1
|
Li N, Li G. Sphingolipid signaling in kidney diseases. Am J Physiol Renal Physiol 2025; 328:F431-F443. [PMID: 39933715 DOI: 10.1152/ajprenal.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Sphingolipids are a family of bioactive lipids. The key components include ceramides, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate. Sphingolipids were originally considered to be primarily structural elements of cell membranes but were later recognized as bioactive signaling molecules that play diverse roles in cellular behaviors such as cell differentiation, migration, proliferation, and death. Studies have demonstrated changes in key components of sphingolipids in the kidneys under different conditions and their important roles in the renal function and the pathogenesis of various kidney diseases. This review summarizes the most recent advances in the role of sphingolipid signaling in kidney diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
2
|
Chen B, Pathak R, Subekti A, Cheng X, Singh S, Ostermeyer-Fay AG, Hannun YA, Luberto C, Canals D. Critical Evaluation of Sphingolipids Detection by MALDI-MSI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636486. [PMID: 39975012 PMCID: PMC11838543 DOI: 10.1101/2025.02.04.636486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The increasing interest in the role of sphingolipids in (patho)physiology has led to the demand for visualization of these lipids within tissue samples (both from animal models and patient specimens) using techniques such as matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While increasingly adopted, detection of sphingolipids with MALDI-MSI is challenging due to: i) the significant structural variations of sphingolipid molecules, ii) the potential breakdown of the more complex molecules into structurally simpler species which may confound the analysis, and iii) the great difference in levels among sphingolipid classes and subspecies, with the low-abundant ones often being close to the detection limit. In this study, we adopted a multi-pronged approach to establish a robust pipeline for the detection of sphingolipids by MALDI-MSI and to establish best practices and limitations of this technology. First, we evaluated the more commonly adopted methods [2,5-Dihydroxyacetophenon (DHA) or 2,5-Dihydroxybenzoic acid (DHB) matrix in positive ion mode and 1,5-Diaminonaphthalene (DAN) matrix in negative ion mode] using MALDI-MS on reference standards. These standards were used at ratios similar to their relative levels in biological samples to evaluate signal artifacts originating from fragmentation of more complex sphingolipids and impacting low level species. Next, by applying the most appropriate protocol for each sphingolipid class, MALDI-MSI signals were validated in cell culture by modulating specific sphingolipid species using sphingolipid enzymes and inhibitors. Finally, the optimized parameters were utilized on breast cancer tissue from the PyMT mouse model. We report the optimal signal for sphingomyelin (SM) and, for the first time, Sph in DHB positive ion mode (in cells and PyMT tissue), and the validated detection of ceramides and glycosphingolipids in DAN negative ion mode. We document the extensive fragmentation of SM into sphingosine-1-phosphate (S1P) and even more so into ceramide-1-phosphate (C1P) using DAN in negative ion mode and its effect in generating an artifactual C1P tissue signal; we also report the lack of detectable signal for S1P and C1P in biological samples (cells and tissue) using the more suitable DHB positive ion mode protocol.
Collapse
|
3
|
Vandergrift GW, Veličković M, Day LZ, Gorman BL, Williams SM, Shrestha B, Anderton CR. Untargeted Spatial Metabolomics and Spatial Proteomics on the Same Tissue Section. Anal Chem 2025; 97:392-400. [PMID: 39708340 DOI: 10.1021/acs.analchem.4c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
An increasing number of spatial multiomic workflows have recently been developed. Some of these approaches have leveraged initial mass spectrometry imaging (MSI)-based spatial metabolomics to inform the region of interest (ROI) selection for downstream spatial proteomics. However, these workflows have been limited by varied substrate requirements between modalities or have required analyzing serial sections (i.e., one section per modality). To mitigate these issues, we present a new multiomic workflow that uses desorption electrospray ionization (DESI)-MSI to identify representative spatial metabolite patterns on-tissue prior to spatial proteomic analyses on the same tissue section. This workflow is demonstrated here with a model mammalian tissue (coronal rat brain section) mounted on a poly(ethylene naphthalate)-membrane slide. Initial DESI-MSI resulted in 160 annotations (SwissLipids) within the METASPACE platform (≤20% false discovery rate). A segmentation map from the annotated ion images informed the downstream ROI selection for spatial proteomics characterization from the same sample. The unspecific substrate requirements and minimal sample disruption inherent to DESI-MSI allowed for an optimized, downstream spatial proteomics assay, resulting in 3888 ± 240 to 4717 ± 48 proteins being confidently directed per ROI (200 μm × 200 μm). Finally, we demonstrate the integration of multiomic information, where we found ceramide localization to be correlated with SMPD3 abundance (ceramide synthesis protein), and we also utilized protein abundance to resolve metabolite isomeric ambiguity. Overall, the integration of DESI-MSI into the multiomic workflow allows for complementary spatial- and molecular-level information to be achieved from optimized implementations of each MS assay inherent to the workflow itself.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Marija Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Le Z Day
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Brittney L Gorman
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
4
|
Barnette D, Inselman AL, Kaldhone P, Lee GS, Davis K, Sarkar S, Malhi P, Fisher JE, Hanig JP, Beger RD, Jones EE. The incorporation of MALDI mass spectrometry imaging in studies to identify markers of toxicity following in utero opioid exposures in mouse fetuses. FRONTIERS IN TOXICOLOGY 2024; 6:1452974. [PMID: 39691158 PMCID: PMC11651024 DOI: 10.3389/ftox.2024.1452974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction In 2015, the FDA released a Drug Safety Communication regarding a possible link between opioid exposure during early pregnancy and an increased risk of fetal neural tube defects (NTDs). At the time, the indications for opioid use during pregnancy were not changed due to incomplete maternal toxicity data and limitations in human and animal studies. To assess these knowledge gaps, largescale animal studies are ongoing; however, state-of-the-art technologies have emerged as promising tools to assess otherwise non-standard endpoints. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a dynamic approach capable of generating 2D ion images to visualize the distribution of an analyte of interest across a tissue section. Methods Given the importance of lipid metabolism and neurotransmitters in the developing central nervous system, this study incorporates MALDI MSI to assess lipid distributions across mouse gestational day (GD) 18 fetuses, with and without observable NTDs following maternal exposure on GD 8 to morphine (400 mg/kg BW) or the NTD positive control valproic acid (VPA) (500 mg/kg BW). Results Analysis of whole-body mouse fetuses revealed differential lipid distributions localized mainly in the brain and spinal cord, which included several phosphatidylcholine (PC) species such as PCs 34:1, 34:0, and 36:2 localized to the cortex or hippocampus and lyso PC 16:0 across all brain regions. Overall, differential lipids increased in with maternal morphine and VPA exposure. Neurotransmitter distributions across the brain using FMP-10 derivatizing agent were also assessed, revealing morphine-specific changes. Discussion The observed differential glycerophospholipid distributions in relation to treatment and NTD development in mouse fetuses provide potential targets for further investigation of molecular mechanisms of opioid-related developmental effects. Overall, these findings support the feasibility of incorporating MALDI MSI to assess non-standard endpoints of opioid exposure during gestation.
Collapse
Affiliation(s)
- Dustyn Barnette
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Amy L. Inselman
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Pravin Kaldhone
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Grace S. Lee
- Center for Drug Evaluation and Research (CDER), Office of Testing and Research, Silver Spring, MD, United States
| | - Kelly Davis
- National Center for Toxicological Research (FDA), Toxicologic Pathology Associates, Jefferson, AR, United States
| | - Sumit Sarkar
- National Center for Toxicological Research (FDA), Division of Neurotoxicology, Jefferson, AR, United States
| | - Pritpal Malhi
- National Center for Toxicological Research (FDA), Toxicologic Pathology Associates, Jefferson, AR, United States
| | - J. Edward Fisher
- Center for Drug Evaluation and Research (CDER), Office of Testing and Research, Silver Spring, MD, United States
| | - Joseph P. Hanig
- Center for Drug Evaluation and Research (CDER), Division of Pharmacology Toxicology for Neuroscience, Silver Spring, MD, United States
| | - Richard D. Beger
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - E. Ellen Jones
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| |
Collapse
|
5
|
Tenebro CP, Marcial NBJM, Salcepuedes JJ, Torrecampo JC, Hernandez RD, Francisco JAP, Infante KMG, Belardo VJ, Paderes MC, Alvero RGY, Saludes JP, Dalisay DS. Visualization of renal rotenone accumulation after oral administration and in situ detection of kidney injury biomarkers via MALDI mass spectrometry imaging. Front Mol Biosci 2024; 11:1366278. [PMID: 39011141 PMCID: PMC11246995 DOI: 10.3389/fmolb.2024.1366278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
The examination of drug accumulation within complex biological systems offers valuable insights into the molecular aspects of drug metabolism and toxicity. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is an innovative methodology that enables the spatial visualization and quantification of biomolecules as well as drug and its metabolites in complex biological system. Hence, this method provides valuable insights into the metabolic profile and any molecular changes that may occur as a result of drug treatment. The renal system is particularly vulnerable to adverse effects of drug-induced harm and toxicity. In this study, MALDI MSI was utilized to examine the spatial distribution of drug and renal metabolites within kidney tissues subsequent to a single oral dosage of the anticancer compound rotenone. The integration of ion mobility spectrometry with MALDI MSI enhanced the data acquisition and analysis, resulting to improved mass resolution. Subsequently, the MS/MS fragment ions of rotenone reference drug were detected and characterized using MALDI HDMS/MS imaging. Notably, drug accumulation was observed in the cortical region of the representative kidney tissue sections treated with rotenone. The histological examination of treated kidney tissues did not reveal any observable changes. Differential ion intensity of renal endogenous metabolites was observed between untreated and rotenone-treated tissues. In the context of treated kidney tissues, the ion intensity level of sphingomyelin (D18:1/16:0), a sphingolipid indicator of glomerular cell injury and renal damage, was found to be elevated significantly compared to untreated kidney tissues. Conversely, the ion intensities of choline, glycero-3-phosphocholine (GPC), inosine, and a lysophosphatidylcholine LysoPC(18:0) exhibited a significant decrease. The results of this study demonstrate the potential of MALDI MSI as a novel technique for investigating the in situ spatial distribution of drugs and renal endogenous molecules while preserving the anatomical integrity of the kidney tissue. This technique can be used to study drug-induced metabolism and toxicity in a dynamic manner.
Collapse
Affiliation(s)
- Chuckcris P Tenebro
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Neaven Bon Joy M Marcial
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Janine J Salcepuedes
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Josie C Torrecampo
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
| | - Rajelle D Hernandez
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| | | | | | | | - Monissa C Paderes
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| | | | - Jonel P Saludes
- Center for Natural Drug Discovery and Development, University of San Agustin, Iloilo City, Philippines
- Department of Chemistry, University of San Agustin, Iloilo City, Philippines
- Balik Scientist Program, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Doralyn S Dalisay
- Center for Chemical Biology and Biotechnology, University of San Agustin, Iloilo City, Philippines
- Balik Scientist Program, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
- Department of Biology, University of San Agustin, Iloilo City, Philippines
| |
Collapse
|
6
|
Almalki AH. Recent Analytical Advances for Decoding Metabolic Reprogramming in Lung Cancer. Metabolites 2023; 13:1037. [PMID: 37887362 PMCID: PMC10609104 DOI: 10.3390/metabo13101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Metabolic reprogramming is a fundamental trait associated with lung cancer development that fuels tumor proliferation and survival. Monitoring such metabolic pathways and their intermediate metabolites can provide new avenues concerning treatment strategies, and the identification of prognostic biomarkers that could be utilized to monitor drug responses in clinical practice. In this review, recent trends in the analytical techniques used for metabolome mapping of lung cancer are capitalized. These techniques include nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and imaging mass spectrometry (MSI). The advantages and limitations of the application of each technique for monitoring the metabolite class or type are also highlighted. Moreover, their potential applications in the analysis of many biological samples will be evaluated.
Collapse
Affiliation(s)
- Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
7
|
Maciel LÍL, Bernardo RA, Martins RO, Batista Junior AC, Oliveira JVA, Chaves AR, Vaz BG. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04783-8. [PMID: 37329466 DOI: 10.1007/s00216-023-04783-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
8
|
Yin C, Harms AC, Hankemeier T, Kindt A, de Lange ECM. Status of Metabolomic Measurement for Insights in Alzheimer's Disease Progression-What Is Missing? Int J Mol Sci 2023; 24:ijms24054960. [PMID: 36902391 PMCID: PMC10003384 DOI: 10.3390/ijms24054960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease, leading to the progressive loss of memory and other cognitive functions. As there is still no cure for AD, the growth in the number of susceptible individuals represents a major emerging threat to public health. Currently, the pathogenesis and etiology of AD remain poorly understood, while no efficient treatments are available to slow down the degenerative effects of AD. Metabolomics allows the study of biochemical alterations in pathological processes which may be involved in AD progression and to discover new therapeutic targets. In this review, we summarized and analyzed the results from studies on metabolomics analysis performed in biological samples of AD subjects and AD animal models. Then this information was analyzed by using MetaboAnalyst to find the disturbed pathways among different sample types in human and animal models at different disease stages. We discuss the underlying biochemical mechanisms involved, and the extent to which they could impact the specific hallmarks of AD. Then we identify gaps and challenges and provide recommendations for future metabolomics approaches to better understand AD pathogenesis.
Collapse
Affiliation(s)
- Chunyuan Yin
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Elizabeth C. M. de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
9
|
Knittel CH, Devaraj NK. Bioconjugation Strategies for Revealing the Roles of Lipids in Living Cells. Acc Chem Res 2022; 55:3099-3109. [PMID: 36215688 DOI: 10.1021/acs.accounts.2c00511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The structural boundaries of living cells are composed of numerous membrane-forming lipids. Lipids not only are crucial for the cellular compartmentalization but also are involved in cell signaling as well as energy storage. Abnormal lipid levels have been linked to severe human diseases such as cancer, multiple sclerosis, neurodegenerative diseases, as well as lysosomal storage disorders. Given their biological significance, there is immense interest in studying lipids and their effect on cells. However, limiting factors include the low solubility of lipids, their structural complexity, and the challenge of using genetic techniques to directly manipulate lipid structure. Current methods to study lipids rely mostly on lipidomics, which analyzes the composition of lipid extracts using mass spectrometry. Although, these efforts have successfully catalogued and profiled a great number of lipids in cells, many aspects about their exact functional role and subcellular distribution remain enigmatic.In this Account, we outline how our laboratory developed and applied different bioconjugation strategies to study the role of lipids and lipid modifications in cells. Inspired by our ongoing work on developing lipid bioconjugation strategies to generate artificial cell membranes, we developed a ceramide synthesis method in live cells using a salicylaldehyde ester that readily reacts with sphingosine in form of a traceless ceramide ligation. Our study not only confirmed existing knowledge about the association of ceramides with cell death, but also gave interesting new findings about the structure-function relationship of ceramides in apoptosis. Our initial efforts led us to investigate probes that detect endogenous sphingolipids using live cell imaging. We describe the development of a fluorogenic probe that reacts chemoselectively with sphingosine in living cells, enabling the detection of elevated endogenous levels of this biomarker in human disease. Building on our interest in the fluorescence labeling of lipids, we have also explored the use of bioorthogonal reactions to label chemically synthesized lipid probes. We discuss the development of photocaged dihydrotetrazine lipids, where the initiation of the bioorthogonal reaction can be triggered by visible light, allowing for live cell modification of membranes with spatiotemporal control.Finally, proteins are often post-translationally modified by lipids, which have important effects on protein subcellular localization and function. Controlling lipid modifications with small molecule probes could help reveal the function of lipid post-translational modifications and could potentially inspire novel therapeutic strategies. We describe how our previous studies on synthetic membrane formation inspired us to develop an amphiphilic cysteine derivative that depalmitoylates membrane-bound S-acylated proteins in live cells. Ultimately, we applied this amphiphile mediated depalmitoylation (AMD) in studies investigating the palmitoylation of cancer relevant palmitoylated proteins in healthy and diseased cells.
Collapse
Affiliation(s)
- Caroline H Knittel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Abstract
Altered lipid metabolism is a characteristic feature and potential driving factor of acute kidney injury (AKI). Of the lipids that accumulate in injured renal tissues, ceramides are potent regulators of metabolism and cell fate. Up-regulation of ceramide synthesis is a common feature shared across several AKI etiologies in vitro and in vivo. Furthermore, ceramide accumulation is an early event in the natural history of AKI that precedes cell death and organ dysfunction. Emerging evidence suggests that inhibition of ceramide accumulation may improve renal outcomes in several models of AKI. This review examines the landscape of ceramide metabolism and regulation in the healthy and injured kidney. Furthermore, we discuss the body of literature regarding ceramides as therapeutic targets for AKI and consider potential mechanisms by which ceramides drive kidney pathogenesis.
Collapse
Affiliation(s)
- Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT
| | - William L Holland
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT.
| |
Collapse
|
11
|
Buszewska-Forajta M, Rafińska K, Buszewski B. Tissue sample preparations for preclinical research determined by molecular imaging mass spectrometry using MALDI. J Sep Sci 2022; 45:1345-1361. [PMID: 35122386 DOI: 10.1002/jssc.202100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Abstract
Matrix-assisted laser desorption/ionization - imaging mass spectrometry is an alternative tool, which can be implemented in order to obtain and visualize the "omic" signature of tissue samples. Its application to clinical study enables simultaneous imaging-based morphological observations and mass spectrometry analysis. Application of fully informative material like tissue, allows to obtain the complex and unique profile of analyzed samples. This knowledge leads to diagnose disease, study the mechanism of cancer development, select the potential biomarkers as well as correlating obtained image with prognosis. Nevertheless, it is worth to notice that this method is found to be objective but the result of analysis is mainly influenced by the sample preparation protocol, included collection of biological material, its preservation and processing. However, application of this approach requires a special sample preparation procedure. The main goal of the study is to present the current knowledge on the clinical application of matrix-assisted laser desorption/ionization - imaging mass spectrometry in cancer research, with particular emphasis on the sample preparation step. For this purpose, several protocols based on cryosections and formalin-fixed paraffin embedded tissue were compiled and compared, taking into account the measured metabolites of potential diagnostic importance for a given type of cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Magdalena Buszewska-Forajta
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., Torun, 87-100, Poland
| | - Boguslaw Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., Torun, 87-100, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., Torun, 87-100, Poland
| |
Collapse
|
12
|
Schnackenberg LK, Thorn DA, Barnette D, Jones EE. MALDI imaging mass spectrometry: an emerging tool in neurology. Metab Brain Dis 2022; 37:105-121. [PMID: 34347208 DOI: 10.1007/s11011-021-00797-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Neurological disease and disorders remain a large public health threat. Thus, research to improve early detection and/or develop more effective treatment approaches are necessary. Although there are many common techniques and imaging modalities utilized to study these diseases, existing approaches often require a label which can be costly and time consuming. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a label-free, innovative and emerging technique that produces 2D ion density maps representing the distribution of an analyte(s) across a tissue section in relation to tissue histopathology. One main advantage of MALDI IMS over other imaging modalities is its ability to determine the spatial distribution of hundreds of analytes within a single imaging run, without the need for a label or any a priori knowledge. Within the field of neurology and disease there have been several impactful studies in which MALDI IMS has been utilized to better understand the cellular pathology of the disease and or severity. Furthermore, MALDI IMS has made it possible to map specific classes of analytes to regions of the brain that otherwise may have been lost using more traditional methods. This review will highlight key studies that demonstrate the potential of this technology to elucidate previously unknown phenomenon in neurological disease.
Collapse
Affiliation(s)
- Laura K Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - David A Thorn
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - Dustyn Barnette
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - E Ellen Jones
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA.
| |
Collapse
|
13
|
Neumann JM, Freitag H, Hartmann JS, Niehaus K, Galanis M, Griesshammer M, Kellner U, Bednarz H. Subtyping non-small cell lung cancer by histology-guided spatial metabolomics. J Cancer Res Clin Oncol 2021; 148:351-360. [PMID: 34839410 PMCID: PMC8800912 DOI: 10.1007/s00432-021-03834-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
Purpose Most cancer-related deaths worldwide are associated with lung cancer. Subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (AC) and squamous cell carcinoma (SqCC) is of importance, as therapy regimes differ. However, conventional staining and immunohistochemistry have their limitations. Therefore, a spatial metabolomics approach was aimed to detect differences between subtypes and to discriminate tumor and stroma regions in tissues. Methods Fresh-frozen NSCLC tissues (n = 35) were analyzed by matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) of small molecules (< m/z 1000). Measured samples were subsequently stained and histopathologically examined. A differentiation of subtypes and a discrimination of tumor and stroma regions was performed by receiver operating characteristic analysis and machine learning algorithms. Results Histology-guided spatial metabolomics revealed differences between AC and SqCC and between NSCLC tumor and tumor microenvironment. A diagnostic ability of 0.95 was achieved for the discrimination of AC and SqCC. Metabolomic contrast to the tumor microenvironment was revealed with an area under the curve of 0.96 due to differences in phospholipid profile. Furthermore, the detection of NSCLC with rarely arising mutations of the isocitrate dehydrogenase (IDH) gene was demonstrated through 45 times enhanced oncometabolite levels. Conclusion MALDI-MSI of small molecules can contribute to NSCLC subtyping. Measurements can be performed intraoperatively on a single tissue section to support currently available approaches. Moreover, the technique can be beneficial in screening of IDH-mutants for the characterization of these seldom cases promoting the development of treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03834-w.
Collapse
Affiliation(s)
- Judith Martha Neumann
- Faculty of Biology, Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Hinrich Freitag
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jasmin Saskia Hartmann
- Faculty of Biology, Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Faculty of Biology, Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Michail Galanis
- Universitätsklinik für Allgemeinchirurgie, Viszeral-, Thorax- und Endokrine Chirurgie, Johannes Wesling Klinikum Minden, Minden, Germany.,Clinic for Thoracic Surgery and Thoracic Endoscopy, University Hospital Bielefeld Mitte, Bielefeld, Germany
| | - Martin Griesshammer
- Universitätsklinik für Hämatologie, Onkologie, Hämostaseologie und Palliativmedizin, Universitätszentrum Innere Medizin, Johannes Wesling Klinikum Minden, Minden, Germany
| | - Udo Kellner
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany. .,Institut für Pathologie, Johannes Wesling Klinikum, Minden, Germany.
| | - Hanna Bednarz
- Faculty of Biology, Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany. .,Medical School OWL, AG1: Sustainable Environmental Health Sciences, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
14
|
Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021; 232:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are a family of bioactive lipids implicated in a variety of cellular processes, and whose levels are controlled by an interlinked network of enzymes. While the spatial distribution of SL metabolism throughout the cell has been understood for some time, the implications of this for SL signaling and biological outcomes have only recently begun to be fully explored. In this review, we outline the compartmentalization of SL metabolism and describe advances in tools for investigating and probing compartment-specific SL functions. We also briefly discuss the implications of SL compartmentalization for cell signaling and therapeutic approaches to targeting the SL network.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
15
|
Synthetic probes and chemical tools in sphingolipid research. Curr Opin Chem Biol 2021; 65:126-135. [PMID: 34509716 DOI: 10.1016/j.cbpa.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Sphingolipids (SLs) are a unique class of nitrogen-linked lipids that are involved in membrane structure, cell signaling, and other important cellular processes. Abnormal sphingolipid metabolism is observed in several diseases including cancer, diabetes, metabolic disorders, and neurodegenerative diseases, such as Alzheimer's. However, the direct study of SLs has been hampered by their ubiquitous presence in cells and their complex metabolism. In the past few decades, efforts have been focused on creating synthetic probes and chemical tools to study SLs and decipher their roles in cellular biology. In this brief perspective, we seek to provide a concise snapshot of recently developed state-of-the-art chemical tools in SL research and the challenges that can be addressed through further development of SL probes.
Collapse
|
16
|
Millner A, Atilla-Gokcumen GE. Solving the enigma: Mass spectrometry and small molecule probes to study sphingolipid function. Curr Opin Chem Biol 2021; 65:49-56. [PMID: 34175552 DOI: 10.1016/j.cbpa.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Sphingolipids are highly bioactive lipids. Sphingolipid metabolism produces key membrane components (e.g. sphingomyelin) and a variety of signaling lipids with different biological functions (e.g. ceramide, sphingosine-1-phosphate). The coordinated activity of tens of different enzymes maintains proper levels and localization of these lipids with key roles in cellular processes. In this review, we highlight the signaling roles of sphingolipids in cell death and survival. We discuss recent findings on the role of specific sphingolipids during these processes, enabled by the use of lipidomics to study compositional and spatial regulation of these lipids and synthetic sphingolipid probes to study subcellular localization and interaction partners of sphingolipids to understand the function of these lipids.
Collapse
Affiliation(s)
- Alec Millner
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA.
| |
Collapse
|
17
|
Lukowski JK, Pamreddy A, Velickovic D, Zhang G, Pasa-Tolic L, Alexandrov T, Sharma K, Anderton CR. Storage Conditions of Human Kidney Tissue Sections Affect Spatial Lipidomics Analysis Reproducibility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2538-2546. [PMID: 32897710 PMCID: PMC8162764 DOI: 10.1021/jasms.0c00256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lipids often are labile, unstable, and tend to degrade overtime, so it is of the upmost importance to study these molecules in their most native state. We sought to understand the optimal storage conditions for spatial lipidomic analysis of human kidney tissue sections. Specifically, we evaluated human kidney tissue sections on several different days throughout the span of a week using our established protocol for elucidating lipids using high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). We studied kidney tissue sections stored under five different conditions: open stored at -80 °C, vacuumed sealed and stored at -80 °C, with matrix preapplied before storage at -80 °C, under a nitrogen atmosphere and stored at -80 °C, and at room temperature in a desiccator. Results were compared to data obtained from kidney tissue sections that were prepared and analyzed immediately after cryosectioning. Data was processed using METASPACE. After a week of storage, the sections stored at room temperature showed the largest amount of lipid degradation, while sections stored under nitrogen and at -80 °C retained the greatest number of overlapping annotations in relation to freshly cut tissue. Overall, we found that molecular degradation of the tissue sections was unavoidable over time, regardless of storage conditions, but storing tissue sections in an inert gas at low temperatures can curtail molecular degradation within tissue sections.
Collapse
Affiliation(s)
- Jessica K Lukowski
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Annapurna Pamreddy
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
| | - Dusan Velickovic
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Guanshi Zhang
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78284, United States
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78284, United States
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
| |
Collapse
|
18
|
Rudd AK, Mittal N, Lim EW, Metallo CM, Devaraj NK. A Small Molecule Fluorogenic Probe for the Detection of Sphingosine in Living Cells. J Am Chem Soc 2020; 142:17887-17891. [DOI: 10.1021/jacs.0c06652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Andrew K. Rudd
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Neel Mittal
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Esther W. Lim
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Christian M. Metallo
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
19
|
Holmes DT, Romney MG, Angel P, DeMarco ML. Proteomic applications in pathology and laboratory medicine: Present state and future prospects. Clin Biochem 2020; 82:12-20. [PMID: 32442429 DOI: 10.1016/j.clinbiochem.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Clinical mass spectrometry applications have traditionally focused on small molecules, particularly in the areas of therapeutic drug monitoring, toxicology, and measurement of endogenous and exogenous steroids. More recently, the use of matrix assisted laser desorption/ionization time of flight mass spectrometry for the identification of microbial pathogens has been widely implemented. Following this evolution, there has been an expanding role for the measurement of peptides and proteins in pathology and laboratory medicine. This review explores the current state of protein measurement by clinical mass spectrometry and the analytical strategies employed, as well as emerging applications in clinical chemistry, clinical microbiology and anatomical pathology.
Collapse
Affiliation(s)
- Daniel T Holmes
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| | - Marc G Romney
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charelston, SC 29425 Canada.
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| |
Collapse
|
20
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
21
|
Beckmann N, Becker KA, Kadow S, Schumacher F, Kramer M, Kühn C, Schulz-Schaeffer WJ, Edwards MJ, Kleuser B, Gulbins E, Carpinteiro A. Acid Sphingomyelinase Deficiency Ameliorates Farber Disease. Int J Mol Sci 2019; 20:ijms20246253. [PMID: 31835809 PMCID: PMC6941101 DOI: 10.3390/ijms20246253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can’t achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients.
Collapse
Affiliation(s)
- Nadine Beckmann
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany;
| | - Melanie Kramer
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Claudine Kühn
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | | | - Michael J. Edwards
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45229, USA;
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany;
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45229, USA;
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-84579; Fax: +49-201-723-5974
| |
Collapse
|
22
|
Holzlechner M, Eugenin E, Prideaux B. Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer. Cancer Rep (Hoboken) 2019; 2:e1229. [PMID: 32729258 PMCID: PMC7941519 DOI: 10.1002/cnr2.1229] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current methods to identify, classify, and predict tumor behavior mostly rely on histology, immunohistochemistry, and molecular determinants. However, better predictive markers are required for tumor diagnosis and evaluation. Due, in part, to recent technological advancements, metabolomics and lipid biomarkers have become a promising area in cancer research. Therefore, there is a necessity for novel and complementary techniques to identify and visualize these molecular markers within tumors and surrounding tissue. RECENT FINDINGS Since its introduction, mass spectrometry imaging (MSI) has proven to be a powerful tool for mapping analytes in biological tissues. By adding the label-free specificity of mass spectrometry to the detailed spatial information of traditional histology, hundreds of lipids can be imaged simultaneously within a tumor. MSI provides highly detailed lipid maps for comparing intra-tumor, tumor margin, and healthy regions to identify biomarkers, patterns of disease, and potential therapeutic targets. In this manuscript, recent advancement in sample preparation and MSI technologies are discussed with special emphasis on cancer lipid research to identify tumor biomarkers. CONCLUSION MSI offers a unique approach for biomolecular characterization of tumor tissues and provides valuable complementary information to histology for lipid biomarker discovery and tumor classification in clinical and research cancer applications.
Collapse
Affiliation(s)
- Matthias Holzlechner
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| |
Collapse
|
23
|
Han C, Li S, Yue Q, Li N, Yang H, Zhao Z. Polydopamine-capped AgNPs as a novel matrix overcoming the ion suppression of phosphatidylcholine for MALDI MS comprehensive imaging of glycerophospholipids and sphingolipids in impact-induced injured brain. Analyst 2019; 144:6304-6312. [PMID: 31552925 DOI: 10.1039/c9an01361j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a powerful tool for the characterization and localization of analytes without the need for extraction, purification, separation or labeling of samples. However, in tissue sections the most abundant lipids, phosphatidylcholines (PCs), could suppress the signals of other classes of coexisting lipids. In this work, polydopamine (PDA)-capped AgNPs (AgNPs@PDA) were synthesized as a matrix of MALDI MSI to analyze lipids in both positive and negative ion modes. By adjusting the thickness of the PDA layer, the signal of silver cluster ions of AgNPs@PDA was effectively controlled, and the ability of AgNPs@PDA serving as a matrix was optimized. More interestingly, using AgNPs@PDA as a matrix, the sensitivity of PCs was dramatically decreased, and the PC signals were greatly suppressed, while for other lipids (including PE, HexCer, PS, PI, PIP, and ST), they were just the opposite. The reason, we believe, is related to the positively charged surface of AgNPs@PDA, and the polyhydroxy and amino groups of PDA. Benefitting from the suppression of the signals of PCs and the improvement of detection sensitivity of other lipids, 58 glycerophospholipids and 25 sphingolipids in brain tissue sections could be imaged in one run with AgNPs@PDA as a matrix by MALDI MSI, much better than when using traditional organic matrices 2,5-dihydroxybenzoic acid and 9-aminoacridine.
Collapse
Affiliation(s)
- Chao Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
24
|
Shi Y, Li Z, Felder MA, Yu Q, Shi X, Peng Y, Cao Q, Wang B, Puglielli L, Patankar MS, Li L. Mass Spectrometry Imaging of N-Glycans from Formalin-Fixed Paraffin-Embedded Tissue Sections Using a Novel Subatmospheric Pressure Ionization Source. Anal Chem 2019; 91:12942-12947. [PMID: 31507162 PMCID: PMC7272240 DOI: 10.1021/acs.analchem.9b02995] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-linked glycosylation, featuring various glycoforms, is one of the most common and complex protein post-translational modifications (PTMs) controlling protein structures and biological functions. It has been revealed that abnormal changes of protein N-glycosylation patterns are associated with many diseases. Hence, unraveling the disease-related alteration of glycosylation, especially the glycoforms, is crucial and beneficial to improving our understanding about the pathogenic mechanisms of various diseases. In past decades, given the capability of in situ mapping of biomolecules and their region-specific localizations, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been widely applied to the discovery of potential biomarkers for many diseases. In this study, we coupled a novel subatmospheric pressure (SubAP)/MALDI source with a Q Exactive HF hybrid quadrupole-orbitrap mass spectrometer for in situ imaging of N-linked glycans from formalin-fixed paraffin-embedded (FFPE) tissue sections. The utility of this new platform for N-glycan imaging analysis was demonstrated with a variety of FFPE tissue sections. A total of 55 N-glycans were successfully characterized and visualized from a FFPE mouse brain section. Furthermore, 29 N-glycans with different spatial distribution patterns could be identified from a FFPE mouse ovarian cancer tissue section. High-mannose N-glycans exhibited elevated expression levels in the tumor region, indicating the potential association of this type of N-glycans with tumor progression.
Collapse
Affiliation(s)
- Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Mildred A Felder
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Yajing Peng
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USAa
| | - Qinjingwen Cao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USAa
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| |
Collapse
|
25
|
Mercer KE, Pulliam CF, Hennings L, Cleves MA, Jones EE, Drake RR, Ronis MJJ. Diet Supplementation with Soy Protein Isolate, but Not the Isoflavone Genistein, Protects Against Alcohol-Induced Tumor Progression in DEN-Treated Male Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1032:115-126. [PMID: 30362095 PMCID: PMC6385589 DOI: 10.1007/978-3-319-98788-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diethylnitrosamine-treated male mice were assigned to 4 groups: a casein-based 35% high fat ethanol liquid diet (EtOH), an EtOH diet made with soy protein isolate protein (EtOH/SOY), an EtOH liquid diet supplemented with genistein (EtOH/GEN) and a chow group. EtOH feeding, final concentration 5% (v/v), continued for 16 wks. EtOH increased incidence and multiplicity of basophilic lesions and adenomas compared to the chow group, (p < 0.05). The EtOH/SOY group had reduced adenoma progression when compared to the EtOH and EtOH/GEN group, (p < 0.05). Genistein supplementation had no protective effect. Soy feeding significantly reduced serum ALT concentrations (p < 0.05), decreased hepatic TNFα and CD-14 expression and decreased nuclear accumulation of NFκB protein in EtOH/SOY-treated mice compared to the EtOH group (p < 0.05). With respect to ceramides, high resolution MALDI-FTICR Imaging mass spectrometry revealed changes in the accumulation of long acyl chain ceramide species, in particular C18, in the EtOH group when compared to the EtOH/SOY group. Additionally, expression of acid ceramidase and sphingosine kinase 1 which degrade ceramide into sphingosine and convert sphingosine to sphingosine-1-phosphate (S1P) respectively and expression of S1P receptors S1PR2 and S1PR3 were all upregulated by EtOH and suppressed in the EtOH/SOY group, p < 0.05. EtOH feeding also increased hepatocyte proliferation and mRNA expression of β-catenin targets, including cyclin D1, MMP7 and glutamine synthase, which were reduced in the EtOH/SOY group, p < 0.05. These findings suggest that soy prevents tumorigenesis by reducing inflammation and by reducing hepatocyte proliferation through inhibition of EtOH-mediated β-catenin signaling. These mechanisms may involve blockade of sphingolipid signaling.
Collapse
Affiliation(s)
- K E Mercer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - C F Pulliam
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Hennings
- Departmant of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - M A Cleves
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - E E Jones
- Medical University of South Carolina Proteomic Center, Charleston, SC, USA
| | - R R Drake
- Medical University of South Carolina Proteomic Center, Charleston, SC, USA
| | - M J J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
26
|
Beckmann N, Kadow S, Schumacher F, Göthert JR, Kesper S, Draeger A, Schulz-Schaeffer WJ, Wang J, Becker JU, Kramer M, Kühn C, Kleuser B, Becker KA, Gulbins E, Carpinteiro A. Pathological manifestations of Farber disease in a new mouse model. Biol Chem 2019; 399:1183-1202. [PMID: 29908121 DOI: 10.1515/hsz-2018-0170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1tmEx1 mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.
Collapse
Affiliation(s)
- Nadine Beckmann
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Joachim R Göthert
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Stefanie Kesper
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Annette Draeger
- Institute of Anatomy, University of Bern, Baltzerstr. 2, CH-3012 Bern, Switzerland
| | - Walter J Schulz-Schaeffer
- Insitute of Neuropathology, University of the Saarland, Kirrberger Str. 100, D-66421 Homburg, Germany
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, UC Health University Hospital, 234 Goodman Street, Cincinnati, OH 45219, USA
| | - Jan U Becker
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Melanie Kramer
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Claudine Kühn
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45229, USA
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany.,Department of Hematology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| |
Collapse
|
27
|
Wang J, Kano K, Saigusa D, Aoki J. Measurement of the Spatial Distribution of S1P in Small Quantities of Tissues: Development and Application of a Highly Sensitive LC-MS/MS Method Combined with Laser Microdissection. ACTA ACUST UNITED AC 2019; 8:A0072. [PMID: 30805275 PMCID: PMC6372364 DOI: 10.5702/massspectrometry.a0072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 11/23/2022]
Abstract
Sphingosine-1-phosphate (S1P) acts as an extracellular signaling molecule with diverse biological functions. Tissues appear to have an S1P gradient, which is functionally relevant in the biological significance of S1P, although its existence has not been measured directly. Here, we report a highly sensitive method to determine the distribution of S1P, using a column-switching LC-MS/MS system combined with laser microdissection (LMD). Column switching using narrow core Capcell Pak C18 analytical and trap columns with 0.3 mm inner diameter improved the performance of the LC-MS/MS system. The calibration curve of S1P showed good linearity (r>0.999) over the range of 0.05–10 nM (1–200 fmol/injection). The accuracy of the method was confirmed by measuring S1P-spiked laser microdissected mice tissue sections. To evaluate our S1P analytical method, we quantified S1P extracted from micro-dissected mouse brain and spleen. These results show that this method can measure low S1P concentrations and determine S1P distribution in tissue microenvironments.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University.,AMED·LEAP
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University.,Medical Biochemistry, Tohoku University School of Medicine.,AMED·LEAP
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University.,AMED·LEAP
| |
Collapse
|
28
|
Luberto C, Haley JD, Del Poeta M. Imaging with mass spectrometry, the next frontier in sphingolipid research? A discussion on where we stand and the possibilities ahead. Chem Phys Lipids 2019; 219:1-14. [PMID: 30641043 DOI: 10.1016/j.chemphyslip.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
In the last ten years, mass spectrometry (MS) has become the favored analytical technique for sphingolipid (SPL) analysis and measurements. Indeed MS has the unique ability to both acquire sensitive and quantitative measurements and to resolve the molecular complexity characteristic of SPL molecules, both across the different SPL families and within the same SPL family. Currently, two complementary MS-based approaches are used for lipid research: analysis of lipid extracts, mainly by infusion electrospray ionization (ESI), and mass spectrometry imaging (MSI) from a sample surface (i.e. intact tissue sections, cells, model membranes, thin layer chromatography plates) (Fig. 1). The first allows for sensitive and quantitative information about total lipid molecular species from a given specimen from which lipids have been extracted and chromatographically separated prior to the analysis; the second, albeit generally less quantitative and less specific in the identification of molecular species due to the complexity of the sample, allows for spatial information of lipid molecules from biological specimens. In the field of SPL research, MS analysis of lipid extracts from biological samples has been commonly utilized to implicate the role of these lipids in specific biological functions. On the other hand, the utilization of MSI in SPL research represents a more recent development that has started to provide interesting descriptive observations regarding the distribution of specific classes of SPLs within tissues. Thus, it is the aim of this review to discuss how MSI technology has been employed to extend the study of SPL metabolism and the type of information that has been obtained from model membranes, single cells and tissues. We envision this discussion as a complementary compendium to the excellent technical reviews recently published about the specifics of MSI technologies, including their application to SPL analysis (Fuchs et al., 2010; Berry et al., 2011; Ellis et al., 2013; Eberlin et al., 2011; Kraft and Klitzing, 2014).
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States.
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States; Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States; Veterans Administrations Medical Center, Northport, NY, United States
| |
Collapse
|
29
|
McDonald WS, Jones EE, Wojciak JM, Drake RR, Sabbadini RA, Harris NG. Matrix-Assisted Laser Desorption Ionization Mapping of Lysophosphatidic Acid Changes after Traumatic Brain Injury and the Relationship to Cellular Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1779-1793. [PMID: 30037420 PMCID: PMC6099387 DOI: 10.1016/j.ajpath.2018.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) levels increase in the cerebrospinal fluid and blood within 24 hours after traumatic brain injury (TBI), indicating it may be a biomarker for subsequent cellular pathology. However, no data exist that document this association after TBI. We, therefore, acquired matrix-assisted laser desorption ionization imaging mass spectrometry data of LPA, major LPA metabolites, and hemoglobin from adult rat brains at 1 and 3 hours after controlled cortical impact injury. Data were semiquantitatively assessed by signal intensity analysis normalized to naïve rat brains acquired concurrently. Gray and white matter pathology was assessed on adjacent sections using immunohistochemistry for cell death, axonal injury, and intracellular LPA, to determine the spatiotemporal patterning of LPA corresponding to pathology. The results revealed significant increases in LPA and LPA precursors at 1 hour after injury and robust enhancement in LPA diffusively throughout the brain at 3 hours after injury. Voxel-wise analysis of LPA by matrix-assisted laser desorption ionization and β-amyloid precursor protein by immunohistochemistry in adjacent sections showed significant association, raising the possibility that LPA is linked to secondary axonal injury. Total LPA and metabolites were also present in remotely injured areas, including cerebellum and brain stem, and in particular thalamus, where intracellular LPA is associated with cell death. LPA may be a useful biomarker of cellular pathology after TBI.
Collapse
Affiliation(s)
- Whitney S McDonald
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Elizabeth E Jones
- Medical University of South Carolina Proteomics Center, Charleston, South Carolina
| | | | - Richard R Drake
- Medical University of South Carolina Proteomics Center, Charleston, South Carolina
| | | | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
30
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
31
|
D'Angelo G, Moorthi S, Luberto C. Role and Function of Sphingomyelin Biosynthesis in the Development of Cancer. Adv Cancer Res 2018; 140:61-96. [PMID: 30060817 DOI: 10.1016/bs.acr.2018.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sphingomyelin (SM) biosynthesis represents a complex, finely regulated process, mostly occurring in vertebrates. It is intimately linked to lipid transport and it is ultimately carried out by two enzymes, SM synthase 1 and 2, selectively localized in the Golgi and plasma membrane. In the course of the SM biosynthetic reaction, various lipids are metabolized. Because these lipids have both structural and signaling functions, the SM biosynthetic process has the potential to affect diverse important cellular processes (such as cell proliferation, cell survival, and migration). Thus defects in SM biosynthesis might directly or indirectly impact the normal physiology of the cell and eventually of the organism. In this chapter, we will focus on evidence supporting a role for SM biosynthesis in specific cellular functions and how its dysregulation can affect neoplastic transformation.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | - Sitapriya Moorthi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
32
|
Xie X, Jiang Y, Yuan Y, Wang P, Li X, Chen F, Sun C, Zhao H, Zeng X, Jiang L, Zhou Y, Dan H, Feng M, Liu R, Chen Q. MALDI imaging reveals NCOA7 as a potential biomarker in oral squamous cell carcinoma arising from oral submucous fibrosis. Oncotarget 2018; 7:59987-60004. [PMID: 27509054 PMCID: PMC5312364 DOI: 10.18632/oncotarget.11046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/09/2016] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) ranks among the most common cancer worldwide, and is associated with severe morbidity and high mortality. Oral submucous fibrosis (OSF), characterized by fibrosis of the mucosa of the upper digestive tract, is a pre-malignant lesion, but the molecular mechanisms underlying this malignant transformation remains to be elucidated. In this study, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS)-based proteomic strategy was employed to profile the differentially expressed peptides/proteins between OSCC tissues and the corresponding adjacent non-cancerous OSF tissues. Sixty-five unique peptide peaks and nine proteins were identified with altered expression levels. Of them, expression of NCOA7 was found to be up-regulated in OSCC tissues by immunohistochemistry staining and western blotting, and correlated with a pan of clinicopathologic parameters, including lesion site, tumor differentiation status and lymph node metastasis. Further, we show that overexpression of NCOA7 promotes OSCC cell proliferation in either in vitro or in vivo models. Mechanistic study demonstrates that NCOA7 induces OSCC cell proliferation probably by activating aryl hydrocarbon receptor (AHR). The present study suggests that NCOA7 is a potential biomarker for early diagnosis of OSF malignant transformation, and leads to a better understanding of the molecular mechanisms responsible for OSCC development.
Collapse
Affiliation(s)
- Xiaoyan Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangman Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chongkui Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingye Feng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Helke K, Angel P, Lu P, Garrett-Mayer E, Ogretmen B, Drake R, Voelkel-Johnson C. Ceramide Synthase 6 Deficiency Enhances Inflammation in the DSS model of Colitis. Sci Rep 2018; 8:1627. [PMID: 29374263 PMCID: PMC5786068 DOI: 10.1038/s41598-018-20102-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
Colitis, an inflammatory disease of the digestive tract, is increasing in incidence and prevalence. Intestinal inflammation can occur as a consequence of dysfunctions in sphingolipid metabolism. In this study we used ceramide synthase 6 (CerS6) deficient mice, which have a reduced ability to generate long chain C16-ceramide, to investigate the role of this enzyme in dextran sodium salt (DSS)-induced colitis. While CerS6-deficient mice are protected from T cell mediated colitis, in the T cell independent DSS model lack of CerS6 resulted in a more rapid onset of disease symptoms. CerS6-deficient mice maintained low levels of C16-ceramide after DSS treatment, but the inflammatory lipid sphingosine-1-phosphate was significantly increased in colon tissue. In the absence of CerS6, DSS induced more severe pathology in the colon including enhanced neutrophil infiltration. In vivo analysis of myeloperoxidase activity, an enzyme released from neutrophils, was approximately 2.5-fold higher in CerS6-deficient mice compared to wild type. Differences in intestinal permeability did not account for the increase in neutrophils. Our study suggests that lack of CerS6 expression differentially impacts the development of colitis, depending on the model used.
Collapse
Affiliation(s)
- Kristi Helke
- Departments of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Peggi Angel
- Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Ping Lu
- Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Besim Ogretmen
- Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Richard Drake
- Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
34
|
Jones EE, Quiason C, Dale S, Shahidi-Latham SK. Feasibility Assessment of a MALDI FTICR Imaging Approach for the 3D Reconstruction of a Mouse Lung. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1709-1715. [PMID: 28401432 DOI: 10.1007/s13361-017-1658-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 05/13/2023]
Abstract
Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has proven to be a quick, robust, and label-free tool to produce two-dimensional (2D) ion-density maps representing the distribution of a variety of analytes across a tissue section of interest. In addition, three-dimensional (3D) imaging mass spectrometry workflows have been developed that are capable of visualizing these same analytes throughout an entire volume of a tissue rather than a single cross-section. Until recently, the use of Fourier transform ion cyclotron resonance (FTICR) mass spectrometers for 3D volume reconstruction has been impractical due to software limitations, such as inadequate capacity to manipulate the extremely large data files produced during an imaging experiment. Fortunately with recent software and hardware advancements, 3D reconstruction from MALDI FTICR IMS datasets is now feasible. Here we describe the first proof of principle study for a 3D volume reconstruction of an entire mouse lung using data collected on a FTICR mass spectrometer. Each lung tissue section was analyzed with high mass resolution and mass accuracy, and considered as an independent dataset. Each subsequent lung section image, or lung dataset, was then co-registered to its adjacent section to reconstruct a 3D volume. Volumes representing various endogenous lipid species were constructed, including sphingolipids and phosphatidylcholines (PC), and species confirmation was performed with on-tissue collision induced dissociation (CID). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- E Ellen Jones
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way MS 41-2a, South San Francisco, CA, 94080, USA
| | - Cristine Quiason
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way MS 41-2a, South San Francisco, CA, 94080, USA
| | - Stephanie Dale
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way MS 41-2a, South San Francisco, CA, 94080, USA
| | - Sheerin K Shahidi-Latham
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way MS 41-2a, South San Francisco, CA, 94080, USA.
| |
Collapse
|
35
|
Cozma C, Iurașcu MI, Eichler S, Hovakimyan M, Brandau O, Zielke S, Böttcher T, Giese AK, Lukas J, Rolfs A. C26-Ceramide as highly sensitive biomarker for the diagnosis of Farber Disease. Sci Rep 2017; 7:6149. [PMID: 28733637 PMCID: PMC5522391 DOI: 10.1038/s41598-017-06604-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
Farber disease (FD) is a rare autosomal recessive disease caused by mutations in the acid ceramidase gene (ASAH1). Low ceramidase activity results in the accumulation of fatty substances, mainly ceramides. Hallmark symptoms at clinical level are periarticular nodules, lipogranulomas, swollen and painful joints and a hoarse voice. FD phenotypes are heterogeneous varying from mild to very severe cases, with the patients not surviving past their first year of life. The diagnostic aspects of FD are poorly developed due to the rarity of the disease. In the present study, the screening for ceramides and related molecules was performed in Farber affected patients (n = 10), carriers (n = 11) and control individuals (n = 192). This study has the highest number of enrolled Farber patients and carriers reported to present. Liquid chromatography multiple reaction mass spectrometry (LC/MRM-MS) studies revealed that the ceramide C26:0 and especially its isoform 1 is a highly sensitive and specific biomarker for FD (p < 0.0001). The new biomarker can be determined directly in the dried blood spot extracts with low sample consumption. This allows for easy sample preparation, high reproducibility and use in high throughput screenings.
Collapse
Affiliation(s)
- Claudia Cozma
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany.
| | | | | | | | - Oliver Brandau
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany
| | - Susanne Zielke
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Tobias Böttcher
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Anne-Katrin Giese
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Arndt Rolfs
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany.,Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| |
Collapse
|
36
|
Jones EE, Zhang W, Zhao X, Quiason C, Dale S, Shahidi-Latham S, Grabowski GA, Setchell KDR, Drake RR, Sun Y. Tissue Localization of Glycosphingolipid Accumulation in a Gaucher Disease Mouse Brain by LC-ESI-MS/MS and High-Resolution MALDI Imaging Mass Spectrometry. SLAS DISCOVERY 2017; 22:1218-1228. [PMID: 28714776 DOI: 10.1177/2472555217719372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To better understand regional brain glycosphingolipid (GSL) accumulation in Gaucher disease (GD) and its relationship to neuropathology, a feasibility study using mass spectrometry and immunohistochemistry was conducted using brains derived from a GD mouse model (4L/PS/NA) homozygous for a mutant GCase (V394L [4L]) and expressing a prosaposin hypomorphic (PS-NA) transgene. Whole brains from GD and control animals were collected using one hemisphere for MALDI FTICR IMS analysis and the other for quantitation by LC-ESI-MS/MS. MALDI IMS detected several HexCers across the brains. Comparison with the brain hematoxylin and eosin (H&E) revealed differential signal distributions in the midbrain, brain stem, and CB of the GD brain versus the control. Quantitation of serial brain sections with LC-ESI-MS/MS supported the imaging results, finding the overall HexCer levels in the 4L/PS-NA brains to be four times higher than the control. LC-ESI-MS/MS also confirmed that the elevated hexosyl isomers were glucosylceramides rather than galactosylceramides. MALDI imaging also detected differential analyte distributions of lactosylceramide species and gangliosides in the 4L/PS-NA brain, which was validated by LC-ESI-MS/MS. Immunohistochemistry revealed regional inflammation, altered autophagy, and defective protein degradation correlating with regions of GSL accumulation, suggesting that specific GSLs may have distinct neuropathological effects.
Collapse
Affiliation(s)
- E Ellen Jones
- 1 Department of Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA
| | - Wujuan Zhang
- 2 Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xueheng Zhao
- 2 Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cristine Quiason
- 1 Department of Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA
| | - Stephanie Dale
- 1 Department of Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA
| | - Sheerin Shahidi-Latham
- 1 Department of Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA
| | - Gregory A Grabowski
- 3 Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth D R Setchell
- 2 Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Richard R Drake
- 4 Department of Cell and Molecular Pharmacology and MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ying Sun
- 3 Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
37
|
Ait-Belkacem R, Bol V, Hamm G, Schramme F, Van Den Eynde B, Poncelet L, Pamelard F, Stauber J, Gomes B. Microenvironment Tumor Metabolic Interactions Highlighted by qMSI: Application to the Tryptophan-Kynurenine Pathway in Immuno-Oncology. SLAS DISCOVERY 2017; 22:1182-1192. [PMID: 28557618 DOI: 10.1177/2472555217712659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inhibition of NK and effector T-cell functions and activation of regulatory cell populations are the main immunosuppressive effects of indoleamine-2,3-dioxygenase1 (IDO1). By converting tryptophan (Trp) into kynurenine (Kyn), IDO1 is involved in the immune response homeostasis, and its dysregulated expression is described in immune-related pathologies, as tumors that hijack it to evade immune destruction. Thereby, IDO1 inhibitors are being developed to stimulate antitumor immune responses. Existing and standard quantitation methods of IDO1 substrate and metabolite(s) are based on the total level of Trp and its metabolites determined by liquid chromatography tandem mass spectrometry analysis in human plasma, cerebrospinal fluid, and brain. Here, we describe the detection, localization, and absolute quantitation of Trp and Kyn by quantitative mass spectrometry imaging (qMSI) in transfected murine tumor models expressing various levels of IDO1. Myeloid, glycolysis metabolic signatures, and correlation between IDO1 expression and Trp to Kyn conversion are also shown. High-definition IDO1 and GCN2 immunostainings overlaid with Kyn molecular images underline the tumor metabolism and heterogeneity. The development of immunotherapies such as IDO1 inhibitors requires a deep understanding of the immune system, the interplay of cancer cells, and biomarker characterization. Our data underline that qMSI allows the study of the spatial distribution and quantitation of endogenous immune metabolites for biology and pharmacology studies.
Collapse
Affiliation(s)
| | - Vanesa Bol
- 2 iTeos Therapeutics SA, Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sikora J, Dworski S, Jones EE, Kamani MA, Micsenyi MC, Sawada T, Le Faouder P, Bertrand-Michel J, Dupuy A, Dunn CK, Xuan ICY, Casas J, Fabrias G, Hampson DR, Levade T, Drake RR, Medin JA, Walkley SU. Acid Ceramidase Deficiency in Mice Results in a Broad Range of Central Nervous System Abnormalities. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:864-883. [PMID: 28342444 DOI: 10.1016/j.ajpath.2016.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/30/2022]
Abstract
Farber disease is a rare autosomal recessive disorder caused by acid ceramidase deficiency that usually presents as early-onset progressive visceral and neurologic disease. To understand the neurologic abnormality, we investigated behavioral, biochemical, and cellular abnormalities in the central nervous system of Asah1P361R/P361R mice, which serve as a model of Farber disease. Behaviorally, the mutant mice had reduced voluntary locomotion and exploration, increased thigmotaxis, abnormal spectra of basic behavioral activities, impaired muscle grip strength, and defects in motor coordination. A few mutant mice developed hydrocephalus. Mass spectrometry revealed elevations of ceramides, hydroxy-ceramides, dihydroceramides, sphingosine, dihexosylceramides, and monosialodihexosylganglioside in the brain. The highest accumulation was in hydroxy-ceramides. Storage compound distribution was analyzed by mass spectrometry imaging and morphologic analyses and revealed involvement of a wide range of central nervous system cell types (eg, neurons, endothelial cells, and choroid plexus cells), most notably microglia and/or macrophages. Coalescing and mostly perivascular granuloma-like accumulations of storage-laden CD68+ microglia and/or macrophages were seen as early as 3 weeks of age and located preferentially in white matter, periventricular zones, and meninges. Neurodegeneration was also evident in specific cerebral areas in late disease. Overall, our central nervous system studies in Asah1P361R/P361R mice substantially extend the understanding of human Farber disease and suggest that this model can be used to advance therapeutic approaches for this currently untreatable disorder.
Collapse
Affiliation(s)
- Jakub Sikora
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York; Institute of Inherited Metabolic Disorders, Charles University, 1st Faculty of Medicine, Prague, Czech Republic; Institute of Pathology, Charles University, 1st Faculty of Medicine, Prague, Czech Republic
| | - Shaalee Dworski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - E Ellen Jones
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | | | - Matthew C Micsenyi
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Tomo Sawada
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Pauline Le Faouder
- MetaToul-Lipidomic Facility-MetaboHUB, INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases, Université Paul Sabatier-Toulouse III, Toulouse, France
| | - Justine Bertrand-Michel
- MetaToul-Lipidomic Facility-MetaboHUB, INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases, Université Paul Sabatier-Toulouse III, Toulouse, France
| | - Aude Dupuy
- MetaToul-Lipidomic Facility-MetaboHUB, INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases, Université Paul Sabatier-Toulouse III, Toulouse, France
| | | | - Ingrid Cong Yang Xuan
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Josefina Casas
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia, Spanish National Research Council, Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia, Spanish National Research Council, Barcelona, Spain
| | - David R Hampson
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Thierry Levade
- INSERM UMR1037, Cancer Research Center of Toulouse, Universite Toulouse III Paul-Sabatier, Toulouse, France; Metabolic Biochemistry Laboratory, Federative Institute of Biology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
39
|
Dilillo M, Ait-Belkacem R, Esteve C, Pellegrini D, Nicolardi S, Costa M, Vannini E, Graaf ELD, Caleo M, McDonnell LA. Ultra-High Mass Resolution MALDI Imaging Mass Spectrometry of Proteins and Metabolites in a Mouse Model of Glioblastoma. Sci Rep 2017; 7:603. [PMID: 28377615 PMCID: PMC5429601 DOI: 10.1038/s41598-017-00703-w] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/08/2017] [Indexed: 01/27/2023] Open
Abstract
MALDI mass spectrometry imaging is able to simultaneously determine the spatial distribution of hundreds of molecules directly from tissue sections, without labeling and without prior knowledge. Ultra-high mass resolution measurements based on Fourier-transform mass spectrometry have been utilized to resolve isobaric lipids, metabolites and tryptic peptides. Here we demonstrate the potential of 15T MALDI-FTICR MSI for molecular pathology in a mouse model of high-grade glioma. The high mass accuracy and resolving power of high field FTICR MSI enabled tumor specific proteoforms, and tumor-specific proteins with overlapping and isobaric isotopic distributions to be clearly resolved. The protein ions detected by MALDI MSI were assigned to proteins identified by region-specific microproteomics (0.8 mm2 regions isolated using laser capture microdissection) on the basis of exact mass and isotopic distribution. These label free quantitative experiments also confirmed the protein expression changes observed by MALDI MSI and revealed changes in key metabolic proteins, which were supported by in-situ metabolite MALDI MSI.
Collapse
Affiliation(s)
- M Dilillo
- Fondazione Pisana per la Scienza ONLUS - Via Panfilo Castaldi 2, 56121, Pisa, Italy
- Department of Chemistry and Industrial Chemistry - Università di Pisa - Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - R Ait-Belkacem
- Fondazione Pisana per la Scienza ONLUS - Via Panfilo Castaldi 2, 56121, Pisa, Italy
| | - C Esteve
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - D Pellegrini
- Fondazione Pisana per la Scienza ONLUS - Via Panfilo Castaldi 2, 56121, Pisa, Italy
- NEST, Istituto Nanoscienze-National Research Council, 56127, Pisa, Italy
| | - S Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - M Costa
- CNR Neuroscience Institute, Via Moruzzi 1, 56124, Pisa, Italy
| | - E Vannini
- CNR Neuroscience Institute, Via Moruzzi 1, 56124, Pisa, Italy
| | - E L de Graaf
- Fondazione Pisana per la Scienza ONLUS - Via Panfilo Castaldi 2, 56121, Pisa, Italy
| | - M Caleo
- CNR Neuroscience Institute, Via Moruzzi 1, 56124, Pisa, Italy
| | - L A McDonnell
- Fondazione Pisana per la Scienza ONLUS - Via Panfilo Castaldi 2, 56121, Pisa, Italy.
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
40
|
Ucal Y, Durer ZA, Atak H, Kadioglu E, Sahin B, Coskun A, Baykal AT, Ozpinar A. Clinical applications of MALDI imaging technologies in cancer and neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:795-816. [PMID: 28087424 DOI: 10.1016/j.bbapap.2017.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/08/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) enables localization of analytes of interest along with histology. More specifically, MALDI-IMS identifies the distributions of proteins, peptides, small molecules, lipids, and drugs and their metabolites in tissues, with high spatial resolution. This unique capacity to directly analyze tissue samples without the need for lengthy sample preparation reduces technical variability and renders MALDI-IMS ideal for the identification of potential diagnostic and prognostic biomarkers and disease gradation. MALDI-IMS has evolved rapidly over the last decade and has been successfully used in both medical and basic research by scientists worldwide. In this review, we explore the clinical applications of MALDI-IMS, focusing on the major cancer types and neurodegenerative diseases. In particular, we re-emphasize the diagnostic potential of IMS and the challenges that must be confronted when conducting MALDI-IMS in clinical settings. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Yasemin Ucal
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Zeynep Aslıhan Durer
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Hakan Atak
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Elif Kadioglu
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Betul Sahin
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Abdurrahman Coskun
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Ahmet Tarık Baykal
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Aysel Ozpinar
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
41
|
Profiling and identification of new proteins involved in brain ischemia using MALDI-imaging-mass-spectrometry. J Proteomics 2017; 152:243-253. [DOI: 10.1016/j.jprot.2016.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/24/2016] [Accepted: 11/19/2016] [Indexed: 12/21/2022]
|
42
|
Drake RR, Powers TW, Jones EE, Bruner E, Mehta AS, Angel PM. MALDI Mass Spectrometry Imaging of N-Linked Glycans in Cancer Tissues. Adv Cancer Res 2016; 134:85-116. [PMID: 28110657 DOI: 10.1016/bs.acr.2016.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosylated proteins account for a majority of the posttranslation modifications of cell surface, secreted, and circulating proteins. Within the tumor microenvironment, the presence of immune cells, extracellular matrix proteins, cell surface receptors, and interactions between stroma and tumor cells are all processes mediated by glycan binding and recognition reactions. Changes in glycosylation during tumorigenesis are well documented to occur and affect all of these associated adhesion and regulatory functions. A MALDI imaging mass spectrometry (MALDI-IMS) workflow for profiling N-linked glycan distributions in fresh/frozen tissues and formalin-fixed paraffin-embedded tissues has recently been developed. The key to the approach is the application of a molecular coating of peptide-N-glycosidase to tissues, an enzyme that cleaves asparagine-linked glycans from their protein carrier. The released N-linked glycans can then be analyzed by MALDI-IMS directly on tissue. Generally 40 or more individual glycan structures are routinely detected, and when combined with histopathology localizations, tumor-specific glycans are readily grouped relative to nontumor regions and other structural features. This technique is a recent development and new approach in glycobiology and mass spectrometry imaging research methodology; thus, potential uses such as tumor-specific glycan biomarker panels and other applications are discussed.
Collapse
Affiliation(s)
- R R Drake
- Medical University of South Carolina, Charleston, SC, United States.
| | - T W Powers
- Medical University of South Carolina, Charleston, SC, United States
| | - E E Jones
- Medical University of South Carolina, Charleston, SC, United States
| | - E Bruner
- Medical University of South Carolina, Charleston, SC, United States
| | - A S Mehta
- Medical University of South Carolina, Charleston, SC, United States
| | - P M Angel
- Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
43
|
Rajanayake KK, Taylor WR, Isailovic D. The comparison of glycosphingolipids isolated from an epithelial ovarian cancer cell line and a nontumorigenic epithelial ovarian cell line using MALDI-MS and MALDI-MS/MS. Carbohydr Res 2016; 431:6-14. [DOI: 10.1016/j.carres.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
|
44
|
Bertram S, Brixius K, Brinkmann C. Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer's disease in T2DM patients. Endocrine 2016; 53:350-63. [PMID: 27160819 DOI: 10.1007/s12020-016-0976-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
Abstract
Epidemiological studies indicate that patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing dementia/Alzheimer's disease (AD). This review, which is based on recent studies, presents a molecular framework that links the two diseases and explains how physical training could help counteract neurodegeneration in T2DM patients. Inflammatory, oxidative, and metabolic changes in T2DM patients cause cerebrovascular complications and can lead to blood-brain-barrier (BBB) breakdown. Peripherally increased pro-inflammatory molecules can then pass the BBB more easily and activate stress-activated pathways, thereby promoting key pathological features of dementia/AD such as brain insulin resistance, mitochondrial dysfunction, and accumulation of neurotoxic beta-amyloid (Aβ) oligomers, leading to synaptic loss, neuronal dysfunction, and cell death. Ceramides can also pass the BBB, induce pro-inflammatory reactions, and disturb brain insulin signaling. In a vicious circle, oxidative stress and the pro-inflammatory environment intensify, leading to further cognitive decline. Low testosterone levels might be a common risk factor in T2DM and AD. Regular physical exercise reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. It improves endothelial function and might increase brain capillarization. Physical training can further counteract dyslipidemia and reduce increased ceramide levels. It might also improve Aβ clearance by up-regulating Aβ transporters and, in some cases, increase basal testosterone levels. In addition, regular physical activity can induce neurogenesis. Physical training should therefore be emphasized as a part of prevention programs developed for diabetic patients to minimize the risk of the onset of neurodegenerative diseases among this specific patient group.
Collapse
Affiliation(s)
- Sebastian Bertram
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Klara Brixius
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Christian Brinkmann
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| |
Collapse
|
45
|
Pietrowska M, Gawin M, Polańska J, Widłak P. Tissue fixed with formalin and processed without paraffin embedding is suitable for imaging of both peptides and lipids by MALDI-IMS. Proteomics 2016; 16:1670-7. [DOI: 10.1002/pmic.201500424] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Monika Pietrowska
- Center for Translational Research and Molecular Biology of Cancer; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch; Gliwice Poland
| | - Marta Gawin
- Center for Translational Research and Molecular Biology of Cancer; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch; Gliwice Poland
- Department of Analytical Chemistry, Faculty of Chemistry; Jagiellonian University; Kraków Poland
| | - Joanna Polańska
- Faculty of Automatic Control, Electronics and Computer Science; Silesian University of Technology; Gliwice Poland
| | - Piotr Widłak
- Center for Translational Research and Molecular Biology of Cancer; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch; Gliwice Poland
| |
Collapse
|
46
|
Fisher GL, Bruinen AL, Ogrinc Potočnik N, Hammond JS, Bryan SR, Larson PE, Heeren RM. A New Method and Mass Spectrometer Design for TOF-SIMS Parallel Imaging MS/MS. Anal Chem 2016; 88:6433-40. [DOI: 10.1021/acs.analchem.6b01022] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gregory L. Fisher
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Anne L. Bruinen
- Multi-Modal
Molecular Imaging (M4I) Institute, Maastricht University, 6211 ER Maastricht, Netherlands
| | - Nina Ogrinc Potočnik
- Multi-Modal
Molecular Imaging (M4I) Institute, Maastricht University, 6211 ER Maastricht, Netherlands
| | - John S. Hammond
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Scott R. Bryan
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Paul E. Larson
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Ron M.A. Heeren
- Multi-Modal
Molecular Imaging (M4I) Institute, Maastricht University, 6211 ER Maastricht, Netherlands
| |
Collapse
|
47
|
Singh A, Del Poeta M. Sphingolipidomics: An Important Mechanistic Tool for Studying Fungal Pathogens. Front Microbiol 2016; 7:501. [PMID: 27148190 PMCID: PMC4830811 DOI: 10.3389/fmicb.2016.00501] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/28/2016] [Indexed: 01/28/2023] Open
Abstract
Sphingolipids form of a unique and complex group of bioactive lipids in fungi. Structurally, sphingolipids of fungi are quite diverse with unique differences in the sphingoid backbone, amide linked fatty acyl chain and the polar head group. Two of the most studied and conserved sphingolipid classes in fungi are the glucosyl- or galactosyl-ceramides and the phosphorylinositol containing phytoceramides. Comprehensive structural characterization and quantification of these lipids is largely based on advanced analytical mass spectrometry based lipidomic methods. While separation of complex lipid mixtures is achieved through high performance liquid chromatography, the soft - electrospray ionization tandem mass spectrometry allows a high sensitivity and selectivity of detection. Herein, we present an overview of lipid extraction, chromatographic separation and mass spectrometry employed in qualitative and quantitative sphingolipidomics in fungi.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA; Veterans Administration Medical Center, NorthportNY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA; Veterans Administration Medical Center, NorthportNY, USA
| |
Collapse
|
48
|
Miyamoto S, Hsu CC, Hamm G, Darshi M, Diamond-Stanic M, Declèves AE, Slater L, Pennathur S, Stauber J, Dorrestein PC, Sharma K. Mass Spectrometry Imaging Reveals Elevated Glomerular ATP/AMP in Diabetes/obesity and Identifies Sphingomyelin as a Possible Mediator. EBioMedicine 2016; 7:121-34. [PMID: 27322466 PMCID: PMC4909366 DOI: 10.1016/j.ebiom.2016.03.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is suppressed in diabetes and may be due to a high ATP/AMP ratio, however the quantitation of nucleotides in vivo has been extremely difficult. Via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to localize renal nucleotides we found that the diabetic kidney had a significant increase in glomerular ATP/AMP ratio. Untargeted MALDI-MSI analysis revealed that a specific sphingomyelin species (SM(d18:1/16:0)) accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with wild-type controls. In vitro studies in mesangial cells revealed that exogenous addition of SM(d18:1/16:0) significantly elevated ATP via increased glucose consumption and lactate production with a consequent reduction of AMPK and PGC1α. Furthermore, inhibition of sphingomyelin synthases reversed these effects. Our findings suggest that AMPK is reduced in the diabetic kidney due to an increase in the ATP/AMP ratio and that SM(d18:1/16:0) could be responsible for the enhanced ATP production via activation of the glycolytic pathway. MALDI-MSI revealed an increase in glomerular ATP/AMP ratio in the diabetic kidney. SM(d18:1/16:0) is increased in the glomeruli of diabetic and high-fat diet-fed mice. SM(d18:1/16:0) stimulated ATP production via enhanced aerobic glycolysis and reduced AMPK activity in mesangial cells. AMPK is known to be suppressed in states of high ATP/AMP ratio but the measurement of nucleotides in vivo has been difficult. Miyamoto et al. utilize matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the distribution of nucleotides and find an increase in glomerular ATP/AMP ratio in the diabetic kidney. Untargeted MALDI-MSI revealed that sphingomyelin(d18:1/16:0) is accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with controls. Sphingomyelin(d18:1/16:0) promotes ATP production in mesangial cells via activation of the glycolytic pathway. The inhibition of sphingomyelin(d18:1/16:0) synthesis may lead to novel therapeutic targets for the treatment of caloric-induced CKD.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Cheng-Chih Hsu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Gregory Hamm
- ImaBiotech, MS Imaging Department, Lille 59120, France
| | - Manjula Darshi
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA
| | - Maggie Diamond-Stanic
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA
| | - Anne-Emilie Declèves
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA
| | - Larkin Slater
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA
| | | | | | - Pieter C Dorrestein
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kumar Sharma
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA.
| |
Collapse
|
49
|
Sugimoto M, Wakabayashi M, Shimizu Y, Yoshioka T, Higashino K, Numata Y, Okuda T, Zhao S, Sakai S, Igarashi Y, Kuge Y. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice. PLoS One 2016; 11:e0152191. [PMID: 27010944 PMCID: PMC4806983 DOI: 10.1371/journal.pone.0152191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022] Open
Abstract
Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys.
Collapse
Affiliation(s)
- Masayuki Sugimoto
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Masato Wakabayashi
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoichi Shimizu
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
- Laboratory of Bioanalysis and Molecular Imaging, Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Yoshioka
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Tomohiko Okuda
- Drug Discovery Technologies, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Songji Zhao
- Department of Tracer Kinetics & Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shota Sakai
- Department of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Igarashi
- Department of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
50
|
Mercer KE, Pulliam C, Hennings L, Lai K, Cleves M, Jones E, Drake RR, Ronis M. Soy Protein Isolate Protects Against Ethanol-Mediated Tumor Progression in Diethylnitrosamine-Treated Male Mice. Cancer Prev Res (Phila) 2016; 9:466-75. [PMID: 27006377 DOI: 10.1158/1940-6207.capr-15-0417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
In this study, diethylnitrosamine-treated male mice were assigned to three groups: (i) a 35% high fat ethanol liquid diet (EtOH) with casein as the protein source, (ii) the same EtOH liquid diet with soy protein isolate as the sole protein source (EtOH/SPI), (iii) and a chow group. EtOH feeding continued for 16 weeks. As expected, EtOH increased the incidence and multiplicity of basophilic lesions and adenomas compared with the chow group, P < 0.05. Soy protein replacement of casein in the EtOH diet significantly reduced adenoma progression when compared with the EtOH and EtOH/SPI group (P < 0.05). Tumor reduction in the EtOH/SPI group corresponded to reduced liver injury associated with decreased hepatic Tnfα and Cd14 antigen (Cd14) expression and decreased nuclear accumulation of NF-κB1 protein compared with the EtOH group (P < 0.05). Detection of sphingolipids using high-resolution matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance (MALDI-FTICR) imaging mass spectrometry revealed increased accumulation of long acyl chain ceramide species, and sphingosine-1-phosphate (S1P) in the EtOH group that were significantly reduced in the EtOH/SPI group. Chronic EtOH feeding also increased mRNA expression of β-catenin transcriptional targets, including cyclin D1 (Ccnd1), matrix metallopeptidase 7 (Mmp7), and glutamine synthetase (Glns), which were reduced in the EtOH/SPI group (P < 0.05). We conclude that soy prevents tumorigenesis by reducing proinflammatory and oxidative environment resulting from EtOH-induced hepatic injury, and by reducing hepatocyte proliferation through inhibition of β-catenin signaling. These mechanisms may involve changes in sphingolipid signaling. Cancer Prev Res; 9(6); 466-75. ©2016 AACR.
Collapse
Affiliation(s)
- Kelly E Mercer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas. Arkansas Children's Nutrition Center, Little Rock, Arkansas.
| | - Casey Pulliam
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Leah Hennings
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Keith Lai
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mario Cleves
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Ellen Jones
- Medical University of South Carolina Proteomic Center, Charleston, South Carolina
| | - Richard R Drake
- Medical University of South Carolina Proteomic Center, Charleston, South Carolina
| | - Martin Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|