1
|
Bartholomew GL, Karas LJ, Eason RM, Yeung CS, Sigman MS, Sarpong R. Cheminformatic Analysis of Core-Atom Transformations in Pharmaceutically Relevant Heteroaromatics. J Med Chem 2025; 68:6027-6040. [PMID: 40053676 DOI: 10.1021/acs.jmedchem.4c02839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Heteroaromatics are the basis for many pharmaceuticals. The ability to modify these structures through selective core-atom transformations, or "skeletal edits", can dramatically expand the landscape for drug discovery and development. However, despite the importance of core-atom modifications, the quantitative impact of such transformations on accessible chemical space remains undefined. Here, we report a cheminformatic platform to analyze which skeletal edits would most increase access to novel chemical space. This study underscores the significance of emerging single and multiple core-atom transformations of heteroaromatics in enhancing chemical diversity, for example, at a late-stage of a drug discovery campaign. Our findings provide a quantitative framework for prioritizing core-atom modifications in heteroaromatic structural motifs, calling for the development of new methods to achieve these types of transformations.
Collapse
Affiliation(s)
- G Logan Bartholomew
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lucas J Karas
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Reilly M Eason
- Modeling & Informatics, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Saunders JM, Dismuke Rodriguez KB, Lammert RM, Yirak JR, Iyer KS, Wong MJ, Lipshutz BH. Recent Green and Sustainable Pd-Catalyzed Aminations. CHEMSUSCHEM 2025:e2500184. [PMID: 40133215 DOI: 10.1002/cssc.202500184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
Pd-catalyzed aminations, a powerful and commonly employed method of CN bond construction, often rely on unsustainable technologies that utilize egregious organic solvents, high temperatures, long reaction times, and high catalyst loadings, especially of palladium. Only recently there has been a shift toward far greener protocols based on recyclable aqueous media as well as nontraditional organic solvents. In addition, alternatives to batch methods for preparing the same amines have appeared, such as continuous flow and mechanochemistry, which also offer safe and sustainable means of chemical synthesis associated with targets in the fine chemicals industry.
Collapse
Affiliation(s)
- John Michael Saunders
- Department of Chemistry & Biochemistry, University of California Santa Barbara, CA, 93106, USA
| | | | - Robert M Lammert
- Department of Chemistry & Biochemistry, University of California Santa Barbara, CA, 93106, USA
| | - Jordan R Yirak
- Department of Chemistry & Biochemistry, University of California Santa Barbara, CA, 93106, USA
| | - Karthik S Iyer
- Department of Chemistry & Biochemistry, University of California Santa Barbara, CA, 93106, USA
| | - Madison J Wong
- Department of Chemistry & Biochemistry, University of California Santa Barbara, CA, 93106, USA
| | - Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California Santa Barbara, CA, 93106, USA
| |
Collapse
|
3
|
Schleinitz J, Carretero-Cerdán A, Gurajapu A, Harnik Y, Lee G, Pandey A, Milo A, Reisman SE. Designing Target-specific Data Sets for Regioselectivity Predictions on Complex Substrates. J Am Chem Soc 2025; 147:7476-7484. [PMID: 39982221 PMCID: PMC11887056 DOI: 10.1021/jacs.4c15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
The development of machine learning models to predict the regioselectivity of C(sp3)-H functionalization reactions is reported. A data set for dioxirane oxidations was curated from the literature and used to generate a model to predict the regioselectivity of C-H oxidation. To assess whether smaller, intentionally designed data sets could provide accuracy on complex targets, a series of acquisition functions were developed to select the most informative molecules for the specific target. Active learning-based acquisition functions that leverage predicted reactivity and model uncertainty were found to outperform those based on molecular and site similarity alone. The use of acquisition functions for data set elaboration significantly reduced the number of data points needed to perform accurate prediction, and it was found that smaller, machine-designed data sets can give accurate predictions when larger, randomly selected data sets fail. Finally, the workflow was experimentally validated on five complex substrates and shown to be applicable to predicting the regioselectivity of arene C-H radical borylation. These studies provide a quantitative alternative to the intuitive extrapolation from "model substrates" that is frequently used to estimate reactivity on complex molecules.
Collapse
Affiliation(s)
- Jules Schleinitz
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alba Carretero-Cerdán
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division
of Theoretical Chemistry & Biology, CBH School, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Anjali Gurajapu
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yonatan Harnik
- Department
of Chemistry, Ben-Gurion University of the
Negev, Beer-Sheva 841051, Israel
| | - Gina Lee
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Amitesh Pandey
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Anat Milo
- Department
of Chemistry, Ben-Gurion University of the
Negev, Beer-Sheva 841051, Israel
| | - Sarah E. Reisman
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Shim E, Tewari A, Cernak T, Zimmerman PM. Recommending reaction conditions with label ranking. Chem Sci 2025; 16:4109-4118. [PMID: 39906388 PMCID: PMC11788591 DOI: 10.1039/d4sc06728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Pinpointing effective reaction conditions can be challenging, even for reactions with significant precedent. Herein, models that rank reaction conditions are introduced as a conceptually new means for prioritizing experiments, distinct from the mainstream approach of yield regression. Specifically, label ranking, which operates using input features only from substrates, will be shown to better generalize to new substrates than prior models. Evaluation on practical reaction condition selection scenarios - choosing from either 4 or 18 conditions and datasets with or without missing reactions - demonstrates label ranking's utility. Ranking aggregation through Borda's method and relative simplicity are key features of label ranking to achieve consistent high performance.
Collapse
Affiliation(s)
- Eunjae Shim
- Department of Chemistry, University of Michigan Ann Arbor MI USA
| | - Ambuj Tewari
- Department of Statistics, University of Michigan Ann Arbor MI USA
- Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor MI USA
| | - Tim Cernak
- Department of Chemistry, University of Michigan Ann Arbor MI USA
- Department of Medicinal Chemistry, University of Michigan Ann Arbor MI USA
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan Ann Arbor MI USA
| |
Collapse
|
5
|
Kekec A, Tran LML, Plummer CW, Kalyani D. Late-stage installation and functionalization of alkyl pyridiniums: a general HTE amenable strategy to access diverse aryl alanine containing macrocyclic peptides. Chem Sci 2025; 16:2287-2294. [PMID: 39776654 PMCID: PMC11701726 DOI: 10.1039/d4sc06837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
This manuscript describes a strategy to readily access diverse aryl and homoaryl alanine-containing pharmaceutically relevant macrocyclic peptides. A two-step sequence involving the late-stage installation of the pyridinium functionality on macrocyclic peptides followed by reductive couplings was implemented. These transformations are amenable to microscale high-throughput experimentation (HTE) and enable rapid access to aryl alanine-containing macrocyclic peptides that would otherwise be inaccessible via solid-phase peptide synthesis using commercially available amino acids. Numerous aryl and heteroaryl derivatives can be effectively used in these reactions. In addition, a systematic investigation was undertaken using an "informer" set of macrocyclic peptides which revealed the compatibility of the late-stage diversification with peptides containing diverse side chain functionalities.
Collapse
Affiliation(s)
- Ahmet Kekec
- Discovery Chemistry, Merck & Co., Inc. Rahway New Jersey 07065 USA
| | | | | | | |
Collapse
|
6
|
Li J, Lin Q, Dungan O, Fu Y, Ren S, Ruccolo S, Moor S, Phillips EM. Homogenous Palladium-Catalyzed Dehalogenative Deuteration and Tritiation of Aryl Halides with D 2/T 2 Gas. J Am Chem Soc 2024; 146:31497-31506. [PMID: 39514417 DOI: 10.1021/jacs.4c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydrogen isotopically labeled compounds have extensive utility across diverse domains, especially in drug discovery and development. However, synthesis of the labeled compounds with exclusive site selectivity and/or high isotope incorporation is challenging. One widely employed method is heterogeneous palladium(0)-catalyzed (such as Pd/C) dehalogenative deuteration and tritiation with D2/T2 gas. While commonly used, the method faces two long-standing challenges related to insufficient isotope incorporation and functional group tolerance, particularly with aryl bromides and chlorides. These long-standing issues pose a substantial obstacle in the synthesis of deuterated drug molecules and high-specific-activity tritium tracers. Herein, we present a novel palladium catalytic system using Zn(OAc)2 as an additive, enabling novel homogenous dehalogenative deuteration/tritiation using D2/T2 gas. Under mild reaction conditions, a wide range of drug-like aryl halides and pseudohalides undergo selective deuteration with complete isotope incorporation. The reaction displays excellent compatibility with diverse functional groups, including multiple bonds and O/N-benzyl, and cyano groups, which are frequently problematic in the Pd/C reactions. Furthermore, this method was successfully applied to the tritiation of four halogenated pharmaceutically relevant molecules, resulting in predictable high specific activity per halogen atom (26.5-27.7 Ci/mmol). Notably, the developed system allows gram-scale preparation of a deuterium-containing intermediate, a crucial step in synthesizing a deuterium-labeled drug molecule. A key intermediate, Pd(Ar)OAc, is proposed to activate hydrogen gas during dehalogenative deuteration and tritiation, and Zn(OAc)2 plays an essential role in inhibiting Pd poisoning by halides.
Collapse
Affiliation(s)
- Jingwei Li
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qiao Lin
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Otto Dungan
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yue Fu
- Modeling and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sumei Ren
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Serge Ruccolo
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sarah Moor
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Eric M Phillips
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
7
|
Buettner C, Stavagna C, Tilby MJ, Górski B, Douglas JJ, Yasukawa N, Leonori D. Synthesis and Suzuki-Miyaura Cross-Coupling of Alkyl Amine-Boranes. A Boryl Radical-Enabled Strategy. J Am Chem Soc 2024; 146:24042-24052. [PMID: 39137918 PMCID: PMC11363021 DOI: 10.1021/jacs.4c07767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Alkyl organoborons are powerful materials for the construction of C(sp3)-C(sp2) bonds, predominantly via Suzuki-Miyaura cross-coupling. These species are generally assembled using 2-electron processes that harness the ability of boron reagents to act as both electrophiles and nucleophiles. Herein, we demonstrate an alternative borylation strategy based on the reactivity of amine-ligated boryl radicals. This process features the use of a carboxylic acid containing amine-ligated borane that acts as boryl radical precursor for photoredox oxidation and decarboxylation. The resulting amine-ligated boryl radical undergoes facile addition to styrenes and imines through radical-polar crossover manifolds. This delivers a new class of sp3-organoborons that are stable solids and do not undergo protodeboronation. These novel materials include unprotected α-amino derivatives that are generally unstable. Crucially, these aliphatic organoboron species can be directly engaged in Suzuki-Miyaura cross-couplings with structurally complex aryl halides. Preliminary studies suggest that they enable slow-release of the corresponding and often difficult to handle alkyl boronic acids.
Collapse
Affiliation(s)
- Cornelia
S. Buettner
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Chiara Stavagna
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Michael J. Tilby
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Bartosz Górski
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - James J. Douglas
- Early
Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Naoki Yasukawa
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Daniele Leonori
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| |
Collapse
|
8
|
Rana D, Pflüger PM, Hölter NP, Tan G, Glorius F. Standardizing Substrate Selection: A Strategy toward Unbiased Evaluation of Reaction Generality. ACS CENTRAL SCIENCE 2024; 10:899-906. [PMID: 38680564 PMCID: PMC11046462 DOI: 10.1021/acscentsci.3c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
With over 10,000 new reaction protocols arising every year, only a handful of these procedures transition from academia to application. A major reason for this gap stems from the lack of comprehensive knowledge about a reaction's scope, i.e., to which substrates the protocol can or cannot be applied. Even though chemists invest substantial effort to assess the scope of new protocols, the resulting scope tables involve significant biases, reducing their expressiveness. Herein we report a standardized substrate selection strategy designed to mitigate these biases and evaluate the applicability, as well as the limits, of any chemical reaction. Unsupervised learning is utilized to map the chemical space of industrially relevant molecules. Subsequently, potential substrate candidates are projected onto this universal map, enabling the selection of a structurally diverse set of substrates with optimal relevance and coverage. By testing our methodology on different chemical reactions, we were able to demonstrate its effectiveness in finding general reactivity trends by using a few highly representative examples. The developed methodology empowers chemists to showcase the unbiased applicability of novel methodologies, facilitating their practical applications. We hope that this work will trigger interdisciplinary discussions about biases in synthetic chemistry, leading to improved data quality.
Collapse
Affiliation(s)
- Debanjan Rana
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Philipp M. Pflüger
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Niklas P. Hölter
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Guangying Tan
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
9
|
Guillemard L, Ackermann L, Johansson MJ. Late-stage meta-C-H alkylation of pharmaceuticals to modulate biological properties and expedite molecular optimisation in a single step. Nat Commun 2024; 15:3349. [PMID: 38637496 PMCID: PMC11026381 DOI: 10.1038/s41467-024-46697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024] Open
Abstract
Catalysed C-H activation has emerged as a transformative platform for molecular synthesis and provides new opportunities in drug discovery by late-stage functionalisation (LSF) of complex molecules. Notably, small aliphatic motifs have gained significant interest in medicinal chemistry for their beneficial properties and applications as sp3-rich functional group bioisosteres. In this context, we disclose a versatile strategy with broad applicability for the ruthenium-catalysed late-stage meta-C(sp2)-H alkylation of pharmaceuticals. This general protocol leverages numerous directing groups inherently part of bioactive scaffolds to selectivity install a variety of medicinally relevant bifunctional alkyl units within drug compounds. Our strategy enables the direct modification of unprotected lead structures to quickly generate an array of pharmaceutically useful analogues without resorting to de novo syntheses. Moreover, productive late-stage modulation of key biological characteristics of drug candidates upon remote C-H alkylation proves viable, highlighting the major benefits of our approach to offer in drug development programmes.
Collapse
Affiliation(s)
- Lucas Guillemard
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany.
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
10
|
Webb EW, Cheng K, Winton WP, Klein BJ, Bowden GD, Horikawa M, Liu SW, Wright JS, Verhoog S, Kalyani D, Wismer M, Krska SW, Sanford MS, Scott PJ. Development of High-Throughput Experimentation Approaches for Rapid Radiochemical Exploration. J Am Chem Soc 2024; 146:10581-10590. [PMID: 38580459 PMCID: PMC11099536 DOI: 10.1021/jacs.3c14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Positron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis. However, to date, HTE has rarely been applied to radiochemistry. This is largely because of the short lifetime of common radioisotopes, which presents major challenges for efficient parallel reaction setup and analysis using standard equipment and workflows. Herein, we demonstrate an effective HTE workflow and apply it to the optimization of copper-mediated radiofluorination of pharmaceutically relevant boronate ester substrates. The workflow utilizes commercial equipment and allows for rapid analysis of reactions for optimizing reactions, exploring chemical space using pharmaceutically relevant aryl boronates for radiofluorinations, and constructing large radiochemistry data sets.
Collapse
Affiliation(s)
- E. William Webb
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Kevin Cheng
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Wade P. Winton
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Brandon J.C. Klein
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, Tuebingen 72074, Germany
| | - Mami Horikawa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - S. Wendy Liu
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jay S. Wright
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Stefan Verhoog
- Translational Imaging, Merck and Co., Inc., West Point, PA 19486, United States
| | - Dipannita Kalyani
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Michael Wismer
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Shane W. Krska
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J.H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Schrader ML, Schäfer FR, Schäfers F, Glorius F. Bridging the information gap in organic chemical reactions. Nat Chem 2024; 16:491-498. [PMID: 38548884 DOI: 10.1038/s41557-024-01470-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/02/2024] [Indexed: 04/07/2024]
Abstract
The varying quality of scientific reports is a well-recognized problem and often results from a lack of standardization and transparency in scientific publications. This situation ultimately leads to prominent complications such as reproducibility issues and the slow uptake of newly developed synthetic methods for pharmaceutical and agrochemical applications. In recent years, various impactful approaches have been advocated to bridge information gaps and to improve the quality of experimental protocols in synthetic organic publications. Here we provide a critical overview of these strategies and present the reader with a versatile set of tools to augment their standard procedures. We formulate eight principles to improve data management in scientific publications relating to data standardization, reproducibility and evaluation, and encourage scientists to go beyond current publication standards. We are aware that this is a substantial effort, but we are convinced that the resulting improved data situation will greatly benefit the progress of chemistry.
Collapse
Affiliation(s)
- Malte L Schrader
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix R Schäfer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix Schäfers
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
12
|
Long A, Oswood CJ, Kelly CB, Bryan MC, MacMillan DWC. Couple-close construction of polycyclic rings from diradicals. Nature 2024; 628:326-332. [PMID: 38480891 PMCID: PMC11487475 DOI: 10.1038/s41586-024-07181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
Heteroarenes are ubiquitous motifs in bioactive molecules, conferring favourable physical properties when compared to their arene counterparts1-3. In particular, semisaturated heteroarenes possess attractive solubility properties and a higher fraction of sp3 carbons, which can improve binding affinity and specificity. However, these desirable structures remain rare owing to limitations in current synthetic methods4-6. Indeed, semisaturated heterocycles are laboriously prepared by means of non-modular fit-for-purpose syntheses, which decrease throughput, limit chemical diversity and preclude their inclusion in many hit-to-lead campaigns7-10. Herein, we describe a more intuitive and modular couple-close approach to build semisaturated ring systems from dual radical precursors. This platform merges metallaphotoredox C(sp2)-C(sp3) cross-coupling with intramolecular Minisci-type radical cyclization to fuse abundant heteroaryl halides with simple bifunctional feedstocks, which serve as the diradical synthons, to rapidly assemble a variety of spirocyclic, bridged and substituted saturated ring types that would be extremely difficult to make by conventional methods. The broad availability of the requisite feedstock materials allows sampling of regions of underexplored chemical space. Reagent-controlled radical generation leads to a highly regioselective and stereospecific annulation that can be used for the late-stage functionalization of pharmaceutical scaffolds, replacing lengthy de novo syntheses.
Collapse
Affiliation(s)
- Alice Long
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | | - Christopher B Kelly
- Discovery Process Research, Janssen Research and Development LLC, Spring House, PA, USA
| | - Marian C Bryan
- Therapeutics Discovery, Janssen Research and Development LLC, Spring House, PA, USA
| | | |
Collapse
|
13
|
Wang JY, Stevens JM, Kariofillis SK, Tom MJ, Golden DL, Li J, Tabora JE, Parasram M, Shields BJ, Primer DN, Hao B, Del Valle D, DiSomma S, Furman A, Zipp GG, Melnikov S, Paulson J, Doyle AG. Identifying general reaction conditions by bandit optimization. Nature 2024; 626:1025-1033. [PMID: 38418912 DOI: 10.1038/s41586-024-07021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries1-6. Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models7-10 to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C-H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space.
Collapse
Affiliation(s)
- Jason Y Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jason M Stevens
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
| | - Stavros K Kariofillis
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Mai-Jan Tom
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dung L Golden
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
| | - Jun Li
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Jose E Tabora
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Marvin Parasram
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, New York University, New York, NY, USA
| | - Benjamin J Shields
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Molecular Structure and Design, Bristol Myers Squibb, Cambridge, MA, USA
| | - David N Primer
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
- Loxo Oncology at Lilly, Louisville, CO, USA
| | - Bo Hao
- Janssen Research and Development, Spring House, PA, USA
| | - David Del Valle
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Stacey DiSomma
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Ariel Furman
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - G Greg Zipp
- Discovery Synthesis, Bristol Myers Squibb, Princeton, NJ, USA
| | | | - James Paulson
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Nippa DF, Atz K, Hohler R, Müller AT, Marx A, Bartelmus C, Wuitschik G, Marzuoli I, Jost V, Wolfard J, Binder M, Stepan AF, Konrad DB, Grether U, Martin RE, Schneider G. Enabling late-stage drug diversification by high-throughput experimentation with geometric deep learning. Nat Chem 2024; 16:239-248. [PMID: 37996732 PMCID: PMC10849962 DOI: 10.1038/s41557-023-01360-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/03/2023] [Indexed: 11/25/2023]
Abstract
Late-stage functionalization is an economical approach to optimize the properties of drug candidates. However, the chemical complexity of drug molecules often makes late-stage diversification challenging. To address this problem, a late-stage functionalization platform based on geometric deep learning and high-throughput reaction screening was developed. Considering borylation as a critical step in late-stage functionalization, the computational model predicted reaction yields for diverse reaction conditions with a mean absolute error margin of 4-5%, while the reactivity of novel reactions with known and unknown substrates was classified with a balanced accuracy of 92% and 67%, respectively. The regioselectivity of the major products was accurately captured with a classifier F-score of 67%. When applied to 23 diverse commercial drug molecules, the platform successfully identified numerous opportunities for structural diversification. The influence of steric and electronic information on model performance was quantified, and a comprehensive simple user-friendly reaction format was introduced that proved to be a key enabler for seamlessly integrating deep learning and high-throughput experimentation for late-stage functionalization.
Collapse
Affiliation(s)
- David F Nippa
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kenneth Atz
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Remo Hohler
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alex T Müller
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andreas Marx
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christian Bartelmus
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Georg Wuitschik
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Irene Marzuoli
- Process Chemistry and Catalysis (PCC), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Vera Jost
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens Wolfard
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Martin Binder
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Antonia F Stepan
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Uwe Grether
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
- ETH Singapore SEC Ltd, Singapore, Singapore.
| |
Collapse
|
15
|
Selingo JD, Greenwood JW, Andrews MK, Patel C, Neel AJ, Pio B, Shevlin M, Phillips EM, Maddess ML, McNally A. A General Strategy for N-(Hetero)arylpiperidine Synthesis Using Zincke Imine Intermediates. J Am Chem Soc 2024; 146:936-945. [PMID: 38153812 DOI: 10.1021/jacs.3c11504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Methods to synthesize diverse collections of substituted piperidines are valuable due to the prevalence of this heterocycle in pharmaceutical compounds. Here, we present a general strategy to access N-(hetero)arylpiperidines using a pyridine ring-opening and ring-closing approach via Zincke imine intermediates. This process generates pyridinium salts from a wide variety of substituted pyridines and (heteroaryl)anilines; hydrogenation reactions and nucleophilic additions then access the N-(hetero)arylpiperidine derivatives. We successfully applied high-throughput experimentation (HTE) using pharmaceutically relevant pyridines and (heteroaryl)anilines as inputs and developed a one-pot process using anilines as nucleophiles in the pyridinium salt-forming processes. This strategy is viable for generating piperidine libraries and applications such as the convergent coupling of complex fragments.
Collapse
Affiliation(s)
- Jake D Selingo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jacob W Greenwood
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mary Katherine Andrews
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Chirag Patel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J Neel
- Department of Process Research and Development, Merck & Company, Incorporated, Boston, Massachusetts 02115, United States
| | - Barbara Pio
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Shevlin
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Eric M Phillips
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew L Maddess
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
16
|
Voinarovska V, Kabeshov M, Dudenko D, Genheden S, Tetko IV. When Yield Prediction Does Not Yield Prediction: An Overview of the Current Challenges. J Chem Inf Model 2024; 64:42-56. [PMID: 38116926 PMCID: PMC10778086 DOI: 10.1021/acs.jcim.3c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Machine Learning (ML) techniques face significant challenges when predicting advanced chemical properties, such as yield, feasibility of chemical synthesis, and optimal reaction conditions. These challenges stem from the high-dimensional nature of the prediction task and the myriad essential variables involved, ranging from reactants and reagents to catalysts, temperature, and purification processes. Successfully developing a reliable predictive model not only holds the potential for optimizing high-throughput experiments but can also elevate existing retrosynthetic predictive approaches and bolster a plethora of applications within the field. In this review, we systematically evaluate the efficacy of current ML methodologies in chemoinformatics, shedding light on their milestones and inherent limitations. Additionally, a detailed examination of a representative case study provides insights into the prevailing issues related to data availability and transferability in the discipline.
Collapse
Affiliation(s)
- Varvara Voinarovska
- Molecular
AI, Discovery Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
- TUM
Graduate School, Faculty of Chemistry, Technical
University of Munich, 85748 Garching, Germany
| | - Mikhail Kabeshov
- Molecular
AI, Discovery Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Dmytro Dudenko
- Enamine
Ltd., 78 Chervonotkatska str., 02094 Kyiv, Ukraine
| | - Samuel Genheden
- Molecular
AI, Discovery Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Igor V. Tetko
- Molecular
Targets and Therapeutics Center, Helmholtz Munich − Deutsches
Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Structural Biology, 85764 Neuherberg, Germany
| |
Collapse
|
17
|
Raghavan P, Haas BC, Ruos ME, Schleinitz J, Doyle AG, Reisman SE, Sigman MS, Coley CW. Dataset Design for Building Models of Chemical Reactivity. ACS CENTRAL SCIENCE 2023; 9:2196-2204. [PMID: 38161380 PMCID: PMC10755851 DOI: 10.1021/acscentsci.3c01163] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Models can codify our understanding of chemical reactivity and serve a useful purpose in the development of new synthetic processes via, for example, evaluating hypothetical reaction conditions or in silico substrate tolerance. Perhaps the most determining factor is the composition of the training data and whether it is sufficient to train a model that can make accurate predictions over the full domain of interest. Here, we discuss the design of reaction datasets in ways that are conducive to data-driven modeling, emphasizing the idea that training set diversity and model generalizability rely on the choice of molecular or reaction representation. We additionally discuss the experimental constraints associated with generating common types of chemistry datasets and how these considerations should influence dataset design and model building.
Collapse
Affiliation(s)
- Priyanka Raghavan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Brittany C. Haas
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Madeline E. Ruos
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jules Schleinitz
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Abigail G. Doyle
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sarah E. Reisman
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Connor W. Coley
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Williams WL, Gutiérrez-Valencia NE, Doyle AG. Branched-Selective Cross-Electrophile Coupling of 2-Alkyl Aziridines and (Hetero)aryl Iodides Using Ti/Ni Catalysis. J Am Chem Soc 2023; 145:24175-24183. [PMID: 37888947 DOI: 10.1021/jacs.3c08301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The arylation of 2-alkyl aziridines by nucleophilic ring-opening or transition-metal-catalyzed cross-coupling enables facile access to biologically relevant β-phenethylamine derivatives. However, both approaches largely favor C-C bond formation at the less-substituted carbon of the aziridine, thus enabling access to only linear products. Consequently, despite the attractive bond disconnection that it poses, the synthesis of branched arylated products from 2-alkyl aziridines has remained inaccessible. Herein, we address this long-standing challenge and report the first branched-selective cross-coupling of 2-alkyl aziridines with aryl iodides. This unique selectivity is enabled by a Ti/Ni dual-catalytic system. We demonstrate the robustness of the method by a twofold approach: an additive screening campaign to probe functional group tolerance and a feature-driven substrate scope to study the effect of the local steric and electronic profile of each coupling partner on reactivity. Furthermore, the diversity of this feature-driven substrate scope enabled the generation of predictive reactivity models that guided mechanistic understanding. Mechanistic studies demonstrated that the branched selectivity arises from a TiIII-induced radical ring-opening of the aziridine.
Collapse
Affiliation(s)
- Wendy L Williams
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neyci E Gutiérrez-Valencia
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
19
|
Fu J, Lundy W, Chowdhury R, Twitty JC, Dinh LP, Sampson J, Lam YH, Sevov CS, Watson MP, Kalyani D. Nickel-Catalyzed Electroreductive Coupling of Alkylpyridinium Salts and Aryl Halides. ACS Catal 2023; 13:9336-9345. [PMID: 38188282 PMCID: PMC10769313 DOI: 10.1021/acscatal.3c01939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
An electrochemical, nickel-catalyzed reductive coupling of alkylpyridinium salts and aryl halides is reported. High-throughput experimentation (HTE) was employed for rapid reaction optimization and evaluation of a broad scope of pharmaceutically relevant structurally diverse aryl halides, including complex drug-like substrates. In addition, the transformation is compatible with both primary and secondary alkylpyridinium salts with distinct conditions. Mechanistic insights were critical to enhance the efficiency of coupling using secondary alkylpyridinium salts. Systematic comparisons of the electrochemical and non-electrochemical methods revealed the complementary scope and efficiency of the two approaches.
Collapse
Affiliation(s)
- Jiantao Fu
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Windsor Lundy
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Rajdip Chowdhury
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - J. Cameron Twitty
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Long P. Dinh
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica Sampson
- High Throughput Experimentation Facility, Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Yu-hong Lam
- Modeling & Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Christo S. Sevov
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mary P. Watson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Dipannita Kalyani
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
20
|
Neves P, McClure K, Verhoeven J, Dyubankova N, Nugmanov R, Gedich A, Menon S, Shi Z, Wegner JK. Global reactivity models are impactful in industrial synthesis applications. J Cheminform 2023; 15:20. [PMID: 36774523 PMCID: PMC9921076 DOI: 10.1186/s13321-023-00685-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/22/2023] [Indexed: 02/13/2023] Open
Abstract
Artificial Intelligence is revolutionizing many aspects of the pharmaceutical industry. Deep learning models are now routinely applied to guide drug discovery projects leading to faster and improved findings, but there are still many tasks with enormous unrealized potential. One such task is the reaction yield prediction. Every year more than one fifth of all synthesis attempts result in product yields which are either zero or too low. This equates to chemical and human resources being spent on activities which ultimately do not progress the programs, leading to a triple loss when accounting for the cost of opportunity in time wasted. In this work we pre-train a BERT model on more than 16 million reactions from 4 different data sources, and fine tune it to achieve an uncertainty calibrated global yield prediction model. This model is an improvement upon state of the art not just from the increase in pre-train data but also by introducing a new embedding layer which solves a few limitations of SMILES and enables integration of additional information such as equivalents and molecule role into the reaction encoding, the model is called BERT Enriched Embedding (BEE). The model is benchmarked on an open-source dataset against a state-of-the-art synthesis focused BERT showing a near 20-point improvement in r2 score. The model is fine-tuned and tested on an internal company data benchmark, and a prospective study shows that the application of the model can reduce the total number of negative reactions (yield under 5%) ran in Janssen by at least 34%. Lastly, we corroborate the previous results through experimental validation, by directly deploying the model in an on-going drug discovery project and showing that it can also be used successfully as a reagent recommender due to its fast inference speed and reliable confidence estimation, a critical feature for industry application.
Collapse
Affiliation(s)
- Paulo Neves
- In-Silico Discovery and External Innovation (ISDEI), Janssen Research & Development, Janssen Pharmaceutica N.V, Beerse, Belgium.
| | - Kelly McClure
- Discovery Chemistry LJ, Janssen Research & Development, Janssen Pharmaceutica N.V, Philadelphia, United States of America
| | - Jonas Verhoeven
- In-Silico Discovery and External Innovation (ISDEI), Janssen Research & Development, Janssen Pharmaceutica N.V, Beerse, Belgium
| | - Natalia Dyubankova
- In-Silico Discovery and External Innovation (ISDEI), Janssen Research & Development, Janssen Pharmaceutica N.V, Beerse, Belgium
| | - Ramil Nugmanov
- In-Silico Discovery and External Innovation (ISDEI), Janssen Research & Development, Janssen Pharmaceutica N.V, Beerse, Belgium
| | | | - Sairam Menon
- Pharma R&D Information Tech, Janssen Research & Development, Janssen Pharmaceutica N.V, Beerse, Belgium
| | - Zhicai Shi
- Discovery Chemistry LJ, Janssen Research & Development, Janssen Pharmaceutica N.V, Philadelphia, United States of America
| | - Jörg K Wegner
- In-Silico Discovery and External Innovation (ISDEI), Janssen Research & Development, Janssen Pharmaceutica N.V, Beerse, Belgium
| |
Collapse
|
21
|
Ruck RT, Strotman NA, Krska SW. The Catalysis Laboratory at Merck: 20 Years of Catalyzing Innovation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rebecca T. Ruck
- Department of Process Research & Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Neil A. Strotman
- Department of Pharmaceutical Sciences & Clinical Supplies, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Shane W. Krska
- Chemistry Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| |
Collapse
|
22
|
Hu Y, Wong MJ, Lipshutz BH. ppm Pd‐Containing Nanoparticles as Catalysts for Negishi Couplings …
in Water. Angew Chem Int Ed Engl 2022; 61:e202209784. [DOI: 10.1002/anie.202209784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yuting Hu
- Department of Chemistry & Biochemistry University of California Santa Barbara CA 93106 USA
| | - Madison J. Wong
- Department of Chemistry & Biochemistry University of California Santa Barbara CA 93106 USA
| | - Bruce H. Lipshutz
- Department of Chemistry & Biochemistry University of California Santa Barbara CA 93106 USA
| |
Collapse
|
23
|
Hu Y, Wong MJ, Lipshutz BH. ppm Pd‐Containing Nanoparticles as Catalysts for Negishi Couplings… in Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuting Hu
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Madison J Wong
- University of California, Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Bruce Howard Lipshutz
- University of California Department of Chemistry University of California 93106 Santa Barbara UNITED STATES
| |
Collapse
|
24
|
When machine learning meets molecular synthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Prieto Kullmer CN, Kautzky JA, Krska SW, Nowak T, Dreher SD, MacMillan DWC. Accelerating reaction generality and mechanistic insight through additive mapping. Science 2022; 376:532-539. [PMID: 35482871 DOI: 10.1126/science.abn1885] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reaction generality is crucial in determining the overall impact and usefulness of synthetic methods. Typical generalization protocols require a priori mechanistic understanding and suffer when applied to complex, less understood systems. We developed an additive mapping approach that rapidly expands the utility of synthetic methods while generating concurrent mechanistic insight. Validation of this approach on the metallaphotoredox decarboxylative arylation resulted in the discovery of a phthalimide ligand additive that overcomes many lingering limitations of this reaction and has important mechanistic implications for nickel-catalyzed cross-couplings.
Collapse
Affiliation(s)
| | - Jacob A Kautzky
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | - Shane W Krska
- Department of Process and Analytical Chemistry, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Timothy Nowak
- Department of Discovery Chemistry, MRL, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Spencer D Dreher
- Department of Process and Analytical Chemistry, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
26
|
Weis E, Johansson M, Korsgren P, Martín-Matute B, Johansson MJ. Merging Directed C-H Activations with High-Throughput Experimentation: Development of Iridium-Catalyzed C-H Aminations Applicable to Late-Stage Functionalization. JACS AU 2022; 2:906-916. [PMID: 35557751 PMCID: PMC9088304 DOI: 10.1021/jacsau.2c00039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 05/14/2023]
Abstract
Herein, we report an iridium-catalyzed directed C-H amination methodology developed using a high-throughput experimentation (HTE)-based strategy, applicable for the needs of automated modern drug discovery. The informer library approach for investigating the accessible directing group chemical space, in combination with functional group tolerance screening and substrate scope investigations, allowed for the generation of reaction application guidelines to aid future users. Applicability to late-stage functionalization of complex drugs and natural products, in combination with multiple deprotection protocols leading to the desirable aniline matched pairs, serve to demonstrate the utility of the method for drug discovery. Finally, reaction miniaturization to a nanomolar range highlights the opportunities for more sustainable screening with decreased material consumption.
Collapse
Affiliation(s)
- Erik Weis
- Department
of Organic Chemistry, Stockholm University, Stockholm, SE 106 91, Sweden
- Medicinal
Chemistry, Research and Early Development; Cardiovascular, Renal and
Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden
1, Mölndal, 431 50 Gothenburg, Sweden
| | - Maria Johansson
- Compound
Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431
50 Gothenburg, Sweden
| | - Pernilla Korsgren
- Compound
Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431
50 Gothenburg, Sweden
| | - Belén Martín-Matute
- Department
of Organic Chemistry, Stockholm University, Stockholm, SE 106 91, Sweden
| | - Magnus J. Johansson
- Department
of Organic Chemistry, Stockholm University, Stockholm, SE 106 91, Sweden
- Medicinal
Chemistry, Research and Early Development; Cardiovascular, Renal and
Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden
1, Mölndal, 431 50 Gothenburg, Sweden
| |
Collapse
|
27
|
Kariofillis SK, Jiang S, Żurański AM, Gandhi SS, Martinez Alvarado JI, Doyle AG. Using Data Science To Guide Aryl Bromide Substrate Scope Analysis in a Ni/Photoredox-Catalyzed Cross-Coupling with Acetals as Alcohol-Derived Radical Sources. J Am Chem Soc 2022; 144:1045-1055. [PMID: 34985904 PMCID: PMC8810294 DOI: 10.1021/jacs.1c12203] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ni/photoredox catalysis has emerged as a powerful platform for C(sp2)-C(sp3) bond formation. While many of these methods typically employ aryl bromides as the C(sp2) coupling partner, a variety of aliphatic radical sources have been investigated. In principle, these reactions enable access to the same product scaffolds, but it can be hard to discern which method to employ because nonstandardized sets of aryl bromides are used in scope evaluation. Herein, we report a Ni/photoredox-catalyzed (deutero)methylation and alkylation of aryl halides where benzaldehyde di(alkyl) acetals serve as alcohol-derived radical sources. Reaction development, mechanistic studies, and late-stage derivatization of a biologically relevant aryl chloride, fenofibrate, are presented. Then, we describe the integration of data science techniques, including DFT featurization, dimensionality reduction, and hierarchical clustering, to delineate a diverse and succinct collection of aryl bromides that is representative of the chemical space of the substrate class. By superimposing scope examples from published Ni/photoredox methods on this same chemical space, we identify areas of sparse coverage and high versus low average yields, enabling comparisons between prior art and this new method. Additionally, we demonstrate that the systematically selected scope of aryl bromides can be used to quantify population-wide reactivity trends and reveal sources of possible functional group incompatibility with supervised machine learning.
Collapse
Affiliation(s)
- Stavros K. Kariofillis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Shutian Jiang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrzej M. Żurański
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Shivaani S. Gandhi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | | | - Abigail G. Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
28
|
Hickey BL, Chen J, Zou Y, Gill AD, Zhong W, Millar JG, Hooley RJ. Enantioselective sensing of insect pheromones in water. Chem Commun (Camb) 2021; 57:13341-13344. [PMID: 34817473 DOI: 10.1039/d1cc05540b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An arrayed combination of water-soluble deep cavitands and cationic dyes has been shown to optically sense insect pheromones at micromolar concentration in water. Machine learning approaches were used to optimize the most effective array components, which allows differentiation between small structural differences in targets, including between different diastereomers, even though the pheromones have no innate chromophore. When combined with chiral additives, enantiodiscrimination is possible, dependent on the size and shape of the pheromone.
Collapse
Affiliation(s)
- Briana L Hickey
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA.
| | - Junyi Chen
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Yunfan Zou
- Department of Entomology, University of California-Riverside, Riverside, CA 92521, USA
| | - Adam D Gill
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA. .,Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Jocelyn G Millar
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA. .,Department of Entomology, University of California-Riverside, Riverside, CA 92521, USA
| | - Richard J Hooley
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA. .,Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
29
|
Jian YP, Yang G, Zhang LH, Liang JY, Zhou HL, Wang YS, Xu ZX. Lactobacillus plantarum alleviates irradiation-induced intestinal injury by activation of FXR-FGF15 signaling in intestinal epithelia. J Cell Physiol 2021; 237:1845-1856. [PMID: 34881818 DOI: 10.1002/jcp.30651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022]
Abstract
Abdominal irradiation (IR) may destroy the intestinal mucosal barrier, leading to severe intestinal infection and multiple organ dysfunction syndromes. The role of intestinal microbiota in the development of IR-induced intestinal injury remains largely unknown. Herein, we reported that abdominal IR altered the composition of the microbiota and reduced the abundance and diversity of the gut microbiome. Alterations of bacteria, in particular reduction of Lactobacillus, played a critical role in IR-induced intestinal injury. Fecal microbiota transplant (FMT) from normal mice or administration of Lactobacillus plantarum to intestinal microbiota-eliminated mice substantially reduced IR-induced intestinal damage and prevented mice from IR-induced death. We further characterized that L. plantarum activated the farnesoid X receptor (FXR) - fibroblast growth factor 15 (FGF15) signaling in intestinal epithelial cells and hence promoted DNA-damage repair. Application of GW4064, an activator of FXR, to microbiota eliminated mice markedly mitigated IR-induced intestinal damage, reduced intestinal epithelial cell death and promoted the survival of IR mice. In contrast, suppression of FXR with Gly-β-MCA, a bile acid and an intestine-selective and high-affinity FXR inhibitor, abrogated L. Plantarum-mediated protection on the ileum of IR mice. Taken together, our findings not only provide new insights into the role of intestinal flora in radiation-induced intestinal injury but also shed new light on the application of probiotics for the protection of radiation-damaged individuals.
Collapse
Affiliation(s)
- Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Li-Hong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Ji-Yong Liang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China.,School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
30
|
Kearnes SM, Maser MR, Wleklinski M, Kast A, Doyle AG, Dreher SD, Hawkins JM, Jensen KF, Coley CW. The Open Reaction Database. J Am Chem Soc 2021; 143:18820-18826. [PMID: 34727496 DOI: 10.1021/jacs.1c09820] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemical reaction data in journal articles, patents, and even electronic laboratory notebooks are currently stored in various formats, often unstructured, which presents a significant barrier to downstream applications, including the training of machine-learning models. We present the Open Reaction Database (ORD), an open-access schema and infrastructure for structuring and sharing organic reaction data, including a centralized data repository. The ORD schema supports conventional and emerging technologies, from benchtop reactions to automated high-throughput experiments and flow chemistry. The data, schema, supporting code, and web-based user interfaces are all publicly available on GitHub. Our vision is that a consistent data representation and infrastructure to support data sharing will enable downstream applications that will greatly improve the state of the art with respect to computer-aided synthesis planning, reaction prediction, and other predictive chemistry tasks.
Collapse
Affiliation(s)
- Steven M Kearnes
- Relay Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Michael R Maser
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael Wleklinski
- Chemistry Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Anton Kast
- Google LLC, Mountain View, California 94043, United States
| | - Abigail G Doyle
- Department of Chemistry & Biochemistry, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Spencer D Dreher
- Chemistry Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Joel M Hawkins
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Chen J, Gill AD, Hickey BL, Gao Z, Cui X, Hooley RJ, Zhong W. Machine Learning Aids Classification and Discrimination of Noncanonical DNA Folding Motifs by an Arrayed Host:Guest Sensing System. J Am Chem Soc 2021; 143:12791-12799. [PMID: 34346209 DOI: 10.1021/jacs.1c06031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An arrayed host:guest fluorescence sensor system can discriminate among and classify multiple different noncanonical DNA structures by exploiting selective molecular recognition. The sensor is highly selective and can discriminate between folds as similar as native G-quadruplexes and those with bulges or vacancies. The host and guest can form heteroternary complexes with DNA strands, with the host acting as mediator between the DNA and dye, modulating the emission. By applying machine learning algorithms to the sensing data, prediction of the folding state of unknown DNA strands is possible with high fidelity.
Collapse
|