1
|
Zhu P, Zhu X, Zhou X, Sun F, Chen Y, Wang L, Tang Z, Tang Q. Computational and Experimental Elucidation of the Charge-Dependent Acid-Etching Dynamics and Electrocatalytic Performance of Au 25(SR) 18 q(q = -1, 0, +1) Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411226. [PMID: 39989091 DOI: 10.1002/smll.202411226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/26/2025] [Indexed: 02/25/2025]
Abstract
Using thiolate-protected Au25(SR)18 nanocluster (NC) with different charge states as the test candidate, how the charge effect affects the etching dynamics of thiolate ligands in acid and the electrocatalytic performance is explored. The ab initio molecular dynamics (AIMD) simulations revealed the charge-dependent reaction kinetics in acid, where the anionic and neutral Au25(SCH3)18 q (q = -1, 0) favorably react with the acid and partially remove the thiolate ligands via two-step proton attack, while the cationic Au25(SCH3)18 + NC is acid-resistant with no tendency for -SR removal. Density functional theory (DFT) calculations further predict that the dethiolated Au sites exhibit enhanced catalytic activity for CO2 electroreduction to CO, with the anionic Au25 - showing significantly superior activity. Acid etching and electrocatalytic experiments further confirmed partial removal of thiolate ligands in Au25(SCH3)18 q (q = -1, 0), with dethiolated Au25 NCs showing enhanced catalytic performance in CO2 electroreduction, particularly Au25 - exhibiting better activity than Au25 0. This work revealed an interesting charge state-mediated interface dynamics and electrocatalytic behaviors in Au25 NCs, which can be applied to modulate the interface and catalytic properties of other atomically precise metal nanoclusters.
Collapse
Affiliation(s)
- Pan Zhu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Xin Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xia Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
2
|
Zhao J, Ziarati A, Bürgi T. Tuning Atomically Precise Gold Nanoclusters for Selective Electroreduction of CO 2. Angew Chem Int Ed Engl 2025:e202504320. [PMID: 40232651 DOI: 10.1002/anie.202504320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
The electroreduction of greenhouse gas CO2 into high-value-added chemicals using renewable electricity is a promising way to mitigate climate change and realize carbon cycling. Atomically precise thiolate-protected gold nanoclusters have shown great potential for selective electrochemical conversion of CO2 toward CO due to their quantum confinement effect and unique electronic structures. Additionally, the atomic precision of gold nanocluster is advantageous for investigating the CO2 reduction mechanism, which is typically challenging to understand due to the complexity of the catalytic interface, and unknown structure of the active site in more conventional catalysts. By summarizing CO2 reduction catalyzed by gold nanoclusters, we aim to identify key factors that contribute to the activity, selectivity, and stability of nanocluster catalysts, as well as elucidate the CO₂ reduction pathway, thereby contributing to the design of more active and selective nanocluster catalysts for CO2 reduction.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, 30 Quai Arnest-Ansermet, Geneva, 1211, Switzerland
| | - Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva, 30 Quai Arnest-Ansermet, Geneva, 1211, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Arnest-Ansermet, Geneva, 1211, Switzerland
| |
Collapse
|
3
|
Dou X, Saalah S, Chiam CK, Xie J, Sipaut CS. Ultrasmall metal nanoclusters as efficient luminescent probes for bioimaging. J Mater Chem B 2025; 13:1180-1194. [PMID: 39679535 DOI: 10.1039/d4tb02207f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Ultrasmall metal nanoclusters (NCs, <2 nm) have emerged as a novel class of luminescent probes due to their atomically precise size and tailored physicochemical properties. The rapid advancements in the design and utilization of metal NC-based luminescent probes are facilitated by the atomic-level manipulation of metal NCs. This review article explores (i) the engineering of metal NCs' functions for bioimaging applications, and (ii) the diverse uses of metal NCs in bioimaging. We begin by presenting an overview of the engineering functions of metal NCs as luminescent probes for bioimaging applications, highlighting key strategies for enhancing NCs' luminescence, biocompatibility and targeting capabilities towards biological specimens. Our discussion then centers on the bioimaging applications of metal NCs in subcellular organelles, individual cells, tissues, and entire organs. Finally, we offer a perspective on the challenges and potential developments in the future use of metal NCs for bioimaging applications.
Collapse
Affiliation(s)
- Xinyue Dou
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Sariah Saalah
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Chel-Ken Chiam
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Coswald Stephen Sipaut
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| |
Collapse
|
4
|
Ziarati A, Gotfredsen H, Rosspeintner A, Zhao J, Anderson HL, Bürgi T. Encapsulation of an Au 25 Nanocluster inside a Porphyrin Nanoring Enhances Singlet Oxygen Generation and Photo-Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2025; 64:e202414908. [PMID: 39429110 DOI: 10.1002/anie.202414908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
The synthesis of molecular host-guest complexes with enhanced performance, relative to those of their components, is a central theme in supramolecular chemistry. Here we explore a host-guest system consisting of an atomically precise gold nanocluster bound inside a zinc porphyrin nanoring. UV/Vis absorption and fluorescence titrations with different sized nanorings revealed strong binding between a pyridinethiol-coated Au25 nanocluster and a nanoring consisting of six zinc porphyrin units, and complexation is confirmed by mass spectrometry. Formation of this assembly enhances the stability of the gold nanocluster. The host-guest complex also exhibits remarkable activity and selectivity for photochemical CO2 to CO conversion and singlet oxygen generation.
Collapse
Affiliation(s)
- Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet,1211, Geneva 4, Switzerland
| | - Henrik Gotfredsen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet,1211, Geneva 4, Switzerland
| | - Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet,1211, Geneva 4, Switzerland
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet,1211, Geneva 4, Switzerland
| |
Collapse
|
5
|
Zhou T, Hu C, He K, Li Z. Expanding the Toolbox of Oxidants: Controllable Etching of Ultrasmall Au Nanoparticles toward Tailorable NIR-II Luminescence and Ligand-Mediated Biodistribution and Clearance. Anal Chem 2024; 96:17840-17849. [PMID: 39432839 DOI: 10.1021/acs.analchem.4c04326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Oxidant-driven and controllable etching of small-sized nanoparticles (NPs, d < 3 nm) and tailorable modulation of their optical properties are challenging due to the high reactivity and complicated surface chemistry. Herein, we present a facile strategy for highly controllable oxidative etching of ultrasmall AuNPs and tailorable modulation of luminescence. The proper choice of a moderate oxidant, ClO-, could not only selectively etch the Au(I)-thiolate motifs from the nanoparticle surface at the subnanometer scale but also retained a stable metallic core structure without aggregation, which impressively prompted the wide-range luminescent switching from the visible to second near-infrared (NIR-II) region. The resultant oxidized AuNPs displayed highly luminescent NIR-II emission with a quantum yield of 3.0%, excellent monodispersed stability, ideal biocompatibility, and tunable shielding effects against protein adsorption. With those outstanding features, oxidized AuNPs could be utilized as nanoprobes for long-lasting and in vivo bioimaging of associated metabolic behaviors with distinguishable organ-specific targeting capabilities and ligand-mediated kinetics in nanoparticle clearance. These findings expand the toolbox of oxidants for the controllable synthesis of NIR-II nanoprobes and open up a path for exploring diverse ligand interactions on ultrasmall AuNPs with organs or tissues that might advance their monitoring applications for a wide range of clinically important diseases.
Collapse
Affiliation(s)
- Tingyao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Chao Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | - Kui He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
6
|
Yang Z, Shi A, Zhang R, Ji Z, Li J, Lyu J, Qian J, Chen T, Wang X, You F, Xie J. When Metal Nanoclusters Meet Smart Synthesis. ACS NANO 2024; 18:27138-27166. [PMID: 39316700 DOI: 10.1021/acsnano.4c09597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) represent a fascinating class of ultrasmall nanoparticles with molecule-like properties, bridging conventional metal-ligand complexes and nanocrystals. Despite their potential for various applications, synthesis challenges such as a precise understanding of varied synthetic parameters and property-driven synthesis persist, hindering their full exploitation and wider application. Incorporating smart synthesis methodologies, including a closed-loop framework of automation, data interpretation, and feedback from AI, offers promising solutions to address these challenges. In this perspective, we summarize the closed-loop smart synthesis that has been demonstrated in various nanomaterials and explore the research frontiers of smart synthesis for MNCs. Moreover, the perspectives on the inherent challenges and opportunities of smart synthesis for MNCs are discussed, aiming to provide insights and directions for future advancements in this emerging field of AI for Science, while the integration of deep learning algorithms stands to substantially enrich research in smart synthesis by offering enhanced predictive capabilities, optimization strategies, and control mechanisms, thereby extending the potential of MNC synthesis.
Collapse
Affiliation(s)
- Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Anye Shi
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14583, United States
| | - Ruixuan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zuowei Ji
- School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Jiali Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jingkuan Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Jing Qian
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tiankai Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Xiaonan Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Fengqi You
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14583, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell University AI for Science Institute (CUAISci), Cornell University, Ithaca, New York 14853, United States
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
7
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
8
|
Xie Y, Sun F, Chang K, Li G, Song Z, Huang J, Cheng X, Zhuang G, Kuang Q. Axially Coordinated Gold Nanoclusters Tailoring Fe-N-C Nanozymes for Enhanced Oxidase-Like Specificity and Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306911. [PMID: 38196300 PMCID: PMC10953587 DOI: 10.1002/advs.202306911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/05/2023] [Indexed: 01/11/2024]
Abstract
Metal-organic frameworks (MOF) derived nitrogen-doped carbon-supported monodisperse Fe (Fe-N-C) catalysts are intensively studied, but great challenges remain in understanding the relationship between the coordination structure and the performance of Fe-N-C nanozymes. Herein, a novel nanocluster ligand-bridging strategy is proposed for constructing Fe-S1 N4 structures with axially coordinated S and Au nanoclusters on ZIF-8 derived Fe-N-C (labeled Aux /Fe-S1 N4 -C). The axial Au nanoclusters facilitate electron transfer to Fe active sites, utilizing the bridging ligand S as a medium, thereby enhancing the oxygen adsorption capacity of composite nanozymes. Compared to Fe-N-C, Aux /Fe-S1 N4 -C exhibits high oxidase-like specificity and activity, and holds great potential for detecting acetylcholinesterase activity with a detection limit of 5.1 µU mL-1 , surpassing most reported nanozymes.
Collapse
Affiliation(s)
- Yameng Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Fuli Sun
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310032China
| | - Kuan Chang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Zhijia Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Jiayu Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiqing Cheng
- School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghai201418China
| | - Guilin Zhuang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310032China
| | - Qin Kuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|
9
|
Chen Q, Zhang Y, Chen S, Liu Y, Zhang C, Zhang M, Yu K. Surface-Ligand Tuned Reversible Transformations in Aqueous Environments Between CdSe Magic-Size Clusters and Their Precursor Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304277. [PMID: 37806760 DOI: 10.1002/smll.202304277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/17/2023] [Indexed: 10/10/2023]
Abstract
That magic-size clusters (MSCs) have their counterpart precursor compounds (PCs) has not been generally accepted by expertise circles. Here, experimental evidence to support this new concept is presented. With aqueous-phase CdSe MSCs as a model system, it is shown that when the MSCs are dispersed in water containing a certain amount of L-cysteine (Cys), the MSCs disappear slowly. Upon the addition of CdCl2 , the MSCs recover. It is proposed that after dispersing, the MSCs transform to their quasi-isomeric, non-absorbing PCs upon Cys addition. In the presence of CdCl2 , the PCs transform back to the MSCs due to Cys elimination. The surface ligand Cys of the MSCs plays a significant role in the reversible transformations. The present study provides compelling evidence that absorbing MSCs have their non-absorbing PCs. The study findings suggest that the transformation between two MSCs that display absorption spectral shifts in a stepwise pattern is assisted by their PCs.
Collapse
Affiliation(s)
- Qingyuan Chen
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, P. R. China
| | - Yu Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuo Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuehui Liu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
| | - Chunchun Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, P. R. China
| | - Kui Yu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
10
|
Sun F, Qin L, Tang Z, Deng G, Bootharaju MS, Wei Z, Tang Q, Hyeon T. -SR removal or -R removal? A mechanistic revisit on the puzzle of ligand etching of Au 25(SR) 18 nanoclusters during electrocatalysis. Chem Sci 2023; 14:10532-10546. [PMID: 37800008 PMCID: PMC10548520 DOI: 10.1039/d3sc03018k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 10/07/2023] Open
Abstract
Accurate identification of active sites is highly desirable for elucidation of the reaction mechanism and development of efficient catalysts. Despite the promising catalytic performance of thiolated metal nanoclusters (NCs), their actual catalytic sites remain elusive. Traditional first-principles calculations and experimental observations suggested dealkylated S and dethiolated metal, respectively, to be the active centers. However, the real kinetic origin of thiolate etching during the electrocatalysis of NCs is still puzzling. Herein, we conducted advanced first-principles calculations and electrochemical/spectroscopic experiments to unravel the electrochemical etching kinetics of thiolate ligands in prototype Au25(SCH3)18 NC. The electrochemical processes are revealed to be spontaneously facilitated by dethiolation (i.e., desorption of -SCH3), forming the free HSCH3 molecule after explicitly including the solvent effect and electrode potential. Thus, exposed under-coordinated Au atoms, rather than the S atoms, serve as the real catalytic sites. The thermodynamically preferred Au-S bond cleavage arises from the selective attack of H from proton/H2O on the S atom under suitable electrochemical bias due to the spatial accessibility and the presence of S lone pair electrons. Decrease of reduction potential promotes the proton attack on S and significantly accelerates the kinetics of Au-S bond breakage irrespective of the pH of the medium. Our theoretical results are further verified by the experimental electrochemical and spectroscopic data. At more negative electrode potentials, the number of -SR ligands decreased with concomitant increase of the vibrational intensity of S-H bonds. These findings together clarify the atomic-level activation mechanism on the surface of Au25(SR)18 NCs.
Collapse
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
11
|
Shen H, Zhu Q, Xu J, Ni K, Wei X, Du Y, Gao S, Kang X, Zhu M. Stepwise construction of Ag 29 nanocluster-based hydrogen evolution electrocatalysts. NANOSCALE 2023; 15:14941-14948. [PMID: 37655628 DOI: 10.1039/d3nr03537a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Although several silver-based nanoclusters have been controllably prepared and structurally determined, their electrochemical catalytic performances have been relatively unexplored (or showed relatively weak ability towards electro-catalysis). In this work, we accomplished the step-by-step enhancement of the electrocatalytic hydrogen evolution reaction (HER) efficiency based on an Ag29 cluster template. A combination of atomically precise operations, including the kernel alloying, ligand engineering, and surface activation, was exploited to produce a highly efficient Pt1Ag28-BTT-Mn(10) nano-catalyst towards HER, derived from both experimental characterization and theoretical modelling. The precision characteristic of the Ag29-based cluster system enables us to understanding the correlations between nanocluster structures and HER performances at the atomic level. Overall, the findings of this work will hopefully provide more opportunities for the customization of new cluster-based nano-catalysts with enhanced electrocatalytic capacities.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Qingtao Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Jiawei Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Kun Ni
- CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering & iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Yuanxin Du
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.
| | - Shan Gao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
12
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Zhao J, Ziarati A, Rosspeintner A, Wang Y, Bürgi T. Engineering ligand chemistry on Au 25 nanoclusters: from unique ligand addition to precisely controllable ligand exchange. Chem Sci 2023; 14:7665-7674. [PMID: 37476726 PMCID: PMC10355100 DOI: 10.1039/d3sc01177a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
Au25 nanoclusters (NCs) protected by 18 thiol-ligands (Au25SR18, SR is a thiolate ligand) are the prototype of atomically precise thiolate-protected gold NCs. Studies concerning the alteration of the number of surface ligands for a given Au25SR18 NC are scarce. Herein we report the conversion of hydrophobic Au25PET18 (PET = 2-phenylethylthiolate) NCs to Au25SR19 [Au25PET18(metal complex)1] induced by ligand exchange reactions (LERs) with thiolated terpyridine-metal complexes (metal complex, metal = Ru, Fe, Co, Ni) under mild conditions (room temperature and low amounts of incoming ligands). Interestingly, we found that the ligand addition reaction on Au25PET18 NCs is metal dependent. Ru and Co complexes preferentially lead to the formation of Au25SR19 whereas Fe and Ni complexes favor ligand exchange reactions. High-resolution electrospray ionization mass spectrometry (HRESI-MS) was used to determine the molecular formula of Au25SR19 NCs. The photophysical properties of Au25PET18(Ru complex)1 are distinctly different from Au25PET18. The absorption spectrum is drastically changed upon addition of the extra ligand and the photoluminescence quantum yield of Au25PET18(Ru complex)1 is 14 times and 3 times higher than that of pristine Au25PET18 and Au25PET17(Ru complex)1, respectively. Interestingly, only one surface ligand (PET) could be substituted by the metal complex when neutral Au25PET18 was used for ligand exchange whereas two ligands could be exchanged when starting with negatively charged Au25PET18. This charge dependence provides a strategy to precisely control the number of exchanged ligands at the surface of NCs.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Yanan Wang
- Department of Chemical Engineering, University of Michigan Ann Arbor 2800 MI USA
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| |
Collapse
|
14
|
Liao C, Zhu M, Jiang DE, Li X. Manifestation of the interplay between spin-orbit and Jahn-Teller effects in Au 25 superatom UV-Vis fingerprint spectra. Chem Sci 2023; 14:4666-4671. [PMID: 37181763 PMCID: PMC10171181 DOI: 10.1039/d3sc00944k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Atomically precise nanoclusters play an important role in nanoscale catalysis, photonics, and quantum information science. Their nanochemical properties arise from their unique superatomic electronic structures. As the flagship of atomically precise nanochemistry, the Au25(SR)18 nanocluster exhibits tunable spectroscopic signatures that are sensitive to the oxidation state. This work aims to unravel the physical underpinnings of the spectral progression of Au25(SR)18 nanocluster using variational relativistic time-dependent density functional theory. The investigation will focus on the effects of superatomic spin-orbit coupling, its interplay with Jahn-Teller distortion, and their manifestations in the absorption spectra of Au25(SR)18 nanoclusters of different oxidation states.
Collapse
Affiliation(s)
- Can Liao
- Department of Chemistry, University of Washington Seattle WA 98195 USA
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University China
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235 USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington Seattle WA 98195 USA
| |
Collapse
|
15
|
Wang JY, Si Y, Luo XM, Wang ZY, Dong XY, Luo P, Zhang C, Duan C, Zang SQ. Stepwise Amplification of Circularly Polarized Luminescence in Chiral Metal Cluster Ensembles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207660. [PMID: 36840632 PMCID: PMC10161016 DOI: 10.1002/advs.202207660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Indexed: 05/06/2023]
Abstract
Chiral metal-organic frameworks (MOFs) are usually endowed by chiral linkers and/or guests. The strategy using chiral secondary building units in MOFs for solving the trade-off of circularly polarized luminescence (CPL)-active materials, high photoluminescence quantum yields (PLQYs) and high dissymmetry factors (|glum |) has not been demonstrated. This work directionally assembles predesigned chiral silver clusters with ACQ linkers through reticular chemistry. The nanoscale chirality of the cluster transmits through MOF's framework, where the linkers are arranged in a quasi-parallel manner and are efficiently isolated and rigidified. Consequently, this backbone of chiral cluster-based MOFs demonstrates superb CPL, high PLQYs of 50.3%, and |glum | of 1.2 × 10-2 . Crystallographic analyses and DFT calculations show the quasi-parallel arrangement manners of emitting linkers leading to a large angle between the electric and magnetic transition dipole moments, boosting CPL response. As compared, an ion-pair-direct assembly without interactions between linkers induces one-ninth |glum | and one-sixth PLQY values, further highlighting the merits of directional arrangement in reticular nets. In addition, a prototype CPL switching fabricated by a chiral framework is controlled through alternating ultraviolet and visible light. This work is expected to inspire the development of reticular chemistry for high-performance chiroptical materials.
Collapse
Affiliation(s)
- Jia-Yin Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Peng Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Chong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
16
|
Li L, Liu Y, Zhou S, Li J, Qi C, Zhang F. Synthesis of 4-hydroxy-3-benzoylpyridin-2(1 H)-one derivatives using pyrrolidine as catalyst. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2177872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Linbo Li
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuxiao Liu
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shujing Zhou
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Jinjing Li
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chenze Qi
- School of Pharmacy, Jiamusi University, Jiamusi, China
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, China
| | - Furen Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, China
| |
Collapse
|
17
|
Tang B, Xia W, Cai W, Liu J. Luminescent Gold Nanoparticles with Controllable Hydrophobic Interactions. NANO LETTERS 2022; 22:8109-8114. [PMID: 36214567 DOI: 10.1021/acs.nanolett.2c02486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The construction of luminescent gold nanoparticles (AuNPs) with highly redshifted emission in the second near-infrared window (NIR-II) and good biocompatibility is still challenging. Herein, using an amphiphilic block copolymer (ABC) template with controllable hydrophobic interactions in the diverse forms of unimers and micelles, we report a facile strategy for redshifting the emission and enhancing the biological interactions of luminescent AuNPs. While the uniform clusters of NIR-II AuNPs are formed in situ inside the hydrophobic cores of ABC micelles with strong interparticle hydrophobic interactions and enhanced emission at 1080 nm with a high quantum yield (QY) of 1.6%, the rigid NIR-II AuNPs are generated with strong intraparticle hydrophobic interactions as ABC unimers on the surface, leading to a redshifted emission of 1280 nm with a QY of 0.25% and enhancing the affinities toward injured intestinal mucosa in colitis imaging. These findings open new possibilities for the design of highly redshifted luminescent AuNPs with enhanced biological interactions.
Collapse
Affiliation(s)
- Bing Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Wenle Xia
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Wei Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
18
|
Luo XM, Huang S, Luo P, Ma K, Wang ZY, Dong XY, Zang SQ. Snapshots of key intermediates unveiling the growth from silver ions to Ag 70 nanoclusters. Chem Sci 2022; 13:11110-11118. [PMID: 36320462 PMCID: PMC9516886 DOI: 10.1039/d2sc04204e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Nanoclusters (NCs) are considered as initial states of condensed matter, and unveiling their formation mechanism is of great importance for directional synthesis of nanomaterials. Here, we initiate the reaction of Ag(i) ions under weak reducing conditions. The prolonged reaction period provides a unique opportunity for revealing the five stages of the growth mechanism of 20-electron superatomic Ag70 NCs by a time-dependent mass technique, that is, aggregate (I) → reduction (II) → decomposition and recombination (III) → fusion (IV) → surface recombination and motif enrichment (V), which is different from the formation process applicable to the gold clusters. More importantly, the key intermediates, Ag14 without free electrons (0e) in the first (stage I) and Ag24 (4e) in the second (stage II), were crystallized and structurally resolved, and the later transformation rate towards Ag70 was further controlled by modulating solvents for easy identification of more intermediates. In a word, we establish a reasonable path of gradual expansion in size and electrons from Ag(i) ions to medium-sized 20e Ag70. This work provides new insights into the formation and evolution of silver NCs, and unveils the corresponding optical properties along with the process.
Collapse
Affiliation(s)
- Xi-Ming Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Shuo Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Peng Luo
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Jiaozuo 454003 People's Republic of China
| | - Kai Ma
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Jiaozuo 454003 People's Republic of China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
| |
Collapse
|