Zhai R, Xie J, Jiang Y, Fang X. Supercharging of Proteins by Salts during Polarity Reversed Nano-Electrospray Ionization. Anal Chem 2019; 91:1826-1837. [PMID: 30620564 DOI: 10.1021/acs.analchem.8b02759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supercharging is beneficial in many ways to the analysis of proteins by mass spectrometry (MS). In this work, a novel supercharging method was developed. It made use of our previously developed ionization technique: namely, polarity reversed nanoelectrospray ionization (PR-nESI) for the ionization of proteins. Supercharging of proteins was achieved by just adding 1-10 mM of a salt to the sample, such as sodium chloride (NaCl). The charge state of proteins obtained by our method was significantly higher than that by nano-ESI with 1% (v/v) acetic acid (HAc). Different kinds of salts were investigated. Salts with strong acid anions were capable of supercharging proteins, including chlorides, bromides, iodides, and nitrates. The signal intensity and signal to noise ratio ( S/ N) of proteins were increased at the same time. Phosphates were also found to have a supercharging effect, due to the fact that phosphoric acid was a medium-strong acid. In comparison, salts with weak acid anions had no supercharging effect, such as carbonates, sulfides, acetates, and formates. The species of the salt anion was critical to the supercharging effect, while the species of the salt cation showed little influence on the supercharging effect. Investigations were made into the mechanism of our method. The supercharging effect was caused by interactions between protein molecules and salt anions, as well as the influence of protons. The present work offered us an alternative way for the supercharging of proteins. The use of common salts for supercharging made the procedure more convenient. The concentration of salts needed for supercharging was much lower than those conventionally used for supercharging reagents. Taking into consideration the fact that many biological samples are buffered with phosphates and chlorides, these samples could be directly supercharged by our method without any additional additives. Furthermore, as many salts are nontoxic and can easily be found in a chemical laboratory, the use of salts for supercharging would be a much more practical and economical choice. In addition, the present work also furthered our understandings about the mechanism of supercharging, as well as electrospray.
Collapse
Affiliation(s)
- Xiaoyun Gong
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Chang Li
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Rui Zhai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Jie Xie
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - You Jiang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| |
Collapse
|
31
|
Łącki MK, Lermyte F, Miasojedow B, Startek MP, Sobott F, Valkenborg D, Gambin A. masstodon: A Tool for Assigning Peaks and Modeling Electron Transfer Reactions in Top-Down Mass Spectrometry. Anal Chem 2019; 91:1801-1807. [DOI: 10.1021/acs.analchem.8b01479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mateusz K. Łącki
- University Medical Center, Johannes Gutenberg University, Mainz D-55131, Germany
| | - Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp 2000, Belgium
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Błażej Miasojedow
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Michał P. Startek
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp 2000, Belgium
- Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt 3500, Belgium
| | - Anna Gambin
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
32
|
Jin Y, Lin Z, Xu Q, Fu C, Zhang Z, Zhang Q, Pritts WA, Ge Y. Comprehensive characterization of monoclonal antibody by Fourier transform ion cyclotron resonance mass spectrometry. MAbs 2019; 11:106-115. [PMID: 30230956 PMCID: PMC6343775 DOI: 10.1080/19420862.2018.1525253] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
The pharmaceutical industry's interest in monoclonal antibodies (mAbs) and their derivatives has spurred rapid growth in the commercial and clinical pipeline of these effective therapeutics. The complex micro-heterogeneity of mAbs requires in-depth structural characterization for critical quality attribute assessment and quality assurance. Currently, mass spectrometry (MS)-based methods are the gold standard in mAb analysis, primarily with a bottom-up approach in which immunoglobulins G (IgGs) and their variants are digested into peptides to facilitate the analysis. Comprehensive characterization of IgGs and the micro-variants remains challenging at the proteoform level. Here, we used both top-down and middle-down MS for in-depth characterization of a human IgG1 using ultra-high resolution Fourier transform MS. Our top-down MS analysis provided characteristic fingerprinting of the IgG1 proteoforms at unit mass resolution. Subsequently, the tandem MS analysis of intact IgG1 enabled the detailed sequence characterization of a representative IgG1 proteoform at the intact protein level. Moreover, we used the middle-down MS analysis to characterize the primary glycoforms and micro-variants. Micro-variants such as low-abundance glycoforms, C-terminal glycine clipping, and C-terminal proline amidation were characterized with bond cleavages higher than 44% at the subunit level. By combining top-down and middle-down analysis, 76% of bond cleavage (509/666 amino acid bond cleaved) of IgG1 was achieved. Taken together, we demonstrated the combination of top-down and middle-down MS as powerful tools in the comprehensive characterization of mAbs.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziqing Lin
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qingge Xu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cexiong Fu
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Zhaorui Zhang
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Qunying Zhang
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Wayne A. Pritts
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
33
|
Wang Y, Olesik SV. Enhanced-Fluidity Liquid Chromatography-Mass Spectrometry for Intact Protein Separation and Characterization. Anal Chem 2018; 91:935-942. [PMID: 30523683 DOI: 10.1021/acs.analchem.8b03970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent advances in the analysis of proteins have increased the demand for more efficient techniques to separate intact proteins. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquefied CO2 to conventional liquid mobile phases. The addition of liquefied CO2 increases diffusivity and decreases viscosity, which inherently leads to a more efficient separation. Herein, EFLC is applied to hydrophobic interaction chromatography (HIC) stationary phases for the first time to study the impact of liquefied CO2 to the chromatographic behavior of proteins. The effects of liquefied CO2 on chromatographic properties, charge state distributions (CSDs), and ionization efficiencies were evaluated. EFLC offered improved chromatographic performance compared to conventional liquid chromatography (LC) methods including a shorter analysis time, better peak shapes, and higher plate numbers. The addition of liquefied CO2 to the mobile phase provided an electrospray ionization (ESI)-friendly and "supercharging" reagent without sacrificing chromatographic performance, which can be used to improve peptide and protein identification in large-scale application.
Collapse
Affiliation(s)
- Yanhui Wang
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States of America
| | - Susan V Olesik
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States of America
| |
Collapse
|
34
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
35
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Cuadros-Rodríguez L, Navas N. Validated reverse phase HPLC diode array method for the quantification of intact bevacizumab, infliximab and trastuzumab for long-term stability study. Int J Biol Macromol 2018; 116:993-1003. [DOI: 10.1016/j.ijbiomac.2018.05.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
|
36
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
37
|
Fornelli L, Srzentić K, Huguet R, Mullen C, Sharma S, Zabrouskov V, Fellers RT, Durbin KR, Compton PD, Kelleher NL. Accurate Sequence Analysis of a Monoclonal Antibody by Top-Down and Middle-Down Orbitrap Mass Spectrometry Applying Multiple Ion Activation Techniques. Anal Chem 2018; 90:8421-8429. [PMID: 29894161 DOI: 10.1021/acs.analchem.8b00984] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeted top-down (TD) and middle-down (MD) mass spectrometry (MS) offer reduced sample manipulation during protein analysis, limiting the risk of introducing artifactual modifications to better capture sequence information on the proteoforms present. This provides some advantages when characterizing biotherapeutic molecules such as monoclonal antibodies, particularly for the class of biosimilars. Here, we describe the results obtained analyzing a monoclonal IgG1, either in its ∼150 kDa intact form or after highly specific digestions yielding ∼25 and ∼50 kDa subunits, using an Orbitrap mass spectrometer on a liquid chromatography (LC) time scale with fragmentation from ion-photon, ion-ion, and ion-neutral interactions. Ultraviolet photodissociation (UVPD) used a new 213 nm solid-state laser. Alternatively, we applied high-capacity electron-transfer dissociation (ETD HD), alone or in combination with higher energy collisional dissociation (EThcD). Notably, we verify the degree of complementarity of these ion activation methods, with the combination of 213 nm UVPD and ETD HD producing a new record sequence coverage of ∼40% for TD MS experiments. The addition of EThcD for the >25 kDa products from MD strategies generated up to 90% of complete sequence information in six LC runs. Importantly, we determined an optimal signal-to-noise threshold for fragment ion deconvolution to suppress false positives yet maximize sequence coverage and implemented a systematic validation of this process using the new software TDValidator. This rigorous data analysis should elevate confidence for assignment of dense MS2 spectra and represents a purposeful step toward the application of TD and MD MS for deep sequencing of monoclonal antibodies.
Collapse
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Romain Huguet
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Christopher Mullen
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Seema Sharma
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Vlad Zabrouskov
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Kenneth R Durbin
- Proteinaceous, Incorporated , Evanston , Illinois 60201 , United States
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
38
|
Gargano AFG, Roca LS, Fellers RT, Bocxe M, Domínguez-Vega E, Somsen GW. Capillary HILIC-MS: A New Tool for Sensitive Top-Down Proteomics. Anal Chem 2018; 90:6601-6609. [PMID: 29722972 PMCID: PMC5990932 DOI: 10.1021/acs.analchem.8b00382] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Recent
progress in top-down proteomics has driven the demand for
chromatographic methods compatible with mass spectrometry (MS) that
can separate intact proteins. Hydrophilic interaction liquid chromatography
(HILIC) has recently shown good potential for the characterization
of glycoforms of intact proteins. In the present study, we demonstrate
that HILIC can separate a wide range of proteins exhibiting orthogonal
selectivity with respect to reversed-phase LC (RPLC). However, the
application of HILIC to the analysis of low abundance proteins (e.g.,
in proteomics analysis) is hampered by low volume loadability, hindering
down-scaling of the method to column diameters below 2.1 mm. Moreover,
HILIC-MS sensitivity is decreased due to ion suppression from the
trifluoroacetic acid (TFA) often used as the ion-pair agent to improve
the selectivity and efficiency in the analysis of glycoproteins. Here,
we introduce a capillary-based HILIC-MS method that overcomes these
problems. Our method uses RPLC trap-columns to load and inject the
sample, circumventing issues of protein solubility and volume loadability
in capillary columns (200 μm ID). The low flow rates and use
of a dopant gas in the electrospray interface improve protein-ionization
efficiencies and reduce suppression by TFA. Overall, this allows the
separation and detection of small protein quantities (down to 5 ng
injected on column) as indicated by the analysis of a mixture of model
proteins. The potential of the new capillary HILIC-MS is demonstrated
by the analysis of a complex cell lysate.
Collapse
Affiliation(s)
- Andrea F G Gargano
- Centre for Analytical Science Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands.,Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , de Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands.,Van 't Hoff Institute for Molecular Sciences , Science Park 904 , 1098 XH Amsterdam , Netherlands
| | - Liana S Roca
- Centre for Analytical Science Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands.,Van 't Hoff Institute for Molecular Sciences , Science Park 904 , 1098 XH Amsterdam , Netherlands
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Bioscience and the Proteomics Center of Excellence , Northwestern University , 2145 N. Sheridan Road , Evanston , Illinois 60208 , United States
| | - Max Bocxe
- Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , de Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Elena Domínguez-Vega
- Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , de Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands.,Center for Proteomics and Metabolomics , Leiden University Medical Center , Postbus 9600, 2300 RC Leiden , The Netherlands
| | - Govert W Somsen
- Centre for Analytical Science Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands.,Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , de Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
39
|
Schmit PO, Vialaret J, Wessels HJ, van Gool AJ, Lehmann S, Gabelle A, Wood J, Bern M, Paape R, Suckau D, Kruppa G, Hirtz C. Towards a routine application of Top-Down approaches for label-free discovery workflows. J Proteomics 2018; 175:12-26. [DOI: 10.1016/j.jprot.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/14/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
|
40
|
DeGraan-Weber N, Reilly JP. Use of Cysteine Aminoethylation To Identify the Hypervariable Peptides of an Antibody. Anal Chem 2018; 90:1608-1612. [DOI: 10.1021/acs.analchem.7b02732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nick DeGraan-Weber
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - James Patrick Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
41
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
42
|
Lyon YA, Riggs D, Fornelli L, Compton PD, Julian RR. The Ups and Downs of Repeated Cleavage and Internal Fragment Production in Top-Down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:150-157. [PMID: 29038993 PMCID: PMC5786485 DOI: 10.1007/s13361-017-1823-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/08/2017] [Accepted: 09/23/2017] [Indexed: 05/10/2023]
Abstract
Analysis of whole proteins by mass spectrometry, or top-down proteomics, has several advantages over methods relying on proteolysis. For example, proteoforms can be unambiguously identified and examined. However, from a gas-phase ion-chemistry perspective, proteins are enormous molecules that present novel challenges relative to peptide analysis. Herein, the statistics of cleaving the peptide backbone multiple times are examined to evaluate the inherent propensity for generating internal versus terminal ions. The raw statistics reveal an inherent bias favoring production of terminal ions, which holds true regardless of protein size. Importantly, even if the full suite of internal ions is generated by statistical dissociation, terminal ions are predicted to account for at least 50% of the total ion current, regardless of protein size, if there are three backbone dissociations or fewer. Top-down analysis should therefore be a viable approach for examining proteins of significant size. Comparison of the purely statistical analysis with actual top-down data derived from ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD) reveals that terminal ions account for much of the total ion current in both experiments. Terminal ion production is more favored in UVPD relative to HCD, which is likely due to differences in the mechanisms controlling fragmentation. Importantly, internal ions are not found to dominate from either the theoretical or experimental point of view. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Yana A Lyon
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Dylan Riggs
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, IL, 60208, USA
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, IL, 60208, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| |
Collapse
|
43
|
Tian Y, Ruotolo BT. The growing role of structural mass spectrometry in the discovery and development of therapeutic antibodies. Analyst 2018; 143:2459-2468. [DOI: 10.1039/c8an00295a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The comprehensive structural characterization of therapeutic antibodies is of critical importance for the successful discovery and development of such biopharmaceuticals, yet poses many challenges to modern measurement science. Here, we review the current state-of-the-art mass spectrometry technologies focusing on the characterization of antibody-based therapeutics.
Collapse
Affiliation(s)
- Yuwei Tian
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | |
Collapse
|
44
|
Riley NM, Westphall MS, Coon JJ. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:140-149. [PMID: 29027149 PMCID: PMC5786479 DOI: 10.1007/s13361-017-1808-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 05/12/2023]
Abstract
The analysis of intact proteins via mass spectrometry can offer several benefits to proteome characterization, although the majority of top-down experiments focus on proteoforms in a relatively low mass range (<30 kDa). Recent studies have focused on improving the analysis of larger intact proteins (up to ~75 kDa), but they have also highlighted several challenges to be addressed. One major hurdle is the efficient dissociation of larger protein ions, which often to do not yield extensive fragmentation via conventional tandem MS methods. Here we describe the first application of activated ion electron transfer dissociation (AI-ETD) to proteins in the 30-70 kDa range. AI-ETD leverages infrared photo-activation concurrent to ETD reactions to improve sequence-informative product ion generation. This method generates more product ions and greater sequence coverage than conventional ETD, higher-energy collisional dissociation (HCD), and ETD combined with supplemental HCD activation (EThcD). Importantly, AI-ETD provides the most thorough protein characterization for every precursor ion charge state investigated in this study, making it suitable as a universal fragmentation method in top-down experiments. Additionally, we highlight several acquisition strategies that can benefit characterization of larger proteins with AI-ETD, including combination of spectra from multiple ETD reaction times for a given precursor ion, multiple spectral acquisitions of the same precursor ion, and combination of spectra from two different dissociation methods (e.g., AI-ETD and HCD). In all, AI-ETD shows great promise as a method for dissociating larger intact protein ions as top-down proteomics continues to advance into larger mass ranges. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nicholas M Riley
- Genome Center of Wisconsin, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Joshua J Coon
- Genome Center of Wisconsin, Madison, WI, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
45
|
Liu Y, Sun W, Shan B, Zhang K. DISC: DISulfide linkage Characterization from tandem mass spectra. Bioinformatics 2017; 33:3861-3870. [DOI: 10.1093/bioinformatics/btx667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 10/19/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yi Liu
- Department of Computer Science, The University of Western Ontario, London, ON, Canada
| | - Weiping Sun
- Department of Computer Science, The University of Western Ontario, London, ON, Canada
| | - Baozhen Shan
- Bioinformatics Solutions Inc. (BSI), Waterloo, ON, Canada
| | - Kaizhong Zhang
- Department of Computer Science, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
46
|
Mass Spectrometry Approaches for Identification and Quantitation of Therapeutic Monoclonal Antibodies in the Clinical Laboratory. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00545-16. [PMID: 28274937 PMCID: PMC5424237 DOI: 10.1128/cvi.00545-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Therapeutic monoclonal antibodies (MAbs) are an important class of drugs used to treat diseases ranging from autoimmune disorders to B cell lymphomas to other rare conditions thought to be untreatable in the past. Many advances have been made in the characterization of immunoglobulins as a result of pharmaceutical companies investing in technologies that allow them to better understand MAbs during the development phase. Mass spectrometry is one of the new advancements utilized extensively by pharma to analyze MAbs and is now beginning to be applied in the clinical laboratory setting. The rise in the use of therapeutic MAbs has opened up new challenges for the development of assays for monitoring this class of drugs. MAbs are larger and more complex than typical small-molecule therapeutic drugs routinely analyzed by mass spectrometry. In addition, they must be quantified in samples that contain endogenous immunoglobulins with nearly identical structures. In contrast to an enzyme-linked immunosorbent assay (ELISA) for quantifying MAbs, mass spectrometry-based assays do not rely on MAb-specific reagents such as recombinant antigens and/or anti-idiotypic antibodies, and time for development is usually shorter. Furthermore, using molecular mass as a measurement tool provides increased specificity since it is a first-order principle unique to each MAb. This enables rapid quantification of MAbs and multiplexing. This review describes how mass spectrometry can become an important tool for clinical chemists and especially immunologists, who are starting to develop assays for MAbs in the clinical laboratory and are considering mass spectrometry as a versatile platform for the task.
Collapse
|
47
|
Fornelli L, Ayoub D, Aizikov K, Liu X, Damoc E, Pevzner PA, Makarov A, Beck A, Tsybin YO. Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field Orbitrap mass spectrometer. J Proteomics 2017; 159:67-76. [PMID: 28242452 DOI: 10.1016/j.jprot.2017.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/22/2017] [Accepted: 02/13/2017] [Indexed: 12/27/2022]
Abstract
The increasing importance of immunoglobulins G (IgGs) as biotherapeutics calls for improved structural characterization methods designed for these large (~150kDa) macromolecules. Analysis workflows have to be rapid, robust, and require minimal sample preparation. In a previous work we showed the potential of Orbitrap Fourier transform mass spectrometry (FTMS) combined with electron transfer dissociation (ETD) for the top-down investigation of an intact IgG1, resulting in ~30% sequence coverage. Here, we describe a top-down analysis of two IgGs1 (adalimumab and trastuzumab) and one IgG2 (panitumumab) performed with ETD on a mass spectrometer equipped with a high-field Orbitrap mass analyzer. For the IgGs1, sequence coverage comparable to the previous results was achieved in a two-fold reduced number of summed transients, which corresponds, taken together with the significantly increased spectra acquisition rate, to ~six-fold improvement in analysis time. Furthermore, we studied the influence of ion-ion interaction times on ETD product ions for IgGs1, and the differences in fragmentation behavior between IgGs1 and IgG2, which present structural differences. Overall, these results reinforce the hypothesis that gas phase dissociation using both energy threshold-based and radical-driven ion activations is directed to specific regions of the polypeptide chains mostly by the location of disulfide bonds. SIGNIFICANCE OF THE STUDY Compared with our previous report, the results presented herein demonstrate the power of technological advances of the next generation Orbitrap™ platform, including the use of a high-field compact (i.e., D20) Orbitrap mass analyzer, and a dedicated manipulation strategy for large protein ions (via their trapping in the HCD collision cell along with reduction of the pressure in the cell). Notably, these important developments became recently commercially available in the top-end Orbitrap platforms under the name of "Protein Mode". Furthermore, we continued exploring the advantages offered by the summation (averaging) of transients (time-domain data) for improving the signal-to-noise ratio of top-down mass spectra. Finally, for the first time we report the application of the hybrid ion activation technique that combines electron transfer dissociation and higher energy collisional dissociation, known as EThcD, on intact monoclonal antibodies. Under these specific instrumental parameters, EThcD produces a partially complementary fragmentation pattern compared to ETD, increasing the overall sequence coverage especially at the protein termini.
Collapse
Affiliation(s)
- Luca Fornelli
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Ayoub
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, 46202 Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 46202 Indianapolis, IN, USA
| | - Eugen Damoc
- Thermo Fisher Scientific GmbH, 28199 Bremen, Germany
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California in San Diego, 92093 San Diego, CA, USA
| | | | - Alain Beck
- Centre d'Immunologie Pierre Fabre, 74160 St Julien-en-Genevois, France
| | - Yury O Tsybin
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Spectroswiss Sàrl, EPFL Innovation Park, 1015 Lausanne, Switzerland.
| |
Collapse
|
48
|
Broodman I, Lindemans J, van Sten J, Bischoff R, Luider T. Serum Protein Markers for the Early Detection of Lung Cancer: A Focus on Autoantibodies. J Proteome Res 2016; 16:3-13. [DOI: 10.1021/acs.jproteome.6b00559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | - Rainer Bischoff
- Analytical
Biochemistry, Department of Pharmacy, University of Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
49
|
Characterization of a Porous Nano-electrospray Capillary Emitter at Ultra-low Flow Rates. J Chromatogr Sci 2016; 55:47-51. [DOI: 10.1093/chromsci/bmw148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 08/12/2016] [Indexed: 11/15/2022]
|
50
|
Parr MK, Montacir O, Montacir H. Physicochemical characterization of biopharmaceuticals. J Pharm Biomed Anal 2016; 130:366-389. [DOI: 10.1016/j.jpba.2016.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|