1
|
Gibbs VJ, Lin YH, Ghuge AA, Anderson RA, Schiemann AH, Conaglen L, Sansom BJM, da Silva RC, Sattlegger E. GCN2 in Viral Defence and the Subversive Tactics Employed by Viruses. J Mol Biol 2024; 436:168594. [PMID: 38724002 DOI: 10.1016/j.jmb.2024.168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/10/2024]
Abstract
The recent SARS-CoV-2 pandemic and associated COVID19 disease illustrates the important role of viral defence mechanisms in ensuring survival and recovery of the host or patient. Viruses absolutely depend on the host's protein synthesis machinery to replicate, meaning that impeding translation is a powerful way to counteract viruses. One major approach used by cells to obstruct protein synthesis is to phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Mammals possess four different eIF2α-kinases: PKR, HRI, PEK/PERK, and GCN2. While PKR is currently considered the principal eIF2α-kinase involved in viral defence, the other eIF2α-kinases have also been found to play significant roles. Unsurprisingly, viruses have developed mechanisms to counteract the actions of eIF2α-kinases, or even to exploit them to their benefit. While some of these virulence factors are specific to one eIF2α-kinase, such as GCN2, others target all eIF2α-kinases. This review critically evaluates the current knowledge of viral mechanisms targeting the eIF2α-kinase GCN2. A detailed and in-depth understanding of the molecular mechanisms by which viruses evade host defence mechanisms will help to inform the development of powerful anti-viral measures.
Collapse
Affiliation(s)
- Victoria J Gibbs
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yu H Lin
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Aditi A Ghuge
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Reuben A Anderson
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Layla Conaglen
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Bianca J M Sansom
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Richard C da Silva
- School of Natural Sciences, Massey University, Auckland, New Zealand; Genome Biology and Epigenetics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Evelyn Sattlegger
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand; School of Natural Sciences, Massey University, Auckland, New Zealand; Maurice Wilkins Centre for Molecular BioDiscovery, Palmerston North, New Zealand.
| |
Collapse
|
2
|
Li L, Wang J, Li D, Zhang H. Morphine increases myocardial triacylglycerol through regulating adipose triglyceride lipase S406 phosphorylation. Life Sci 2021; 283:119866. [PMID: 34352257 DOI: 10.1016/j.lfs.2021.119866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
AIMS Morphine, a commonly used drug for anesthesia, affects lipid metabolism in different tissues, but the mechanism is currently unclear. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme responsible for the first step of triglyceride (TG) hydrolysis. Here we aim to investigate whether ATGL phosphorylation is involved in morphine-induced TG accumulation. MAIN METHODS Oil red O staining and TG content analysis were used to detect the effect of morphine on lipid storage. A series of ATGL phosphoamino acid site mutant plasmids were constructed by gene synthesis and transfected to HL-1 cells to evaluate the phosphorylation levels of ATGL phosphoamino acid in morphine-treated HL-1 cells with immunoprecipitation and immunoblotting assay. KEY FINDINGS Morphine acute treatment induced excessive accumulation of TG and decreased the phosphorylation level of ATGL Ser406 in HL-1 cells. Of note, the phosphorylation positive mutation of ATGL Ser406 to aspartic acid effectively reversed morphine-induced excessive accumulation of TG in HL-1 cells. SIGNIFICANCE This discovery will help to fully understand the lipid regulation function of morphine in a new scope. In addition, it will expand the phosphorylation research of ATGL more comprehensively and provide powerful clues for lipid metabolism regulation.
Collapse
Affiliation(s)
- Linghai Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, 101149, Beijing, China.
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, 101149 Beijing, China
| | - Ding Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, 101149, Beijing, China
| | - Huina Zhang
- Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, 100029 Beijing, China.
| |
Collapse
|
3
|
Kundinger SR, Bishof I, Dammer EB, Duong DM, Seyfried NT. Middle-Down Proteomics Reveals Dense Sites of Methylation and Phosphorylation in Arginine-Rich RNA-Binding Proteins. J Proteome Res 2020; 19:1574-1591. [PMID: 31994892 DOI: 10.1021/acs.jproteome.9b00633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Post-translational modifications (PTMs) within arginine (Arg)-rich RNA-binding proteins, such as phosphorylation and methylation, regulate multiple steps in RNA metabolism. However, the identification of PTMs within Arg-rich domains with complete trypsin digestion is extremely challenging due to the high density of Arg residues within these proteins. Here, we report a middle-down proteomic approach coupled with electron-transfer dissociation (ETD) mass spectrometry to map previously unknown sites of phosphorylation and methylation within the Arg-rich domains of U1-70K and structurally similar RNA-binding proteins from nuclear extracts of human embryonic kidney (HEK)-293T cells. Notably, the Arg-rich domains in RNA-binding proteins are densely modified by methylation and phosphorylation compared with the remainder of the proteome, with methylation and phosphorylation favoring RSRS motifs. Although they favor a common motif, analysis of combinatorial PTMs within RSRS motifs indicates that phosphorylation and methylation do not often co-occur, suggesting that they may functionally oppose one another. Furthermore, we show that phosphorylation may modify interactions between Arg-rich proteins, as serine-arginine splicing factor 2 (SRSF2) has a stronger association with U1-70K and LUC7L3 upon dephosphorylation. Collectively, these findings suggest that the level of PTMs within Arg-rich domains may be among the highest in the proteome and a possible unexplored regulator of RNA-binding protein interactions.
Collapse
|
4
|
Commodore JJ, Cassady CJ. Electron transfer dissociation mass spectrometry of acidic phosphorylated peptides cationized with trivalent praseodymium. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1178-1188. [PMID: 30221809 PMCID: PMC6291000 DOI: 10.1002/jms.4291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The lanthanide ion praseodymium, Pr(III), was employed to study metallated ion formation and electron transfer dissociation (ETD) of 27 biological and model highly acidic phosphopeptides. All phosphopeptides investigated form metallated ions by electrospray ionization (ESI) that can be studied by ETD to yield abundant sequence information. The ions formed are [M + Pr - H]2+ , [M + Pr]3+ , and [M + Pr + H]4+ . All biological phosphopeptides with a chain length of seven or more residues generate [M + Pr]3+ . For biological phosphopeptides, [M + Pr]3+ undergoes more backbone cleavage by ETD than [M + Pr - H]2+ and, in some cases, full sequence coverage occurs. Acidic model phosphorylated hexa-peptides and octa-peptides, composed of alanine residues and one phosphorylated residue, form exclusively [M + Pr - H]2+ by ESI. Limited sequence information is obtained by ETD of [M + Pr - H]2+ with only metallated product ions being generated. For two biological phosphopeptides, [M + Pr + H]4+ is observed and may be due to the presence of at least one residue with a highly basic side chain that facilitates the addition of an extra proton. For the model phosphopeptides, more sequence coverage occurs when the phosphorylated residue is in the middle of the sequence than at either the N- or C-terminus. ETD of the metallated precursor ions formed by ESI generates exclusively metallated and nonmetallated c- and z-ions for the biological phosphopeptides, while metallated c-ions, z-ions, and a few y-ions form for the model phosphopeptides. Most of the product ions contain the phosphorylated residue indicating that the metal ion binds predominantly at the deprotonated phosphate group. The results of this study indicate that ETD is a promising tool for sequencing highly acidic phosphorylated peptides by metal adduction with Pr (III) and, by extension, all nonradioactive lanthanide metal ions.
Collapse
Affiliation(s)
| | - Carolyn J Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
5
|
Su F, Bhattacharya S, Abdisalaam S, Mukherjee S, Yajima H, Yang Y, Mishra R, Srinivasan K, Ghose S, Chen DJ, Yannone SM, Asaithamby A. Replication stress induced site-specific phosphorylation targets WRN to the ubiquitin-proteasome pathway. Oncotarget 2016; 7:46-65. [PMID: 26695548 PMCID: PMC4807982 DOI: 10.18632/oncotarget.6659] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022] Open
Abstract
Faithful and complete genome replication in human cells is essential for preventing the accumulation of cancer-promoting mutations. WRN, the protein defective in Werner syndrome, plays critical roles in preventing replication stress, chromosome instability, and tumorigenesis. Herein, we report that ATR-mediated WRN phosphorylation is needed for DNA replication and repair upon replication stress. A serine residue, S1141, in WRN is phosphorylated in vivo by the ATR kinase in response to replication stress. ATR-mediated WRN S1141 phosphorylation leads to ubiquitination of WRN, facilitating the reversible interaction of WRN with perturbed replication forks and subsequent degradation of WRN. The dynamic interaction between WRN and DNA is required for the suppression of new origin firing and Rad51-dependent double-stranded DNA break repair. Significantly, ATR-mediated WRN phosphorylation is critical for the suppression of chromosome breakage during replication stress. These findings reveal a unique role for WRN as a modulator of DNA repair, replication, and recombination, and link ATR-WRN signaling to the maintenance of genome stability.
Collapse
Affiliation(s)
- Fengtao Su
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Salim Abdisalaam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shibani Mukherjee
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hirohiko Yajima
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Yanyong Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ritu Mishra
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kalayarasan Srinivasan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Subroto Ghose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David J Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steven M Yannone
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Husain B, Mayo C, Cole JL. Role of the Interdomain Linker in RNA-Activated Protein Kinase Activation. Biochemistry 2015; 55:253-61. [PMID: 26678943 DOI: 10.1021/acs.biochem.5b01171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RNA-activated protein kinase (PKR) is a key component of the interferon-induced antiviral pathway in higher eukaryotes. Upon recognition of viral dsRNA, PKR is activated via dimerization and autophosphorylation. PKR contains two N-terminal dsRNA binding domains (dsRBD) and a C-terminal kinase domain. The dsRBDs and the kinase are separated by a long, unstructured ∼80-amino acid linker in the human enzyme. The length of the N-terminal portion of the linker varies among PKR sequences, and it is completely absent in one ortholog. Here, we characterize the effects of deleting the variable region from the human enzyme to produce PKRΔV. The linker deletion results in quantitative but not qualitative changes in catalytic activity, RNA binding, and conformation. PKRΔV is somewhat more active and exhibits more cooperative RNA binding. As we previously observed for the full-length enzyme, PKRΔV is flexible in solution and adopts a range of compact and extended conformations. The conformational ensemble is biased toward compact states that might be related to weak interactions between the dsRBD and kinase domains. PKR retains RNA-induced autophosphorylation upon complete removal of the linker, indicating that the C-terminal, basic region is also not required for activity.
Collapse
Affiliation(s)
- Bushra Husain
- Department of Molecular and Cell Biology and ‡Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Christopher Mayo
- Department of Molecular and Cell Biology and ‡Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - James L Cole
- Department of Molecular and Cell Biology and ‡Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
7
|
Han F, Yang Y, Ouyang J, Na N. Direct analysis of in-gel proteins by carbon nanotubes-modified paper spray ambient mass spectrometry. Analyst 2015; 140:710-5. [DOI: 10.1039/c4an01688b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The direct extraction, desorption and ionization of in gel-intact proteins after electrophoresis have been achieved by CNTs-modified paper spray MS at ambient conditions.
Collapse
Affiliation(s)
- Feifei Han
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yuhan Yang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
8
|
Dalton LE, Healey E, Irving J, Marciniak SJ. Phosphoproteins in stress-induced disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:189-221. [PMID: 22340719 DOI: 10.1016/b978-0-12-396456-4.00003-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integrated stress response (ISR) is an evolutionarily conserved homeostatic program activated by specific pathological states. These include amino acid deprivation, viral infection, iron deficiency, and the misfolding of proteins within the endoplasmic reticulum (ER), the so-called ER stress. Although apparently disparate, each of these stresses induces phosphorylation of a translation initiation factor, eIF2α, to attenuate new protein translation while simultaneously triggering a transcriptional program. This is achieved by four homologous stress-sensing kinases: GCN2, PKR, HRI, and PERK. In addition to these kinases, mammals possess two specific eIF2α phosphatases, GADD34 and CReP, which play crucial roles in the recovery of protein synthesis following the initial insult. They are not only important in embryonic development but also appear to play important roles in disease, particularly cancer. In this chapter, we discuss each of the eIF2α kinases, in turn, with particular emphasis on their regulation and the new insights provided by recent structural studies. We also discuss the potential for developing novel drug therapies that target the ISR.
Collapse
Affiliation(s)
- Lucy E Dalton
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
9
|
Mao Y, Zamdborg L, Kelleher NL, Hendrickson CL, Marshall AG. Identification of Phosphorylated Human Peptides by Accurate Mass Measurement Alone. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 308:357-361. [PMID: 22866021 PMCID: PMC3409838 DOI: 10.1016/j.ijms.2011.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
At sufficiently high mass accuracy, it is possible to distinguish phosphorylated from unmodified peptides by mass measurement alone. We examine the feasibility of that idea, tested against a library of all possible in silico tryptic digest peptides from the human proteome database. The overlaps between in silico tryptic digest phosphopeptides generated from known phosphorylated proteins (1-12 sites) and all possible unmodified human peptides are considered for assumed mass error ranges of ±10, ±50, ±100, ±1,000, and ±10,000 ppb. We find that for mass error ±50 ppb, 95% of all phosphorylated human tryptic peptides can be distinguished from nonmodified peptides by accurate mass alone through the entire nominal mass range. We discuss the prospect of on-line LC MS/MS to identify phosphopeptide precursor ions in MS1 for selected dissociation in MS2 to identify the peptide and site(s) of phosphorylation.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Leonid Zamdborg
- Institute for Genomic Biology, 1206 West Gregory Drive, Urbana, IL 61801
| | - Neil L. Kelleher
- Institute for Genomic Biology, 1206 West Gregory Drive, Urbana, IL 61801
| | - Christopher L. Hendrickson
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee Florida 32310-4005, United States
| | - Alan G. Marshall
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee Florida 32310-4005, United States
| |
Collapse
|
10
|
Hong J, Zhou J, Fu J, He T, Qin J, Wang L, Liao L, Xu J. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res 2011; 71:3980-90. [PMID: 21502402 PMCID: PMC3107354 DOI: 10.1158/0008-5472.can-10-2914] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Twist1, a basic helix-loop-helix transcription factor, promotes breast tumor cell epithelial-mesenchymal transition (EMT), invasiveness, and metastasis. However, the mechanisms responsible for regulating Twist1 stability are unknown in these cells. We identified the serine 68 (Ser 68) as a major phosphorylation site of Twist1 by mass spectrometry and with specific antibodies. This Ser 68 is phosphorylated by p38, c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases1/2 in vitro, and its phosphorylation levels positively correlate with Twist1 protein levels in human embryonic kidney 293 and breast cancer cells. Prevention of Ser 68 phosphorylation by an alanine (A) mutation (Ser 68A) dramatically accelerates Twist1 ubiquitination and degradation. Furthermore, activation of mitogen-activated protein kinases (MAPK) by an active Ras protein or TGF-β treatment significantly increases Ser 68 phosphorylation and Twist1 protein levels without altering Twist1 mRNA expression, whereas blocking of MAPK activities by either specific inhibitors or dominant negative inhibitory mutants effectively reduces the levels of both induced and uninduced Ser 68 phosphorylation and Twist protein. Accordingly, the mammary epithelial cells expressing Twist1 exhibit much higher degrees of EMT and invasiveness on stimulation with TGF-β or the active Ras and paclitaxel resistance compared with the same cells expressing the Ser 68A-Twist1 mutant. Importantly, the levels of Ser 68 phosphorylation in the invasive human breast ductal carcinomas positively correlate with the levels of Twist1 protein and JNK activity and are significantly higher in progesterone receptor-negative and HER2-positive breast cancers. These findings suggest that activation of MAPKs by tyrosine kinase receptors and Ras signaling pathways may substantially promote breast tumor cell EMT and metastasis via phoshorylation and stabilization of Twist1.
Collapse
Affiliation(s)
- Jun Hong
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jian Zhou
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Junjiang Fu
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Tao He
- Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Jun Qin
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Li Wang
- Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Lan Liao
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jianming Xu
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Luzhou Medical College, Luzhou, Sichuan 646000, China
| |
Collapse
|
11
|
Wang L, Harshman SW, Liu S, Ren C, Xu H, Sallans L, Grever M, Byrd JC, Marcucci G, Freitas MA. Assaying pharmacodynamic endpoints with targeted therapy: flavopiridol and 17AAG induced dephosphorylation of histone H1.5 in acute myeloid leukemia. Proteomics 2010; 10:4281-92. [PMID: 21110323 PMCID: PMC3021470 DOI: 10.1002/pmic.201000080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 08/31/2010] [Indexed: 01/04/2023]
Abstract
Histone H1 is commonly used to assay kinase activity in vitro. As many promising targeted therapies affect kinase activity of specific enzymes involved in cancer transformation, H1 phosphorylation can serve as potential pharmacodynamic marker for drug activity within the cell. In this study we utilized a phosphoproteomic workflow to characterize histone H1 phosphorylation changes associated with two targeted therapies in the Kasumi-1 acute myeloid leukemia cell line. The phosphoproteomic workflow was first validated with standard casein phosphoproteins and then applied to the direct analysis of histone H1 from Kasumi-1 nuclear lysates. Ten H1 phosphorylation sites were identified on the H1 variants, H1.2, H1.3, H1.4, H1.5 and H1.x. LC MS profiling of intact H1s demonstrated global dephosphorylation of H1.5 associated with therapy by the cyclin-dependent kinase inhibitor, flavopiridol and the Heat Shock Protein 90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin. In contrast, independent treatments with a nucleotide analog, proteosome inhibitor and histone deacetylase inhibitor did not exhibit decreased H1.5 phosphorylation. The data presented herein demonstrate that potential of histones to assess the cellular response of reagents that have direct and indirect effects on kinase activity that alters histone phosphorylation. As such, this approach may be a highly informative marker for response to targeted therapies influencing histone phosphorylation.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Chemistry, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Sean W. Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Shujun Liu
- Department of Internal Medicine, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Chen Ren
- Department of Chemistry, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Hua Xu
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Larry Sallans
- Mass Spectrometry Facility, University of Cincinnati, Cincinnati OH, 45221, USA
| | - Michael Grever
- Department of Internal Medicine, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - John C. Byrd
- Department of Internal Medicine, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Guido Marcucci
- Department of Internal Medicine, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Michael A. Freitas
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| |
Collapse
|
12
|
Kyono Y, Sugiyama N, Tomita M, Ishihama Y. Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2277-2282. [PMID: 20623713 DOI: 10.1002/rcm.4627] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have developed a novel strategy to improve the efficiency of identification of multiply phosphorylated peptides isolated by hydroxy acid modified metal oxide chromatography (HAMMOC). This strategy consists of alkali-induced chemical dephosphorylation (beta-elimination reaction) of phosphopeptides isolated by HAMMOC prior to analysis by liquid chromatography/mass spectrometry (LC/MS). This approach identified 1.9-fold more multiply phosphorylated peptides than the conventional approach without beta-elimination from a digested mixture of three standard phosphoproteins. In addition, the accuracy of phosphorylation site determination in synthetic phosphopeptides was significantly improved. Finally, we applied this approach to a cell lysate. By combining this dephosphorylation approach with the conventional approach, we successfully identified 1649 unique phosphopeptides, including 325 multiply phosphorylated phosphopeptides, from 200 microg of cultured Arabidopsis cells. These results indicate that chemical dephosphorylation prior to LC/MS analysis increases the efficiency of identification of multiply phosphorylated peptides, as well as the accuracy of phosphorylation site determination.
Collapse
Affiliation(s)
- Yutaka Kyono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | | | | | | |
Collapse
|
13
|
Anderson E, Quartararo C, Brown RS, Shi Y, Yao X, Cole JL. Analysis of monomeric and dimeric phosphorylated forms of protein kinase R. Biochemistry 2010; 49:1217-25. [PMID: 20088595 DOI: 10.1021/bi901873p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PKR (protein kinase R) is induced by interferon and is a key component of the innate immunity antiviral pathway. Upon binding double-stranded RNA (dsRNA) or dimerization in the absence of dsRNA, PKR undergoes autophosphorylation at multiple serines and threonines that activate the kinase. Although it has previously been demonstrated that phosphorylation enhances PKR dimerization, gel filtration analysis reveals a second monomeric phosphorylated form. These forms are termed phosphorylated dimeric PKR (pPKRd) and phosphorylated monomeric PKR (pPKRm). These two forms do not reversibly interconvert. Sedimentation equilibrium measurements reveal that pPKRm dimerizes weakly with a K(d) similar to that of unphosphorylated PKR. Isoelectric focusing and mass spectrometry demonstrate that both pPKRm and pPKRd are heterogeneous in their phosphorylation states, with an average of 9 or 10 phosphates. Equilibrium chemical denaturation analysis indicates that phosphorylation destabilizes the kinase domain by approximately 1.5 kcal/mol in the dimeric form but not in the monomeric form. Limited proteolysis also reveals that phosphorylation induces a conformational change in pPKRd that is not detected in pPKRm. pPKRm binds dsRNA with an affinity similar to that of unphosphorylated PKR, whereas binding cannot be detected with pPKRd. Despite these substantial differences in biophysical properties, both pPKRm and pPKRd are catalytically competent and are activated to phosphorylate the PKR substrate eIF2alpha in the absence of dsRNA. Thus, both monomeric and dimeric forms of phosphorylated PKR may participate in the interferon antiviral pathway.
Collapse
Affiliation(s)
- Eric Anderson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | |
Collapse
|
14
|
Wu HY, Tseng VSM, Chen LC, Chang YC, Ping P, Liao CC, Tsay YG, Yu JS, Liao PC. Combining alkaline phosphatase treatment and hybrid linear ion trap/Orbitrap high mass accuracy liquid chromatography-mass spectrometry data for the efficient and confident identification of protein phosphorylation. Anal Chem 2009; 81:7778-87. [PMID: 19702290 DOI: 10.1021/ac9013435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphorylation is a vital post-translational modification that is involved in a variety of biological processes. Several mass spectrometry-based methods have been developed for phosphoprotein characterization. In our previous work, we demonstrated the capability of a computational algorithm in mining phosphopeptide signals in large LC-MS data sets by measuring the mass shifts due to phosphatase treatment (Wu, H. Y.; Tseng, V. S.; Liao, P. C. J. Proteome Res. 2007, 6, 1812-1821). Mass accuracy seems to play an important role in efficiently selecting out phosphopeptide signals. In recent years, the hybrid linear ion trap (LTQ)/Orbitrap mass spectrometer, which provides a high mass accuracy, has emerged as a powerful instrument in proteomic analysis. Here, we developed a process to incorporate LC-MS data that was generated from an LTQ/Orbitrap mass spectrometer into our strategy for taking advantage of the accurate mass measurement. LTQ/Orbitrap raw files were converted to the open file format mzXML via the ReAdW.exe program. To find peaks that were contained in each mzXML file, an open-source computer program, msInspect, was utilized to locate isotopes and assemble those isotopes into peptides. An in-house program, LcmsFormatConverter, was utilized for signal filtering and format transformation. A proposed in-house program, DeltaFinder, was modified and used for defining signals with an exact mass shift due to the dephosphorylation reaction, which generated a table that listed potential phosphopeptide signals. The retention times and m/z values of these selected LC-MS signals were used to program subsequent LC-MS/MS experiments to get high-confidence phosphorylation site determination. Compared to our previous work finished by using a quadrupole/time-of-flight mass spectrometer, a larger number of phosphopeptides in the casein mixture were identified by using LTQ/Orbitrap data, demonstrating the merit of high mass accuracy in our strategy. In addition, the characterization of the lung cancer cell tyrosine phosphoproteome revealed that the use of alkaline phosphatase treatment combined with accurate mass measurement in this strategy increased data repeatability and confidence.
Collapse
Affiliation(s)
- Hsin-Yi Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Koomen J, Hawke D, Kobayashi R. Developing an Understanding of Proteomics: An Introduction to Biological Mass Spectrometry. Cancer Invest 2009. [DOI: 10.1081/cnv-46344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Boersema PJ, Mohammed S, Heck AJR. Phosphopeptide fragmentation and analysis by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:861-878. [PMID: 19504542 DOI: 10.1002/jms.1599] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reversible phosphorylation is a key event in many biological processes and is therefore a much studied phenomenon. The mass spectrometric (MS) analysis of phosphorylation is challenged by the substoichiometric levels of phosphorylation and the lability of the phosphate group in collision-induced dissociation (CID). Here, we review the fragmentation behaviour of phosphorylated peptides in MS and discuss several MS approaches that have been developed to improve and facilitate the analysis of phosphorylated peptides. CID of phosphopeptides typically results in spectra dominated by a neutral loss of the phosphate group. Several proposed mechanisms for this neutral loss and several factors affecting the extent at which this occurs are discussed. Approaches are described to interpret such neutral loss-dominated spectra to identify the phosphopeptide and localize the phosphorylation site. Methods using additional activation, such as MS(3) and multistage activation (MSA), have been designed to generate more sequence-informative fragments from the ion produced by the neutral loss. The characteristics and benefits of these methods are reviewed together with approaches using phosphopeptide derivatization or specific MS scan modes. Additionally, electron-driven dissociation methods by electron capture dissociation (ECD) or electron transfer dissociation (ETD) and their application in phosphopeptide analysis are evaluated. Finally, these techniques are put into perspective for their use in large-scale phosphoproteomics studies.
Collapse
Affiliation(s)
- Paul J Boersema
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
17
|
Abstract
Posttranslational modifications (PTMs) of proteins perform crucial roles in regulating the biology of the cell. PTMs are enzymatic, covalent chemical modifications of proteins that typically occur after the translation of mRNAs. These modifications are relevant because they can potentially change a protein's physical or chemical properties, activity, localization, or stability. Some PTMs can be added and removed dynamically as a mechanism for reversibly controlling protein function and cell signaling. Extensive investigations have aimed to identify PTMs and characterize their biological functions. This chapter will discuss the existing and emerging techniques in the field of mass spectrometry and proteomics that are available to identify and quantify PTMs. We will focus on the most frequently studied modifications. In addition, we will include an overview of the available tools and technologies in tandem mass spectrometry instrumentation that affect the ability to identify specific PTMs.
Collapse
Affiliation(s)
- Adam R Farley
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
18
|
Sui S, Wang J, Yang B, Song L, Zhang J, Chen M, Liu J, Lu Z, Cai Y, Chen S, Bi W, Zhu Y, He F, Qian X. Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy. Proteomics 2008; 8:2024-34. [PMID: 18491316 DOI: 10.1002/pmic.200700896] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The liver is the largest organ in the body, with many complex, essential functions, such as metabolism, deintoxication, and secretion, often regulated via post-translational modifications, especially phosphorylation. Thus, the detection of phosphoproteins and phosphorylation sites is important to comprehensively explore human liver biological function. The human Chang liver cell line is among the first derived from non-malignant tissue, and its phosphoproteome profile has never been globally analyzed. To develop the complete phosphoproteome and probe the roles of protein phosphorylation in normal human liver, we adopted a shotgun strategy based on strong cation exchange chromatograph, titanium dioxide and LC-MS/MS to isolate and identify phosphorylated proteins. Two types of MS approach, Q-TOF and IT, were used and compared to identify phosphosites from complex protein mixtures of these cells. A total of 1035 phosphorylation sites and 686 phosphorylated peptides were identified from 607 phosphoproteins. A search using the public database of PhosphoSite showed that approximately 344 phosphoproteins and 760 phosphorylation sites appeared to be novel. In addition, N-terminal phosphorylated peptides were a greater fraction of all identified phosphopeptides. With GOfact analysis, we found that most of the identified phosphoproteins are involved in regulating metabolism, consistent with the liver's role as a key metabolic organ.
Collapse
Affiliation(s)
- Shaohui Sui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tan F, Zhang Y, Wang J, Wei J, Cai Y, Qian X. An efficient method for dephosphorylation of phosphopeptides by cerium oxide. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:628-632. [PMID: 18076124 DOI: 10.1002/jms.1362] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this article, an effective method for dephosphorylation of phosphopeptides by cerium oxide is described. The dephosphorylation activity of cerium oxide was evaluated by two standard phosphopeptides and the phosphopeptides in digests of phosphoprotein alpha-casein and beta-casein. Results showed that the dephosphorylation of all the phosphopeptides was completed in 10 min, and temperature had little effect on the dephosphorylation, the dephosphorylation could be carried out at 0 degrees C, room temperature and 37 degrees C. The dephosphorylation mediated by cerium oxide can be attributed to Lewis acid and nucleophile activations. Advantages of using cerium oxide as catalyst for the dephosphorylation include: safe, simple, high catalytic activity, and no precise control of the treatment temperature. The method is valid for the phosphorylation of Ser, Thr and Tyr, and can be used for phosphoprotein analysis.
Collapse
Affiliation(s)
- Feng Tan
- State Key Laboratory of Proteomics-Beijing Proteome Research Center-Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
20
|
Anderson E, Cole JL. Domain stabilities in protein kinase R (PKR): evidence for weak interdomain interactions. Biochemistry 2008; 47:4887-97. [PMID: 18393532 PMCID: PMC2729556 DOI: 10.1021/bi702211j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PKR (protein kinase R) is induced by interferon and is a key component of the innate immunity antiviral pathway. Upon binding dsRNA, PKR undergoes autophosphorylation reactions that activate the kinase, leading it to phosphorylate eIF2alpha, thus inhibiting protein synthesis in virally infected cells. PKR contains a dsRNA-binding domain (dsRBD) and a kinase domain. The dsRBD is composed of two tandem dsRNA-binding motifs. An autoinhibition model for PKR has been proposed, whereby dsRNA binding activates the enzyme by inducing a conformational change that relieves the latent enzyme of the inhibition that is mediated by the interaction of the dsRBD with the kinase. However, recent biophysical data support an open conformation for the latent enzyme, where activation is mediated by dimerization of PKR induced upon binding dsRNA. We have probed the importance of interdomain contacts by comparing the relative stabilities of isolated domains with the same domain in the context of the intact enzyme using equilibrium chemical denaturation experiments. The two dsRNA-binding motifs fold independently, with the C-terminal motif exhibiting greater stability. The kinase domain is stabilized by about 1.5 kcal/mol in the context of the holenzyme, and we detect low-affinity binding of the kinase and dsRBD constructs in solution, indicating that these domains interact weakly. Limited proteolysis measurements confirm the expected domain boundaries and reveal that the activation loop in the kinase is accessible to cleavage and unstructured. Autophosphorylation induces a conformation change that blocks proteolysis of the activation loop.
Collapse
Affiliation(s)
- Eric Anderson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125
| | - James L. Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125
- National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, Connecticut 06269-3125
| |
Collapse
|
21
|
Luo H, Li Y, Mu JJ, Zhang J, Tonaka T, Hamamori Y, Jung SY, Wang Y, Qin J. Regulation of intra-S phase checkpoint by ionizing radiation (IR)-dependent and IR-independent phosphorylation of SMC3. J Biol Chem 2008; 283:19176-83. [PMID: 18442975 DOI: 10.1074/jbc.m802299200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Structure maintenance of chromosome 1 (SMC1) is phosphorylated by ataxia telangiectasia-mutated (ATM) in response to ionizing radiation (IR) to activate intra-S phase checkpoint. A role of CK2 in DNA damage response has been implicated in many previous works, but the molecular mechanism for its activation is not clear. In the present work, we report that SMC3 is phosphorylated at Ser-1067 and Ser-1083 in vivo. Ser-1083 phosphorylation is IR-inducible, depends on ATM and Nijmegen breakage syndrome 1 (NBS1), and is required for intra-S phase checkpoint. Interestingly, Ser-1067 phosphorylation is constitutive and is not induced by IR but also affects intra-S phase checkpoint. Phosphorylation of Ser-1083 is weakened in cells expressing S1067A mutant, suggesting interplay between Ser-1067 and Ser-1083 phosphorylation in DNA damage response. Consistently, small interfering RNA knockdown of CK2 leads to attenuated phosphorylation of Ser-1067 as well as intra-S phase checkpoint defect. Our data provide evidence that phosphorylation of a core cohesin subunit SMC3 by ATM plays an important role in DNA damage response and suggest that a constitutive phosphorylation by CK2 may affect intra-S phase checkpoint by modulating SMC3 phosphorylation by ATM.
Collapse
Affiliation(s)
- Hao Luo
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jung SY, Li Y, Wang Y, Chen Y, Zhao Y, Qin J. Complications in the assignment of 14 and 28 Da mass shift detected by mass spectrometry as in vivo methylation from endogenous proteins. Anal Chem 2008; 80:1721-9. [PMID: 18247584 PMCID: PMC2920732 DOI: 10.1021/ac7021025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identification of protein methylation sites typically starts with database searching of MS/MS spectra of proteolytic digest of the target protein by allowing addition of 14 and 28 Da in the selected amino acid residues that can be methylated. Despite the progress in our understanding of lysine and arginine methylation, substrates and functions of protein methylation at other amino acid residues remain unknown. Here we report the analysis of protein methylation for p53, SMC3, iNOS, and MeCP2. We found that a large number of peptides can be modified on the lysine, arginine, histidine, and glutamic acid residues with a mass increase of 14 or 28 Da, consistent with methylation. Surprisingly, a majority of which did not demonstrate a corresponding mass shift when cells were cultured with isotope-labeled methionine, a precursor for the synthesis of S-adenosyl-l-methionine (SAM), which is the most commonly used methyl donor for protein methylation. These results suggest the possibility of either exogenous protein methylation during sample handling and processing for mass spectrometry or the existence of SAM-independent pathways for protein methylation. Our study found a high occurrence of protein methylation from SDS-PAGE isolated endogenous proteins and identified complications for assigning such modifications as in vivo methylation. This study provides a cautionary note for solely relying on mass shift for mass spectrometric identification of protein methylation and highlights the importance of in vivo isotope labeling as a necessary validation method.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Qin
- To whom correspondence should be addressed. . Fax: (713) 796-9438. Tel: (713) 798-1507
| |
Collapse
|
23
|
Jagannadham MV, Nagaraj R. Detecting the site of phosphorylation in phosphopeptides without loss of phosphate group using MALDI TOF mass spectrometry. ANALYTICAL CHEMISTRY INSIGHTS 2008; 3:21-9. [PMID: 19609387 PMCID: PMC2701175 DOI: 10.4137/aci.s497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphopeptides with one and four phosphate groups were characterized by MALDI mass spectrometry. The molecular ion of monophosphopeptide could be detected both as positive and negative ions by MALDI TOF with delayed extraction (DE) and in the reflector mode. The tetraphospho peptide could be detected in linear mode. When MS/MS spectra of the monophospho peptides were obtained in a MALDI TOF TOF instrument by CID, b and y ions with the intact phosphate group were observed, in addition the b and y ions without the phosphate group. Our study indicates that it is possible to detect phosphorylated peptides with out the loss of phosphate group by MALDI TOF as well as MALDI TOF TOF instruments with delayed extraction and in the reflector mode.
Collapse
|
24
|
Joenväärä S, Ritamo I, Peltoniemi H, Renkonen R. N-Glycoproteomics – An automated workflow approach. Glycobiology 2008; 18:339-49. [DOI: 10.1093/glycob/cwn013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Thingholm TE, Jørgensen TJD, Jensen ON, Larsen MR. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 2007; 1:1929-35. [PMID: 17487178 DOI: 10.1038/nprot.2006.185] [Citation(s) in RCA: 483] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The characterization of phosphorylated proteins is a challenging analytical task since many of the proteins targeted for phosphorylation are low in abundance and phosphorylation is typically substoichiometric. Highly efficient enrichment procedures are therefore required. Here we describe a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro-column. Although phosphopeptide enrichment can be achieved by using TFA and acetonitrile alone, the selectivity is dramatically enhanced by adding DHB or phthalic acid since these compounds, in conjunction with the low pH caused by TFA, prevent binding of nonphosphorylated peptides to TiO2. Using an alkaline solution (pH > or = 10.5) both monophosphorylated and multiphosphorylated peptides are eluted from the TiO2 beads. This highly efficient method for purification of phosphopeptides is well suited for the characterization of phosphoproteins from both in vitro and in vivo studies in combination with mass spectrometry (MS). It is a very easy and fast method. The entire protocol requires less than 15 min per sample if the buffers have been prepared in advance (not including lyophilization).
Collapse
Affiliation(s)
- Tine E Thingholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Mikhail E. Belov
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Navdeep Jaitly
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| |
Collapse
|
27
|
Cuccurullo M, Schlosser G, Cacace G, Malorni L, Pocsfalvi G. Identification of phosphoproteins and determination of phosphorylation sites by zirconium dioxide enrichment and SELDI-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1069-78. [PMID: 17610310 DOI: 10.1002/jms.1238] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Reversible protein phosphorylation mediated by protein kinases and phosphatases is the most studied post-translational modification. Efficient characterization of phosphoproteomes is hampered by (1) low stoechiometry, (2) the dynamic nature of the phosphorylation process and (3) the difficulties of mass spectrometry to identify phosphoproteins from complex mixtures and to determine their sites of phosphorylation. Combination of the phosphopeptide enrichment method with MALDI-TOFMS, or alternatively, with HPLC-ESI-MS/MS and MS(3) analysis was shown to be a step forward for the successful application of MS in the study of protein phosphorylation. In our study we used phosphopeptide enrichment performed in a simple single-tube experiment using zirconium dioxide (ZrO(2)). A simple protein mixture containing precipitated bovine milk caseins was enzymatically digested and the mixture of tryptic fragments was analysed before and after enrichment using nanoflow HPLC-ESI-MS/MS and surface-enhanced laser desorption/ionization (SELDI)-MS/MS on QqTOF instruments to compare the efficiency of the two methods in the determination of phosphorylation sites. Both approaches confirm the high selectivity obtained by the use of batch-wise, ZrO(2)-based protocol using di-ammonium phosphate as the eluting buffer. More phosphorylation sites (five for beta-casein and three for alpha(S1)-casein) were characterized by SELDI-MS/MS than by nanoflow HPLC-ESI-MS/MS. Therefore, ZrO(2)-based phosphopeptide enrichment combined with SELDI-MS/MS is an attractive alternative to previously reported approaches for the study of protein phosphorylation in mixtures of low complexity with the advance of fast in situ peptide purification. The method was limited to successful analysis of high-abundance proteins. Only one phosphorylation site was determined for the minor casein component alpha(S2)-casein by ESI-MS/MS and none for kappa-casein. Therefore an improvement in enrichment efficiency, especially for successful phosphoproteomic applications, is needed.
Collapse
Affiliation(s)
- Manuela Cuccurullo
- Proteomic and Biomolecular Mass Spectrometry Centre, Institute of Food Science and Technology, CNR, Avellino, Italy
| | | | | | | | | |
Collapse
|
28
|
D'Ambrosio C, Salzano AM, Arena S, Renzone G, Scaloni A. Analytical methodologies for the detection and structural characterization of phosphorylated proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:163-80. [PMID: 16891166 DOI: 10.1016/j.jchromb.2006.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/28/2006] [Indexed: 01/12/2023]
Abstract
Phosphorylation of proteins is a frequent post-translational modification affecting a great number of fundamental cellular functions in living organisms. Because of its key role in many biological processes, much effort has been spent over the time on the development of analytical methodologies for characterizing phosphoproteins. In the past decade, mass spectrometry-based techniques have emerged as a viable alternative to more traditional methods of phosphorylation analysis, providing accurate information for a purified protein on the number of the occurring phosphate groups and their exact localization on the polypeptide sequence. This review summarizes the analytical methodologies currently available for the analysis of protein phosphorylation, emphasizing novel mass spectrometry (MS) technologies and dedicated biochemical procedures that have been recently introduced in this field. A formidable armamentarium is now available for selective enrichment, exaustive structural characterization and quantitative determination of the modification degree for phosphopeptides/phosphoproteins. These methodologies are now successfully applied to the global analysis of cellular proteome repertoire according a holistic approach, allowing the quantitative study of phosphoproteomes on a dynamic time-course basis. The enormous complexity of the protein phosphorylation pattern inside the cell and its dynamic modification will grant important challenges to future scientists, contributing significantly to deeper insights into cellular processes and cell regulation.
Collapse
Affiliation(s)
- Chiara D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, via Argine 1085, 80147 Naples, Italy
| | | | | | | | | |
Collapse
|
29
|
Feng S, Pan C, Jiang X, Xu S, Zhou H, Ye M, Zou H. Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. Proteomics 2007; 7:351-60. [PMID: 17177250 DOI: 10.1002/pmic.200600045] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Immobilized metal affinity chromatography (IMAC) is a commonly used technique for phosphoproteome analysis due to its high affinity for adsorption of phosphopeptides. Miniaturization of IMAC column is essential for the analysis of a small amount of sample. Nanoscale IMAC column was prepared by chemical modification of silica monolith with iminodiacetic acid (IDA) followed by the immobilization of Fe3+ ion inside the capillary. It was demonstrated that Fe3+-IDA silica monolithic IMAC capillary column could specifically capture the phosphopeptides from tryptic digest of alpha-casein with analysis by MALDI-TOF MS. The silica monolithic IMAC capillary column was manually coupled with nanoflow RPLC/nanospray ESI mass spectrometer (muRPLC-nanoESI MS) for phosphoproteome analysis. The system was validated by analysis of standard phosphoproteins and then it was applied to the analysis of protein phosphorylation in mouse liver lysate. Besides MS/MS spectra, MS/MS/MS spectra were also collected for neutral loss peak. After database search and manual validation with conservative criteria, 29 singly phosphorylated peptides were identified by analyzing a tryptic digest of only 12 mug mouse liver lysate. The results demonstrated that the silica monolithic IMAC capillary column coupled with muRPLC-nanoESI MS was very suitable for the phosphoproteome analysis of minute sample.
Collapse
Affiliation(s)
- Shun Feng
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Experiments were performed to characterize a prominent nuclear matrix (NM) protein isolated from tissue cultured mouse lens epithelial cells. This NM protein was separated by SDS-PAGE and the stained gel band was analyzed by mass spectroscopy. Blast analysis of the amino acid sequence derived by mass spectroscopy revealed the presence of Lamin C in the NM of the mouse lens epithelial cells. We also examined nuclear proteins of adult and fetal human lenses. Data collected from these experiments showed the presence of Lamin C in both adult and fetal lens cells. However fetal lens cells only show Lamin C dimers, whereas adult human lens contained dimers, monomers and degraded Lamin C. Early and late passaged tissue cultured mouse lens epithelial cells also contained Lamin C in the nucleus with a preponderance of the dimer in the early passaged cells. The biological significance of the presence of dimers in human fetal lens cells and early passaged mouse lens cells is not known. However, it could suggest an enhanced docking capability of Lamin C dimers for other physiologically important nuclear proteins.
Collapse
Affiliation(s)
- M Bagchi
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
31
|
Leng M, Chan DW, Luo H, Zhu C, Qin J, Wang Y. MPS1-dependent mitotic BLM phosphorylation is important for chromosome stability. Proc Natl Acad Sci U S A 2006; 103:11485-90. [PMID: 16864798 PMCID: PMC1518802 DOI: 10.1073/pnas.0601828103] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Indexed: 01/08/2023] Open
Abstract
Spindle assembly checkpoint (SAC) ensures bipolar attachment of chromosomes to the mitotic spindle and is essential for faithful chromosome segregation, thereby preventing chromosome instability (CIN). Genetic evidence suggests a causal link between compromised SAC, CIN, and cancer. Bloom syndrome (BS) is a genetic disorder that predisposes affected individuals to cancer. BS cells exhibit elevated rates of sister chromatid exchange, chromosome breaks, and CIN. The BS gene product, BLM, is a member of the RecQ helicases that are required for maintenance of genome stability. The BLM helicase interacts with proteins involved in DNA replication, recombination, and repair and is required for the repair of stalled-replication forks and in the DNA damage response. Here we present biochemical evidence to suggest a role of BLM phosphorylation during mitosis in maintaining chromosome stability. BLM is associated with the SAC kinase MPS1 and is phosphorylated at S144 in a MPS1-dependent manner. Phosphorylated BLM interacts with polo-like kinase 1, a mitotic kinase that binds to phosphoserine/threonine through its polo-box domain (PBD). Furthermore, BS cells expressing BLM-S144A show normal levels of sister chromatid exchange but fail to maintain the mitotic arrest when SAC is activated and exhibit a broad distribution of chromosome numbers. We propose that MPS1-dependent BLM phosphorylation is important for ensuring accurate chromosome segregation, and its deregulation may contribute to cancer.
Collapse
Affiliation(s)
- Mei Leng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Doug W. Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Hao Luo
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Cihui Zhu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Yi Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
32
|
Lemaire PA, Tessmer I, Craig R, Erie DA, Cole JL. Unactivated PKR exists in an open conformation capable of binding nucleotides. Biochemistry 2006; 45:9074-84. [PMID: 16866353 PMCID: PMC2913708 DOI: 10.1021/bi060567d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The dsRNA-activated protein kinase, PKR, plays a pivotal role in the cellular antiviral response. PKR contains an N-terminal dsRNA binding domain (dsRBD) and a C-terminal kinase domain. An autoinhibition model has been proposed in which latent PKR exists in a closed conformation where the substrate binding cleft of the kinase is blocked by the dsRBD. Binding to dsRNA activates the enzyme by inducing an open conformation and enhancing dimerization. We have tested this model by characterizing the affinity and kinetics of binding of a nucleotide substrate to PKR. The fluorescent nucleotide mant-AMPPNP binds to unactivated PKR with a Kd of approximately 30 microM, and the affinity is not strongly affected by autophosphorylation or binding to dsRNA. We observe biphasic binding kinetics in which the fast phase depends on ligand concentration but the slow phase is ligand-independent. The kinetic data fit to a two-step model of ligand binding followed by a slow conformation change. The kinetics are also not strongly affected by phosphorylation state or dsRNA binding. Thus, the equilibrium and kinetic data indicate that the substrate accessibility of the kinase is not modulated by PKR activation state as predicted by the autoinhibition model. In atomic force microscopy images, monomers of the latent protein are resolved with three separate regions linked by flexible, bridgelike structures. The resolution of the individual domains in the images supports a model in which unactivated PKR exists in an open conformation where the kinase domain is accessible and capable of binding substrate.
Collapse
Affiliation(s)
- Peter A. Lemaire
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125
| | - Ingrid Tessmer
- Department of Chemistry and Curriculum in Materials and Applied Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Ranyelle Craig
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125
| | - Dorothy A. Erie
- Department of Chemistry and Curriculum in Materials and Applied Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - James L. Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125
- National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, Connecticut 06269-3125
| |
Collapse
|
33
|
Delom F, Chevet E. Phosphoprotein analysis: from proteins to proteomes. Proteome Sci 2006; 4:15. [PMID: 16854217 PMCID: PMC1557478 DOI: 10.1186/1477-5956-4-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/19/2006] [Indexed: 12/16/2022] Open
Abstract
Characterization of protein modification by phosphorylation is one of the major tasks that have to be accomplished in the post-genomic era. Phosphorylation is a key reversible modification occurring mainly on serine, threonine and tyrosine residues that can regulate enzymatic activity, subcellular localization, complex formation and degradation of proteins. The understanding of the regulatory role played by phosphorylation begins with the discovery and identification of phosphoproteins and then by determining how, where and when these phosphorylation events take place. Because phosphorylation is a dynamic process difficult to quantify, we must at first acquire an inventory of phosphoproteins and characterize their phosphorylation sites. Several experimental strategies can be used to explore the phosphorylation status of proteins from individual moieties to phosphoproteomes. In this review, we will examine and catalogue how proteomics techniques can be used to answer specific questions related to protein phosphorylation. Hence, we will discuss the different methods for enrichment of phospho-proteins and -peptides, and then the various technologies for their identification, quantitation and validation.
Collapse
Affiliation(s)
- Frédéric Delom
- Dept of Surgery, McGill University, Montreal, Quebec, Canada
- Montreal Proteomics Network, McGill University, Montreal, Quebec, Canada
| | - Eric Chevet
- Dept of Surgery, McGill University, Montreal, Quebec, Canada
- Montreal Proteomics Network, McGill University, Montreal, Quebec, Canada
- Dept of Medicine, McGill University, Montreal, Quebec, Canada
- Dept of Anatomy, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Jogie-Brahim S, Min HK, Oh Y. Potential of proteomics towards the investigation of the IGF-independent actions of IGFBP-3. Expert Rev Proteomics 2006; 2:71-86. [PMID: 15966854 DOI: 10.1586/14789450.2.1.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early investigations into the insulin-like growth factor (IGF)-independent actions of insulin-like growth factor-binding protein (IGFBP)-3 have implicated a large array of signaling proteins with links to cell cycle control and apoptosis. However, the actual mechanism of IGFBP-3 action is still unclear. In an effort to clearly understand the mechanism of IGF-independent IGFBP-3 actions, a proteomic approach to identify the actual proteins involved in interaction with IGFBP-3 from different cell compartments, the phosphorylation status of IGFBP-3 under different physiologic conditions and the proteins upregulated by IGFBP-3 are briefly reviewed. The IGF system is a well-recognized key player in diseases such as cancer, diabetes and malnutrition. It is only after the signaling pathways of the IGF-independent actions of IGFBP-3 are clearly understood that the system can be manipulated to affect these disorders.
Collapse
Affiliation(s)
- Sherryline Jogie-Brahim
- Department of Pathology, Virginia Commonwealth University, School of Medicine, MCV Campus, Sanger Hall, Room 5-011, 1101 East Marshall Street, PO Box 980662, Richmond, Virginia 23298-0662, USA.
| | | | | |
Collapse
|
35
|
Abstract
The study of signal transduction provides fundamental information regarding the regulation of all biologic processes that support the normal function of life. Functional proteomics, a rapidly emerging discipline that aims to understand the expression, function and regulation of the entire set of proteins in a given cell type, tissue or organism, offers unprecedented opportunity for signal transduction research in terms of understanding cellular behavior and regulation at the systems level. Indeed, swift progress in the area of proteomics has demonstrated the major impact of proteomic approaches on signal transduction and biomedical research. In this review, recent and innovative applications of functional proteomics in determining changes in protein contents, modifications, activities and interactions underpinning signaling transduction pathways are discussed.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA.
| |
Collapse
|
36
|
Salih E. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. MASS SPECTROMETRY REVIEWS 2005; 24:828-846. [PMID: 15538747 DOI: 10.1002/mas.20042] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The general fields of biological sciences have seen phenomenal transformations in the past two decades at the level of data acquisition, understanding biological processes, and technological developments. Those advances have been made partly because of the advent of molecular biology techniques (which led to genomics) coupled to the advances made in mass spectrometry (MS) to provide the current capabilities and developments in proteomics. However, our current knowledge that approximately 30,000 human genes may code for up to 1 million or more proteins disengage the interface between the genome sequence database algorithms and MS to generate a major interest in independent de novo MS/MS sequence determination. Significant progress has been made in this area through procedures to covalently modify peptide N- and C-terminal amino-acids by sulfonation and guanidination to permit rapid de novo sequence determination by MS/MS analysis. A number of strategies that have been developed to perform qualitative and quantitative proteomics range from 2D-gel electrophoresis, affinity tag reagents, and stable-isotope labeling. Those procedures, combined with MS/MS peptide sequence analysis at the subpicomole level, permit the rapid and effective identification and quantification of a large number of proteins within a given biological sample. The identification of proteins per se, however, is not always sufficient to interpret biological function because many of the naturally occurring proteins are post-translationally modified. One such modification is protein phosphorylation, which regulates a large array of cellular biochemical pathways of the biological system. Traditionally, the study of phosphoprotein structure-function relationships involved classical protein chemistry approaches that required protein purification, peptide mapping, and the identification of the phosphorylated peptide regions and sites by N-terminal sequence analysis. Recent advances made in mass spectrometry have clearly revolutionized the studies of phosphoprotein biochemistry, and include the development of specific strategies to preferentially enrich phosphoproteins by covalent-modifications that incorporate affinity tags that use the physicochemical properties of phosphoaminoacids. The phosphoserine/phosphothreonine-containing proteins/peptides are derivatized under base-catalyzed conditions by thiol agents; mono- and di-thiol reagents both have been used in such studies. The thiol agent may have: (i) an affinity tag for protein enrichment; (ii) stable-isotopic variants for relative quantitation; or (iii) a combination of the moieties in (i) and (ii). These strategies and techniques, together with others, are reviewed, including their practical application to the study of phosphoprotein biochemistry and structure-function. The consensus of how classical protein chemistry and current MS technology overlap into special case of proteomics, namely "phosphoproteomics," will be discussed.
Collapse
Affiliation(s)
- Erdjan Salih
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopaedic Surgery, Harvard Medical School and Children's Hospital Boston, Boston, MA 02115, USA. Erdjan.Salih@Gardenof knowledge.org
| |
Collapse
|
37
|
Affiliation(s)
- Peter A Beal
- University of Utah, Department of Chemistry, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
38
|
Chen JS, Exton JH. Sites on phospholipase D2 phosphorylated by PKCα. Biochem Biophys Res Commun 2005; 333:1322-6. [PMID: 15979581 DOI: 10.1016/j.bbrc.2005.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
The phosphorylation sites in phospholipase D2 (PLD2) induced by activation of protein kinase Calpha (PKCalpha) in COS 7 cells were analyzed by mass spectrometry. Ser134, 146, and 243, and Thr72, 99/100, and 252 were identified. These sites were mutated to Ala and the double mutation of Ser243 and Thr252 eliminated the phosphorylation. However, the PLD2 activity, and the binding between PKCalpha and PLD2 were unaffected by the mutations. We conclude that phosphorylation of these residues is not required for PLD2 activation by PKCalpha, and that protein-protein interaction between PLD2 and PKCalpha is sufficient to activate PLD2.
Collapse
Affiliation(s)
- Jun-Song Chen
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
39
|
Xu CF, Lu Y, Ma J, Mohammadi M, Neubert TA. Identification of Phosphopeptides by MALDI Q-TOF MS in Positive and Negative Ion Modes after Methyl Esterification. Mol Cell Proteomics 2005; 4:809-18. [PMID: 15753120 DOI: 10.1074/mcp.t400019-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed an efficient, sensitive, and specific method for the detection of phosphopeptides present in peptide mixtures by MALDI Q-TOF mass spectrometry. Use of the MALDI Q-TOF enables selection of phosphopeptides and characterization by CID of the phosphopeptides performed on the same sample spot. However, this type of experiment has been limited by low ionization efficiency of phosphopeptides in positive ion mode while selecting precursor ions of phosphopeptides. Our method entails neutralizing negative charges on acidic groups of nonphosphorylated peptides by methyl esterification before mass spectrometry in positive and negative ion modes. Methyl esterification significantly increases the relative signal intensity generated by phosphopeptides in negative ion mode compared with positive ion mode and greatly increases selectivity for phosphopeptides by suppressing the signal intensity generated by acidic peptides in negative ion mode. We used the method to identify 12 phosphopeptides containing 22 phosphorylation sites from low femtomolar amounts of a tryptic digest of beta-casein and alpha-s-casein. We also identified 10 phosphopeptides containing five phosphorylation sites from an in-gel tryptic digest of 100 fmol of an in vitro autophosphorylated fibroblast growth factor receptor kinase domain and an additional phosphopeptide containing another phosphorylation site when 500 fmol of the digest was examined. The results demonstrate that the method is a fast, robust, and sensitive means of characterizing phosphopeptides present in low abundance mixtures of phosphorylated and nonphosphorylated peptides.
Collapse
Affiliation(s)
- Chong-Feng Xu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
40
|
Bosworth CA, Chou CW, Cole RB, Rees BB. Protein expression patterns in zebrafish skeletal muscle: initial characterization and the effects of hypoxic exposure. Proteomics 2005; 5:1362-71. [PMID: 15732137 DOI: 10.1002/pmic.200401002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Patterns of protein expression were examined in white skeletal muscle from adult zebrafish (Danio rerio). High resolution two-dimensional gel electrophoresis resolved between 300 and 400 spots with molecular masses between 20 and 120 kDa and isoelectric points between about 5 and 8. Forty spots, representing a range of protein size, charge, and abundance were excised, digested with trypsin, and subjected to matrix-assisted laser-desorption/ionisation-time of flight mass spectrometry for protein identification. Twenty-nine spots were identified, including enzymes of energy metabolism, contractile proteins, an iron transport protein, and a heat shock protein. In addition, several spots matched theoretical proteins predicted from genome sequencing. These theoretical proteins were tentatively identified by similarity to known proteins. Patterns of muscle protein expression were then measured after zebrafish were exposed to low oxygen (16 torr) for 48 h, an exposure previously shown to increase the survival of zebrafish at more severe reductions in oxygen. Exposure to low oxygen (hypoxia) did not change the general pattern of protein expression but did affect the amounts of six low abundance proteins. The relatively subtle effects of hypoxia on patterns of muscle protein expression contrasts the widespread changes previously documented in mRNA levels in this and other species of fish during hypoxic stress. The difference between protein and mRNA expression illustrates the need to integrate both measures for a more complete understanding of gene expression in fish during hypoxic exposure.
Collapse
Affiliation(s)
- Charles A Bosworth
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | | | | | | |
Collapse
|
41
|
Cooper HJ, Håkansson K, Marshall AG. The role of electron capture dissociation in biomolecular analysis. MASS SPECTROMETRY REVIEWS 2005; 24:201-22. [PMID: 15389856 DOI: 10.1002/mas.20014] [Citation(s) in RCA: 399] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The introduction of electron capture dissociation (ECD) to electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) constitutes a significant advance in the structural analysis of biomolecules. The fundamental features and benefits of ECD are discussed in this review. ECD is currently unique to FT-ICR MS and the fundamentals of that technique are outlined. The advantages and complementarity of ECD in relation to other tandem mass spectrometry (MS/MS) techniques, such as infrared multiphoton dissociation (IRMPD) and sustained off-resonance collision-induced dissociation (SORI-CID), are discussed. The instrumental considerations associated with implementation of ECD, including activated ion techniques and coupling to on-line separation techniques, are covered, as are the allied processes electronic excitation dissociation (EED), electron detachment dissociation (EDD), and hot electron capture (HECD). A major theme of this review is the role of ECD in proteomics, particularly for characterization of post-translational modifications (phosphorylation, glycosylation, carboxyglutamic acid, sulfation, acylation, and methionine oxidation) and the top-down approach to protein identification. The application of ECD to the analysis of polymers, peptide nucleic acids, and oligonucleotides is also discussed.
Collapse
Affiliation(s)
- Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | |
Collapse
|
42
|
de Boer AR, Letzel T, Lingeman H, Irth H. Systematic development of an enzymatic phosphorylation assay compatible with mass spectrometric detection. Anal Bioanal Chem 2005; 381:647-55. [PMID: 15703914 DOI: 10.1007/s00216-005-3070-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/22/2004] [Accepted: 01/10/2005] [Indexed: 11/26/2022]
Abstract
The enzymatic peptide phosphorylation by cAMP-dependent protein kinase A (PKA) was optimized and monitored by means of electrospray ionization mass spectrometry (ESI-MS). The direct detection of phosphorylated peptides by MS renders labeling unnecessary, reduces time and labor, due to less initial sample pretreatment. In this study the phosphorylation of the peptide malantide by PKA was performed in batch and reaction compounds were detected by ESI-MS after the incubation time. The subsequent product quantitation was accomplished by using one-point normalization. Applying this set-up, optimum solvent conditions (such as salt and modifier content), concentrations of essential reaction compounds (such as cAMP, Mg2+ and ATP), and the influence of reaction properties (such as pH and reaction time) were determined. The reaction milieu has to be suitable for both, the enzymatic reaction and the mass spectrometric detection. We found that the modifier content and the pH value had to be changed after the enzymatic reaction occurred. Through the addition of methanol and acetic acid, the reaction stopped immediately and a more sensitive mass spectrometric detection could be obtained simultaneously. Furthermore, an inhibitor study was performed, testing the inhibition potency of three protein kinase A inhibitors (PKIs). IC50 values were determined and used to calculate the Ki values, that were 7.4, 19.0 and 340.0 nmol/L for PKI(6-22)amide, PKI(5-24)amide, and PKI(14-24)amide, respectively. These data vary between factor 4.4 (for PKI(6-22)amide) and 8.3 (for PKI(5-24)amide) compared to the Ki values described in literature. However, the Ki values are in good agreement with the data mainly obtained by fluorescence- or radioactivity-based methods. Nevertheless, our results indicate that ESI-MS is a realistic alternative to radioactivity and fluorescence detection in determining enzymatic activity. Furthermore we were able to illustrate its high potential as a quantitative detection method.
Collapse
Affiliation(s)
- A R de Boer
- Section of Analytical Chemistry and Applied Spectroscopy, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV , Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
43
|
Lemaire PA, Lary J, Cole JL. Mechanism of PKR activation: dimerization and kinase activation in the absence of double-stranded RNA. J Mol Biol 2005; 345:81-90. [PMID: 15567412 DOI: 10.1016/j.jmb.2004.10.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 10/07/2004] [Accepted: 10/08/2004] [Indexed: 11/16/2022]
Abstract
The kinase PKR is a central component of the interferon antiviral pathway. PKR is activated upon binding double-stranded (ds) RNA to undergo autophosphorylation. Although PKR is known to dimerize, the relationship between dimerization and activation remains unclear. Here, we directly characterize dimerization of PKR in free solution using analytical ultracentrifugation and correlate self-association with autophosphorylation activity. Latent, unphosphorylated PKR exists predominantly as a monomer at protein concentrations below 2 mg/ml. A monomer sedimentation coefficient of s(20,w)(0)=3.58 S and a frictional ratio of f/f(0)=1.62 indicate an asymmetric shape. Sedimentation equilibrium measurements indicate that PKR undergoes a weak, reversible monomer-dimer equilibrium with K(d)=450 microM. This dimerization reaction serves to initiate a previously unrecognized dsRNA-independent autophosphorylation reaction. The resulting activated enzyme is phosphorylated on the two critical threonine residues present in the activation loop and is competent to phosphorylate the physiological substrate, eIF2alpha. Dimer stability is enhanced by approximately 500-fold upon autophosphorylation. We propose a chain reaction model for PKR dsRNA-independent activation where dimerization of latent enzyme followed by intermolecular phosphorylation serves as the initiation step. Subsequent propagation steps likely involve phosphorylation of latent PKR monomers by activated enzyme within high-affinity heterodimers. Our results support a model whereby dsRNA functions by bringing PKR monomers into close proximity in a manner that is analogous to the dimerization of free PKR.
Collapse
Affiliation(s)
- Peter A Lemaire
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
44
|
Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks. J Biol Chem 2005; 280:14709-15. [PMID: 15677476 DOI: 10.1074/jbc.m408827200] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PKcs subunits, is the key component of the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Although the kinase activity of DNA-PKcs is essential for NHEJ, thus far, no in vivo substrate has been conclusively identified except for an autophosphorylation site on DNA-PKcs itself (threonine 2609). Here we report the ionizing radiation (IR)-induced autophosphorylation of DNA-PKcs at a novel site, serine 2056, the phosphorylation of which is required for the repair of DSBs by NHEJ. Interestingly, IR-induced DNA-PKcs autophosphorylation is regulated in a cell cycle-dependent manner with attenuated phosphorylation in the S phase. In contrast, DNA replication-associated DSBs resulted in DNA-PKcs autophosphorylation and localization to DNA damage sites. These results indicate that although IR-induced DNA-PKcs phosphorylation is attenuated in the S phase, DNA-PKcs is preferentially activated by the physiologically relevant DNA replication-associated DSBs at the sites of DNA synthesis.
Collapse
|
45
|
Loyet KM, Stults JT, Arnott D. Mass spectrometric contributions to the practice of phosphorylation site mapping through 2003: a literature review. Mol Cell Proteomics 2005; 4:235-45. [PMID: 15640519 DOI: 10.1074/mcp.r400011-mcp200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible phosphorylation of proteins is among the most important post-translational modifications, and elucidation of sites of phosphorylation is essential to understanding the regulation of key cellular processes such as signal transduction. Unfortunately phosphorylation site mapping is as technically challenging as it is important. Limitations in the traditional method of Edman degradation of (32)P-labeled phosphoproteins have spurred the development of mass spectrometric methods for phosphopeptide identification and sequencing. To assess the practical contributions of the various technologies we conducted a literature search of publications using mass spectrometry to discover previously unknown phosphorylation sites. 1281 such phosphorylation sites were reported in 203 publications between 1992 and 2003. This review examines and catalogs those methods, identifies the trends that have emerged in the past decade, and presents representative examples from among these methods.
Collapse
Affiliation(s)
- Kelly M Loyet
- Protein Chemistry Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
46
|
Alverdi V, Di Pancrazio F, Lippe G, Pucillo C, Casetta B, Esposito G. Determination of protein phosphorylation sites by mass spectrometry: a novel electrospray-based method. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:3343-8. [PMID: 16235236 DOI: 10.1002/rcm.2198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Several methods are used to identify protein phosphorylation sites. We report a novel electrospray-based method for the determination of phosphorylation sites by mass spectrometry, using two different declustering potential values. This method allows one to obtain, with a single liquid chromatography/mass spectrometry (LC/MS) run, the pattern with either the phosphorylated or the unphosphorylated species of a protein tryptic digest, that can be further analyzed by tracing back the origin of each HPO3-deprived form using the capabilities of tandem mass spectrometers.
Collapse
Affiliation(s)
- Vera Alverdi
- Department of Biomedical Sciences and Technologies, Center of Excellence M.A.T.I., University of Udine, P. le Kolbe 4, 33100 Udine, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Corthals GL, Aebersold R, Goodlett DR. Identification of phosphorylation sites using microimmobilized metal affinity chromatography. Methods Enzymol 2005; 405:66-81. [PMID: 16413311 DOI: 10.1016/s0076-6879(05)05004-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the most important roles that mass spectrometry (MS) has played in the late twentieth and early twenty-first centuries has been to assist in the growth of knowledge of dynamic phosphorylation events. Not only has MS allowed researches to pinpoint the site of phosphorylation, but it has also enabled them to identify the kinase/phosphatase pairs responsible for regulation of a specific modification as well as to follow the functional consequences of the observed phosphorylation events on the biology of the system. For phosphorylation analysis, the important contribution of MS has been critical but not definitive. There are numerous methods that have been applied with success, yet none are generally applicable to all analyses. So, for the time being, researchers in the field must select from a panel of methods to find (de)phosphorylation events. In the work described in this chapter, a collection of integrated methods are presented. A detailed account is provided for phosphorylation capture via on- and off-line immobilized metal affinity chromatography (IMAC). This is followed by a suite of useful strategies for discovery of phosphorylation positioning through sequence determination by phosphate-specific diagnostic ion scans, including precursor and product ion scans, neutral loss scans, and in-source dissociation and post-source decay.
Collapse
Affiliation(s)
- Garry L Corthals
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, Finland
| | | | | |
Collapse
|
48
|
Abstract
Proteomics is the measurement of one or more protein populations or proteomes, preferably in a quantitative manner. A protein population may be the set of proteins found in an organism, in a tissue or biofluid, in a cell, or in a subcellular compartment. A population also may be the set of proteins with a common characteristic, for example, those that interact with each other in molecular complexes, those involved in the same process such as signal transduction or cell cycle control, or those that share a common posttranslational modification such as phosphorylation or glycosylation. Proteomics experiments that involve mass spectrometry are divided into five categories: (1) protein identification, (2) protein quantitation or differential analysis, (3) protein-protein interactions, (4) post-translational modifications, and (5) structural proteomics. Each of these proteomics categories is reviewed. Examples are given for quantitative experiments involving two-dimensional gel electrophoresis, and for gel-free analysis using isotope-coded affinity tags. The impact of proteomics on biological research and on drug development is discussed. Challenges for further development in proteomics are presented, including sample preparation, sensitivity, dynamic range, and automation.
Collapse
Affiliation(s)
- John T Stults
- Predicant Biosciences, Inc., South San Francisco, California, USA
| | | |
Collapse
|
49
|
Feshchenko EA, Smirnova EV, Swaminathan G, Teckchandani AM, Agrawal R, Band H, Zhang X, Annan RS, Carr SA, Tsygankov AY. TULA: an SH3- and UBA-containing protein that binds to c-Cbl and ubiquitin. Oncogene 2004; 23:4690-706. [PMID: 15107835 DOI: 10.1038/sj.onc.1207627] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Downregulation of protein tyrosine kinases is a major function of the multidomain protein c-Cbl. This effect of c-Cbl is critical for both negative regulation of normal physiological stimuli and suppression of cellular transformation. In spite of the apparent importance of these effects of c-Cbl, their own regulation is poorly understood. To search for possible novel regulators of c-Cbl, we purified a number of c-Cbl-associated proteins by affinity chromatography and identified them by mass spectrometry. Among them, we identified the UBA- and SH3-containing protein T-cell Ubiquitin LigAnd (TULA), which can also bind to ubiquitin. Functional studies in a model system based on co-expression of TULA, c-Cbl, and EGF receptor in 293T cells demonstrate that TULA is capable of inhibiting c-Cbl-mediated downregulation of EGF receptor. Furthermore, modulation of TULA concentration in Jurkat T-lymphoblastoid cells demonstrates that TULA upregulates the activity of both Zap kinase and NF-AT transcription factor. Therefore, our study indicates that TULA counters the inhibitory effect of c-Cbl on protein tyrosine kinases and, thus, may be involved in the regulation of biological effects of c-Cbl. Finally, our results suggest that TULA-mediated inhibition of the effects of c-Cbl on protein tyrosine kinases is caused by TULA-induced ubiquitylation and degradation of c-Cbl.
Collapse
Affiliation(s)
- Elena A Feshchenko
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Loizou JI, El-Khamisy SF, Zlatanou A, Moore DJ, Chan DW, Qin J, Sarno S, Meggio F, Pinna LA, Caldecott KW. The Protein Kinase CK2 Facilitates Repair of Chromosomal DNA Single-Strand Breaks. Cell 2004; 117:17-28. [PMID: 15066279 DOI: 10.1016/s0092-8674(04)00206-5] [Citation(s) in RCA: 262] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 02/10/2004] [Accepted: 02/10/2004] [Indexed: 11/24/2022]
Abstract
CK2 was the first protein kinase identified and is required for the proliferation and survival of mammalian cells. Here, we have identified an unanticipated role for CK2. We show that this essential protein kinase phosphorylates the scaffold protein XRCC1 and thereby enables the assembly and activity of DNA single-strand break repair protein complexes in vitro and at sites of chromosomal breakage. Moreover, we show that inhibiting XRCC1 phosphorylation by mutation of the CK2 phosphorylation sites or preventing CK2 activity using a highly specific inhibitor ablates the rapid repair of cellular DNA single-strand breaks by XRCC1. These data identify a direct role for CK2 in the repair of chromosomal DNA strand breaks and in maintaining genetic integrity.
Collapse
Affiliation(s)
- Joanna I Loizou
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|