1
|
Severson SM, Ren BH, Cayzer M, Keresztes I, Johnson ML, Lu XB, Coates GW. Mechanism-Inspired Synthesis of Poly(alkyl malonates) via Alternating Copolymerization of Epoxides and Meldrum's Acid Derivatives. J Am Chem Soc 2025; 147:801-810. [PMID: 39694538 DOI: 10.1021/jacs.4c13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Direct incorporation of malonate units into polymer backbones is a synthetic challenge. Herein, we report the alternating and controlled anionic copolymerization of epoxides and Meldrum's acid (MA) derivatives to access poly(alkyl malonates) using (N,N'-bis(salicylidene)phenylenediamine)AlCl and a tris(dialkylamino)cyclopropenium chloride cocatalyst. This unique copolymerization yields a malonate-containing repeat unit while releasing a small molecule upon MA-derivative ring-opening. Mechanistic and computational studies reveal that the nature of the small molecule released influences overall polymerization kinetics, side reaction behavior, and molecular weight control. Controlled copolymerization of MA derivatives with a range of epoxides ultimately yields a library of new poly(alkyl malonates) with diverse and tunable thermal properties.
Collapse
Affiliation(s)
- Sarah M Severson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Bai-Hao Ren
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - May Cayzer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Mary L Johnson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
2
|
Trofimchuk ES, Chernov IV, Toms RV, Rzhevskiy SA, Asachenko AF, Plutalova AV, Shandryuk GA, Chernikova EV, Beletskaya IP. Novel Simple Approach for Production of Elastic Poly(propylene carbonate). Polymers (Basel) 2024; 16:3248. [PMID: 39683993 DOI: 10.3390/polym16233248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
The simple approach of increasing the elastic properties of atactic poly(propylene carbonate) (PPC) with Mn = 71.4 kDa, ĐM = Mw/Mn = 1.86, and predominantly carbonate units (>99%) is suggested by selecting the appropriate hot pressing temperature for PPC between 110 and 140 °C. Atactic PPC is synthesized through ring-opening copolymerization of (rac)-propylene oxide and CO2 mediated by racemic salen complex of Co(III). Hot pressing PPC results in the release of a small amount of propylene carbonate (PC), sufficient to lower the glass transition temperature from 39.4 to 26.1 °C. Consequently, increasing the pressing temperature from 110 to 140 °C generates materials with a reduced modulus of elasticity (from 1.94 to 0.09 GPa), yield strength (from 38 to 2 MPa) and increased tensile elongation (from 140 to 940%). Thermomechanical analysis has shown a significant expansion in sample volume by hundreds of percent within the 80-130 °C range. PPC also displays large, reversible deformations, which can be utilized by creating shape memory materials.
Collapse
Affiliation(s)
- Elena S Trofimchuk
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, Bld. 3, 119991 Moscow, Russia
| | - Igor V Chernov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, Bld. 3, 119991 Moscow, Russia
- Faculty of Materials Science, Shenzhen MSU-BIT University, Longgang District, Shenzhen 518172, China
| | - Roman V Toms
- Institute of Fine Chemical Technologies named by M.V. Lomonosov, MIREA-Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia
| | - Sergey A Rzhevskiy
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy av., 29, 119991 Moscow, Russia
| | - Andrey F Asachenko
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy av., 29, 119991 Moscow, Russia
| | - Anna V Plutalova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, Bld. 3, 119991 Moscow, Russia
| | - George A Shandryuk
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy av., 29, 119991 Moscow, Russia
| | - Elena V Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, Bld. 3, 119991 Moscow, Russia
| | - Irina P Beletskaya
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, Bld. 3, 119991 Moscow, Russia
| |
Collapse
|
3
|
Yang GW, Xie R, Zhang YY, Xu CK, Wu GP. Evolution of Copolymers of Epoxides and CO 2: Catalysts, Monomers, Architectures, and Applications. Chem Rev 2024; 124:12305-12380. [PMID: 39454031 DOI: 10.1021/acs.chemrev.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
4
|
Jia Y, Li B, Sun Y, Hu C, Li X, Liu S, Wang X, Pang X, Chen X. Sustainable, Recyclable, and Bench-Stable Catalytic System for Synthesis of Poly(ester- b-carbonate). CHEM & BIO ENGINEERING 2024; 1:559-567. [PMID: 39974603 PMCID: PMC11835286 DOI: 10.1021/cbe.4c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 02/21/2025]
Abstract
Transferring abundant, inexpensive, and nontoxic carbon dioxide (CO2) into biodegradable polymers is one of the ideal ways to promote sustainable development. Although a great deal of preeminent researches has been reported in the last decade, including well-designed organometallic complexes, Lewis pairs, etc. The moisture- and air-sensitive nature of these extensively used catalysts preclude their use in industrial applications. Herein, we report a novel stable catalyst system of commercial zinc glutarate (ZnGA) with a supported metal for the synthesis of poly(ester-b-carbonate). The special supported microstructure facilitates efficient polymerizations via a plausible heterometal coordination mechanism. Notably, the resulted biodegradable CO2-based copolymer showed strong tensile strength (>40 MPa), improved elongation (45% versus 7%), excellent transmittance, and low water vapor permeability (WVP) (1.7 × 10-11 g m-1 s-1 Pa-1). Moreover, the supported ZnGA catalyst is recyclable, and its simple and low-cost preparation process is compatible with the manufacturing and processing methods of the existing infrastructure.
Collapse
Affiliation(s)
- Yifan Jia
- Key
Laboratory of Polymer Ecomaterials, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Bokun Li
- Key
Laboratory of Polymer Ecomaterials, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yifei Sun
- Key
Laboratory of Polymer Ecomaterials, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Chenyang Hu
- Key
Laboratory of Polymer Ecomaterials, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
| | - Xiang Li
- Key
Laboratory of Polymer Ecomaterials, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
| | - Shunjie Liu
- Key
Laboratory of Polymer Ecomaterials, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
| | - Xianhong Wang
- Key
Laboratory of Polymer Ecomaterials, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
| | - Xuan Pang
- Key
Laboratory of Polymer Ecomaterials, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xuesi Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
5
|
Haug I, Eberhardt M, Krappe U, Naumann S. A Systematic Study of Nonionic Di- and Multiborane Catalysts for the Oligomerization and Polymerization of Epoxides. Chemistry 2024; 30:e202401268. [PMID: 38785225 DOI: 10.1002/chem.202401268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Borane catalysis has emerged as a powerful technology in epoxide polymerization. Still, the structure-activity correlations for these catalysts are not fully understood to date, especially regarding compounds with nonionic backbones. Thus, in this work, 13 different borane catalysts of this respective type are described and investigated for their epoxide oligomerization and polymerization performance, using propylene oxide (PO), 1-butylene oxide (BO) and allyl glycidyl ether (AGE) as monomers. Structurally, special emphasis is put on catalysts with different linker lengths and linker flexibilities as well as the introduction of more than two borane functionalities. Importantly, this screening is conducted both under typical polymerization conditions as well as under the chain transfer agent (CTA)-rich conditions relevant for large-scale production. It is found that suitable preorganization of the borane groups, such as present in biphenyl derivatives, offers a simple route to high-performing catalysts and quantitative monomer conversion of the investigated epoxides. Furthermore, it is demonstrated that a diborane-catalyzed oligomerization can be kept active over weeks, whereby repeated addition of monomer batches (14 steps) constantly results in full conversion and well-defined oligoethers, underlining the practical potential of this method. The absence of co-initiating counter ions is suggested as an inherent advantage of nonionic catalysts.
Collapse
Affiliation(s)
- Iris Haug
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Marc Eberhardt
- Research and Development, BYK Chemie GmbH (ALTANA AG), Abelstraße 45, 46483, Wesel, Germany
| | - Udo Krappe
- Research and Development, BYK Chemie GmbH (ALTANA AG), Abelstraße 45, 46483, Wesel, Germany
| | - Stefan Naumann
- Institute of Macromolecular Chemistry, Stefan-Meier-Straße 31, 79104, Freiburg, Germany
| |
Collapse
|
6
|
Xie T, Chen SS, Li YY, Chen DF. Leveraging Electron Push-Pull Effect for Catalytic Polymerization and Degradation of a Cyclobutane Monomer System. Angew Chem Int Ed Engl 2024; 63:e202405408. [PMID: 38728168 DOI: 10.1002/anie.202405408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/12/2024]
Abstract
Ring-opening polymerization (ROP) offers a striking solution to solve problems encountered in step-growth condensation polymerization, including precise control over molecular weight, molecular weight distribution, and topology. This has inspired our interest in ROP of cycloalkanes with an ultimate goal to rethink polyolefins, which clearly poses a number of challenges. Practicality of ROP of cycloalkanes is actually limited by their low polymerizability and elusive mechanisms which arise from significantly varied ring size and non-polar C-C bonds in monomers. In this work, by using Lewis acid/Brønsted base/C(sp3)-H initiator system previously developed in our laboratory, we focus on cyclobutanes and explore the positional and electronic effects of substituents on the ring, namely electron push-pull effect, in promoting controlled polymerization to afford densely functionalized poly(cyclobutanes), as well as catalytic degradation of obtained polymers for upcycling. More importantly, experiments and DFT calculations unveil considerable population of Lewis-acid-induced thermostabilized 1,4-zwitterions, which distinguish cyclobutanes from cyclopropanes and others. All these findings would shed light on catalytic synthesis and degradation of saturated all-carbon main-chain polymers, as well as small molecule transformations of cyclobutanes.
Collapse
Affiliation(s)
- Teng Xie
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shu-Sen Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yang-Yang Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dian-Feng Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
7
|
Xie R, Wang Y, Li S, Li B, Xu J, Liu J, He Y, Yang GW, Wu GP. Insights into the Distinct Behaviors between Bifunctional and Binary Organoborane Catalysts through Terpolymerization of Epoxide, CO 2, and Anhydride. Angew Chem Int Ed Engl 2024; 63:e202404207. [PMID: 38647637 DOI: 10.1002/anie.202404207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Alkyl borane compounds-mediated polymerizations have expanded to Lewis pair polymerization, free radical polymerization, ionic ring-opening polymerization, and polyhomologation. The bifunctional organoborane catalysts that contain the Lewis acid and ammonium or phosphonium salt in one molecule have demonstrated superior catalytic performance for ring-opening polymerization of epoxides and ring-opening copolymerization of epoxides and CO2 than their two-component analogues, i.e., the blend of organoborane and ammonium or phosphonium salt. To explore the origin of the differences of the one-component and two-component organoborane catalysts, here we conducted a systematic investigation on the catalytic performances of these two kinds of organoborane catalysts via terpolymerization of epoxide, carbon dioxide and anhydride. The resultant terpolymers produced independently by bifunctional and binary organoborane catalyst exhibited distinct microstructures, where a series of gradient polyester-polycarbonate terpolymers with varying polyester content were afforded using the bifunctional catalyst, while tapering diblock terpolymers were obtained using the binary system. The bifunctional catalyst enhances the competitiveness of CO2 insertion than anhydride, which leads to the premature incorporation of CO2 into the polymer chains and ultimately results in the formation of gradient terpolymers. DFT calculations revealed the role of electrostatic interaction and charge distribution caused by intramolecular synergistic effect for bifunctional organoborane catalyst.
Collapse
Affiliation(s)
- Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, P. R. China
| | - Yuhui Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, P. R. China
| | - Shuai Li
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Bo Li
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jie Xu
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an, 710100, Shaanxi, P. R. China
| | - Jinqian Liu
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an, 710100, Shaanxi, P. R. China
| | - Yuchen He
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an, 710100, Shaanxi, P. R. China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, P. R. China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, P. R. China
| |
Collapse
|
8
|
Haug I, Reitz J, Ziane C, Buchmeiser MR, Hansmann MM, Naumann S. Mesoionic N-Heterocyclic Olefins as Initiators for the Lewis Pair Polymerization of Epoxides. Macromol Rapid Commun 2024; 45:e2300716. [PMID: 38497903 DOI: 10.1002/marc.202300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Mesoionic N-heterocyclic olefins (mNHOs) have recently emerged as a novel class of highly nucleophilic and super-basic σ-donor compounds. Making use of these properties in synthetic polymer chemistry, it is shown that a combination of a specific mNHO and a Mg-based Lewis acid (magnesium bis(hexamethyldisilazide), Mg(HMDS)2) delivers poly(propylene oxide) in quantitative yields from the polymerization of the corresponding epoxide (0.1 mol% mNHO loading). The initiation mechanism involves monomer activation by the Lewis acid and direct ring-opening of the monomer by nucleophilic attack of the mNHO, forming a zwitterionic propagating species. Modulation of the mNHO properties is thereby a direct tool to impact initiation efficiency, revealing a sterically unencumbered triazole-derivative as particularly useful. The joint application of mNHOs together with borane-type Lewis acids is also outlined, resulting in high conversions and fast polymerization kinetics. Importantly, while molar mass distributions remain relatively broad, indicating faster propagation than initiation, the overall molar masses are significantly lower than found in the case of regular NHOs, underlining the increased nucleophilicity and ensuing improved initiation efficiency of mNHOs.
Collapse
Affiliation(s)
- Iris Haug
- University of Stuttgart, Institute of Polymer Chemistry, 70569, Stuttgart, Germany
| | - Justus Reitz
- TU Dortmund, Faculty for Chemistry and Chemical Biology, 44227, Dortmund, Germany
| | - Célia Ziane
- University of Stuttgart, Institute of Polymer Chemistry, 70569, Stuttgart, Germany
| | - Michael R Buchmeiser
- University of Stuttgart, Institute of Polymer Chemistry, 70569, Stuttgart, Germany
| | - Max M Hansmann
- TU Dortmund, Faculty for Chemistry and Chemical Biology, 44227, Dortmund, Germany
| | - Stefan Naumann
- University of Stuttgart, Institute of Polymer Chemistry, 70569, Stuttgart, Germany
| |
Collapse
|
9
|
Wang B, Cao X, Wang L, Meng X, Wang Y, Sun W. Co(II)-N4 Catalysts for the Coupling of CO 2 with Epoxides into Cyclic Carbonates: Catalytic Activity, Computational and Kinetic Studies. Inorg Chem 2024; 63:9156-9163. [PMID: 38713454 DOI: 10.1021/acs.inorgchem.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this study, we synthesized and characterized a series of cobalt(II) complexes bearing linear tetradentate N4 ligands. These Co(II)-N4 complexes proved to be efficient catalysts for the cycloaddition reaction between carbon dioxide and epoxides even at room temperature and 1 bar pressure of carbon dioxide without the need for solvents or cocatalysts. Furthermore, when combined with (triphenylphosphoranylidene)ammonium chloride (PPNCl) as a cocatalyst, the Co-N4 catalysts exhibited an impressive turnover frequency of up to 41,000 h-1 for coupling of epichlorohydrin/CO2. These Co(II)-N4 catalysts were found to have excellent stability and reusability, retaining their catalytic activity after they were recycled seven times. Density functional theory (DFT) calculations provided a comprehensive mechanism for the cycloaddition reaction, indicating that the rate-determining step is the epoxide ring opening, in both the presence and absence of PPNCl. Further kinetic studies allow us to determine the activation parameters (ΔH‡, ΔS‡, and ΔG‡ at 25 °C) of the coupling reaction using the Eyring equation. The Gibbs free activation energy obtained from the kinetic studies was in close agreement with that of the DFT calculations. The substituent effect on the cycloaddition reaction of CO2 with various substituted styrene oxides was also examined for the first time.
Collapse
Affiliation(s)
- Bingyang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xuanyu Cao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Lixian Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiangyun Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
10
|
Eisenhardt KS, Fiorentini F, Lindeboom W, Williams CK. Quantifying CO 2 Insertion Equilibria for Low-Pressure Propene Oxide and Carbon Dioxide Ring Opening Copolymerization Catalysts. J Am Chem Soc 2024; 146:10451-10464. [PMID: 38589774 PMCID: PMC11027146 DOI: 10.1021/jacs.3c13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
While outstanding catalysts are known for the ring-opening copolymerization (ROCOP) of CO2 and propene oxide (PO), few are reported at low CO2 pressure. Here, a new series of Co(III)M(I) heterodinuclear catalysts are compared. The Co(III)K(I) complex shows the best activity (TOF = 1728 h-1) and selectivity (>90% polymer, >99% CO2) and is highly effective at low pressures (<10 bar). CO2 insertion is a prerate determining chemical equilibrium step. At low pressures, the concentration of the active catalyst depends on CO2 pressure; above 12 bar, its concentration is saturated, and rates are independent of pressure, allowing the equilibrium constant to be quantified for the first time (Keq = 1.27 M-1). A unified rate law, applicable under all operating conditions, is presented. As proof of potential, published data for leading literature catalysts are reinterpreted and the CO2 equilibrium constants estimated, showing that this unified rate law applies to other systems.
Collapse
Affiliation(s)
- Katharina
H. S. Eisenhardt
- Department Chemistry, University
of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Francesca Fiorentini
- Department Chemistry, University
of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Wouter Lindeboom
- Department Chemistry, University
of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Charlotte K. Williams
- Department Chemistry, University
of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
11
|
Zhang YY, Yang GW, Lu C, Zhu XF, Wang Y, Wu GP. Organoboron-mediated polymerizations. Chem Soc Rev 2024; 53:3384-3456. [PMID: 38411207 DOI: 10.1039/d3cs00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The scientific community has witnessed extensive developments and applications of organoboron compounds as synthetic elements and metal-free catalysts for the construction of small molecules, macromolecules, and functional materials over the last two decades. This review highlights the achievements of organoboron-mediated polymerizations in the past several decades alongside the mechanisms underlying these transformations from the standpoint of the polymerization mode. Emphasis is placed on free radical polymerization, Lewis pair polymerization, ionic (cationic and anionic) polymerization, and polyhomologation. Herein, alkylborane/O2 initiating systems mediate the radical polymerization under ambient conditions in a controlled/living manner by careful optimization of the alkylborane structure or additives; when combined with Lewis bases, the selected organoboron compounds can mediate the Lewis pair polymerization of polar monomers; the bicomponent organoboron-based Lewis pairs and bifunctional organoboron-onium catalysts catalyze ring opening (co)polymerization of cyclic monomers (with heteroallenes, such as epoxides, CO2, CO, COS, CS2, episulfides, anhydrides, and isocyanates) with well-defined structures and high reactivities; and organoboranes initiate the polyhomologation of sulfur ylides and arsonium ylides providing functional polyethylene with different topologies. The topological structures of the produced polymers via these organoboron-mediated polymerizations are also presented in this review mainly including linear polymers, block copolymers, cyclic polymers, and graft polymers. We hope the summary and understanding of how organoboron compounds mediate polymerizations can inspire chemists to apply these principles in the design of more advanced organoboron compounds, which may be beneficial for the polymer chemistry community and organometallics/organocatalysis community.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chenjie Lu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yuhui Wang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
12
|
Seo YH, Lee MR, Lee DY, Park JH, Seo HJ, Park SU, Kim H, Kim SJ, Lee BY. Preparation of Well-Defined Double-Metal Cyanide Catalysts for Propylene Oxide Polymerization and CO 2 Copolymerization. Inorg Chem 2024; 63:1414-1426. [PMID: 38166391 DOI: 10.1021/acs.inorgchem.3c03957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Reevaluating the composition of the double metal cyanide catalyst (DMC) as a salt of (NC)6Co3- anions with 1:1 Zn2+/(X)Zn+ cations (X = Cl, RO, AcO), we prepared a series of well-defined DMCs, [ClZn+][Zn2+][(NC)6Co3-][ROH], [(RO)Zn+][Zn2+][(NC)6Co3-], [(AcO)Zn+][Zn2+][(NC)6Co3-], [(RO)Zn+]p[ClZn+](1-p)[Zn2+][(NC)6Co3-], [(AcO)Zn+]p[(tBuO)Zn+]q[Zn2+][(NC)6Co3-], and [(AcO)Zn+]p[(tBuO)Zn+]q[ClZn+]r[Zn2+][(NC)6Co3-]. The structure of [(MeOC3H6O)Zn+][Zn2+][(NC)6Co3-] was precisely determined at the atomic level through Rietveld refinement of the synchrotron X-ray powder diffraction data. By evaluating the catalyst's performance in both propylene oxide (PO) polymerization and PO/CO2 copolymerization, a correlation between structure and performance was established on various aspects including activity, dispersity, unsaturation level, and carbonate fraction in the resulting polyols. Ultimately, our study identified highly efficient catalysts that outperformed the state-of-the-art benchmark DMC not only in PO polymerization [DMC-(OAc/OtBu/Cl)(0.59/0.38/0.15)] but also in PO/CO2 copolymerization [DMC-(OAc/OtBu)(0.95/0.08)].
Collapse
Affiliation(s)
- Yeong Hyun Seo
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Mi Ryu Lee
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Da-Young Lee
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jun Hyeong Park
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hyeon Jeong Seo
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Sang Uk Park
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hyunjin Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Seung-Joo Kim
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
13
|
Abstract
Incorporating sulfur (S) atoms into polymer main chains endows these materials with many attractive features, including a high refractive index, mechanical properties, electrochemical properties, and adhesive ability to heavy metal ions. The copolymerization involving S-containing monomers constitutes a facile method for effectively constructing S-containing polymers with diverse structures, readily tunable sequences, and topological structures. In this review, we describe the recent advances in the synthesis of S-containing polymers via copolymerization or multicomponent polymerization techniques concerning a variety of S-containing monomers, such as dithiols, carbon disulfide, carbonyl sulfide, cyclic thioanhydrides, episulfides and elemental sulfur (S8). Particularly, significant focus is paid to precise control of the main-chain sequence, stereochemistry, and topological structure for achieving high-value applications.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
14
|
Bilanin C, Escamilla P, Ferrando-Soria J, Leyva-Pérez A, Armentano D, Pardo E. Selective cycloaddition of ethylene oxide to CO 2 within the confined space of an amino acid-based metal-organic framework. Dalton Trans 2023; 52:18018-18026. [PMID: 37986612 PMCID: PMC11003397 DOI: 10.1039/d3dt01984e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Host-guest chemistry within the confined space of metal-organic frameworks (MOFs) offers an almost unlimited myriad of possibilities, hardly accessible with other materials. Here we report the synthesis and physical characterization, with atomic resolution by single-crystal X-ray diffraction, of a novel water-stable tridimensional MOF, derived from the amino acid S-methyl-L-cysteine, {SrZn6[(S,S)-Mecysmox]3(OH)2(H2O)}·9H2O (1), and its application as a robust and efficient solid catalyst for the cycloaddition reaction of ethylene/propylene oxide with CO2 to afford ethylene/propylene carbonate with yields of up to 95% and selectivity of up to 100%. These results nicely illustrate the great potential of MOFs to be game changers for the selective synthesis of industrially relevant products, representing a powerful alternative to the current heterogeneous catalysts.
Collapse
Affiliation(s)
- Cristina Bilanin
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Paula Escamilla
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| | - Jesús Ferrando-Soria
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Cosenza, Italy
| | - Emilio Pardo
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| |
Collapse
|
15
|
Xu CK, Yang GW, Lu C, Wu GP. A Binary Silicon-Centered Organoboron Catalyst with Superior Performance to That of Its Bifunctional Analogue. Angew Chem Int Ed Engl 2023; 62:e202312376. [PMID: 37847123 DOI: 10.1002/anie.202312376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
This work reported that a silicon-centered alkyl borane/ammonium salt binary (two-component) catalyst exhibits much higher activity than its bifunctional analogue (one-component) for the ring-opening polymerization of propylene oxide, showing 7.3 times the activity of its bifunctional analogue at a low catalyst loading of 0.01 mol %, and even 15.3 times the activity at an extremely low loading of 0.002 mol %. By using 19 F NMR spectroscopy, control experiments, and theoretical calculation we discovered that the central silicon atom displays appropriate electron density and a larger intramolecular cavity, which is useful to co-activate the monomer and to deliver propagating chains, thus leading to a better intramolecular synergic effect than its bifunctional analogue. A unique two-pathway initiation mode was proposed to explain the unusual high activity of the binary catalytic system. This study breaks the traditional impression of the binary Lewis acid/nucleophilic catalyst with poor activity because of the increase in entropy.
Collapse
Affiliation(s)
- Cheng-Kai Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Chenjie Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| |
Collapse
|
16
|
Luo Y, Chen F, Zhang H, Liu J, Liu N. Catalysis Conversion of Carbon Dioxide and Epoxides by Tetrahydroxydiboron To Prepare Cyclic Carbonates. J Org Chem 2023; 88:15717-15725. [PMID: 37885137 DOI: 10.1021/acs.joc.3c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A binary catalytic system comprising tetrahydroxydiboron and tetrabutylammonium iodide (TBAI) was used to catalyze the cycloaddition of carbon dioxide (CO2) with epoxides. The tetrahydroxydiboron catalyst (9 mol %), in combination with the use of TBAI (13.5 mol %) as a nucleophile, is capable of catalyzing the cycloaddition of CO2 with various terminal epoxides under room temperature and a CO2 balloon. In addition, a range of internal epoxides, including sterically hindered bicyclic epoxides and vegetable oil-based epoxides, were suitable for the catalytic system, affording a series of cyclic carbonates in moderate to high yields. The tetrahydroxydiboron/TBAI cooperative catalytic mechanism was elucidated using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and electrospray ionization-high-resolution mass spectrometry. Results reveal that the tetrahydroxydiboron catalyst exhibits dual effects, activating both CO2 and epoxides; initially, it underwent the insertion of CO2 to form a boron-CO2 adduct and subsequently activated the epoxides through interaction of the B-O bond.
Collapse
Affiliation(s)
- Yuhui Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| |
Collapse
|
17
|
Sirin-Sariaslan A, Naumann S. Sterically demanding binaphthol-based chiral diboranes for metal-free and isotactic poly(propylene oxide). Chem Commun (Camb) 2023; 59:11069-11072. [PMID: 37644875 DOI: 10.1039/d3cc02889e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chiral diborane polymerization catalysts with 3,3'-disubstituted binaphthol-backbones are presented. These compounds deliver isotactic poly(propylene oxide) from racemic monomer with isotactoc diad (m) and triad (mm) placements of up to 92% and >80%, respectively. The resulting polyether is well-defined, of high molar mass and semi-crystalline.
Collapse
Affiliation(s)
- Ayla Sirin-Sariaslan
- Institute of Polymer Chemistry, University of Stuttgart, Stuttgart 70569, Germany.
| | - Stefan Naumann
- Institute of Polymer Chemistry, University of Stuttgart, Stuttgart 70569, Germany.
| |
Collapse
|
18
|
Lindeboom W, Deacy AC, Phanopoulos A, Buchard A, Williams CK. Correlating Metal Redox Potentials to Co(III)K(I) Catalyst Performances in Carbon Dioxide and Propene Oxide Ring Opening Copolymerization. Angew Chem Int Ed Engl 2023; 62:e202308378. [PMID: 37409487 PMCID: PMC10952574 DOI: 10.1002/anie.202308378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Carbon dioxide copolymerization is a front-runner CO2 utilization strategy but its viability depends on improving the catalysis. So far, catalyst structure-performance correlations have not been straightforward, limiting the ability to predict how to improve both catalytic activity and selectivity. Here, a simple measure of a catalyst ground-state parameter, metal reduction potential, directly correlates with both polymerization activity and selectivity. It is applied to compare performances of 6 new heterodinuclear Co(III)K(I) catalysts for propene oxide (PO)/CO2 ring opening copolymerization (ROCOP) producing poly(propene carbonate) (PPC). The best catalyst shows an excellent turnover frequency of 389 h-1 and high PPC selectivity of >99 % (50 °C, 20 bar, 0.025 mol% catalyst). As demonstration of its utility, neither DFT calculations nor ligand Hammett parameter analyses are viable predictors. It is proposed that the cobalt redox potential informs upon the active site electron density with a more electron rich cobalt centre showing better performances. The method may be widely applicable and is recommended to guide future catalyst discovery for other (co)polymerizations and carbon dioxide utilizations.
Collapse
Affiliation(s)
- Wouter Lindeboom
- Department ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Arron C. Deacy
- Department ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Andreas Phanopoulos
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 OBZUK
| | - Antoine Buchard
- Department of ChemistryInstitute for SustainabilityUniversity of BathBathBA2 7AYUK
| | - Charlotte K. Williams
- Department ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
19
|
Fiorentini F, Diment WT, Deacy AC, Kerr RWF, Faulkner S, Williams CK. Understanding catalytic synergy in dinuclear polymerization catalysts for sustainable polymers. Nat Commun 2023; 14:4783. [PMID: 37553344 PMCID: PMC10409799 DOI: 10.1038/s41467-023-40284-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Understanding the chemistry underpinning intermetallic synergy and the discovery of generally applicable structure-performances relationships are major challenges in catalysis. Additionally, high-performance catalysts using earth-abundant, non-toxic and inexpensive elements must be prioritised. Here, a series of heterodinuclear catalysts of the form Co(III)M(I/II), where M(I/II) = Na(I), K(I), Ca(II), Sr(II), Ba(II) are evaluated for three different polymerizations, by assessment of rate constants, turn over frequencies, polymer selectivity and control. This allows for comparisons of performances both within and between catalysts containing Group I and II metals for CO2/propene oxide ring-opening copolymerization (ROCOP), propene oxide/phthalic anhydride ROCOP and lactide ring-opening polymerization (ROP). The data reveal new structure-performance correlations that apply across all the different polymerizations: catalysts featuring s-block metals of lower Lewis acidity show higher rates and selectivity. The epoxide/heterocumulene ROCOPs both show exponential activity increases (vs. Lewis acidity, measured by the pKa of [M(OH2)m]n+), whilst the lactide ROP activity and CO2/epoxide selectivity show linear increases. Such clear structure-activity/selectivity correlations are very unusual, yet are fully rationalised by the polymerization mechanisms and the chemistry of the catalytic intermediates. The general applicability across three different polymerizations is significant for future exploitation of catalytic synergy and provides a framework to improve other catalysts.
Collapse
Affiliation(s)
| | - Wilfred T Diment
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Arron C Deacy
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Ryan W F Kerr
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | | |
Collapse
|
20
|
Fornacon-Wood C, Manjunatha BR, Stühler MR, Gallizioli C, Müller C, Pröhm P, Plajer AJ. Precise cooperative sulfur placement leads to semi-crystallinity and selective depolymerisability in CS 2/oxetane copolymers. Nat Commun 2023; 14:4525. [PMID: 37500621 PMCID: PMC10374558 DOI: 10.1038/s41467-023-39951-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
CS2 promises easy access to degradable sulfur-rich polymers and insights into how main-group derivatisation affects polymer formation and properties, though its ring-opening copolymerisation is plagued by low linkage selectivity and small-molecule by-products. We demonstrate that a cooperative Cr(III)/K catalyst selectively delivers poly(dithiocarbonates) from CS2 and oxetanes while state-of-the-art strategies produce linkage scrambled polymers and heterocyclic by-products. The formal introduction of sulfur centres into the parent polycarbonates results in a net shift of the polymerisation equilibrium towards, and therefore facilitating, depolymerisation. During copolymerisation however, the catalyst enables near quantitative generation of the metastable polymers in high sequence selectivity by limiting the lifetime of alkoxide intermediates. Furthermore, linkage selectivity is key to obtain semi-crystalline materials that can be moulded into self-standing objects as well as to enable chemoselective depolymerisation into cyclic dithiocarbonates which can themselves serve as monomers in ring-opening polymerisation. Our report demonstrates the potential of cooperative catalysis to produce previously inaccessible main-group rich materials with beneficial chemical and physical properties.
Collapse
Affiliation(s)
- Christoph Fornacon-Wood
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Bhargav R Manjunatha
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Merlin R Stühler
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Cesare Gallizioli
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Carsten Müller
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Patrick Pröhm
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Alex J Plajer
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.
| |
Collapse
|
21
|
Zhang L, Cao Z. Formation and reactivity of NHC-boryl radicals: insight into substituent effect from theoretical calculations. Phys Chem Chem Phys 2023; 25:12072-12080. [PMID: 37093024 DOI: 10.1039/d3cp01037f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Substituent modification effects of N-heterocyclic carbene (NHC) boranes on their hydrogen atom abstraction (HAA) reactions and the chemical reactivities of corresponding NHC-boryl radicals have been investigated by density functional theory calculations. The substituent modification of NHC-boranes may notably affect the HAA reaction, both kinetically and thermodynamically, and shows remarkable substitution position dependence. The multi-site-modification of NHC-boranes is proved to be more effective for reduction of the B-H bond dissociation energy (BDE), promotion of the HAA reaction, and the reactivity regulation of their corresponding NHC-boryl radicals. Computational screening reveals that the spin density and the charge population of the radical boron center have good correlation with the B-H BDEs of NHC-boranes and the chemical reactivities of NHC-boryl radicals, and they can be considered as property and reactivity descriptors of these boron-based systems. The present results and established scaling relationships are beneficial to promote the advancement of design of NHC-boryl radical catalysis.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China.
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China.
| |
Collapse
|
22
|
Xu J, Zhang P, Yuan Y, Hadjichristidis N. Elucidation of the Alternating Copolymerization Mechanism of Epoxides or Aziridines with Cyclic Anhydrides in the Presence of Halide Salts. Angew Chem Int Ed Engl 2023; 62:e202218891. [PMID: 36734167 DOI: 10.1002/anie.202218891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Organic halide salts in combination with metal or organic compound are the most common and essential catalysts in ring-opening copolymerizations (ROCOP). However, the role of organic halide salts was neglected. Here, we have uncovered the complex behavior of organic halides in ROCOP of epoxides or aziridine with cyclic anhydride. Coordination of the chain-ends to cations, electron-withdrawing effect, leaving ability of halide atoms, chain-end basicity/nucleophilicity, and terminal steric hindrance cause three types of side reactions: single-site transesterification, substitution, and elimination. Understanding the complex functions of organic halide salts in ROCOP led us to develop highly active and selective aminocyclopropenium chlorides as catalysts/initiators. Adjustable H-bonding interactions of aminocyclopropenium with propagating anions and epoxides create chain-end coordination process that generate highly reactive carboxylate and highly selective alkoxide chain-ends.
Collapse
Affiliation(s)
- Jiaxi Xu
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, Thuwal, 23955, Saudi Arabia
| | - Pengfei Zhang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, Thuwal, 23955, Saudi Arabia
| | - Youyou Yuan
- King Abdullah University of Science and Technology (KAUST), Imaging and Characterization Core Lab, Thuwal, 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
23
|
Zhao M, Zhu S, Zhang G, Wang Y, Liao Y, Xu J, Zhou X, Xie X. One-Step Synthesis of Linear and Hyperbranched CO 2-Based Block Copolymers via Organocatalytic Switchable Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Maoji Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Shuaishuai Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Guochao Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yong Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yonggui Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, People’s Republic of China
| | - Xingping Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Xiaolin Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
24
|
Liu Y, Lu XB. Current Challenges and Perspectives in CO 2-Based Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Li XL, Ma K, Xu F, Xu TQ. Advances in the Synthesis of Chemically Recyclable Polymers. Chem Asian J 2023; 18:e202201167. [PMID: 36623942 DOI: 10.1002/asia.202201167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The development of modern society is closely related to polymer materials. However, the accumulation of polymer materials and their evolution in the environment causes not only serious environmental problems, but also waste of resources. Although physical processing can be used to reuse polymers, the properties of the resulting polymers are significantly degraded. Chemically recyclable polymers, a type of polymer that degrades into monomers, can be an effective solution to the degradation of polymer properties caused by physical recycling of polymers. The ideal chemical recycling of polymers, i. e., quantitative conversion of the polymer to monomers at low energy consumption and repolymerization of the formed monomers into polymers with comparable properties to the original, is an attractive research goal. In recent years, significant progress has been made in the design of recyclable polymers, enabling the regulation of the "polymerization-depolymerization" equilibrium and closed-loop recycling under mild conditions. This review will focus on the following aspects of closed-loop recycling of poly(sulfur) esters, polycarbonates, polyacetals, polyolefins, and poly(disulfide) polymer, illustrate the challenges in this area, and provide an outlook on future directions.
Collapse
Affiliation(s)
- Xin-Lei Li
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Ma
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tie-Qi Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
26
|
Chen C, Gnanou Y, Feng X. Ultra-Productive Upcycling CO 2 into Polycarbonate Polyols via Borinane-Based Bifunctional Organocatalysts. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chao Chen
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
27
|
Wang XW, Hui JW, Li YT, Gu YR, Li ZB. Facile Synthesis of Polycarbonate Diol via Copolymerization of CO2 and Cyclohexene Oxide Catalysed by a Combination of One-Component Phosphonium Borane Lewis Pair and Water. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
High-Performance Biodegradable PBAT/PPC Composite Film Through Reactive Compatibilizer. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-023-2900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Zhang C, Geng X, Zhang X, Gnanou Y, Feng X. Alkyl Borane-Mediated Metal-Free Ring-Opening (Co)Polymerizations of Oxygenated Monomers. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Li H, Tang Y, Li Z, Li Y, Chen B, Shen C, Huang Z, Dong K. Cobalt-catalyzed carbonylation of epoxides to β-lactones promoted by gallium porphyrin. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Chen C, Gnanou Y, Feng X. Borinane Boosted Bifunctional Organocatalysts for Ultrafast Ring-Opening Polymerization of Cyclic Ethers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Chao Chen
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
32
|
Sengoden M, Bhat GA, Darensbourg DJ. Bifunctional organoboron-phosphonium catalysts for coupling reactions of CO 2 and epoxides. RSC Adv 2022; 12:32440-32447. [PMID: 36425720 PMCID: PMC9661183 DOI: 10.1039/d2ra06358a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 08/15/2023] Open
Abstract
Recent years have witnessed intensive research activity in exploring novel metal-free organocatalysts for catalyzing the coupling reactions of CO2 and epoxides to afford cyclic or polymeric carbonates. In this direction, herein we report a series of boron-phosphonium organocatalysts for catalyzing the coupling reactions of CO2 and epoxides. These organophosphonium catalysts were synthesized in high yields by following a two step protocol involving Menschutkin and hydroboration reactions in succession. The purity of these organocatalysts was confirmed by spectroscopic techniques like 1H, 13C and 31P NMR, and molecular structures were confirmed by single crystal X-ray diffraction studies. We have also demonstrated that these bifunctional organoboron-phosphonium catalysts are comparatively much less hygroscopic compared to the analogus ammonium catalysts. These phosphonium organocatalysts were shown to catalyze the copolymerization of CO2 and cyclohexene oxide or vinyl cyclohexene oxide to provide polycarbonates with >99% polymer selectivity and carbonate linkages. The coupling reactions of aliphatic epoxides such as PO, having lower energy barrier to cycloaddition formation compared to alicyclic epoxides, preferentially provided cyclic carbonates in good yields. It was demonstrated that these organoboron-phosphonium catalysts are sensitive to chain transfer agents like water, and hence are deactivated in its presence. This is opposite to what is observed for metal based catalysts for these transformations, where water serves as a precursor to the chain-transfer agent diols.
Collapse
Affiliation(s)
- Mani Sengoden
- Department of Chemistry, Texas A&M University, College Station Texas 77843 USA
| | - Gulzar A Bhat
- Centre for Interdiciplinary Research and Innovations, University of Kashmir Srinagar Jammu and Kashmir 190006 India
| | | |
Collapse
|
33
|
Zhang YY, Yang GW, Xie R, Zhu XF, Wu GP. Sequence-Reversible Construction of Oxygen-Rich Block Copolymers from Epoxide Mixtures by Organoboron Catalysts. J Am Chem Soc 2022; 144:19896-19909. [PMID: 36256447 DOI: 10.1021/jacs.2c07857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Switchable catalysis, in combination with epoxide-involved ring-opening (co)polymerization, is a powerful technique that can be used to synthesize various oxygen-rich block copolymers. Despite intense research in this field, the sequence-controlled polymerization from epoxide congeners has never been realized due to their similar ring-strain which exerts a decisive influence on the reaction process. Recently, quaternary ammonium (or phosphonium)-containing bifunctional organoboron catalysts have been developed by our group, showing high efficiency for various epoxide conversions. Herein, we, for the first time, report an operationally simple pathway to access well-defined polyether-block-polycarbonate copolymers from mixtures of epoxides by switchable catalysis, which was enabled through thermodynamically and kinetically preferential ring-opening of terminal epoxides or internal epoxides under different atmospheres (CO2 or N2) using one representative bifunctional organoboron catalyst. This strategy shows a broad substrate scope as it is suitable for various combinations of terminal epoxides and internal epoxides, delivering corresponding well-defined block copolymers. NMR, MALDI-TOF, and gel permeation chromatography analyses confirmed the successful construction of polyether-block-polycarbonate copolymers. Kinetic studies and density functional theory calculations elucidate the reversible selectivity between different epoxides in the presence/absence of CO2. Moreover, by replacing comonomer CO2 with cyclic anhydride, the well-defined polyether-block-polyester copolymers can also be synthesized. This work provides a rare example of sequence-controlled polymerization from epoxide mixtures, broadening the arsenal of switchable catalysis that can produce oxygen-rich polymers in a controlled manner.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Qi H, Xie R, Yang GW, Zhang YY, Xu CK, Wang Y, Wu GP. Rational Optimization of Bifunctional Organoboron Catalysts for Versatile Polyethers via Ring-Opening Polymerization of Epoxides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Qi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Cheng-Kai Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yuhui Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
35
|
Schaefer J, Zhou H, Lee E, Lambic NS, Culcu G, Holtcamp MW, Rix FC, Lin TP. Tertiary and Quaternary Phosphonium Borane Bifunctional Catalysts for CO 2/Epoxide Copolymerization: A Mechanistic Investigation Using In Situ Raman Spectroscopy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan Schaefer
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Hua Zhou
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Eryn Lee
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Nikola S. Lambic
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Gursu Culcu
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Matthew W. Holtcamp
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Francis C. Rix
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| | - Tzu-Pin Lin
- ExxonMobil Technology and Engineering Company, Baytown, Texas77520, United States
| |
Collapse
|
36
|
Wei P, Bhat GA, Cipriani CE, Mohammad H, Schoonover K, Pentzer EB, Darensbourg DJ. 3D Printed CO
2
‐Based Triblock Copolymers and Post‐Printing Modification. Angew Chem Int Ed Engl 2022; 61:e202208355. [DOI: 10.1002/anie.202208355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Peiran Wei
- Soft Matter Facility Texas A&M University 1313 Research Parkway College Station, TX 77845 USA
| | - Gulzar A. Bhat
- Centre for Interdisciplinary Research and Innovations University of Kashmir Srinagar, Jammu and Kashmir 190006 India
| | - Ciera E. Cipriani
- Department of Materials Science and Engineering Texas A&M University 3003 TAMU College Station, TX 77843 USA
| | - Hamza Mohammad
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
| | - Krista Schoonover
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
| | - Emily B. Pentzer
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
- Department of Materials Science and Engineering Texas A&M University 3003 TAMU College Station, TX 77843 USA
| | - Donald J. Darensbourg
- Department of Chemistry Texas A&M University 3255 TAMU College Station, TX 77843 USA
| |
Collapse
|
37
|
Lidston CAL, Severson SM, Abel BA, Coates GW. Multifunctional Catalysts for Ring-Opening Copolymerizations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Claire A. L. Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Sarah M. Severson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Brooks A. Abel
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
38
|
Yu Y, Gao B, Liu Y, Lu XB. Efficient and Selective Chemical Recycling of CO 2 -Based Alicyclic Polycarbonates via Catalytic Pyrolysis. Angew Chem Int Ed Engl 2022; 61:e202204492. [PMID: 35770495 DOI: 10.1002/anie.202204492] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 01/22/2023]
Abstract
Chemical recycling of polymers to their constituent monomers is the foremost challenge in building a sustainable circular plastics economy. Here, we report a strategy for highly efficient depolymerization of various CO2 -based alicyclic polycarbonates to epoxide monomers in solvent-free conditions by a simple CrIII -Salen complex mediated catalytic pyrolysis process. The chemical recycling of the widely studied poly(cyclohexene carbonate) exhibits excellent reactivity (TOF up to 3000 h-1 , 0.1 mol % catalyst loading) and high epoxide monomer selectivity (>99 %). Mechanistic investigation reveals that the process proceeds in a sequential fashion via a trans-carbonate intermediate.
Collapse
Affiliation(s)
- Yan Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Bang Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
39
|
Bang S, Jang JY, Ko YJ, Lee SM, Kim HJ, Son SU. Hydroboration of Hollow Microporous Organic Polymers: A Promising Postsynthetic Modification Method for Functional Materials. ACS Macro Lett 2022; 11:1034-1040. [DOI: 10.1021/acsmacrolett.2c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sohee Bang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - June Young Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, NCIRF, Seoul National University, Seoul 08826, Korea
| | | | - Hae Jin Kim
- Korea Basic Science Institute, Daejeon 34133, Korea
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
40
|
Wei P, Bhat GA, Cipriani CE, Mohammad H, Schoonover K, Pentzer EB, Darensbourg DJ. 3D Printed CO2‐Based Triblock Copolymers and Post‐Printing Modification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peiran Wei
- Texas A&M University College Station: Texas A&M University Soft Matter Facility UNITED STATES
| | - Gulzar A. Bhat
- University of Kashmir Centre for Interdisciplinary Research and Innovations INDIA
| | - Ciera E. Cipriani
- Texas A&M University College Station: Texas A&M University Department of Materials Science and Engineering UNITED STATES
| | - Hamza Mohammad
- Texas A&M University College Station: Texas A&M University Department of Chemistry, UNITED STATES
| | - Krista Schoonover
- Texas A&M University College Station: Texas A&M University Department of Chemistry UNITED STATES
| | - Emily B. Pentzer
- Texas A&M University College Station: Texas A&M University Department of Chemistry and Department of Materials Science and Engineering UNITED STATES
| | | |
Collapse
|
41
|
Zhang YY, Lu C, Yang GW, Xie R, Fang YB, Wang Y, Wu GP. Mechanism-Inspired Upgradation of Phosphonium-Containing Organoboron Catalysts for Epoxide-Involved Copolymerization and Homopolymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chenjie Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu-Bo Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuhui Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
42
|
Zhuo C, Cao H, You H, Liu S, Wang X, Wang F. Two-in-One: Photothermal Ring-Opening Copolymerization of CO 2 and Epoxides. ACS Macro Lett 2022; 11:941-947. [PMID: 35815849 DOI: 10.1021/acsmacrolett.2c00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A two-in-one strategy for the photothermal ring-opening copolymerization (PROCOP) of carbon dioxide (CO2) and epoxides was developed by using visible light as an external stimulus. This strategy bridges two processes involving light-to-heat conversion and the alternating copolymerization of CO2 and epoxides. As a proof-of-concept, aluminum porphyrin complexes were explored as photothermal catalysts to afford the copolymerization of CO2/epoxides under a 635 nm laser irradiation. We demonstrated photothermally enhanced polymerization activity, in which the polymerization initiated by the photothermal effect showed a much higher turnover frequency than in the thermal system. Moreover, the PROCOP demonstrated a spatial-temporal control by a light on/off switch. This study provides a fascinating photothermal strategy not only for the CO2/epoxides copolymerization but also for the ring-opening (co)polymerization of other cyclic monomers.
Collapse
Affiliation(s)
- Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Huai You
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
43
|
Liang J, Ye S, Wang S, Wang S, Han D, Huang S, Huang Z, Liu W, Xiao M, Sun L, Meng Y. Biodegradable Copolymers from CO 2, Epoxides, and Anhydrides Catalyzed by Organoborane/Tertiary Amine Pairs: High Selectivity and Productivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaxin Liang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuxian Ye
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Siyuan Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Liu
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
44
|
Wang X, Hui J, Shi M, Kou X, Li X, Zhong R, Li Z. Exploration of the Synergistic Effect in a One-Component Lewis Pair System: Serving as a Dual Initiator and Catalyst in the Ring-Opening Polymerization of Epoxides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaowu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Jiwen Hui
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Minmin Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Xinhui Kou
- Analyses and Testing Center, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Xiaoxiao Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ronglin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
45
|
Yu Y, Gao B, Liu Y, Lu XB. Efficient and Selective Chemical Recycling of CO2‐based Alicyclic Polycarbonates via Catalytic Pyrolysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Yu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Bang Gao
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Ye Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Bing Lu
- State Key Laboratory of fine chemicals,Dalian University of Technology State Key Laboratory of fine chemicals, 2 Linggong road 116024 Dalian CHINA
| |
Collapse
|
46
|
Yao Q, Wang Y, Zhao B, Zhu X, Luo Y, Yuan D, Yao Y. Syntheses of Heterometallic Neodymium-Zinc Complexes and Their Performance in the Copolymerization of CO 2 and Cyclohexene Oxide. Inorg Chem 2022; 61:10373-10382. [PMID: 35770739 DOI: 10.1021/acs.inorgchem.2c00920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of Nd-Zn heterometallic complexes bearing o-phenylenediamine-bridged tris(phenolato) ligands (L) were synthesized and characterized. By tuning the backbones of ancillary tris(phenolato) ligands and initiating benzyloxy groups, a Nd-Zn heterometallic complex 12 (ClLNdZnOBnCF3) was found to be highly active for the copolymerization of CO2 and cyclohexene oxide (CHO) to produce perfect alternating poly(cyclohexene carbonate) with a high turnover frequency up to 5640 h-1 under the polymerization of 90 °C and 20 bar CO2 pressure. The kinetics study showed that CO2/CHO copolymerization catalyzed by 12 was the first order dependence of 12 and CHO concentration and the zero-order dependence of CO2 pressure. The reaction of 12 with CO2 generated a carbonate-coordinated [NdZnNd] trinuclear complex 13, which was believed to be the key intermediate to initiate CO2/CHO copolymerization. On the basis of some experiments, a plausible synergistic polymerization mechanism was proposed.
Collapse
Affiliation(s)
- Quanyou Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Yaorong Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Bei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Xuehua Zhu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo 315211, People's Republic of China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
47
|
Lu XB, Ren BH. Partners in Epoxide Copolymerization Catalysis: Approach to High Activity and Selectivity. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Kang Y, Wang B, Nan R, Li Y, Zhu Z, Xiao XQ. Cyclic Carbonate Synthesis from Epoxides and CO 2 Catalyzed by Aluminum-Salen Complexes Bearing a nido-C 2B 9 Carborane Ligand. Inorg Chem 2022; 61:8806-8814. [PMID: 35653698 DOI: 10.1021/acs.inorgchem.2c00797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The active and well-designed Schiff base ligands are considered "privileged ligands". The so-called salen ligands, i.e., the tetradentate [O, N, N, O] bis-Schiff base ligands, have also found broad applications in many homogeneous catalytic reactions. Modification of the salen ligands has concentrated on altering the substituents in the phenolate rings and variations in the diamine backbones. Herein, o-carborane-supported salen ligands (2) were designed and prepared. A series of aluminum-salen complexes (3·(sol)2), which were supported by the nido-C2B9 carborane anions, were synthesized. These Al(III) complexes showed high activities (TOF up to 1500 h-1) in catalyzing the cycloaddition of epoxides and CO2 at atmospheric pressure and near room temperature. Complexes 3·(sol)2 are one of the rare examples of Al-based catalysts capable of promoting cycloaddition at 1 bar pressure of CO2. Density functional theory (DFT) studies combined with the catalytic results reveal that the catalytic cycles occur on two axial sites of the Al(III) center.
Collapse
Affiliation(s)
- Yanrui Kang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Beining Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Runxia Nan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Yiwen Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Zhouli Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| |
Collapse
|
49
|
Wen Q, Cai Q, Fu P, Chang D, Xu X, Wen TJ, Wu GP, Zhu W, Wan LS, Zhang C, Zhang XH, Jin Q, Wu ZL, Gao C, Zhang H, Huang N, Li CZ, Li H. Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Highly active bifunctional dual-arm organoboron catalysts bearing cooperative intramolecular structures for the copolymerization of CO2 and epoxides. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|