1
|
Navratilova P, Vejvodova M, Vaculovic T, Slaninova I, Emmer J, Tomas T, Ryba L, Burda J, Pavkova Goldbergova M. Cytotoxic effects and comparative analysis of Ni ion uptake by osteoarthritic and physiological osteoblasts. Sci Rep 2024; 14:16133. [PMID: 38997414 PMCID: PMC11245524 DOI: 10.1038/s41598-024-67157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Nickel(Ni)-containing materials have been widely used in a wide range of medical applications, including orthopaedics. Despite their excellent properties, there is still a problem with the release of nickel ions into the patient's body, which can cause changes in the behaviour of surrounding cells and tissues. This study aims to evaluate the effects of Ni on bone cells with an emphasis on the determination of Ni localization in cellular compartments in time. For these purposes, one of the most suitable models for studying the effects induced by metal implants was used-the patient's osteoarthritic cells. Thanks to this it was possible to simulate the pathophysiological conditions in the patient's body, as well as to evaluate the response of the cells which come into direct contact with the material after the implantation of the joint replacement. The largest differences in cell viability, proliferation and cell cycle changes occurred between Ni 0.5 mM and 1 mM concentrations. Time-dependent localization of Ni in cells showed that there is a continuous transport of Ni ions between the nucleus and the cytoplasm, as well as between the cell and the environment. Moreover, osteoarthritic osteoblasts showed faster changes in concentration and ability to accumulate more Ni, especially in the nucleus, than physiological osteoblasts. The differences in Ni accumulation process explains the higher sensitivity of patient osteoblasts to Ni and may be crucial in further studies of implant-derived cytotoxic effects.
Collapse
Affiliation(s)
- Polina Navratilova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Marketa Vejvodova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic.
| | - Iva Slaninova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 62500, Brno, Czech Republic
| | - Jan Emmer
- 1st Department of Orthopaedics, St. Anne`S University Hospital, Pekarska 53, Brno, Czech Republic
| | - Tomas Tomas
- 1st Department of Orthopaedics, St. Anne`S University Hospital, Pekarska 53, Brno, Czech Republic
| | - Ludek Ryba
- Department of Orthopaedic Surgery, University Hospital, Jihlavska 20, Brno, Czech Republic
| | - Jan Burda
- Department of Orthopaedic Surgery, University Hospital, Jihlavska 20, Brno, Czech Republic
| | - Monika Pavkova Goldbergova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic.
| |
Collapse
|
2
|
Mashayekhi K, Khazaie K, Faubion WA, Kim GB. Biomaterial-enhanced treg cell immunotherapy: A promising approach for transplant medicine and autoimmune disease treatment. Bioact Mater 2024; 37:269-298. [PMID: 38694761 PMCID: PMC11061617 DOI: 10.1016/j.bioactmat.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial for preserving tolerance in the body, rendering Treg immunotherapy a promising treatment option for both organ transplants and autoimmune diseases. Presently, organ transplant recipients must undergo lifelong immunosuppression to prevent allograft rejection, while autoimmune disorders lack definitive cures. In the last years, there has been notable advancement in comprehending the biology of both antigen-specific and polyclonal Tregs. Clinical trials involving Tregs have demonstrated their safety and effectiveness. To maximize the efficacy of Treg immunotherapy, it is essential for these cells to migrate to specific target tissues, maintain stability within local organs, bolster their suppressive capabilities, and ensure their intended function's longevity. In pursuit of these goals, the utilization of biomaterials emerges as an attractive supportive strategy for Treg immunotherapy in addressing these challenges. As a result, the prospect of employing biomaterial-enhanced Treg immunotherapy holds tremendous promise as a treatment option for organ transplant recipients and individuals grappling with autoimmune diseases in the near future. This paper introduces strategies based on biomaterial-assisted Treg immunotherapy to enhance transplant medicine and autoimmune treatments.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - William A. Faubion
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gloria B. Kim
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
3
|
Managh AJ, Greenhalgh CJ. Imaging of Subcellular Distribution of Platinum in Single Cells Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Methods Mol Biol 2024; 2752:215-226. [PMID: 38194037 DOI: 10.1007/978-1-0716-3621-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a well-established and sensitive analytical technique, which provides high-resolution imaging of endogenous elements, element tagged-markers, metal-containing nanoparticles, and metallodrugs within cells. Here we describe a protocol for imaging the subcellular distribution of platinum within A549 cells, following their incubation with the platinum-based anticancer agent, Oxaliplatin. We outline the essential steps in sample preparation and instrumental setup and discuss how the current generation of low-dispersion instruments facilitates new approaches to data acquisition and image processing. The protocol described herein can be easily adapted for other cell lines and metal-containing labeling agents.
Collapse
Affiliation(s)
- Amy J Managh
- Department of Chemistry, Loughborough University, Loughborough, UK.
| | | |
Collapse
|
4
|
da Silva ABS, Arruda MAZ. Single-cell ICP-MS to address the role of trace elements at a cellular level. J Trace Elem Med Biol 2023; 75:127086. [PMID: 36215757 DOI: 10.1016/j.jtemb.2022.127086] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
The heterogeneity properties shown by cells or unicellular organisms have led to the development of analytical methods at the single-cell level. In this sense, considering the importance of trace elements in these biological systems, the inductively coupled plasma mass spectrometer (ICP-MS) configured for analyzing single cell has presented a high potential to assess the evaluation of elements in cells. Moreover, advances in instrumentation, such as coupling laser ablation to the tandem configuration (ICP-MS/MS), or alternative mass analyzers (ICP-SFMS and ICP-TOFMS), brought significant benefits, including sensitivity improvement, high-resolution imaging, and the cell fingerprint. From this perspective, the single-cell ICP-MS has been widely reported in studies involving many fields, from oncology to environmental research. Hence, it has contributed to finding important results, such as elucidating nanoparticle toxicity at the cellular level and vaccine development. Therefore, in this review, the theory of single-cell ICP-MS analysis is explored, and the applications in this field are pointed out. In addition, the instrumentation advances for single-cell ICP-MS are addressed.
Collapse
Affiliation(s)
- Ana Beatriz Santos da Silva
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil.
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| |
Collapse
|
5
|
Schoeberl A, Gutmann M, Theiner S, Schaier M, Schweikert A, Berger W, Koellensperger G. Cisplatin Uptake in Macrophage Subtypes at the Single-Cell Level by LA-ICP-TOFMS Imaging. Anal Chem 2021; 93:16456-16465. [PMID: 34846133 PMCID: PMC8674877 DOI: 10.1021/acs.analchem.1c03442] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A high-throughput
laser ablation–inductively coupled plasma–time-of-flight
mass spectrometry (LA-ICP-TOFMS) workflow was implemented for quantitative
single-cell analysis following cytospin preparation of cells. For
the first time, in vitro studies on cisplatin exposure addressed human
monocytes and monocyte-derived macrophages (undifferentiated THP-1
monocytic cells, differentiated M0 macrophages, as well as further
polarized M1 and M2 phenotypes) at the single-cell level. The models
are of particular interest as macrophages comprise the biggest part
of immune cells present in the tumor microenvironment and play an
important role in modulating tumor growth and progression. The introduced
bioimaging workflow proved to be universally applicable to adherent
and suspension cell cultures and fit-for-purpose for the quantitative
analysis of several hundreds of cells within minutes. Both, cross-validation
of the method with single-cell analysis in suspension for THP-1 cells
and with LA-ICP-TOFMS analysis of adherent M0 cells grown on chambered
glass coverslips, revealed agreeing platinum concentrations at the
single-cell level. A high incorporation of cisplatin was observed
in M2 macrophages compared to the M0 and M1 macrophage subtypes and
the monocyte model, THP-1. The combination with bright-field images
and monitoring of highly abundant endogenous elements such as phosphorus
and sodium at a high spatial resolution allowed assessing cell size
and important morphological cell parameters and thus straightforward
control over several cell conditions. This way, apoptotic cells and
cell debris as well as doublets or cell clusters could be easily excluded
prior to data evaluation without additional staining.
Collapse
Affiliation(s)
- Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Michael Gutmann
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Martin Schaier
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
6
|
Van Hoeck J, Vanhove C, De Smedt SC, Raemdonck K. Non-invasive cell-tracking methods for adoptive T cell therapies. Drug Discov Today 2021; 27:793-807. [PMID: 34718210 DOI: 10.1016/j.drudis.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Adoptive T cell therapies (ACT) have demonstrated groundbreaking results in blood cancers and melanoma. Nevertheless, their significant cost, the occurrence of severe adverse events, and their poor performance in solid tumors are important hurdles hampering more widespread applicability. In vivo cell tracking allows instantaneous and non-invasive monitoring of the distribution, tumor homing, persistence, and redistribution to other organs of infused T cells in patients. Furthermore, cell tracking could aid in the clinical management of patients, allowing the detection of non-responders or severe adverse events at an early stage. This review provides a concise overview of the main principles and potential of cell tracking, followed by a discussion of the clinically relevant labeling strategies and their application in ACT.
Collapse
Affiliation(s)
- Jelter Van Hoeck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christian Vanhove
- Infinity Lab, Medical Imaging and Signal Processing Group-IBiTech, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Van Hoeck J, Van de Vyver T, Harizaj A, Goetgeluk G, Merckx P, Liu J, Wels M, Sauvage F, De Keersmaecker H, Vanhove C, de Jong OG, Vader P, Dewitte H, Vandekerckhove B, Braeckmans K, De Smedt SC, Raemdonck K. Hydrogel-Induced Cell Membrane Disruptions Enable Direct Cytosolic Delivery of Membrane-Impermeable Cargo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008054. [PMID: 34106486 DOI: 10.1002/adma.202008054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Intracellular delivery of membrane-impermeable cargo offers unique opportunities for biological research and the development of cell-based therapies. Despite the breadth of available intracellular delivery tools, existing protocols are often suboptimal and alternative approaches that merge delivery efficiency with both biocompatibility, as well as applicability, remain highly sought after. Here, a comprehensive platform is presented that exploits the unique property of cationic hydrogel nanoparticles to transiently disrupt the plasma membrane of cells, allowing direct cytosolic delivery of uncomplexed membrane-impermeable cargo. Using this platform, which is termed Hydrogel-enabled nanoPoration or HyPore, the delivery of fluorescein isothiocyanate (FITC)-dextran macromolecules in various cancer cell lines and primary bovine corneal epithelial cells is convincingly demonstrated. Of note, HyPore demonstrates efficient FITC-dextran delivery in primary human T cells, outperforming state-of-the-art electroporation-mediated delivery. Moreover, the HyPore platform enables cytosolic delivery of functional proteins, including a histone-binding nanobody as well as the enzymes granzyme A and Cre-recombinase. Finally, HyPore-mediated delivery of the MRI contrast agent gadobutrol in primary human T cells significantly improves their T1 -weighted MRI signal intensities compared to electroporation. Taken together, HyPore is proposed as a straightforward, highly versatile, and cost-effective technique for high-throughput, ex vivo manipulation of primary cells and cell lines.
Collapse
Affiliation(s)
- Jelter Van Hoeck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Aranit Harizaj
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Pieterjan Merckx
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Jing Liu
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Mike Wels
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Félix Sauvage
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Herlinde De Keersmaecker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Christian Vanhove
- Infinity Lab, Medical Imaging and Signal Processing Group-IBiTech, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Olivier G de Jong
- CDL Research, Division LAB, UMC Utrecht, Faculty of Medicine, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Pieter Vader
- CDL Research, Division LAB, UMC Utrecht, Faculty of Medicine, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Kevin Braeckmans
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| |
Collapse
|
8
|
Yu X, He M, Chen B, Hu B. Recent advances in single-cell analysis by inductively coupled plasma-mass spectrometry: A review. Anal Chim Acta 2020; 1137:191-207. [DOI: 10.1016/j.aca.2020.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
|
9
|
Zheng LN, Feng LX, Shi JW, Chen HQ, Wang B, Wang M, Wang HF, Feng WY. Single-Cell Isotope Dilution Analysis with LA–ICP–MS: A New Approach for Quantification of Nanoparticles in Single Cells. Anal Chem 2020; 92:14339-14345. [DOI: 10.1021/acs.analchem.0c01775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ling-Na Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Metallomics Facility and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liu-Xing Feng
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Jun-Wen Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Han-Qing Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Metallomics Facility and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Metallomics Facility and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Metallomics Facility and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Fang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Wei-Yue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Metallomics Facility and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Identification, selection, and expansion of non-gene modified alloantigen-reactive Tregs for clinical therapeutic use. Cell Immunol 2020; 357:104214. [PMID: 32977154 PMCID: PMC8482792 DOI: 10.1016/j.cellimm.2020.104214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/29/2022]
Abstract
Transplantation is limited by the need for life-long pharmacological immunosuppression, which carries significant morbidity and mortality. Regulatory T cell (Treg) therapy holds significant promise as a strategy to facilitate immunosuppression minimization. Polyclonal Treg therapy has been assessed in a number of Phase I/II clinical trials in both solid organ and hematopoietic transplantation. Attention is now shifting towards the production of alloantigen-reactive Tregs (arTregs) through co-culture with donor antigen. These allospecific cells harbour potent suppressive function and yet their specificity implies a theoretical reduction in off-target effects. This review will cover the progress in the development of arTregs including their potential application for clinical use in transplantation, the knowledge gained so far from clinical trials of Tregs in transplant patients, and future directions for Treg therapy.
Collapse
|
11
|
Marin E, Bouchet-Delbos L, Renoult O, Louvet C, Nerriere-Daguin V, Managh AJ, Even A, Giraud M, Vu Manh TP, Aguesse A, Bériou G, Chiffoleau E, Alliot-Licht B, Prieur X, Croyal M, Hutchinson JA, Obermajer N, Geissler EK, Vanhove B, Blancho G, Dalod M, Josien R, Pecqueur C, Cuturi MC, Moreau A. Human Tolerogenic Dendritic Cells Regulate Immune Responses through Lactate Synthesis. Cell Metab 2019; 30:1075-1090.e8. [PMID: 31801055 DOI: 10.1016/j.cmet.2019.11.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/17/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Cell therapy is a promising strategy for treating patients suffering from autoimmune or inflammatory diseases or receiving a transplant. Based on our preclinical studies, we have generated human autologous tolerogenic dendritic cells (ATDCs), which are being tested in a first-in-man clinical trial in kidney transplant recipients. Here, we report that ATDCs represent a unique subset of monocyte-derived cells based on phenotypic, transcriptomic, and metabolic analyses. ATDCs are characterized by their suppression of T cell proliferation and their expansion of Tregs through secreted factors. ATDCs produce high levels of lactate that shape T cell responses toward tolerance. Indeed, T cells take up ATDC-secreted lactate, leading to a decrease of their glycolysis. In vivo, ATDCs promote elevated levels of circulating lactate and delay graft-versus-host disease by reducing T cell proliferative capacity. The suppression of T cell immunity through lactate production by ATDCs is a novel mechanism that distinguishes ATDCs from other cell-based immunotherapies.
Collapse
Affiliation(s)
- Eros Marin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Laurence Bouchet-Delbos
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Ophélie Renoult
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers UMR1232, INSERM, Université de Nantes, Nantes, France
| | - Cédric Louvet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Véronique Nerriere-Daguin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Amy J Managh
- Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, UK
| | - Amandine Even
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Matthieu Giraud
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Thien Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Audrey Aguesse
- UMR 1280 PhAN, Mass Spectrometry Core Facility, INRA, CRNHO, West Human Nutrition Research Center, Nantes, France
| | - Gaelle Bériou
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Elise Chiffoleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Brigitte Alliot-Licht
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; Faculté d'Odontologie, Université de Nantes, Nantes, France
| | - Xavier Prieur
- Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Mikael Croyal
- UMR 1280 PhAN, Mass Spectrometry Core Facility, INRA, CRNHO, West Human Nutrition Research Center, Nantes, France
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Natasa Obermajer
- Division of Surgical Oncology, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bernard Vanhove
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Régis Josien
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; Laboratoire d'Immunologie, CHU Nantes, Nantes Université, Nantes, France
| | - Claire Pecqueur
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers UMR1232, INSERM, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Maria-Cristina Cuturi
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
12
|
Nakada N, Kuroki Y. Cell tracking of chromium-labeled mesenchymal stem cells using laser ablation inductively coupled plasma imaging mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1565-1570. [PMID: 31222818 DOI: 10.1002/rcm.8505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Mesenchymal stem cells (MSCs) are widely used in regenerative medicine research. Evaluating the biodistribution of MSCs is important for determining whether the cells have reached the target tissue, and the time that the stem cells reside in each area is required to estimate the duration of efficacy. METHODS A laser ablation inductively coupled plasma imaging mass spectrometry (LAICP-IMS) method was developed for highly sensitive and quantitative surface analysis of metal elements for solid samples. We evaluated the usefulness of a cell-tracking system with LAICP-IMS to investigate the biodistribution of mouse mesenchymal stem cells (mMSCs) labeled with the natural composition of chromium (Cr) in mice. To prepare the dosing solution, mMSCs were incubated with both Na2 CrO4 and fluorescent labeling solutions. The concentration of the cells was adjusted by vehicle solution at 2.0 to 2.5 × 107 cells/mL, and the dosing suspension of mMSCs was administered by intramuscular or intravenous injection to the mice. RESULTS Thigh muscle sections after intramuscular injection of chromium- and fluorescence-labeled mMSCs were analyzed by LAICP-IMS and fluorescence microscopy, respectively. 52 Cr mass spectrometry and fluorescence signals were detected in the same thigh muscle sections after administration of mMSCs. A half-body section was also analyzed by LAICP-IMS. 52 Cr signals were mainly detected in the lungs. CONCLUSIONS The 52 Cr signals were observed in sections through the thigh muscle and half body after intramuscular and intravenous administration, respectively, of Cr-labeled mMSCs to mice. Our results suggest that LAICP-IMS is a sensitive and useful technique to evaluate biodistribution in cell therapy research.
Collapse
Affiliation(s)
- Naoyuki Nakada
- Analysis & Pharmacokinetics Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | | |
Collapse
|
13
|
Löhr K, Borovinskaya O, Tourniaire G, Panne U, Jakubowski N. Arraying of Single Cells for Quantitative High Throughput Laser Ablation ICP-TOF-MS. Anal Chem 2019; 91:11520-11528. [DOI: 10.1021/acs.analchem.9b00198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Konrad Löhr
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
- Department of Chemistry and SALSA, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | | | | | - Ulrich Panne
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
- Department of Chemistry and SALSA, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Norbert Jakubowski
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| |
Collapse
|
14
|
Yin L, Zhang Z, Liu Y, Gao Y, Gu J. Recent advances in single-cell analysis by mass spectrometry. Analyst 2019; 144:824-845. [PMID: 30334031 DOI: 10.1039/c8an01190g] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are the most basic structural units that play vital roles in the functioning of living organisms. Analysis of the chemical composition and content of a single cell plays a vital role in ensuring precise investigations of cellular metabolism, and is a crucial aspect of lipidomic and proteomic studies. In addition, structural knowledge provides a better understanding of cell behavior as well as the cellular and subcellular mechanisms. However, single-cell analysis can be very challenging due to the very small size of each cell as well as the large variety and extremely low concentrations of substances found in individual cells. On account of its high sensitivity and selectivity, mass spectrometry holds great promise as an effective technique for single-cell analysis. Numerous mass spectrometric techniques have been developed to elucidate the molecular profiles at the cellular level, including electrospray ionization mass spectrometry (ESI-MS), secondary ion mass spectrometry (SIMS), laser-based mass spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). In this review, the recent advances in single-cell analysis by mass spectrometry are summarized. The strategies of different ionization modes to achieve single-cell analysis are classified and discussed in detail.
Collapse
Affiliation(s)
- Lei Yin
- Research Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Dongminzhu Street, Changchun 130061, PR China.
| | | | | | | | | |
Collapse
|
15
|
Theiner S, Schweikert A, Van Malderen SJM, Schoeberl A, Neumayer S, Jilma P, Peyrl A, Koellensperger G. Laser Ablation-Inductively Coupled Plasma Time-of-Flight Mass Spectrometry Imaging of Trace Elements at the Single-Cell Level for Clinical Practice. Anal Chem 2019; 91:8207-8212. [DOI: 10.1021/acs.analchem.9b00698] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sarah Theiner
- Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Andreas Schweikert
- Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Stijn J. M. Van Malderen
- Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - Anna Schoeberl
- Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Sophie Neumayer
- Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Petra Jilma
- Institute for Medical and Chemical Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
16
|
Van Acker T, Buckle T, Van Malderen SJM, van Willigen DM, van Unen V, van Leeuwen FWB, Vanhaecke F. High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Anal Chim Acta 2019; 1074:43-53. [PMID: 31159938 DOI: 10.1016/j.aca.2019.04.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
This work evaluates the possibility of placement of high-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) within precision medicine by assessing the suitability of LA-ICP-MS as a micro-analytical technique for the localization and quantification of membranous receptors in heterogeneous cell samples that express both the membrane-bound receptors C-X-C chemokine receptor type 4 (CXCR4) and epidermal growth factor receptor (EGFR). Staining of the breast cancer cell lines MDA-MB-231 X4 and MDA-MB-468 was achieved using receptor-specific hybrid tracers, containing both a fluorophore and a DTPA single-lanthanide chelate. Prior to LA-ICP-MS imaging, fluorescence confocal microscopy (FCM) imaging was performed to localize the receptors, hereby enabling direct comparison. Based on the different expression levels of CXCR4 and EGFR, a distinction could be made between the cell lines using both imaging modalities. Furthermore, FCM and LA-ICP-MS demonstrated complementary characteristics, as a more distinct discrimination could be made between both cell lines based on the EGFR-targeting hybrid tracer via LA-ICP-MS, due to the intrinsic CXCR4-related green fluorescent protein (GFP) signal present in the MDA-MB-231 X4 cells. Employing state-of-the-art LA-ICP-MS instrumentation in bidirectional area scanning mode for sub-cellular imaging of MDA-MB-231 X4 cells enabled the specific binding of the CXCR4-targeting hybrid tracer to the cell membrane to be clearly demonstrated. The stretching of cells over the glass substrate led to a considerably higher signal response for pixels at the cell edges, relative to the more central pixels. The determination of the expression levels of CXCR4 and EGFR for the MDA-MB-468 cell line was performed using LA-ICP-MS single-cell analysis (sc-LA-ICP-MS) and external calibration, based on the quantitative ablation of Ho-spiked dried gelatin droplet standards. Additionally, a second calibration approach was applied based on spot ablation of highly homogeneous dried gelatin gels in combination with the determination of the ablated volume using atomic force microscopy (AFM) and yielded results which were in good agreement with the expression levels determined via flow cytometry (FC) and mass cytometry (MC). Hybrid tracers enable a direct comparison between (i) FCM and LA-ICP-MS imaging for the evaluation of the microscopic binding pattern and between (ii) FC, MC and sc-LA-ICP-MS for the quantification of receptor expression levels in single cells.
Collapse
Affiliation(s)
- Thibaut Van Acker
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Stijn J M Van Malderen
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Ghent University, Department of Chemistry, X-ray Microspectroscopy and Imaging Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Vincent van Unen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
17
|
Grunert B, Saatz J, Hoffmann K, Appler F, Lubjuhn D, Jakubowski N, Resch-Genger U, Emmerling F, Briel A. Multifunctional Rare-Earth Element Nanocrystals for Cell Labeling and Multimodal Imaging. ACS Biomater Sci Eng 2018; 4:3578-3587. [DOI: 10.1021/acsbiomaterials.8b00495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Jessica Saatz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Katrin Hoffmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | | | - Dominik Lubjuhn
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Norbert Jakubowski
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | | |
Collapse
|
18
|
Jiménez-Lamana J, Szpunar J, Łobinski R. New Frontiers of Metallomics: Elemental and Species-Specific Analysis and Imaging of Single Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:245-270. [PMID: 29884968 DOI: 10.1007/978-3-319-90143-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single cells represent the basic building units of life, and thus their study is one the most important areas of research. However, classical analysis of biological cells eludes the investigation of cell-to-cell differences to obtain information about the intracellular distribution since it only provides information by averaging over a huge number of cells. For this reason, chemical analysis of single cells is an expanding area of research nowadays. In this context, metallomics research is going down to the single-cell level, where high-resolution high-sensitive analytical techniques are required. In this chapter, we present the latest developments and applications in the fields of single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS), mass cytometry, laser ablation (LA)-ICP-MS, nanoscale secondary ion mass spectrometry (nanoSIMS), and synchrotron X-ray fluorescence microscopy (SXRF) for single-cell analysis. Moreover, the capabilities and limitations of the current analytical techniques to unravel single-cell metabolomics as well as future perspectives in this field will be discussed.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France.
| | - Joanna Szpunar
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France
| | - Ryszard Łobinski
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France
| |
Collapse
|
19
|
Dressler VL, Müller EI, Pozebon D. Bioimaging Metallomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:139-181. [DOI: 10.1007/978-3-319-90143-5_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Mueller L, Herrmann AJ, Techritz S, Panne U, Jakubowski N. Quantitative characterization of single cells by use of immunocytochemistry combined with multiplex LA-ICP-MS. Anal Bioanal Chem 2017; 409:3667-3676. [DOI: 10.1007/s00216-017-0310-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 12/17/2022]
|
21
|
Wang H, Wang M, Wang B, Zheng L, Chen H, Chai Z, Feng W. Interrogating the variation of element masses and distribution patterns in single cells using ICP-MS with a high efficiency cell introduction system. Anal Bioanal Chem 2016; 409:1415-1423. [DOI: 10.1007/s00216-016-0075-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
|
22
|
Müller L, Traub H, Jakubowski N. Novel Applications of Lanthanoides as Analytical or Diagnostic Tools in the Life Sciences by ICP-MS-based Techniques. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range.
In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies.
Collapse
|
23
|
Susnea I, Weiskirchen R. Trace metal imaging in diagnostic of hepatic metal disease. MASS SPECTROMETRY REVIEWS 2016; 35:666-686. [PMID: 25677057 DOI: 10.1002/mas.21454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The liver is the most central organ and the largest gland of the body that influences and controls a variety of metabolic and catabolic processes. It produces inconceivable many essential proteins, is responsible for the recovery of various food components, degrades toxins, mediates the bile production, and is involved in the excretion of unwanted metabolites. Several of these anabolic or catabolic functions of the liver depend on trace elements. These are either integral part of enzymes, cofactors, or act as chemical catalysts. Therefore, a lack of trace elements can lead to organ failure or systemic illness. Conversely, excessive hepatic trace element deposition resulting from genetic disorders, intoxication, extensive dietary supply, or long-term parenteral nutrition may cause hepatic inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma. Although specific serum parameters currently allow rough assessment of metal deficit and excess, the precise quantification of hepatic metal content in liver is presently only possible by different titration or staining techniques of biopsy specimens. Recently, novel innovative metal imaging techniques were developed that are on the way to replace these traditional methods. In the present review, we summarize the function of different trace elements in liver health and disease and discuss the present knowledge on how quantitative biometal imaging techniques such as synchrotron X-ray fluorescence microscopy, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry enrich diagnostics in the detection and quantification of hepatic metal disorders. We will further discuss sample preparation, sensitivity, spatial resolution, specificity, quantification strategies, and potential future applications of metal bioimaging in experimental research and clinical daily routine. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:666-686, 2016.
Collapse
Affiliation(s)
- Iuliana Susnea
- Central Institute of Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074, Aachen, Germany.
| |
Collapse
|
24
|
Vu-Quang H, Vinding MS, Xia D, Nielsen T, Ullisch MG, Dong M, Nielsen NC, Kjems J. Chitosan-coated poly(lactic-co-glycolic acid) perfluorooctyl bromide nanoparticles for cell labeling in 19F magnetic resonance imaging. Carbohydr Polym 2016; 136:936-44. [DOI: 10.1016/j.carbpol.2015.09.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
|
25
|
|
26
|
Douglas DN, Managh AJ, Reid HJ, Sharp BL. High-Speed, Integrated Ablation Cell and Dual Concentric Injector Plasma Torch for Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2015; 87:11285-94. [DOI: 10.1021/acs.analchem.5b02466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David N. Douglas
- The Centre
for Analytical
Science, The Department of Chemistry, School of Science, Loughborough University, Epinal Way, Loughborough, Leicestershire, United Kingdom, LE11 3TU
| | - Amy J. Managh
- The Centre
for Analytical
Science, The Department of Chemistry, School of Science, Loughborough University, Epinal Way, Loughborough, Leicestershire, United Kingdom, LE11 3TU
| | - Helen J. Reid
- The Centre
for Analytical
Science, The Department of Chemistry, School of Science, Loughborough University, Epinal Way, Loughborough, Leicestershire, United Kingdom, LE11 3TU
| | - Barry L. Sharp
- The Centre
for Analytical
Science, The Department of Chemistry, School of Science, Loughborough University, Epinal Way, Loughborough, Leicestershire, United Kingdom, LE11 3TU
| |
Collapse
|
27
|
Laser Ablation Inductively Coupled Plasma Mass Spectrometry: An Emerging Technology for Multiparametric Analysis of Tissue Antigens. Transplant Direct 2015; 1:e32. [PMID: 27500232 PMCID: PMC4946479 DOI: 10.1097/txd.0000000000000541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/31/2015] [Indexed: 11/27/2022] Open
Abstract
Supplemental digital content is available in the text. New analytical techniques for multiparametric characterisation of individual cells are likely to reveal important information about the heterogeneity of immunological responses at the single-cell level. In this proof-of-principle study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to the problem of concurrently detecting 24 lineage and activation markers expressed by human leucocytes. This approach was sufficiently sensitive and specific to identify subpopulations of isolated T, B, and natural killer cells. Leucocyte subsets were also accurately detected within unfractionated peripheral blood mononuclear cells preparations. Accordingly, we judge LA-ICP-MS to be a suitable method for assessing expression of multiple tissue antigens in solid-phase biological specimens, such as tissue sections, cytospins, or cells grown on slides. These results augur well for future development of LA-ICP-MS–based bioimaging instruments for general users.
Collapse
|
28
|
Trzonkowski P, Bacchetta R, Battaglia M, Berglund D, Bohnenkamp HR, ten Brinke A, Bushell A, Cools N, Geissler EK, Gregori S, Marieke van Ham S, Hilkens C, Hutchinson JA, Lombardi G, Madrigal JA, Marek-Trzonkowska N, Martinez-Caceres EM, Roncarolo MG, Sanchez-Ramon S, Saudemont A, Sawitzki B. Hurdles in therapy with regulatory T cells. Sci Transl Med 2015; 7:304ps18. [PMID: 26355029 DOI: 10.1126/scitranslmed.aaa7721] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Improper activation of the immune system contributes to a variety of clinical conditions, including autoimmune and allergic diseases as well as solid organ and bone marrow transplantation. One approach to counteract this activation is through adoptive therapy with regulatory T cells (Tregs). Efforts to manufacture these cells have led to good maunfacturing practice-compliant protocols, and Treg products are entering early clinical trials. Here, we report the stance of the European Union Cooperation in Science and Technology Action BM1305, "Action to Focus and Accelerate Cell-based Tolerance-inducing Therapies-A FACTT," which identifies hurdles hindering Treg clinical applications in Europe and provides possible solutions.
Collapse
Affiliation(s)
- Piotr Trzonkowski
- Medical University of Gdansk, Department of Clinical Immunology and Transplantology, Debinki 7, 80-952 Gdansk, Poland. All authors equally contributed to this work.
| | - Rosa Bacchetta
- Department of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Standford, California, USA
| | - Manuela Battaglia
- Diabetes Research Institute (DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - David Berglund
- Uppsala University, Department of Immunology, Genetics and Pathology; Section of Clinical Immunology, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | | - Anja ten Brinke
- Department of Immunopathology, Sanquin Blood Supply, Division Research, Plesmanlaan 125, 1066 CX Amsterdam, Netherland and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Andrew Bushell
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Edward K Geissler
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Bavaria, 93053, Germany
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Blood Supply, Division Research, Plesmanlaan 125, 1066 CX Amsterdam, Netherland and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - James A Hutchinson
- Division of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, 93053, Bavaria, Germany
| | - Giovanna Lombardi
- Medical Research Council (MRC) Centre in Transplantation, Kings College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - J Alejandro Madrigal
- Anthony Nolan Research Institute, University College London (UCL) Royal Free Hospital Campus, 77c Fleet Road, London NW3 2QG, UK
| | | | - Eva M Martinez-Caceres
- Immunology Division, Germans Trias i Pujol University Hospital. Campus Can Ruti. Department of Cellular Biology, Physiology, and Immunology, Universitat Autònoma Barcelona 08916, Badalona, Barcelona, Spain
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy. Department of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Silvia Sanchez-Ramon
- Departamento de Inmunología Clínica, Hospital Clínico San Carlos, Calle Profesor Martín Lagos S/N, E- 28040 Madrid, Spain
| | - Aurore Saudemont
- Anthony Nolan Research Institute, University College London (UCL) Royal Free Hospital Campus, 77c Fleet Road, London NW3 2QG, UK
| | - Birgit Sawitzki
- AG Transplantationstoleranz, Charite Universitätsmedizin, Institut für Med. Imunologie, Augustenburgerplatz 1, 13353 Berlin, Germany
| |
Collapse
|
29
|
van der Net JB, Bushell A, Wood KJ, Harden PN. Regulatory T cells: first steps of clinical application in solid organ transplantation. Transpl Int 2015; 29:3-11. [DOI: 10.1111/tri.12608] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/26/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jeroen B. van der Net
- Transplantation Research Immunology Group; Nuffield Department of Surgical Sciences; University of Oxford; Oxford UK
- Oxford Transplant Centre; Oxford University Hospitals NHS Trust; Oxford UK
| | - Andrew Bushell
- Transplantation Research Immunology Group; Nuffield Department of Surgical Sciences; University of Oxford; Oxford UK
| | - Kathryn J. Wood
- Transplantation Research Immunology Group; Nuffield Department of Surgical Sciences; University of Oxford; Oxford UK
| | - Paul N. Harden
- Oxford Transplant Centre; Oxford University Hospitals NHS Trust; Oxford UK
| |
Collapse
|
30
|
Van Malderen SJM, van Elteren JT, Vanhaecke F. Submicrometer Imaging by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry via Signal and Image Deconvolution Approaches. Anal Chem 2015; 87:6125-32. [DOI: 10.1021/acs.analchem.5b00700] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Stijn J. M. Van Malderen
- Department
of Analytical Chemistry, Ghent University, Krijgslaan 281 - S12, B-9000 Ghent, Belgium
| | - Johannes T. van Elteren
- Analytical
Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Frank Vanhaecke
- Department
of Analytical Chemistry, Ghent University, Krijgslaan 281 - S12, B-9000 Ghent, Belgium
| |
Collapse
|
31
|
Hsieh YK, Wang T, Ku YH, Wang CF. Elemental determination of foulings developed in nanofiltration of synthesized liquid low-level radioactive wastes: an LA-ICP-MS study. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Reifschneider O, Wentker KS, Strobel K, Schmidt R, Masthoff M, Sperling M, Faber C, Karst U. Elemental Bioimaging of Thulium in Mouse Tissues by Laser Ablation-ICPMS as a Complementary Method to Heteronuclear Proton Magnetic Resonance Imaging for Cell Tracking Experiments. Anal Chem 2015; 87:4225-30. [DOI: 10.1021/ac504363q] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Olga Reifschneider
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, 48149 Münster, Germany
| | - Kristina S. Wentker
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, 48149 Münster, Germany
| | - Klaus Strobel
- Westfälische-Wilhelms-Universität Münster, University Hospital, Department of Clinical Radiology, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Rebecca Schmidt
- Westfälische-Wilhelms-Universität Münster, University Hospital, Department of Clinical Radiology, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Max Masthoff
- Westfälische-Wilhelms-Universität Münster, University Hospital, Department of Clinical Radiology, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Michael Sperling
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, 48149 Münster, Germany
- European Virtual Institute for Speciation Analysis (EVISA), Mendelstr. 11, 48149 Münster, Germany
| | - Cornelius Faber
- Westfälische-Wilhelms-Universität Münster, University Hospital, Department of Clinical Radiology, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, 48149 Münster, Germany
| |
Collapse
|
33
|
Birka M, Wentker KS, Lusmöller E, Arheilger B, Wehe CA, Sperling M, Stadler R, Karst U. Diagnosis of nephrogenic systemic fibrosis by means of elemental bioimaging and speciation analysis. Anal Chem 2015; 87:3321-8. [PMID: 25708271 DOI: 10.1021/ac504488k] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The combined use of elemental bioimaging and speciation analysis is presented as a novel means for the diagnosis of nephrogenic systemic fibrosis (NSF), a rare disease occurring after administration of gadolinium-based contrast agents (GBCA) for magnetic resonance imaging (MRI), in skin samples of patients suffering from renal insufficiency. As the pathogenesis of NSF is still largely unknown particularly with regard to the distribution and potential retention of gadolinium in the human organism, a skin biopsy sample from a suspected NSF patient was investigated. The combination of inductively coupled plasma mass spectrometry (ICP-MS), laser ablation (LA) ICP-MS for quantitative elemental bioimaging, and hydrophilic interaction liquid chromatography (HILIC) ICP-MS for speciation analysis allowed one to unambiguously diagnose the patient as a case of NSF. By means of ICP-MS, a total gadolinium concentration from 3.02 to 4.58 mg/kg was determined in the biopsy sample, indicating a considerable deposition of gadolinium in the patient's skin. LA-ICP-MS revealed a distinctly inhomogeneous distribution of gadolinium as well as concentrations of up to 400 mg/kg in individual sections of the skin biopsy. Furthermore, the correlation between the distributions of phosphorus and gadolinium suggests the presence of GdPO4 deposits in the tissue section. Speciation analysis by means of HILIC-ICP-MS showed the presence of the intact GBCA Gd-HP-DO3A eight years after the administration to the patient. The concentration of the contrast agent in the aqueous extract of the skin biopsy was found to be 1.76 nmol/L. Moreover, evidence for the presence of further highly polar gadolinium species in low concentrations was found.
Collapse
Affiliation(s)
- Marvin Birka
- †University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | - Kristina S Wentker
- †University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | - Elke Lusmöller
- §Johannes Wesling Klinikum Minden, Hautklinik, Hans-Nolte Straße 1, 32429 Minden, Germany
| | - Brigit Arheilger
- §Johannes Wesling Klinikum Minden, Hautklinik, Hans-Nolte Straße 1, 32429 Minden, Germany
| | - Christoph A Wehe
- †University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | - Michael Sperling
- †University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany.,‡European Virtual Institute for Speciation Analysis (EVISA), Mendelstraße 11, 48149 Münster, Germany
| | - Rudolf Stadler
- §Johannes Wesling Klinikum Minden, Hautklinik, Hans-Nolte Straße 1, 32429 Minden, Germany
| | - Uwe Karst
- †University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| |
Collapse
|
34
|
Zhai J, Wang Y, Xu C, Zheng L, Wang M, Feng W, Gao L, Zhao L, Liu R, Gao F, Zhao Y, Chai Z, Gao X. Facile Approach To Observe and Quantify the αIIbβ3 Integrin on a Single-Cell. Anal Chem 2015; 87:2546-9. [DOI: 10.1021/ac504639u] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jiao Zhai
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaling Wang
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Xu
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College
of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Lingna Zheng
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wang
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyue Feng
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Zhao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ru Liu
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuping Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifang Chai
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School
of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xueyun Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Hann S, Dernovics M, Koellensperger G. Elemental analysis in biotechnology. Curr Opin Biotechnol 2015; 31:93-100. [DOI: 10.1016/j.copbio.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/23/2014] [Indexed: 01/25/2023]
|
36
|
Ong TH, Tillmaand EG, Makurath M, Rubakhin SS, Sweedler JV. Mass spectrometry-based characterization of endogenous peptides and metabolites in small volume samples. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:732-40. [PMID: 25617659 DOI: 10.1016/j.bbapap.2015.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
Abstract
Technologies to assay single cells and their extracellular microenvironments are valuable in elucidating biological function, but there are challenges. Sample volumes are low, the physicochemical parameters of the analytes vary widely, and the cellular environment is chemically complex. In addition, the inherent difficulty of isolating individual cells and handling small volume samples complicates many experimental protocols. Here we highlight a number of mass spectrometry (MS)-based measurement approaches for characterizing the chemical content of small volume analytes, with a focus on methods used to detect intracellular and extracellular metabolites and peptides from samples as small as individual cells. MS has become one of the most effective means for analyzing small biological samples due to its high sensitivity, low analyte consumption, compatibility with a wide array of sampling approaches, and ability to detect a large number of analytes with different properties without preselection. Having access to a flexible portfolio of MS-based methods allows quantitative, qualitative, untargeted, targeted, multiplexed, and spatially resolved investigations of single cells and their similarly scaled extracellular environments. Combining MS with on-line and off-line sample conditioning tools, such as microfluidic and capillary electrophoresis systems, significantly increases the analytical coverage of the sample's metabolome and peptidome, and improves individual analyte characterization/identification. Small volume assays help to reveal the causes and manifestations of biological and pathological variability, as well as the functional heterogeneity of individual cells within their microenvironments and within cellular populations. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Emily G Tillmaand
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Monika Makurath
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
37
|
Pesenacker AM, Broady R, Levings MK. Control of tissue-localized immune responses by human regulatory T cells. Eur J Immunol 2014; 45:333-43. [PMID: 25378065 DOI: 10.1002/eji.201344205] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/30/2014] [Accepted: 10/31/2014] [Indexed: 12/25/2022]
Abstract
Treg cells control immune responses to self and nonharmful foreign antigens. Emerging data from animal models indicate that Treg cells function in both secondary lymphoid organs and tissues, and that these different microenvironments may contain specialized subsets of Treg cells with distinct mechanisms of action. The design of therapies for the restoration of tissue-localized immune homeostasis is dependent upon understanding how local immune responses are influenced by Treg cells in health versus disease. Here we review the current state of knowledge about human Treg cells in four locations: the skin, lung, intestine, and joint. Despite the distinct biology of these tissues, there are commonalities in the biology of their resident Treg cells, including phenotypic and functional differences from circulating Treg cells, and the presence of cytokine-producing (e.g. IL-17(+)) FOXP3(+) cells. We also highlight the challenges to studying tissue Treg cells in humans, and opportunities to use new technologies for the detailed analysis of Treg cells at the single-cell level. As emerging biological therapies are increasingly targeted toward tissue-specific effects, it is critical to understand their potential impact on local immune regulation.
Collapse
Affiliation(s)
- Anne M Pesenacker
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Child & Family Research Institute, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
38
|
Tang Q. Pharmacokinetics of therapeutic Tregs. Am J Transplant 2014; 14:2679-80. [PMID: 25358900 DOI: 10.1111/ajt.12933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 06/26/2014] [Accepted: 07/08/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Q Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
39
|
Mueller L, Traub H, Jakubowski N, Drescher D, Baranov VI, Kneipp J. Trends in single-cell analysis by use of ICP-MS. Anal Bioanal Chem 2014; 406:6963-77. [PMID: 25270864 DOI: 10.1007/s00216-014-8143-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/14/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The analysis of single cells is a growing research field in many disciplines such as toxicology, medical diagnosis, drug and cancer research or metallomics, and different methods based on microscopic, mass spectrometric, and spectroscopic techniques are under investigation. This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (ICP-OES) are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells (e.g., nanoparticles), or which are artificially bound to a cell. For the latter, especially element tagged antibodies are of high interest and are discussed in the review. The application of different sample introduction systems for liquid analysis (pneumatic nebulization, droplet generation) and elemental imaging by laser ablation ICP-MS (LA-ICP-MS) of single cells are highlighted. Because of the high complexity of biological systems and for a better understanding of processes and dynamics of biologically or medically relevant cells, the authors discuss the idea of "multimodal spectroscopies."
Collapse
Affiliation(s)
- Larissa Mueller
- BAM Federal Institute for Materials Research and Testing, 12200, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
40
|
Wang M, Zheng LN, Wang B, Chen HQ, Zhao YL, Chai ZF, Reid HJ, Sharp BL, Feng WY. Quantitative Analysis of Gold Nanoparticles in Single Cells by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry. Anal Chem 2014; 86:10252-6. [DOI: 10.1021/ac502438n] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Meng Wang
- Key
Laboratory of Nuclear Radiation and Nuclear Energy Technology/Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Centre
for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Ling-Na Zheng
- Key
Laboratory of Nuclear Radiation and Nuclear Energy Technology/Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- Key
Laboratory of Nuclear Radiation and Nuclear Energy Technology/Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Qing Chen
- Key
Laboratory of Nuclear Radiation and Nuclear Energy Technology/Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Liang Zhao
- Key
Laboratory of Nuclear Radiation and Nuclear Energy Technology/Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi-Fang Chai
- Key
Laboratory of Nuclear Radiation and Nuclear Energy Technology/Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Helen J. Reid
- Centre
for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Barry L. Sharp
- Centre
for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Wei-Yue Feng
- Key
Laboratory of Nuclear Radiation and Nuclear Energy Technology/Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Managh AJ, Hutchinson RW, Riquelme P, Broichhausen C, Wege AK, Ritter U, Ahrens N, Koehl GE, Walter L, Florian C, Schlitt HJ, Reid HJ, Geissler EK, Sharp BL, Hutchinson JA. Laser Ablation–Inductively Coupled Plasma Mass Spectrometry: An Emerging Technology for Detecting Rare Cells in Tissue Sections. THE JOURNAL OF IMMUNOLOGY 2014; 193:2600-8. [DOI: 10.4049/jimmunol.1400869] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Bioimaging mass spectrometry of trace elements – recent advance and applications of LA-ICP-MS: A review. Anal Chim Acta 2014; 835:1-18. [DOI: 10.1016/j.aca.2014.04.048] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 01/03/2023]
|
43
|
Juvet SC, Whatcott AG, Bushell AR, Wood KJ. Harnessing regulatory T cells for clinical use in transplantation: the end of the beginning. Am J Transplant 2014; 14:750-63. [PMID: 24592900 DOI: 10.1111/ajt.12647] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 01/25/2023]
Abstract
Owing to the adverse effects of immunosuppression and an inability to prevent chronic rejection, there is a pressing need for alternative strategies to control alloimmunity. In three decades, regulatory T cells (Tregs) have evolved from a hypothetical mediator of adoptively transferred tolerance to a well-defined population that can be expanded ex vivo and returned safely to patients in clinical trials. Herein, we review the historical developments that have permitted these advances and the current status of clinical trials examining Tregs as a cellular therapy in transplantation. We conclude by discussing the critical unanswered questions that face this field in the coming years.
Collapse
Affiliation(s)
- S C Juvet
- Nuffield Department of Surgical Sciences, Transplantation Research Immunology Group, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | |
Collapse
|
44
|
Timerbaev AR. Recent progress of ICP-MS in the development of metal-based drugs and diagnostic agents. J. ANAL. AT. SPECTROM. 2014; 29:1058-1072. [DOI: 10.1039/c3ja50394a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Critical analysis of current capabilities, limitations, and trends of ICP-MS applied to the development of metal-based medicines is conducted.
Collapse
Affiliation(s)
- Andrei R. Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry
- Russian Academy of Sciences
- Moscow, Russia
| |
Collapse
|
45
|
Egger AE, Theiner S, Kornauth C, Heffeter P, Berger W, Keppler BK, Hartinger CG. Quantitative bioimaging by LA-ICP-MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice. Metallomics 2014; 6:1616-25. [DOI: 10.1039/c4mt00072b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In a methodological study, quantitative LA-ICP-MS was used to compare the distribution of Pt and Ru in viscera from cisplatin- and KP1339-treated mice.
Collapse
Affiliation(s)
- Alexander E. Egger
- ADSI – Austrian Drug Screening Institute GmbH
- A-6020 Innsbruck, Austria
- Institute of Inorganic Chemistry
- University of Vienna
- Vienna, Austria
| | - Sarah Theiner
- Institute of Inorganic Chemistry
- University of Vienna
- Vienna, Austria
- Research Platform ‘Translational Cancer Therapy Research’
- University of Vienna
| | - Christoph Kornauth
- Institute of Clinical Pathology
- Medical University of Vienna
- Vienna, Austria
| | - Petra Heffeter
- Research Platform ‘Translational Cancer Therapy Research’
- University of Vienna
- Vienna, Austria
- Institute of Cancer Research
- Department of Medicine I
| | - Walter Berger
- Research Platform ‘Translational Cancer Therapy Research’
- University of Vienna
- Vienna, Austria
- Institute of Cancer Research
- Department of Medicine I
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry
- University of Vienna
- Vienna, Austria
- Research Platform ‘Translational Cancer Therapy Research’
- University of Vienna
| | - Christian G. Hartinger
- Institute of Inorganic Chemistry
- University of Vienna
- Vienna, Austria
- Research Platform ‘Translational Cancer Therapy Research’
- University of Vienna
| |
Collapse
|