1
|
Marton J, Cumming P, Rice KC, Linders JTM. Morphinan Alkaloids and Their Transformations: A Historical Perspective of a Century of Opioid Research in Hungary. Int J Mol Sci 2025; 26:2736. [PMID: 40141378 PMCID: PMC11943231 DOI: 10.3390/ijms26062736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
The word opium derives from the ancient Greek word ὄπιον (ópion) for the juice of any plant, but today means the air-dried seed capsule latex of Papaver somniferum. Alkaloid chemistry began with the isolation of morphine from crude opium by Friedrich Wilhelm Adam Sertürner in 1804. More than a century later, Hungarian pharmacist János Kabay opened new perspectives for the direct isolation of morphine from dry poppy heads and straw without the labor-intensive harvesting of opium. In 2015, Kabay's life and achievements obtained official recognition as constituting a «Hungarikum», thereby entering the national repository of matters of unique cultural value. To this day, the study of Papaver alkaloids is a focus of medicinal chemistry, the (perhaps unstated) aspiration of which is to obtain an opioid with lesser abuse potential and side effects, while retaining good analgesic properties. We begin this review with a brief account of opiate biosynthesis, followed by a detailed presentation of semisynthetic opioids, emphasizing the efforts of the Alkaloida Chemical Company, founded in 1927 by János Kabay, and the morphine alkaloid group of the University of Debrecen.
Collapse
Affiliation(s)
- János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland;
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, NIDA and the NIAAA, NIH, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA;
| | | |
Collapse
|
2
|
Bag S, Dhibar A, Moorthy S, Ashokan A, Sahoo B. Photocatalytic C-C Bond Azidation and Cyanation of Acyclic Ketones via a Pro-aromatic Intermediate. Org Lett 2025; 27:783-788. [PMID: 39792127 DOI: 10.1021/acs.orglett.4c04443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Herein, we report a formal C-C bond azidation and cyanation of unactivated aliphatic ketones using commercially available tosyl azide and cyanide, respectively. A visible-light-mediated organophotocatalyst enables radical azidation and cyanation of ketone-derived pro-aromatic dihydroquinazolinones (under mostly redox-neutral conditions) as supported by preliminary mechanistic studies. These metal-free and scalable protocols can be used to synthesize tertiary, secondary, and primary alkyl azides and nitriles with good functional group tolerance and postsynthetic diversification of the azide group, including bioconjugation.
Collapse
Affiliation(s)
- Sandip Bag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Amit Dhibar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Sruthi Moorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Akhila Ashokan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
3
|
Kotnik T, Debuigne A, De Winter J, Huš M, Pintar A, Kovačič S. Unlocking the potential of azide-phosphine Staudinger reaction for the synthesis of poly(arylene iminophosphorane)s and materials therefrom. Commun Chem 2025; 8:15. [PMID: 39820781 PMCID: PMC11739626 DOI: 10.1038/s42004-024-01362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025] Open
Abstract
Iminophosphoranes with the general formula (R3P═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported. The azide-phosphine Staudinger polycondensation is used, and the reaction conditions are carefully studied, including consideration of light and air, the influence of solvent and temperature, and investigation of the electronic and steric effects of multiazides. The newly defined reaction conditions appear to be highly versatile, allowing the use of both electron-rich and electron-deficient arylazides for reaction with phosphines to synthesize a library of poly(arylene iminophosphorane) networks that exhibit exceptional thermal and oxidative stability. Interestingly, despite the ylidic-form of the iminophosphorane linkage as shown by theoretical calculations, these newly developed poly(arylene-iminophosphorane) networks exhibit semiconducting properties, such as absorption band edges up to 800 nm and optical band gaps in the range of 1.70 to 2.40 eV. Finally, we demonstrate the broad applicability of these polymers by processing them into glassy films, creating foam-like structures and synthesizing metallo-polymer hybrids.
Collapse
Affiliation(s)
- Tomaž Kotnik
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Antoine Debuigne
- Chemistry Department, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege (ULiege), Quartier Agora, 13 Allée du Six Août (Bldg B6a), Sart-Tilman, B-4000, Liège, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons-UMONS, Mons, 7000, Belgium
| | - Matej Huš
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, SI-1000, Ljubljana, Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia (ZVKDS), Poljanska 40, SI-1000, Ljubljana, Slovenia
| | - Albin Pintar
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Sebastijan Kovačič
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia.
- Catalysis and Organic Synthesis Research Group, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000, Maribor, Slovenia.
| |
Collapse
|
4
|
Swift-Ramirez W, Whalen LA, Thompson LK, Shoemaker KE, Rubio AV, Weiss GA. Catalyst-Free, Three-Component Synthesis of Amidinomaleimides. J Org Chem 2024; 89:13756-13761. [PMID: 39178144 PMCID: PMC11421025 DOI: 10.1021/acs.joc.4c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/25/2024]
Abstract
Maleimide and amidine functionalities often appear in medicinal and natural product targets. We describe a catalyst-free, three-component coupling reaction for the synthesis of amidinomaleimides. This one-pot reaction fuses a broad range of secondary amines and aldehydes with azidomaleimides. The conditions are mild, simple, modular, high yielding, and amenable to aqueous solvents. Most reaction products can be sufficiently purified without column chromatography. The synthesis creates complex, multifunctional molecules with four different molecules, including a tripeptide, arrayed around an amidinomaleimide core.
Collapse
Affiliation(s)
- Wyatt
R. Swift-Ramirez
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Lindsay A. Whalen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Lia K. Thompson
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Kaylee E. Shoemaker
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Aris V. Rubio
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Gregory A. Weiss
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, 3205 McGaugh Hall, Irvine, California 92697-3900, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 856
Health Sciences Road, Suite 5400, Irvine, California 92697-3958, United States
| |
Collapse
|
5
|
Takeda N, Akasaka S, Kawauchi S, Michinobu T. Metal-free double azide addition to strained alkynes of an octadehydrodibenzo[12]annulene derivative with electron-withdrawing substituents. Beilstein J Org Chem 2024; 20:2234-2241. [PMID: 39286793 PMCID: PMC11403804 DOI: 10.3762/bjoc.20.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Strain-promoted azide-alkyne cycloaddition (SpAAC) is a powerful tool in the field of bioconjugation and materials research. We previously reported a regioselective double addition of organic azides to octadehydrodibenzo[12]annulene derivatives with electron-rich alkyloxy substituents. In order to increase the reaction rate, electron-withdrawing substituents were introduced into octadehydrodibenzo[12]annulene. In this report, the synthesis of new octadehydrodibenzo[12]annulene derivatives, regioselective double addition of organic azides, and an application to crosslinking polymers are described.
Collapse
Affiliation(s)
- Naoki Takeda
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shuichi Akasaka
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Susumu Kawauchi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
6
|
Yang J, Wang S, Han Y, Wang C, Li J, Zhou H. Visible-Light-Mediated Azidation of α-Diazoesters with TMSN 3 via Direct Photoexcitation and S H2 Mechanism. J Org Chem 2024; 89:11707-11715. [PMID: 39080508 DOI: 10.1021/acs.joc.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A visible light-mediated azidation of α-diazoesters with TMSN3 to synthesize valuable α-azidoesters has been developed. Without using any catalysts and additives, the reaction proceeded smoothly under visible light irradiation at room temperature. A variety of α-diazoesters were successfully converted to the desired α-azidoesters, showing good functional group tolerance. The products could be readily transformed into triazole, α-azidoacid, and α-azidoamide. Mechanistic studies suggested that the reaction is mainly carrying out via direct photoexcitation and SH2 mechanism. This work provides a novel, mild, and practical protocol for synthesizing α-azidoesters.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shengyu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yating Han
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cunhui Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiangjiang Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Chi TC, Yang PC, Hung SK, Wu HW, Wang HC, Liu HK, Liu LW, Chou HH. Synthesis of Multisubstituted 1,2,3-Triazoles: Regioselective Formation and Reaction Mechanism. J Org Chem 2024; 89:5401-5408. [PMID: 38546539 DOI: 10.1021/acs.joc.3c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A synthetically useful approach to functionalized triazoles is described via the reaction of β-carbonyl phosphonates and azides. 1,4- and 1,5-disubstituted and 1,4,5-trisubstituted triazoles can be regio- and chemoselectively accessed under mild conditions in good to excellent yields (31 examples, up to 99%). A mechanism is proposed that rationalizes the avoidance of the 4-phosphonate byproducts, which is aligned with crystallographic and experimental evidence.
Collapse
Affiliation(s)
- Tzu-Ching Chi
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Po-Chun Yang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shao-Kung Hung
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hui-Wen Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Chi Wang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Wen Liu
- National Tainan First Senior High School, Tainan 701, Taiwan
| | - Ho-Hsuan Chou
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
8
|
Liyanage SH, Yan M. Maltose-Derivatized Fluorescence Turn-On Imaging Probe for Bacteria Detection. ACS Infect Dis 2023; 9:2560-2571. [PMID: 37936289 DOI: 10.1021/acsinfecdis.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We report a maltose-derivatized fluorescence turn-on imaging probe, Mal-Cz, to detect E. coli and Staphylococci. The fluorescence turn-on is achieved through an intramolecular C-H insertion reaction of the perfluoroaryl azide-functionalized carbazole to give a fluorescent product. Confocal fluorescence microscopy confirmed the successful uptake of Mal-Cz by E. coli and Staphylococci upon photoactivation. The Mal-Cz probe could selectively detect E. coli and S. epidermidis in the presence of P. aeruginosa and M. smegmatis without interference from these bacteria. Both the photoactivation and bacteria detection can be accomplished using a hand-held UV lamp at 365 nm, with the limit of detection of 103 CFU/mL by the naked eye. Mal-Cz could also be used to detect E. coli and S. epidermidis spiked in milk by the naked eye under a hand-held UV lamp. The uptake of Mal-Cz requires metabolically active bacteria: the uptake was reduced in stationary phase bacteria and was diminished in bacteria that were killed by heating or treating with antibiotics or sodium azide. The uptake decreased with increasing concentration of added free maltose, indicating that Mal-Cz hijacked the maltose uptake pathways. In E. coli, the maltose transport systems, including maltoporin LamB, maltose binding protein MBP, and the maltose ATP binding cassette (ABC) transporter MalFGK2, are all critical for the transport of Mal-Cz. The uptake was diminished in the deletion mutants ΔLamB, ΔMalE, ΔMalF, and ΔMalK.
Collapse
Affiliation(s)
- Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
9
|
Demidov N, Grebogi M, Bourne C, McKay AP, Cordes DB, Stasch A. A Convenient One-Pot Synthesis of a Sterically Demanding Aniline from Aryllithium Using Trimethylsilyl Azide, Conversion to β-Diketimines and Synthesis of a β-Diketiminate Magnesium Hydride Complex. Molecules 2023; 28:7569. [PMID: 38005290 PMCID: PMC10673297 DOI: 10.3390/molecules28227569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This work reports the one-pot synthesis of sterically demanding aniline derivatives from aryllithium species utilising trimethylsilyl azide to introduce amine functionalities and conversions to new examples of a common N,N'-chelating ligand system. The reaction of TripLi (Trip = 2,4,6-iPr3-C6H2) with trimethylsilyl azide afforded the silyltriazene TripN2N(SiMe3)2 in situ, which readily reacts with methanol under dinitrogen elimination to the aniline TripNH2 in good yield. The reaction pathways and by-products of the system have been studied. The extension of this reaction to a much more sterically demanding terphenyl system suggested that TerLi (Ter = 2,6-Trip2-C6H3) slowly reacted with trimethylsilyl azide to form a silyl(terphenyl)triazenide lithium complex in situ, predominantly underwent nitrogen loss to TerN(SiMe3)Li in parallel, which afforded TerN(SiMe3)H after workup, and can be deprotected under acidic conditions to form the aniline TerNH2. TripNH2 was furthermore converted to the sterically demanding β-diketimines RTripnacnacH (=HC{RCN(Trip)}2H), with R = Me, Et and iPr, in one-pot procedures from the corresponding 1,3-diketones. The bulkiest proligand was employed to synthesise the magnesium hydride complex [{(iPrTripnacnac)MgH}2], which shows a distorted dimeric structure caused by the substituents of the sterically demanding ligand moieties.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreas Stasch
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (N.D.); (M.G.); (C.B.); (A.P.M.); (D.B.C.)
| |
Collapse
|
10
|
Luo W, Xu F, Wang Z, Pang J, Wang Z, Sun Z, Peng A, Cao X, Li L. Chemodivergent Staudinger Reactions of Secondary Phosphine Oxides and Application to the Total Synthesis of LL-D05139β Potassium Salt. Angew Chem Int Ed Engl 2023; 62:e202310118. [PMID: 37594845 DOI: 10.1002/anie.202310118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Unprecedented Staudinger reaction modes of secondary phosphine oxides (SPO) and organic azides are herein disclosed. By the application of various additives, selective nitrogen atom exclusion from the azide group has been achieved. Chlorotrimethylsilane mediates a stereoretentive Staudinger reaction with a 2-N exclusion which provides a valuable method for the synthesis of phosphinic amides and can be considered complementary to the stereoinvertive Atherton-Todd reaction. Alternatively, a 1-N exclusion pathway is promoted by acetic acid to provide the corresponding diazo compound. The effectiveness of this protocol has been further demonstrated by the total synthesis of the diazo-containing natural product LL-D05139β, which was prepared as a potassium salt for the first time in 6 steps and 26.5 % overall yield.
Collapse
Affiliation(s)
- Wenjun Luo
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of P. R. China, College of Pharmacy, Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Zhenguo Wang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zixu Wang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zhixiu Sun
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Aiyun Peng
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China
| | - Le Li
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| |
Collapse
|
11
|
Wong CHA, Hubert JG, Sparrow KJ, Harris LD, Tyler PC, Brimble MA. Expedient synthesis of imino-C-nucleoside fleximers featuring a one-pot procedure to prepare aryl triazoles. Org Biomol Chem 2023; 21:6134-6140. [PMID: 37462413 DOI: 10.1039/d3ob00956d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nucleoside analogues such as the antiviral agents galidesivir and ribavirin are of synthetic interest. This work reports a "one-pot" preparation of similar fleximers using a bifunctional copper catalyst that generates the aryl azide in situ, which is captured by a terminal alkyne to effect triazole formation.
Collapse
Affiliation(s)
- C H Andy Wong
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Jonathan G Hubert
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Kevin J Sparrow
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| |
Collapse
|
12
|
Liyanage S, Raviranga NGH, Ryan JG, Shell SS, Ramström O, Kalscheuer R, Yan M. Azide-Masked Fluorescence Turn-On Probe for Imaging Mycobacteria. JACS AU 2023; 3:1017-1028. [PMID: 37124305 PMCID: PMC10131213 DOI: 10.1021/jacsau.2c00449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
A fluorescence turn-on probe, an azide-masked and trehalose-derivatized carbazole (Tre-Cz), was developed to image mycobacteria. The fluorescence turn-on is achieved by photoactivation of the azide, which generates a fluorescent product through an efficient intramolecular C-H insertion reaction. The probe is highly specific for mycobacteria and could image mycobacteria in the presence of other Gram-positive and Gram-negative bacteria. Both the photoactivation and detection can be accomplished using a handheld UV lamp, giving a limit of detection of 103 CFU/mL, which can be visualized by the naked eye. The probe was also able to image mycobacteria spiked in sputum samples, although the detection sensitivity was lower. Studies using heat-killed, stationary-phase, and isoniazid-treated mycobacteria showed that metabolically active bacteria are required for the uptake of Tre-Cz. The uptake decreased in the presence of trehalose in a concentration-dependent manner, indicating that Tre-Cz hijacked the trehalose uptake pathway. Mechanistic studies demonstrated that the trehalose transporter LpqY-SugABC was the primary pathway for the uptake of Tre-Cz. The uptake decreased in the LpqY-SugABC deletion mutants ΔlpqY, ΔsugA, ΔsugB, and ΔsugC and fully recovered in the complemented strain of ΔsugC. For the mycolyl transferase antigen 85 complex (Ag85), however, only a slight reduction of uptake was observed in the Ag85 deletion mutant ΔAg85C, and no incorporation of Tre-Cz into the outer membrane was observed. The unique intracellular incorporation mechanism of Tre-Cz through the LpqY-SugABC transporter, which differs from other trehalose-based fluorescence probes, unlocks potential opportunities to bring molecular cargoes to mycobacteria for both fundamental studies and theranostic applications.
Collapse
Affiliation(s)
- Sajani
H. Liyanage
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - N. G. Hasitha Raviranga
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Julia G. Ryan
- Department
of Biology and Biotechnology, Worcester
Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Scarlet S. Shell
- Department
of Biology and Biotechnology, Worcester
Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Olof Ramström
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-39182 Kalmar, Sweden
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Mingdi Yan
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| |
Collapse
|
13
|
Mechanistic DFT Study of 1,3-Dipolar Cycloadditions of Azides with Guanidine. Molecules 2023; 28:molecules28052342. [PMID: 36903588 PMCID: PMC10004754 DOI: 10.3390/molecules28052342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Density functional calculations SMD(chloroform)//B3LYP/6-311+G(2d,p) were employed in the computational study of 1,3-dipolar cycloadditions of azides with guanidine. The formation of two regioisomeric tetrazoles and their rearrangement to cyclic aziridines and open-chain guanidine products were modeled. The results suggest the feasibility of an uncatalyzed reaction under very drastic conditions since the thermodynamically preferred reaction path (a), which involves cycloaddition by binding the carbon atom from guanidine to the terminal azide nitrogen atom, and the guanidine imino nitrogen with the inner N atom from the azide, has an energy barrier higher than 50 kcal mol-1. The formation of the other regioisomeric tetrazole (imino nitrogen interacts with terminal N atom of azide) in direction (b) can be more favorable and proceed under milder conditions if alternative activation of the nitrogen molecule releases (e.g., photochemical activation), or deamination could be achieved because these processes have the highest barrier in the less favorable (b) branch of the mechanism. The introduction of substituents should favorably affect the cycloaddition reactivity of the azides, with the greatest effects expected for the benzyl and perfluorophenyl groups.
Collapse
|
14
|
Kowalski K. A brief survey on the application of metal-catalyzed azide–alkyne cycloaddition reactions to the synthesis of ferrocenyl-x-1,2,3-triazolyl-R (x = none or a linker and R = organic entity) compounds with anticancer activity. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Aisikaer A, Ma J, Li J, Li X. Hydroazidation of phenacylideneoxindoles: Synthesis of 3-substituted 3-azido-1,3-dihydro-2H-indol-2-ones via anti-electron addition. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Qiu X, Brückel J, Zippel C, Nieger M, Biedermann F, Bräse S. Tris(4-azidophenyl)methanol - a novel and multifunctional thiol protecting group. RSC Adv 2023; 13:2483-2486. [PMID: 36741178 PMCID: PMC9844210 DOI: 10.1039/d2ra05997e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
The novel tris(4-azidophenyl)methanol, a multifunctionalisable aryl azide, is reported. The aryl azide can be used as a protecting group for thiols in peptoid synthesis and can be cleaved under mild reaction conditions via a Staudinger reduction. Moreover, the easily accessible aryl azide can be functionalised via copper-catalysed cycloaddition reactions, providing additional opportunities for materials chemistry applications.
Collapse
Affiliation(s)
- Xujun Qiu
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903
| | - Julian Brückel
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903
| | - Christoph Zippel
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903
| | - Martin Nieger
- Department of Chemistry, University of HelsinkiP. O. Box 55 (A. I. Virtasen aukio 1)00014Finland
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT)Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-LeopoldshafenGermany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903,Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-LeopoldshafenGermany
| |
Collapse
|
17
|
Wijesundera SA, Liyanage SH, Biswas P, Reuther JF, Yan M. Trehalose-Grafted Glycopolymer: Synthesis via the Staudinger Reaction and Capture of Mycobacteria. Biomacromolecules 2023; 24:238-245. [PMID: 36524824 DOI: 10.1021/acs.biomac.2c01096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new trehalose-grafted poly(2-hydroxyethyl methacrylate) (HEMA) glycopolymer was synthesized via the perfluorophenyl azide (PFPA)-mediated Staudinger reaction between poly(HEMA-co-HEMA-PFPA) and a diphenylphosphine-derivatized trehalose. The reaction occurred rapidly at room temperature without the use of any catalyst, giving the trehalose glycopolymers over 68% yield after 1 h. The grafting density of trehalose can be controlled by the copolymer composition in poly(HEMA-co-HEMA-PFPA), resulting in 6.1% (TP1) or 37% (TP2) at 10:1 and 1:1 HEMA/HEMA-PFPA feed ratio, respectively. The trehalose glycopolymer was covalently attached on glass slides or silicon wafers using a thin film of poly(HEMA-co-HEMA-PFPA) as the adhesion layer, achieved through the C-H insertion reaction of the photogenerated singlet perfluorophenyl nitrene. To demonstrate the ability of the trehalose glycopolymer to capture mycobacteria, arrays of the trehalose glycopolymer were fabricated and treated with Mycobacterium smegmatis. Results from the optical, fluorescence, and scanning electron microscopy showed that mycobacteria were indeed captured on the trehalose glycopolymer. The amount of mycobacteria captured increased with the percent trehalose in the trehalose glycopolymer and also with the concentration of the trehalose glycopolymer. In addition, the captured bacteria could be visualized by the naked eye under the illumination of a hand-held UV lamp.
Collapse
Affiliation(s)
- Samurdhi A Wijesundera
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Priyanka Biswas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - James F Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
18
|
Tay NES, Ryu KA, Weber JL, Olow AK, Cabanero DC, Reichman DR, Oslund RC, Fadeyi OO, Rovis T. Targeted activation in localized protein environments via deep red photoredox catalysis. Nat Chem 2023; 15:101-109. [PMID: 36216892 PMCID: PMC9840673 DOI: 10.1038/s41557-022-01057-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/02/2022] [Indexed: 01/17/2023]
Abstract
State-of-the-art photoactivation strategies in chemical biology provide spatiotemporal control and visualization of biological processes. However, using high-energy light (λ < 500 nm) for substrate or photocatalyst sensitization can lead to background activation of photoactive small-molecule probes and reduce its efficacy in complex biological environments. Here we describe the development of targeted aryl azide activation via deep red-light (λ = 660 nm) photoredox catalysis and its use in photocatalysed proximity labelling. We demonstrate that aryl azides are converted to triplet nitrenes via a redox-centric mechanism and show that its spatially localized formation requires both red light and a photocatalyst-targeting modality. This technology was applied in different colon cancer cell systems for targeted protein environment labelling of epithelial cell adhesion molecule (EpCAM). We identified a small subset of proteins with previously known and unknown association to EpCAM, including CDH3, a clinically relevant protein that shares high tumour-selective expression with EpCAM.
Collapse
Affiliation(s)
| | - Keun Ah Ryu
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - John L Weber
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Aleksandra K Olow
- Genetics and Pharmacogenomics, Merck & Co., Inc., San Francisco, CA, USA
| | | | | | - Rob C Oslund
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.
- InduPro, Cambridge, MA, USA.
| | - Olugbeminiyi O Fadeyi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.
- InduPro, Cambridge, MA, USA.
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
19
|
Lu B, Shao X, Jiang X, Wang L, Xue J, Rauhut G, Tan G, Fang W, Zeng X. Diazophosphane HPN 2. J Am Chem Soc 2022; 144:21853-21857. [PMID: 36445205 DOI: 10.1021/jacs.2c10003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Diazophosphane HPN2, a heavy analogue of hydrazoic acid (HN3), has been synthesized at low temperature (10 K) through photolytic reactions of molecular nitrogen (N2) with phosphine (PH3) and phosphaketene (HPCO) under irradiations at 193 and 365 nm, respectively. The characterization of HPN2 and its isotopologues DPN2 and HP15N2 by matrix-isolation IR and UV-vis spectroscopy is supported by quantum chemical calculations at the CCSD(T)-F12a/cc-pVTZ-F12 level of theory. Upon irradiation at 266 nm, the P-N bond in HPN2 breaks, whereas its photolysis at 193 nm generates the elusive phosphinyl radical •PN2.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xin Shao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Junfei Xue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Fang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022; 61:e202213429. [DOI: 10.1002/anie.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
21
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
22
|
Beutick SE, Vermeeren P, Hamlin TA. The 1,3-Dipolar Cycloaddition: From Conception to Quantum Chemical Design. Chem Asian J 2022; 17:e202200553. [PMID: 35822651 PMCID: PMC9539489 DOI: 10.1002/asia.202200553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/08/2022] [Indexed: 11/12/2022]
Abstract
The 1,3-dipolar cycloaddition (1,3-DCA) reaction, conceptualized by Rolf Huisgen in 1960, has proven immensely useful in organic, material, and biological chemistry. The uncatalyzed, thermal transformation is generally sluggish and unselective, but the reactivity can be enhanced by means of metal catalysis or by the introduction of either predistortion or electronic tuning of the dipolarophile. These promoted reactions generally go with a much higher reactivity, selectivity, and yields, often at ambient temperatures. The rapid orthogonal reactivity and compatibility with aqueous and physiological conditions positions the 1,3-DCA as an excellent bioorthogonal reaction. Quantum chemical calculations have been critical for providing an understanding of the physical factors that control the reactivity and selectivity of 1,3-DCAs. In silico derived design principles have proven invaluable for the design of new dipolarophiles with tailored reactivity. This review discusses everything from the conception of the 1,3-DCA all the way to the state-of-the-art methods and models used for the quantum chemical design of novel (bioorthogonal) reagents.
Collapse
Affiliation(s)
- Steven E. Beutick
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| |
Collapse
|
23
|
Ooi JMF, Fairhall JM, Spangler B, Chong DJW, Feng BY, Gamble AB, Hook S. Development of a bioorthogonal fluorescence-based assay for assessing drug uptake and delivery in bacteria. RSC Adv 2022; 12:15631-15642. [PMID: 35685699 PMCID: PMC9126673 DOI: 10.1039/d2ra02272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Bioorthogonal chemistry can facilitate the development of fluorescent probes that can be used to sensitively and specifically detect the presence of biological targets. In this study, such an assay was developed to evaluate the uptake and delivery of antimicrobials into Escherichia coli, building on and extending previous work which utilised more resource intensive LCMS detection. The bacteria were genetically engineered to express streptavidin in the periplasmic or cytoplasmic compartments, which was used to localise a bioorthogonal probe (BCN-biotin). Azido-compounds which are delivered to these compartments react with the localised BCN-biotin–streptavidin in a concentration-dependent manner via a strain-promoted alkyne–azide cycloaddition. The amount of azido-compound taken up by bacteria was determined by quantifying unreacted BCN-biotin–streptavidin via an inverse electron demand Diels–Alder reaction between remaining BCN-biotin and a tetrazine-containing fluorescent dye. Following optimisation and validation, the assay was used to assess uptake of liposome-formulated azide-functionalised luciferin and cefoxitin. The results demonstrated that formulation into cationic liposomes improved the uptake of azide-functionalised compounds into the periplasm of E. coli, providing insight on the uptake mechanism of liposomes in the bacteria. This newly developed bioorthogonal fluorescence plate-reader based assay provides a bioactivity-independent, medium-to-high throughput tool for screening compound uptake/delivery. Bioorthogonal alkyne–azide and alkyne–tetrazine chemistries were used to assess drug uptake in bacteria. Azido-drug reacts with streptavidin bound alkyne-biotin within bacteria, the remaining unreacted alkyne is then quantified with a tetrazine-dye.![]()
Collapse
Affiliation(s)
| | | | - Benjamin Spangler
- Novartis Institutes for BioMedical Research (NIBR) in Emeryville California USA
| | | | - Brian Y Feng
- Novartis Institutes for BioMedical Research (NIBR) in Emeryville California USA
| | - Allan B Gamble
- School of Pharmacy, University of Otago Dunedin New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago Dunedin New Zealand
| |
Collapse
|
24
|
Shee M, Singh NDP. Chemical versatility of azide radical: journey from a transient species to synthetic accessibility in organic transformations. Chem Soc Rev 2022; 51:2255-2312. [PMID: 35229836 DOI: 10.1039/d1cs00494h] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of azide radical (N3˙) occurs from its precursors primarily via a single electron transfer (SET) process or homolytic cleavage by chemical methods or advanced photoredox/electrochemical methods. This in situ generated transient open-shell species has unique characteristic features that set its reactivity. In the past, the azide radical was widely used for various studies in radiation chemistry as a 1e- oxidant of biologically important molecules, but now it is being exploited for synthetic applications based on its addition and intermolecular hydrogen atom transfer (HAT) abilities. Due to the significant role of nitrogen-containing molecules in synthesis, drug discovery, biological, and material sciences, the direct addition onto unsaturated bonds for the simultaneous construction of C-N bond with other (C-X) bonds are indeed worth highlighting. Moreover, the ability to generate O- or C-centered radicals by N3˙ via electron transfer (ET) and intermolecular HAT processes is also well documented. The purpose of controlling the reactivity of this short-lived intermediate in organic transformations drives us to survey: (i) the history of azide radical and its structural properties (thermodynamic, spectroscopic, etc.), (ii) chemical reactivities and kinetics, (iii) methods to produce N3˙ from various precursors, (iv) several significant azide radical-mediated transformations in the field of functionalization with unsaturated bonds, C-H functionalization via HAT, tandem, and multicomponent reaction with a critical analysis of underlying mechanistic approaches and outcomes, (v) concept of taming the reactivity of azide radicals for potential opportunities, in this review.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
25
|
Ren M, Wang YC, Ren S, Huang K, Liu JB, Qiu G. Metal‐Enabled Romance of Nitrene with Alkyne: Beyond Gold Catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Miaofeng Ren
- JiangXi University of Science and Technology Chemistry CHINA
| | - Yu-Chao Wang
- JiangXi University of Science and Technology Chemistry CHINA
| | - Shangfeng Ren
- JiangXi University of Science and Technology Chemistry CHINA
| | - Keke Huang
- JiangXi University of Science and Technology Chemistry CHINA
| | - Jin-Biao Liu
- JiangXi University of Science and Technology faculty of Materials Metallurgy and Chemistry No.86,Hongqi Ave. 341000 Ganzhou CHINA
| | | |
Collapse
|
26
|
Partipilo G, Graham AJ, Belardi B, Keitz BK. Extracellular Electron Transfer Enables Cellular Control of Cu(I)-Catalyzed Alkyne-Azide Cycloaddition. ACS CENTRAL SCIENCE 2022; 8:246-257. [PMID: 35233456 PMCID: PMC8875427 DOI: 10.1021/acscentsci.1c01208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 05/03/2023]
Abstract
Extracellular electron transfer (EET) is an anaerobic respiration process that couples carbon oxidation to the reduction of metal species. In the presence of a suitable metal catalyst, EET allows for cellular metabolism to control a variety of synthetic transformations. Here, we report the use of EET from the electroactive bacterium Shewanella oneidensis for metabolic and genetic control over Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC). CuAAC conversion under anaerobic and aerobic conditions was dependent on live, actively respiring S. oneidensis cells. The reaction progress and kinetics were manipulated by tailoring the central carbon metabolism. Similarly, EET-CuAAC activity was dependent on specific EET pathways that could be regulated via inducible expression of EET-relevant proteins: MtrC, MtrA, and CymA. EET-driven CuAAC exhibited modularity and robustness in the ligand and substrate scope. Furthermore, the living nature of this system could be exploited to perform multiple reaction cycles without regeneration, something inaccessible to traditional chemical reductants. Finally, S. oneidensis enabled bioorthogonal CuAAC membrane labeling on live mammalian cells without affecting cell viability, suggesting that S. oneidensis can act as a dynamically tunable biocatalyst in complex environments. In summary, our results demonstrate how EET can expand the reaction scope available to living systems by enabling cellular control of CuAAC.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Austin J. Graham
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K. Keitz
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Borkotoky L, Borra S, Maurya RA. Access to Pyrrolocoumarins through DBU‐Mediated Coupling of 2‐Oxo‐2
H
‐chromene‐3‐carbaldehydes and Phenacyl Azides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lodsna Borkotoky
- Applied Organic Chemistry Group Chemical Sciences & Technology Division CSIR-North East Institute of Science & Technology (NEIST) Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad UP-201002 India
| | - Satheesh Borra
- SERBN-PDF Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group Chemical Sciences & Technology Division CSIR-North East Institute of Science & Technology (NEIST) Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad UP-201002 India
| |
Collapse
|
28
|
Szukowska M, Popenda Ł, Coy E, Filip C, Grajewski J, Kempiński M, Kim Y, Mrówczyński R. Replacing amine by azide: Dopamine azide polymerization triggered by sodium periodate. Polym Chem 2022. [DOI: 10.1039/d2py00293k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polydopamine (PDA) have been widely described for a range of biomedical and surface engineering applications. However the structure of PDA remains elusive due to the insoluble nature of the polymer....
Collapse
|
29
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
30
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
31
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
32
|
Lv S. Research fronts of Chemical Biology. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Over the past decades, researchers have witnessed substantially increasing and ever-growing interests and efforts in Chemical Biology studies, thanks to the development of genome and epi-genome sequencing (revealing potential drug targets), synthetic chemistry (producing new medicines), bioorthogonal chemistry (chemistry in living systems) and high-throughput screening technologies (in vitro cell systems, protein binding assays and phenotypic assays). This report presents literature search results for current research in Chemical Biology, to explore basic principles, summarize recent advances, identify key challenges, and provide suggestions for future research (with a focus on Chemical Biology in the context of human health and diseases). Chemical Biology research can positively contribute to delivering a better understanding of the molecular and cellular mechanisms that accompany pathology underlying diseases, as well as developing improved methods for diagnosis, drug discovery, and therapeutic delivery. While much progress has been made, as shown in this report, there are still further needs and opportunities. For instance, pressing challenges still exist in selecting appropriate targets in biological systems and adopting more rational design strategies for the development of innovative and sustainable diagnostic technologies and medical treatments. Therefore, more than ever, researchers from different disciplines need to collaborate to address the challenges in Chemical Biology.
Collapse
Affiliation(s)
- Shanshan Lv
- State Key Laboratory of Organic-Inorganic Composite Materials , Beijing University of Chemical Technology , Beijing , , China
| |
Collapse
|
33
|
Yamashina M, Suzuki H, Kishida N, Yoshizawa M, Toyota S. Synthesis of Azaylide‐Based Amphiphiles by the Staudinger Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Masahiro Yamashina
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152–8551 Japan
| | - Hayate Suzuki
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152–8551 Japan
| | - Natsuki Kishida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Shinji Toyota
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152–8551 Japan
| |
Collapse
|
34
|
Yamashina M, Suzuki H, Kishida N, Yoshizawa M, Toyota S. Synthesis of Azaylide-Based Amphiphiles by the Staudinger Reaction. Angew Chem Int Ed Engl 2021; 60:17915-17919. [PMID: 34018299 DOI: 10.1002/anie.202105094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Catalyst- and reagent-free reactions are powerful tools creating various functional molecules and materials. However, such chemical bonds are usually hydrolysable or require specific functional groups, which limits their use in aqueous media. Herein, we report the development of new amphiphiles through the Staudinger reaction. Simple mixing of chlorinated aryl azide with a hydrophilic moiety and various triarylphosphines (PAr3) gave rise to azaylide-based amphiphiles NPAr3, rapidly and quantitatively. The obtained NPAr3 formed ca. 2 nm-sized spherical aggregates (NPAr3)n in water. The hydrolysis of NPAr3 was significantly suppressed as compared with those of non-chlorinated amphiphiles nNPAr3. Computational studies revealed that the stability is mainly governed by the decrease in LUMO around the phosphorus atom owing to the o-substituted halogen groups. Furthermore, hydrophobic dyes such as Nile red and BODIPY were encapsulated by the spherical aggregates (NPAr3)n in water.
Collapse
Affiliation(s)
- Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Hayate Suzuki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Natsuki Kishida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
35
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
36
|
Tu Y, Dong H, Wang H, Ao Y, Liu Y. Divergent functionalization of α,β-enones: catalyst-free access to β-azido ketones and β-amino α-diazo ketones. Chem Commun (Camb) 2021; 57:4524-4527. [PMID: 33956012 DOI: 10.1039/d1cc00985k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and practical method for the azidation of β-fluoroalkyl α,β-unsaturated ketones to access a wide variety of fluorinated nitrogenous carbonyl compounds is developed. Different from existing precedents, neither a metallic nor an organic catalyst was involved in our strategy. Judicious choice of solvents allows for the modulation of the reaction outcomes, delivering β-azido ketones or β-amino α-diazo ketones. The reaction system features environmental friendliness, mild conditions, simplicity and excellent functional group tolerance.
Collapse
Affiliation(s)
- Youshao Tu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Honglin Dong
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Huamin Wang
- College of Chemistry and Chemical Engineering, University of South China, 28 N Changsheng West Road, Hengyang 421001, P. R. China.
| | - Yuhui Ao
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Yu Liu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| |
Collapse
|
37
|
Liu JB, Ren M, Lai X, Qiu G. Iron-catalyzed stereoselective haloamidation of amide-tethered alkynes. Chem Commun (Camb) 2021; 57:4259-4262. [PMID: 33913970 DOI: 10.1039/d1cc00870f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, by using N-methoxybenzamides as efficient acyl nitrene precursors, an iron-catalyzed formal cis-haloamidation of alkyne is reported. Without assistance of additives, the reaction worked well in the presence of 50 mol% FeCl3 or FeBr3, leading to a series of chloro/bromo-containing isoindolin-5-ones with high efficiency and wide reaction scope. In the reaction, the iron-facilitated haloamidation proceeds through a halo anion-participating concerted [3+2] cyclization to release the final products. The key intermediate ferric acyl nitrene A is generated in situ from a formal removal of MeOH.
Collapse
Affiliation(s)
- Jin-Biao Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Miaofeng Ren
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Xiaojing Lai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
38
|
Dadhwal S, Lee A, Goswami SK, Hook S, Gamble AB. Synthesis and formulation of self‐immolative
PEG
‐aryl azide block copolymers and click‐to‐release reactivity with
trans
‐cyclooctene. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sumit Dadhwal
- School of Pharmacy University of Otago Dunedin New Zealand
- Department of Chemistry University of Otago Dunedin New Zealand
| | - Arnold Lee
- School of Pharmacy University of Otago Dunedin New Zealand
| | | | - Sarah Hook
- School of Pharmacy University of Otago Dunedin New Zealand
| | | |
Collapse
|
39
|
Yu W, Zhu B, Shi F, Zhou P, Wu W, Jiang H. Selective Synthesis of Non‐Aromatic Five‐Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/
N
‐Chlorophthalimide System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wentao Yu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Baiyao Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing China
| | - Peiqi Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| |
Collapse
|
40
|
Deb T, Tu J, Franzini RM. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chem Rev 2021; 121:6850-6914. [DOI: 10.1021/acs.chemrev.0c01013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
41
|
Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimoto T, Kakiuchi K. Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Org Chem Front 2021. [DOI: 10.1039/d1qo01088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intramolecular hydrogen bonding in the α-azido secondary acetamides (α-AzSAs) enabled site-selective integration onto the diazide modular hubs even without steric hindrance.
Collapse
Affiliation(s)
- Koshiro Maegawa
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Seiji Onishi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
42
|
He Y, Wang X. Synthesis of Cyclic Amidines by Iridium-Catalyzed Deoxygenative Reduction of Lactams and Tandem Reaction with Sulfonyl Azides. Org Lett 2020; 23:225-230. [DOI: 10.1021/acs.orglett.0c03953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Youliang He
- State Key Laboratory of Oganometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiaoming Wang
- State Key Laboratory of Oganometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
43
|
Yu W, Zhu B, Shi F, Zhou P, Wu W, Jiang H. Selective Synthesis of Non‐Aromatic Five‐Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/
N
‐Chlorophthalimide System. Angew Chem Int Ed Engl 2020; 60:1313-1322. [DOI: 10.1002/anie.202010889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/09/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Wentao Yu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Baiyao Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing China
| | - Peiqi Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| |
Collapse
|
44
|
Smith SN, Craig R, Connon SJ. Divergent Synthesis of γ-Amino Acid and γ-Lactam Derivatives from meso-Glutaric Anhydrides. Chemistry 2020; 26:13378-13382. [PMID: 32996163 DOI: 10.1002/chem.202003280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/18/2022]
Abstract
The first divergent synthesis of both γ-amino acid and γ-lactam derivatives from meso-glutaric anhydrides is described. The organocatalytic desymmetrisation with TMSN3 relies on controlled generation of a nucleophilic ammonium azide species mediated by a polystyrene-bound base to promote efficient silylazidation. After Curtius rearrangement of the acyl azide intermediate to access the corresponding isocyanate, hydrolysis/alcoholysis provided uniformly high yields of γ-amino acids and their N-protected counterparts. The same intermediates were shown to undergo an unprecedented decarboxylation-cyclisation cascade in situ to provide synthetically useful yields of γ-lactam derivatives without using any further activating agents. Mechanistic insights invoke the intermediacy of an unconventional γ-N-carboxyanhydride (γ-NCA) in the latter process. Among the examples prepared using this transformation are 8 APIs/molecules of considerable medicinal interest.
Collapse
Affiliation(s)
- Simon N Smith
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Ryan Craig
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| |
Collapse
|
45
|
Hsia LY, Chen HN, Chiang CH, Hung MY, Wei HK, Luo CW, Kuo MY, Luo SY, Chu CC. π-Extended Coumarins Derived with Nonhydrolyzable Iminophosphoranes as Two-Photon-Excited Fluorophores. J Org Chem 2020; 85:9361-9366. [PMID: 32512991 DOI: 10.1021/acs.joc.0c00901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel coumarin-iminophosphorane (IPP) fluorophores that have stable resonance contributions from aza-ylides were formed by using the nonhydrolysis Staudinger reaction. The N═P formation reaction kinetics obey the conventional Staudinger reaction. The absorption and emission profiles of the coumarin-IPP derivatives can be fine-tuned: an electron-donating group at PPh3 enhances absorption and fluorescence, whereas an electron-withdrawing group at C-3 drives absorption and emission peaks toward blue-light wavelengths. Two-photon adsorption, accompanied by anti-Stokes fluorescence, is achieved under near-infrared femtosecond laser excitation.
Collapse
Affiliation(s)
- Liang-Yu Hsia
- Department of Chemistry, National Chung Hsing University, Taichung 403, Taiwan
| | - Hsin-Ni Chen
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chun-Hao Chiang
- Department of Chemistry, National Chung Hsing University, Taichung 403, Taiwan
| | - Ming-Yang Hung
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hao-Keng Wei
- Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Wei Luo
- Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ming-Yu Kuo
- Department of Applied Chemistry, National Chi Nan University, Puli 545, Taiwan
| | - Shun-Yuan Luo
- Department of Chemistry, National Chung Hsing University, Taichung 403, Taiwan
| | - Chih-Chien Chu
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
46
|
Fairhall JM, Murayasu M, Dadhwal S, Hook S, Gamble AB. Tuning activation and self-immolative properties of the bioorthogonal alkene–azide click-and-release strategy. Org Biomol Chem 2020; 18:4754-4762. [DOI: 10.1039/d0ob00936a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Combinations of aryl azides and trans-cyclooctenes have been studied in a bioorthogonal click-and-release strategy, with two reaction pairings rapidly releasing phenol at micromolar concentrations.
Collapse
Affiliation(s)
| | | | - Sumit Dadhwal
- School of Pharmacy
- University of Otago
- Dunedin
- New Zealand
| | - Sarah Hook
- School of Pharmacy
- University of Otago
- Dunedin
- New Zealand
| | | |
Collapse
|