1
|
Krischer F, Mayer S, Hensle L, Knyszek D, Darmandeh H, Gessner VH. Base-stabilized acyclic amino(ylidyl)silylenes: electron-rich donors for the stabilization of silicon-element multiple bonds. Chem Sci 2025; 16:8346-8356. [PMID: 40213371 PMCID: PMC11980799 DOI: 10.1039/d5sc01812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025] Open
Abstract
Increasing the donor strength of Lewis bases is a viable strategy to stabilize reactive electron-deficient species. Herein, we utilize the strong electron-releasing power of ylide substituents to gain access to electron-rich silylenes. Based on the Roesky's amidinato chlorosilylene scaffold, we succeeded in isolating two amino(ylidyl)silylenes with a tosyl and cyano group in the ylide backbone, respectively. The tosyl system revealed to be amongst the most electron-rich silylenes known to date as measured by its Tolman electronic parameter. DFT studies showed that the ylide acts as a σ and π-donor, transferring electron-density into the empty p-orbital of the silicon center, thus resulting in its electron-richness and stability. The strong donor capacity of the silylene was used to stabilize further reactive silicon species: while treatment with carbon disulfide led to the formation of silylene-CS2 complexes, the reaction with N2O or CO2 was found to depend on the electronic and steric properties of the ylide substituent. Whereas the tosyl system yielded a room-temperature stable silanone, the cyano-substituted silylene formed a carbonate complex with CO2 and a dimeric silanone with N2O. Additionally, both silylenes facilitated the isolation of silicon compounds with extended π-conjugated units, highlighting the potential of ylide substituents to stabilize unusual bonding situations.
Collapse
Affiliation(s)
- Felix Krischer
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Stephan Mayer
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Lennart Hensle
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Daniel Knyszek
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Heidar Darmandeh
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Viktoria H Gessner
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
| |
Collapse
|
2
|
Xiong Y, Yao S, Driess M. Facile N═N Bond Cleavage of Cis-Azobenzene with Bis-silylenes. Angew Chem Int Ed Engl 2025:e202507560. [PMID: 40295193 DOI: 10.1002/anie.202507560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
The very different features of cooperative disilicon(II)-mediated N═N bond activation of trans- vs. cis-azobenzene are reported, employing two bis-silylenes with distinct intramolecular Si···Si distances, PhN(LSi:)₂ 1 (L = PhC(tBuN)₂, Si···Si: 2.9 Å) and XT(LSi:)₂ 2 (XT = 9,9-dimethyl-xanthene-4,5-diyl, Si···Si: 4.3 Å). While trans-azobenzene reacts with both bis-silylenes to form C─H and N═N π bond activation products, the cis-isomer undergoes only N═N bond scission. Thus, the reaction of 1 with cis-azobenzene at room temperature affords the unprecedented N═N bond cleavage product 4, featuring a bis-silaimine with terminal and bridging Si═N moieties. In contrast, the reaction of 2 with cis-azobenzene at -30 °C in THF allows for the isolation of the [1+2] cycloaddition intermediate 6, containing a three-membered SiN₂ ring (siladiazirane), which rearranges to the N═N bond cleavage product 8 at room temperature. Compound 6 reacts with one additional equivalent of cis-azobenzene to form bis-silaazirane 7 with two SiN₂ rings. Density functional theory (DFT) calculations support stepwise Si(II)···Si(II) cooperative activation mechanisms and provide insights into the role of bis-silylenes for selective N═N cleavage reactions.
Collapse
Affiliation(s)
- Yun Xiong
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
3
|
Wang Y, Johnson JC, Palmer KG, Wei P, Adams ER, Lahm ME, Schaefer HF, Robinson GH. Amidinate- and Dithiolene-Based Silicon Complexes. Organometallics 2025; 44:802-806. [PMID: 40248338 PMCID: PMC12001252 DOI: 10.1021/acs.organomet.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025]
Abstract
Reactions of the amidinato-silylene chloride PhC( t BuN)2SiCl (1) with imidazole-based dithione dimer 2, lithium dithiolene radical 3, and dithiolate dimer 4 result in the synthesis of a series of silicon complexes 5-7, respectively, containing both amidinato and dithiolene ligands. 7 is the first structurally characterized silicon(II) dithiolene complex. The structural and bonding characteristics of 5-7 have been probed by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - John C. Johnson
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Kayla G. Palmer
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Pingrong Wei
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Earle R. Adams
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Mitchell E. Lahm
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Henry F. Schaefer
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H. Robinson
- Department of Chemistry and Center
for Computational Chemistry, The University
of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
4
|
Saddington A, Yao S, Lorent C, Driess M. Redox non-innocent bis-silylene aluminium complexes with a carborane backbone. Chem Sci 2025; 16:6383-6391. [PMID: 40092600 PMCID: PMC11907707 DOI: 10.1039/d5sc01104c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
The redox non-innocent bis-silylenyl ortho-carborane ligands [SiII(CCcage)SiII] (CCcage = o-C2B10H10, SiII = ArC(NtBu)2Si; Ar = C6H5, p- t BuC6H4), with their particular chelating and electronic properties, have been employed for the synthesis of new donor-stabilized SiII → AlIII complexes, potential precursors to low oxidation state aluminium complexes. Due to the redox non-innocence of the carborane backbone, [AlI2 +] complexes with three ligand oxidation states were characterized: with neutral and radical anionic closo- as well as dianionic nido-C2B10 cores. Reduction at the aluminium center could also be enacted with potassium/naphthalene leading to {K[SiII(CCcage)SiII]Al(C10H8)} derivatives from [1 + 4] cycloaddition reaction. The mechanism of this dearomatization reaction is proposed to occur via the formation of transient low oxidation state aluminium intermediates (radicals and/or aluminylenes) that are trapped by naphthalene.
Collapse
Affiliation(s)
- Artemis Saddington
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 Berlin 10623 Germany
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 Berlin 10623 Germany
| | - Christian Lorent
- Department of Chemistry: Physical and Biophysical Chemistry, Technische Universität Berlin Strasse des 17. Juni 135, Sekr. PC14 Berlin 10623 Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 115, Sekr. C2 Berlin 10623 Germany
| |
Collapse
|
5
|
Hirmer SV, Dong S, Stigler S, Kostenko A, Kelly JA, Zhang Z, Meyer K, Zhu J, Inoue S. Utilization of a Chelating Bis[(dialkylamino)cyclopropenimine] to Isolate a Series of Heavier Zero-Valent Group 14 Tetracarbonyl Iron Complexes. Chemistry 2025:e202501324. [PMID: 40193852 DOI: 10.1002/chem.202501324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/09/2025]
Abstract
We report on the utilization of the ethylene-bridged bis[(dialkylamino)cyclopropenimine] (bisCPI) ligand, LCPI, to give access to new main-group E(II) halide complexes (E = Ge, Sn, Pb; 1, 2, 3). Subsequent reduction with Collman's reagent (Na2Fe(CO)4 • dioxane) enables the isolation of a series of zero-valent tetrylone-tetracarbonyl iron complexes, (LCPI)E(Fe(CO)4 (E = Ge (4), Sn (5), Pb (6)). Compounds 4 - 6 were reacted further with iron pentacarbonyl to yield the bis-tetracarbonyl iron complexes (LCPI)E[(Fe(CO)4]2 (E = Ge (7), Sn (8), Pb (9)). The electronic structure of these complexes was studied by 57Fe Mössbauer spectroscopy and computationally by density functional theory calculations.
Collapse
Affiliation(s)
- Simone V Hirmer
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sebastian Stigler
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - John A Kelly
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Zihan Zhang
- Erlangen-Nürnberg (FAU), Department für Chemie und Pharmazie, Friedrich-Alexander-Universität, Anorganische Chemie, Egerlandstr. 1, 91059, Erlangen, Germany
| | - Karsten Meyer
- Erlangen-Nürnberg (FAU), Department für Chemie und Pharmazie, Friedrich-Alexander-Universität, Anorganische Chemie, Egerlandstr. 1, 91059, Erlangen, Germany
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Blvd., Longgang Dist., Shenzhen, Guangdong, 518172, China
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| |
Collapse
|
6
|
McOnie SL, Henry AT, Baines KM. The Lewis Acidity of Bare and Crown Ether-Complexed Germanium(II) and Tin(II) Cations. Chemistry 2025; 31:e202404769. [PMID: 39977621 DOI: 10.1002/chem.202404769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
The Gutmann-Beckett and Fluoride Ion Affinity methods were used to assess the Lewis acidity of a variety of dicationic germanium(II) and tin(II) crown ether complexes and the corresponding neutral halides. The coordination of two or more equivalents of triethylphosphine oxide (TEPO) was observed which was accompanied by full or partial replacement of the crown ether or chloride ligands from the metal centre illustrating the importance of unambiguously identifying the species in solution to enable a meaningful discussion of relative Lewis acidities. From the coordination complexes observed, the germanium(II) centre was found, in general, to be more Lewis acidic than the tin(II) centre. The crown ether ligands, when retained, had little influence on the Lewis acidity of the complex and may, for ease of synthesis, be used as convenient precursors to "bare" Ge(II) and Sn(II) dicationic catalysts.
Collapse
Affiliation(s)
- Sarah L McOnie
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Andrew T Henry
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Kim M Baines
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
7
|
Fan J, Pan S, Yao S, Ding C, Frenking G, Driess M. From Bis(borylene)-Substituted Xanthenes as Reactive Intermediates to Diboraoxirane Complexes. J Am Chem Soc 2025; 147:6925-6933. [PMID: 39943914 PMCID: PMC11869280 DOI: 10.1021/jacs.4c17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The first N-heterocyclic carbene (NHC)-stabilized diboraoxirane complex 4 [NHC = IPr = C{N(iPr)CMe}2] was synthesized through the reduction of the corresponding bis(dichloroboryl-IPr)xanthene 3 with potassium graphite. Intriguingly, its formation stems from a diboron(I)-mediated C-O-C deoxygenation of the xanthene spacer via a bis(borylene)xanthene as a reactive intermediate. Consistent with the proposed pathway, bis(borylene)xanthene 6 with three-coordinate B(I) atoms could be isolated when the sterically less demanding NHC ligand IMe [IMe = C{N(Me)CMe}2] was employed. Due to its ring strain, the B-B bond of the B2O ring in 4 undergoes versatile ring-expansion reactions with small molecules to engender new boron-containing heterocycles. In fact, oxidation of 4 with trimethylamine N-oxide, O2, and elemental sulfur afforded the unprecedented 1,3-dioxa-2,4-diboretane 7, 1,3,4-trioxa-2,5-diborolane 8, and 1-oxa-3,4-dithio-2,5-diborolane 9, respectively. Moreover, 4 activates isocyanide to produce 1-oxa-2,4-diborete 10 and readily reacts with the C═O groups of benzophenone and CO2 to generate the ring-expansion products 11 and 12, respectively.
Collapse
Affiliation(s)
- Jun Fan
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Sudip Pan
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Shenglai Yao
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Chengxiang Ding
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Gernot Frenking
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Fachbereich
Chemie, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Matthias Driess
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| |
Collapse
|
8
|
Hu J, Wang X. Metalized Borylene in Boron-Gold Carbonyl Complexes: Infrared Spectra and Theoretical Calculations. Chemistry 2025; 31:e202403368. [PMID: 39562177 DOI: 10.1002/chem.202403368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Borylenes (:B-R) that are built on a single B-R bond between boron and another nonmetallic atom or group are a heated subject of special interest due to their intriguing transition-metal-mimicking reactivity, but the relative lack of understanding for the electronic structure and chemical bonding of transition metal borides leads to lingering neglect of metalized borylenes (:B-M) based on covalent B-M bonding. Here we use infrared photodissociation spectroscopy in combination with density functional calculations to study the geometric structure and chemical bonding of boron-gold carbonyl complex cations. The structure and bonding analyses demonstrated that the BAu(CO)3 + and BAu2(CO)4 + complexes can be described as bis-carbonyl-trapped borylene adducts. While the metal-rich BAu3(CO)4 + complex represents an unusual multicenter-bond-stabilized borylene cation with excellent σ-acidity and π-backbonding capability for CO activation, featuring Cs symmetry with a quasi-T-shaped BAu3 + core. It is manifested that BAu3 + presents greater amphoteric reactivity and improved stability compared to BAu1,2 + due to the presence of the three-center-two-electron Au-B-Au bond. This study discloses a conceptually new platform for accessing reactive metalized borylenes by exploiting the boron-mediated multicenter-bond stabilization strategy and using more bench-stable and ubiquitous metal carbonyl fragments as starting materials, thus providing a broader opportunity for the design of novel chemical structures and catalytic reactions.
Collapse
Affiliation(s)
- Jin Hu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xuefeng Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
9
|
Yao S, Budde MS, Yang X, Xiong Y, Zhao L, Driess M. Disilicon-Mediated Carbon Monoxide Activation: From a 1,2,3-Trisila- to 1,3-Disilacyclopentadienes with Hypercoordinate λ 4Si-λ 3C Double Bonds. Angew Chem Int Ed Engl 2025; 64:e202414696. [PMID: 39305142 DOI: 10.1002/anie.202414696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 11/01/2024]
Abstract
The facile reaction of the SiPh2-bridged bis-silylene (LSi:)2SiPh2 (L=PhC(NBut)2) with diphenylacetylene affords the unprecedented 1,2,3-trisilacyclopentadiene (LSi)2(PhC)2SiPh2 1 with a hypercoordinate λ4Si-λ3Si double bond. Compound 1 is very oxophilic and consumes three molar equivalents of inert N2O to form the bicyclic oxygenation product 2 through O-atom insertion in the Si=Si and Si-Si bonds. Strikingly, 1 can completely split the C≡O bonds of carbon monoxide under ambient conditions (1 atm, room temperature), yielding the 1,3-disilacyclopentadiene 3, representing the first hypercoordinate example of a cyclosilene with a λ4Si-λ3C double bond. Likewise, reaction of Xyl-NC (Xyl=2,6-dimethylphenyl), an isocyanide isoelectronic with CO, with 1 furnishes the related 1,3-disilacyclopentadiene 4 but with an amidinato silylene pendent attached to the Si=C carbon ring atom.
Collapse
Affiliation(s)
- Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Markus Stefan Budde
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Xing Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yun Xiong
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Lili Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
10
|
Ebeler F, Vishnevskiy YV, Neumann B, Stammler HG, Szczepanik DW, Ghadwal RS. Annulated 1,4-Disilabenzene-1,4-diide and Dihydrogen Splitting. J Am Chem Soc 2024; 146:30584-30595. [PMID: 39439305 DOI: 10.1021/jacs.4c12127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The isolation of silicon analogues of phenyl anions such as (C6H5)- and (C6H4)2- is challenging owing to their extremely high reactivity associated with their silylene character and weak C-Si π-interaction. Herein, we report the first annulated 1,4-disilabenzene-1,4-diide compound [(ADC)Si]2 (5) based on anionic dicarbene (ADC) scaffolds (ADC = PhC{N(Dipp)C}2; Dipp = 2,6-iPr2C6H3) as a green-yellow crystalline solid. Compound 5 is prepared by KC8 reduction of the Si(IV) chloride [(ADC)SiCl3]2 (3) or the cyclic bis-chlorosilylene [(ADC)SiCl]2 (4), which are also prepared for the first time. 5 is a neutral molecule, and each of the two-coordinated Si(I) atoms has a lone pair and an unpaired electron. Experimental and theoretical data indicate delocalization of the silicon unpaired electrons, resulting in a 6π-electron C4Si2 ring in 5. The diradical character (y) for 5 amounts to 15%. At room temperature, 5 readily reacts with dihydrogen (H2) to form the elusive bis-hydridosilylenes [(ADC)SiH]2 (Z)-6 and (E)-6. The [4 + 2]-cycloaddition of 5 and PhC≡CPh in yielding the barrelene-type bis-silylene [(ADC)SiCPh]2 (7) emphasizes the diradical reactivity of 5. With elemental sulfur, 5 results in the S2- and S3-bridged silathione derivatives [(ADC)Si(S)]2(μ-S2) (8a) and [(ADC)Si(S)]2(μ-S3) (8b). Moreover, the treatment of 5 with Fe2(CO)9 affords the Fe(0) complex [(ADC)Si(Fe(CO)4)]2(μ-CO) (9), in which each silicon atom serves as a two-electron σ-donor ligand and shares one electron with the bridging CO unit to form two Si-C bonds. The molecular structures of all compounds have been established by X-ray diffraction, and representative compounds have been analyzed by quantum chemical calculations.
Collapse
Affiliation(s)
- Falk Ebeler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Dariusz W Szczepanik
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
11
|
Sun J, Chen F, Liu J, Zhang Y, He D, Dodonov VA, Zhao Y. Reactions of an Anionic Gallylene with Azobenzene or Azide Compounds Through C(sp 2)-H and C(sp 3)-H Activation. Molecules 2024; 29:5021. [PMID: 39519661 PMCID: PMC11547653 DOI: 10.3390/molecules29215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The activation of inert C-H bonds remains a challenge in current chemistry. Here, we report the excellent reactivity of the anionic gallylene species [LGa:][Na(THF)3] (L = [(2,6-iPr2C6H3)NC(CH3)]22-, 1) that allows the selective activation one ortho sp2 C-H bond of several azobenzene and azide derivatives at ambient temperature, with the transfer of the hydrogen atom to one of the nitrogen atoms. The process leads to the formation of the aryl amido products [LGa-κ2N,C-PhNN(H)(p-R-C6H3)][Na(solvent)3] (2, R = H solvent = DME (1,2-Dimethoxyethane); 3, R = -OMe, solvent = DME; 4, R = -NMe2 solvent = THF), [LGa-κ2N,C-(m-CH3-C6H4)NN(H)(m-CH3-C6H3)][Na(15-C-5)2] (5) with new Ga-C and Ga-N bonds. Moreover, 1 is also effective for the C-H activation of two azides RN3 (R = 2,4,6-Me3C6H2 or 2,6-iPr2C6H3), resulting in the formation of gallium amides [LGa(NH-2-(CH2)-4,6-Me2C6H2)][Na(15-C-5)2] (6) and [LGa(NH-2,6-iPr2C6H3)2][Na(THF)5] (7) through intra- or intermolecular sp3 C-H amination. Significantly, these reactions occur for the highly challenging activation of inert C(sp2)-H and C(sp3)-H bonds, thus demonstrating the excellent reactivity of the Ga(I) species 1. The products 2-7 were characterized by X-ray crystallography, 1H and 13C NMR, UV-vis spectroscopy, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Jinfeng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Fangfeng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Juan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Yihu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Dongyu He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Vladimir A. Dodonov
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
- Grigory Alekseevich Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russia
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
12
|
Mukhopadhyay J, Sahoo SC, Bharatam PV. (Imidazol-2-ylidene) → S coordination interactions and its modulation upon S-oxidation. Dalton Trans 2024; 53:17050-17058. [PMID: 39356278 DOI: 10.1039/d4dt02286f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
(NHC) → E coordination interactions are being explored in many chemical species, including carbones and nitreones. (NHC) → S interactions are rare, but increasing attention is being paid to the compounds containing such interactions. The electron deficiency at the S centre is responsible for triggering electron donation from the NHC unit in (NHC) → SR(+) systems. It is well known that the positive charge at the sulfur centre increases upon single oxidation and further increases upon double oxidation. This implies that (NHC) → S interactions may become explicit after S-oxidation in the (NHC) → SR(+) systems. To explore this hypothesis, we performed quantum chemical design and synthesis of (NHC) → SR(+), (NHC) → S(O)R(+), and (NHC) → S(O)2R(+) complexes in which the ligands are imidazol-2-ylidene derivatives. Eight derivatives of the (imidazol-2-ylidene) → SR(+) systems were generated, and their sulfoxide and sulfone derivatives were obtained by oxidation using urea-H2O2 and mCPBA, respectively. The crystal structures of three compounds belonging to a series were determined. A comparison of the geometric, energetic and electronic characteristics confirmed the hypothesis that the (NHC) → S coordination interaction becomes comparatively stronger with an increase in oxygen atoms at the sulfur centre.
Collapse
Affiliation(s)
- Joy Mukhopadhyay
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| |
Collapse
|
13
|
Saddington A, Dong S, Yao S, Zhu J, Driess M. Bis-Silylene-Supported Aluminium Atoms with Aluminylene and Alane Character. Angew Chem Int Ed Engl 2024; 63:e202410790. [PMID: 39024421 DOI: 10.1002/anie.202410790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The suitability of electron-rich bis-silylenes, specifically the neutral chelating [SiII(Xant)SiII] ligand (SiII=PhC(NtBu)2Si, Xant=9,9-dimethylxanthene) and the anionic [SiII(NAcrid)SiII)]- pincer ligand (NAcrid=2,7,9,9-tetramethylacridane), has been successfully probed to stabilize monovalent bis-silylene-supported aluminium complexes (aluminylenes). At first, the unprecedented aluminium(III) iodide precursors [SiII(Xant)SiII]AlI2 + I- 1 and [SiII(NAcrid)SiII)]AlI2 2 were synthesized using AlI3 and [SiII(Xant)SiII] or [SiII(NAcrid)SiII)]Li(OEt2)], respectively, and structurally characterized. While reduction of 1 with KC8 led merely to unidentified products, the dehalogenation of 2 afforded the dimer of the desired {[SiII(NAcrid)SiII)]Al:} aluminylene with a four-membered SiIV 2AlIII 2 ring. Remarkably, the proposed aluminylene intermediates [SiII(Xant)SiII]AlII and {[SiII(NAcrid)SiII)]Al:} could be produced through reaction of 1 and 2 with Collman's reagent, K2Fe(CO)4, and trapped as AlI:→Fe(CO)4 complexes 5 and 6, respectively. While 6 is stable in solution, 5 loses one CO ligand in solution to afford the silylene- and aluminylene-coordinated iron(0) complex 7 from an intramolecular substitution reaction. The electronic structures of the novel compounds were investigated by Density Functional Theory calculations.
Collapse
Affiliation(s)
- Artemis Saddington
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Jun Zhu
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Blvd., Longgang Dist., Shenzhen, Guangdong, 518172, China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
14
|
Ding Y, Jin W, Zhang J, Cui C. A Masked Boryl-Substituted Oxo-Bridged Bis-Silylene: Synthesis and Reductive-Elimination and Synergistic Oxidative-Addition Reactivity. J Am Chem Soc 2024; 146:27925-27934. [PMID: 39319777 DOI: 10.1021/jacs.4c10961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Controlled oxidation of NHB-stabilized disilyne (NHB)Si ≡ Si(NHB) (1, NHB = [ArN(CMe)2NAr]B, Ar = 2,6-iPr2C6H3) with one equivalent of trimethylamine N-oxide (Me3N+─O-) in dry n-hexane gave oxo-bridged bis-silepin 2 in high yields. DFT calculations disclosed that silepin 2 is only more stable by 13.4 kcal/mol than the corresponding oxo-bridged bis-silylene intermediate 2' (NHB)Si(μ-O)Si(NHB), and 2 was very likely to be formed by the insertion of the two divalent Si atoms into the pendant aryl rings in bis-silylene intermediate 2'. The two silicon atoms in bis-silepin 2 could undergo formal reductive-elimination of the aryl rings and sequential oxidative-insertion reactions with small molecules and organic substrates. Treatment of 2 with H2O, S8, and P4 at 60 °C yielded compounds 3-5 via reductive-elimination of the aryl rings, followed by the sequential oxidative-addition of these molecules at the two Si(II) centers. Similarly, reactions of 2 with PhSiH3, a diphenylalkyne, pyridines, 1,3,4,5-tetramethylimidazolin-2-ylidene (IMe4), Ph2CO, and thiophene yielded the corresponding polycyclic bis-silanes 6-12 via reductive-elimination and oxidative-addition of C-H, Si-H, C≡C, and aromatic C═C, C-S, and C═N bonds at the two Si atoms. These novel reactions indicated the pronounced bis-silylene reactivity of bis-silepin 2, consistent with the low-energy barrier for the interconversion between 2 and 2', as disclosed by DFT calculations.
Collapse
Affiliation(s)
- Yazhou Ding
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Wen Jin
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
15
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Fan J, Wang Y, Shi T, Yang P, Zhou G, Xu J, Su B. Isolation and Diverse Reactivity of an Unsymmetrical 1,2-Bis(silylene)-Stabilized Pentacarbonyl Chromium(0) Species. Inorg Chem 2024. [PMID: 39225133 DOI: 10.1021/acs.inorgchem.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The construction of the unsymmetrical 1,2-bis(silylene) pentacarbonyl chromium(0) complex 1 was achieved through the reaction of chlorosilylene with half an equivalent of K2Cr(CO)5. X-ray diffraction analysis of 1 confirms the formation of the Si-Si bond and the coordination of one of the silicon atoms to the Cr center. Density functional theory (DFT) calculations disclose that highest occupied molecular orbital (HOMO) mainly corresponds to the lone pair of electrons on the silicon atom and the σ-bonding interaction between two Si atoms. Based on its unique electronic structure, its diverse reactivity toward the transition metal compounds and small molecules was investigated in detail. The reactions of 1 with Fe2(CO)9 or CuCl yielded the 1,2-bis(silylene)-stabilized heterobimetallic complex 2 or oxidized product 3, respectively. Additionally, treatments of 1 with selenium, CO2, or Me3SiN3 led to the formation of the corresponding selenium-, oxo-, and nitrogen-bridged complexes 4-7. All compounds were characterized by multinuclear NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Jiawei Fan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuyi Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Shi
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peng Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guijiang Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Xu
- Zhangye Dagong Pesticide Chemistry Co., Ltd., Zhangye 734000, China
| | - Bochao Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
17
|
Hendi Z, Pandey MK, Kushvaha SK, Roesky HW. Recent progress in transition metal complexes featuring silylene as ligands. Chem Commun (Camb) 2024; 60:9483-9512. [PMID: 39119696 DOI: 10.1039/d4cc01930j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Silylenes, divalent silicon(II) compounds, once considered highly reactive and transient species, are now widely employed as stable synthons in main-group and coordination chemistry for myriad applications. The synthesis of stable silylenes represents a major breakthrough, which led to extensive exploration of silylenes in stabilizing low-valent main-group elements and as versatile ligands in coordination chemistry and catalysis. In recent years, the exploration of transition metal complexes stabilized with silylene ligands has captivated significant research attention. This is due to their robust σ-donor characteristics and capacity to stabilize transition metals in low valent states. It has also been demonstrated that the transition metal complexes of silylenes are effective catalysts for hydroboration, hydrosilylation, hydrogenation, hydrogen isotope exchange reactions, and small molecule activation chemistry. This review article focuses on the recent progress in the synthesis and catalytic application of transition metal complexes of silylenes.
Collapse
Affiliation(s)
- Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
18
|
Mukhopadhyay J, Bhagat S, Sahoo SC, Bharatam PV. L→S Coordination Complexes Containing Benzothiazol-2-ylidene Ligand: Quantum Chemical Analysis and Synthesis. Chempluschem 2024; 89:e202400150. [PMID: 38554142 DOI: 10.1002/cplu.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/01/2024]
Abstract
(NHC)→E coordination interactions were known where NHC is an N-heterocyclic carbene, and E is a main group element (B, C, N, Si, P). Recently, it was suggested that compounds with (NHC)→S coordination chemistry are also possible. This work reports quantum chemical analysis and synthesis of (NHC)→S-R(+) complexes in which benzothiazol-2-ylidene acts as a ligand. A Density functional study established that (NHC)→S interaction can best be described as a coordination interaction. Synthetic efforts were made, initially, to generate divalent sulfur compounds containing benzothiazole substituents. N-alkylation of the heterocyclic ring in these sulfides using methyl triflate led to the generation of the desired products with (NHC)→S coordination chemistry, which involves the in situ generation of NHC ring ligands. The observed changes in the 13C NMR spectra, before and after methylation, confirmed the change in the electronic character of the C-S bond from a covalent character to a coordination character.
Collapse
Affiliation(s)
- Joy Mukhopadhyay
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Srikant Bhagat
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| |
Collapse
|
19
|
Fan J, Xu J, Ma Q, Yao S, Zhao L, Frenking G, Driess M. Silylene-Stabilized Neutral Dibora-Aromatics with a B═B Bond. J Am Chem Soc 2024; 146:20458-20467. [PMID: 38980827 PMCID: PMC11273343 DOI: 10.1021/jacs.4c06579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The unprecedented silylene-supported dibenzodiboraoxepin 2 and 9,10-diboraphenanthrene complexes 6 and 8 were synthesized. The (NHSi)2B2(xanthene) [NHSi = PhC(NtBu)2(Me2N)Si:] 2 results from debromination of the bis(NHSi)-stabilized bis(dibromoboryl)xanthene 1 with potassium graphite (KC8); 2 is capable of activating white phosphorus and ammonia to form the B2P4 cage compound 3 and H2N-B-B-H diborane species 4, respectively. The thermal rearrangement of 2 affords the 9,10-dihydro-9,10-diboraphenanthrene 5 through a bis(NHSi)-assisted intramolecular reductive C-O-C deoxygenation process. Notably, the 9,10-diboraphenanthrene derivatives 6 and 8 could be generated by deoxygenation of 2 with KC8 and 1,3,4,5-tetramethylimidazol-2-ylidene, respectively. The aromaticity of 6 and 8 was confirmed by computational studies. Strikingly, the NHSi ligand in 8 engenders the monodeoxygenation of carbon dioxide in toluene at room temperature to form the CO-stabilized 9,10-diboraphenanthrene derivative 9 via the silaoxadiborinanone intermediate 10.
Collapse
Affiliation(s)
- Jun Fan
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Jian Xu
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Qin Ma
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shenglai Yao
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Lili Zhao
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Gernot Frenking
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Fachbereich
Chemie, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Matthias Driess
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| |
Collapse
|
20
|
Liu XR, Cui PF, García-Rodeja Y, Solà M, Jin GX. Formation and reactivity of a unique M⋯C-H interaction stabilized by carborane cages. Chem Sci 2024; 15:9274-9280. [PMID: 38903214 PMCID: PMC11186334 DOI: 10.1039/d4sc01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Broadening carborane applications has consistently been the goal of chemists in this field. Herein, compared to alkyl or aryl groups, a carborane cage demonstrates an advantage in stabilizing a unique bonding interaction: M⋯C-H interaction. Experimental results and theoretical calculations have revealed the characteristic of this two-center, two-electron bonding interaction, in which the carbon atom in the arene ring provides two electrons to the metal center. The reduced aromaticity of the benzene moiety, long distance between the metal and carbon atom in arene, and the upfield shift of the signal of M⋯C-H in the nuclear magnetic resonance spectrum distinguished this interaction from metal⋯C π interaction and metal-C(H) σ bonds. Control experiments demonstrate the unique electronic effects of carborane in stabilizing the M⋯C-H bonding interaction in organometallic chemistry. Furthermore, the M⋯C-H interaction can convert into C-H bond metallization under acidic conditions or via treatment with t-butyl isocyanide. These findings deepen our understanding regarding the interactions between metal centers and carbon atoms and provide new opportunities for the use of carboranes.
Collapse
Affiliation(s)
- Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200433 P. R. China
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200433 P. R. China
| | - Yago García-Rodeja
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany, 69 17003 Girona Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany, 69 17003 Girona Spain
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200433 P. R. China
| |
Collapse
|
21
|
Sun X, Jin D, Maier S, Hinz A, Roesky PW. Reactivities of phosphaalkynes towards diverse bis-silylenes. Dalton Trans 2024; 53:10220-10225. [PMID: 38828484 DOI: 10.1039/d4dt01367k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Bis-silylenes do not only act as strong chelating σ-donor ligands, but also exhibit cooperative behaviour in the activation of small molecules. Three different P-Si containing molecules were prepared from the reaction between tBuCP and different bis-silylenes, which are bridged by ferrocenediyl, diaminobenzene, or o-carborane.
Collapse
Affiliation(s)
- Xiaofei Sun
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany.
| | - Da Jin
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany.
| | - Stefanie Maier
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany.
| | - Alexander Hinz
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany.
| | - Peter W Roesky
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany.
- Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
22
|
Bourne C, Dong H, McKain K, Mayer LC, McKay AP, Cordes DB, Slawin AMZ, Stasch A. Alkyl backbone variations in common β-diketiminate ligands and applications to N-heterocyclic silylene chemistry. Dalton Trans 2024; 53:9887-9895. [PMID: 38807511 DOI: 10.1039/d4dt01298d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We report the extension of the common β-diketimine proligand class, RArnacnacH (HC(RCNAr)2H), where R is an alkyl group such as Et or iPr, plus Ph, and Ar is a sterically demanding aryl substituent such as Dip = 2,6-diispropylphenyl, Dep = 2,6-diethylphenyl, Mes = 2,4,6-trimethylphenyl or mesityl, Xyl = 2,6-dimethylphenyl, via one-pot condensation procedures. When a condensation reaction is carried out using the chemical dehydrating agent PPSE (polyphosphoric acid trimethylsilylester), β-diketiminate phosphorus(V) products such as (iPrMesnacnac)PO2 can also be obtained, which can be converted to the respective proligand iPrMesnacnacH via alkaline hydrolysis. The RArnacnacH proligands can be converted to their alkali metal complexes with common methods and we have found that deprotonation of iPrDipnacnacH is significantly more sluggish than that of related β-diketimines with smaller backbone alkyl groups. The basicity of the RArnacnac- anions can play a role in the success of their salt metathesis chemistry and we have prepared and structurally characterised the EtDipnacnac-derived silicon(II) compounds (EtDipnacnac)SiBr and (EtDipnacnac')Si, where EtDipnacnac' is the deprotonated variant MeCHC(NDip)CHC(NDip)Et.
Collapse
Affiliation(s)
- Connor Bourne
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Huanhuan Dong
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Katharine McKain
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Lena C Mayer
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Aidan P McKay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - David B Cordes
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Alexandra M Z Slawin
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Andreas Stasch
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
23
|
Hendi Z, Pandey MK, Rachuy K, Singh MK, Herbst-Irmer R, Stalke D, Roesky HW. Synthesis, Reactivity, and Complexation with Fe(0) of a Tight-bite Bis(N-heterocyclic silylene). Chemistry 2024; 30:e202400389. [PMID: 38494463 DOI: 10.1002/chem.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
The synthesis, reactivity, and complexation with Fe(0) precursor of a tight-bite bis(N-heterocyclic silylene) (bis(NHSi)) ligand 1 are reported. The reaction of 1 with p-toluidine led to the activation of both N-H bonds across Si(II) atoms to afford a four-membered heterocyclic cyclodisilazane 2, with hydride substituents attached to five-coordinate Si atoms. A 1 : 2 reaction of 1 with Fe(CO)5 led to an intriguing dinuclear complex 3 featuring a five-membered (N-Si-Fe-Fe-Si) ring with a Fe-Fe bond distance of 2.6892(13) Å. All compounds (1-3) were thoroughly characterized by various spectroscopic methods and X-ray diffraction studies conclusively established their molecular structures. DFT calculations were carried out to shed light on bonding and energetic aspects in 1-3.
Collapse
Affiliation(s)
- Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Katharina Rachuy
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Mukesh K Singh
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
24
|
Wee MYS, Quek S, Wu CS, Su MD, So CW. Isolable Spirocyclic Silylone: π-Delocalized Spiro[3.3]heptasila-2,6-diylidone. J Am Chem Soc 2024; 146:14410-14415. [PMID: 38754079 DOI: 10.1021/jacs.4c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Strained cyclic tetrylones are important synthons due to various synthetic applications. Connecting two cyclic tetrylone rings through a single shared quaternary group 14 element atom to form a spirocyclic molecule has been unexplored both theoretically and experimentally. The formation of a spirocyclic motif has been a synthetic challenge. In contrast, the reaction of amidinato disilicon(I) 1, (Me3P)2SiCl4, and KC8 afforded π-delocalized spiro[3.3]heptasila-2,6-diylidone2 and tetrasilacyclobutadiene byproducts 3 and 4. Compound 2 is the smallest spirocyclic tetrylone derivative, which is composed of a σ-type lone pair and delocalized π bond in each all-silicon spirocyclic ring. The electronic property is supported by its coordination with a W(CO)5 moiety.
Collapse
Affiliation(s)
- Meldon Yi-Shuo Wee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| | - Shina Quek
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| | - Chi-Shiun Wu
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
25
|
Chen Y, Su P, Wang D, Ke Z, Tan G. Molecular-strain induced phosphinidene reactivity of a phosphanorcaradiene. Nat Commun 2024; 15:4579. [PMID: 38811584 PMCID: PMC11137065 DOI: 10.1038/s41467-024-49042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Phosphanorcaradienes are an appealing class of phosphorus compounds that can serve as synthons of transient phosphinidenes. However, the synthesis of such species is a formidable task owing to their intrinsic high reactivity. Herein we report straightforward synthesis, characterization and reactivity studies of a phosphanorcaradiene, in which one of the benzene rings in the flanking fluorenyl substituents is intramolecularly dearomatized through attachment to the phosphorus atom. It is facilely obtained by the reduction of phosphorus(III) dichloride precursor with potassium graphite. Despite being thermally robust, it acts as a synthetic equivalent of a transient phosphinidene. It reacts with trimethylphosphine and isonitrile to yield phosphanylidene-phosphorane and 1-phospha-3-azaallene, respectively. When it is treated with one and two molar equivalents of azide, iminophosphane and bis(imino)phosphane are isolated, respectively. Moreover, it is capable of activating ethylene and alkyne to afford [1 + 2] cycloaddition products, as well as oxidative cleavage of Si-H and N-H bonds to yield secondary phosphines. All the reactions proceed smoothly at room temperature without the presence of transition metals. The driving force for these reactions is most likely the high ring-constraint of the three-membered PC2 ring and recovery of the aromaticity of the benzene ring.
Collapse
Affiliation(s)
- Yizhen Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Peifeng Su
- School of Materials Science and Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongmin Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gengwen Tan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China.
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
26
|
Tran PM, Wang Y, Lahm ME, Wei P, Schaefer HF, Robinson GH. Unusual nucleophilic reactivity of a dithiolene-based N-heterocyclic silane. Dalton Trans 2024; 53:6178-6183. [PMID: 38506299 DOI: 10.1039/d3dt03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
While the dithiolene-based N-heterocyclic silane (4) reacts with two equivalents of BX3 (X = Br, I) to give zwitterionic Lewis adducts 5 and 8, respectively, the parallel reaction of 4 with BCl3 results in 10, a dithiolene-substituted N-heterocyclic silane, via the Si-S bond cleavage. Unlike 5, the labile 8 may be readily converted to 9via BI3-mediated cleavage of the Si-N bond. The formation of 5 and 8 confirms that 4 uniquely possesses dual nucleophilic sites: (a) the terminal sulphur atom of the dithiolene moiety; and (b) the backbone carbon of the N-heterocyclic silane unit.
Collapse
Affiliation(s)
- Phuong M Tran
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Yuzhong Wang
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Mitchell E Lahm
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Pingrong Wei
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Henry F Schaefer
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Gregory H Robinson
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| |
Collapse
|
27
|
Xu J, Pan S, Yao S, Lorent C, Teutloff C, Zhang Z, Fan J, Molino A, Krause KB, Schmidt J, Bittl R, Limberg C, Zhao L, Frenking G, Driess M. Stabilizing Monoatomic Two-Coordinate Bismuth(I) and Bismuth(II) Using a Redox Noninnocent Bis(germylene) Ligand. J Am Chem Soc 2024; 146:6025-6036. [PMID: 38408197 PMCID: PMC10921399 DOI: 10.1021/jacs.3c13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
The formation of isolable monatomic BiI complexes and BiII radical species is challenging due to the pronounced reducing nature of metallic bismuth. Here, we report a convenient strategy to tame BiI and BiII atoms by taking advantage of the redox noninnocent character of a new chelating bis(germylene) ligand. The remarkably stable novel BiI cation complex 4, supported by the new bis(iminophosphonamido-germylene)xanthene ligand [(P)GeII(Xant)GeII(P)] 1, [(P)GeII(Xant)GeII(P) = Ph2P(NtBu)2GeII(Xant)GeII(NtBu)2PPh2, Xant = 9,9-dimethyl-xanthene-4,5-diyl], was synthesized by a two-electron reduction of the cationic BiIIII2 precursor complex 3 with cobaltocene (Cp2Co) in a molar ratio of 1:2. Notably, owing to the redox noninnocent character of the germylene moieties, the positive charge of BiI cation 4 migrates to one of the Ge atoms in the bis(germylene) ligand, giving rise to a germylium(germylene) BiI complex as suggested by DFT calculations and X-ray photoelectron spectroscopy (XPS). Likewise, migration of the positive charge of the BiIIII2 cation of 3 results in a bis(germylium)BiIIII2 complex. The delocalization of the positive charge in the ligand engenders a much higher stability of the BiI cation 4 in comparison to an isoelectronic two-coordinate Pb0 analogue (plumbylone; decomposition below -30 °C). Interestingly, 4[BArF] undergoes a reversible single-electron transfer (SET) reaction (oxidation) to afford the isolable BiII radical complex 5 in 5[BArF]2. According to electron paramagnetic resonance (EPR) spectroscopy, the unpaired electron predominantly resides at the BiII atom. Extending the redox reactivity of 4[OTf] employing AgOTf and MeOTf affords BiIII(OTf)2 complex 7 and BiIIIMe complex 8, respectively, demonstrating the high nucleophilic character of BiI cation 4.
Collapse
Affiliation(s)
- Jian Xu
- Metalorganic
and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Sudip Pan
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Shenglai Yao
- Metalorganic
and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Christian Lorent
- Physical
and Biophysical Chemistry, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Zhaoyin Zhang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jun Fan
- Metalorganic
and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Andrew Molino
- Department
of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086 Victoria, Australia
| | | | - Johannes Schmidt
- Functional
Materials, Department of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
| | - Robert Bittl
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christian Limberg
- Institut
für Chemie, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Lili Zhao
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Gernot Frenking
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Fachbereich
Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Matthias Driess
- Metalorganic
and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
28
|
Pandey MK, Hendi Z, Wang X, Bhandari A, Singh MK, Rachuy K, Kumar Kushvaha S, Herbst-Irmer R, Stalke D, Roesky HW. Stabilization of NH- Group Adjacent to Naked Silicon(II) Atom in Base Stabilized Aminosilylenes. Angew Chem Int Ed Engl 2024; 63:e202317416. [PMID: 38135667 DOI: 10.1002/anie.202317416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Aminosilylene, comprising reactive NH- and Si(II) sites next to each other, is an intriguing class of compounds due to its ability to show diverse reactivity. However, stabilizing the reactive NH- group next to the free Si(II) atom is challenging and has not yet been achieved. Herein, we report the first examples of base stabilized free aminosilylenes Ar*NHSi(PhC(Nt Bu)2 ) (1 a) and Mes*NHSi(PhC(Nt Bu)2 ) (1 b) (Ar*=2,6-dibenzhydryl-4-methylphenyl and Mes*=2,4,6-tri-tert-butylphenyl), tolerating a NH- group next to the naked Si(II) atom. Remarkably, 1 a and 1 b exhibited interesting differences in their reactivity upon heating. With 1 a, an intramolecular C(sp3 )-H activation of one of the benzhydryl methine hydrogen atoms to the Si(II) atom produced the five-membered cyclic silazane 2. However, with 1 b, a rare 1,2-hydrogen shift to the Si(II) atom afforded a silanimine 3, with a hydride ligand attached to an unsaturated silicon atom. Further, the coordination capabilities of 1 a were also tested with Ru(II) and Fe(0) precursors. Treatments of 1 a with [Ru(η6 -p-cymene)Cl2 ]2 led to the isolation of a η6 -arene tethered complex [RuCl2 {Ar*NHSi(PhC(t BuN)2 )-κ1 -Si-η6 -arene}] (4), whereas with the Fe(CO)5 precursor a Fe(0) complex [Fe(CO)4 {Ar*NHSi(PhC(t BuN)2 )-κ1 -Si}] (5) was obtained. Density functional theory (DFT) calculations were conducted to shed light on the structural, bonding, and energetic aspects in 1-5.
Collapse
Affiliation(s)
- Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Xiaobai Wang
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Anirban Bhandari
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Mukesh K Singh
- School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, UK
| | - Katharina Rachuy
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
29
|
Alonso C, Cabeza JA, García-Álvarez P, García-Soriano R, Pérez-Carreño E. Amidinatotetrylenes Donor Functionalized on Both N Atoms: Structures and Coordination Chemistry. Inorg Chem 2024; 63:3118-3128. [PMID: 38289155 PMCID: PMC10865366 DOI: 10.1021/acs.inorgchem.3c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
E(hmds)(bqfam) (E = Ge (1a), Sn (1b); hmds = N(SiMe3)2, bqfam = N,N'-bis(quinol-8-yl)formamidinate), which are amidinatotetrylenes equipped with quinol-8-yl fragments on the amidinate N atoms, have been synthesized from the formamidine Hbqfam and Ge(hmds)2 or SnCl(hmds). Both 1a and 1b are fluxional in solution at room temperature, as the E atom oscillates from being attached to the two amidinate N atoms to being chelated by an amidinate N atom and its closest quinolyl N atom (both situations are similarly stable according to density functional theory calculations). The hmds group of 1a and 1b is still reactive and the deprotonation of another equivalent of Hbqfam can be achieved, allowing the formation of the homoleptic derivatives E(bqfam)2 (E = Ge, Sn). The reactions of 1a and 1b with [AuCl(tht)] (tht = tetrahydrothiophene), [PdCl2(MeCN)2], [PtCl2(cod)] (cod = cycloocta-1,5-diene), [Ru3(CO)12] and [Co2(CO)8] have been investigated. The gold(I) complexes [AuCl{κE-E(hmds)(bqfam)}] (E = Ge, Sn) have a monodentate κE-tetrylene ligand and display fluxional behavior in solution the same as that of 1a and 1b. However, the palladium(II) and platinum(II) complexes [MCl{κ3E,N,N'-ECl(hmds)(bqfam)}] (M = Pd, Pt; E = Ge, Sn) contain a κ3E,N,N'-chloridotetryl ligand that arises from the insertion of the tetrylene E atom into an M-Cl bond and the coordination of an amidinate N atom and its closest quinolyl N atom to the metal center. Finally, the binuclear ruthenium(0) and cobalt(0) complexes [Ru2{μE-κ3E,N,N'-E(hmds)(bqfam)}(CO)6] and [Co2{μE-κ3E,N,N'-E(hmds)(bqfam)}(μ-CO)(CO)4] (E = Ge, Sn) have a related κ3E,N,N'-tetrylene ligand that bridges two metal atoms through the E atom. For the κ3E,N,N'-metal complexes, the quinolyl fragment not attached to the metal is pendant in all the germanium compounds but, for the tin derivatives, is attached to (in the Pd and Pt complexes) or may interact with (in the Ru2 and Co2 complexes) the tin atom.
Collapse
Affiliation(s)
- Christian Alonso
- Departamento
de Química Orgánica e Inorgánica, Centro de Innovación
en Química Avanzada ORFEO−CINQA, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Javier A. Cabeza
- Departamento
de Química Orgánica e Inorgánica, Centro de Innovación
en Química Avanzada ORFEO−CINQA, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Pablo García-Álvarez
- Departamento
de Química Orgánica e Inorgánica, Centro de Innovación
en Química Avanzada ORFEO−CINQA, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Rubén García-Soriano
- Departamento
de Química Orgánica e Inorgánica, Centro de Innovación
en Química Avanzada ORFEO−CINQA, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Enrique Pérez-Carreño
- Departamento
de Química Física y Analítica, Universidad de Oviedo, E-33071 Oviedo, Spain
| |
Collapse
|
30
|
Abstract
Low valent group 14 compounds exhibit diverse structures and reactivities. The employment of diazaborolyl anions (NHB anions), isoelectronic analogues to N-heterocyclic carbenes (NHCs), in group 14 chemistry leads to the exceptional structures and reactivity. The unique combination of σ-electron donation and pronounced steric hindrance impart distinct structural characteristics to the NHB-substituted low valent group 14 compounds. Notably, the modulation of the HOMO-LUMO gap in these compounds with the diazaborolyl substituents results in novel reaction patterns in the activation of small molecules and inert chemical bonds. This review mainly summarizes the recent advances in NHB-substituted low-valent heavy Group 14 compounds, emphasizing their synthesis, structural characteristics and application to small molecule activation.
Collapse
Affiliation(s)
- Chenxi Duan
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, China.
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, China.
| |
Collapse
|
31
|
Chen M, Zhang Z, Liu J, Li G, Zhao L, Mo Z. Isolation and Reactivity of Homoleptic Diphosphene Lead Complexes. Angew Chem Int Ed Engl 2023; 62:e202312837. [PMID: 37837247 DOI: 10.1002/anie.202312837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Due to their limited capacity for π-backdonation, isolation of π-complexes of main-group elements remains a great challenge. We report herein the synthesis of a homoleptic diphosphene lead complex (2) from the degradation of P4 with a bis(germylene)-stabilized Pb(0) complex. Structural and computational studies showed that 2 possesses significant π bonding interactions between Pb atom and diphosphene ligands, which is reminiscent of transition-metal diphosphene complexes. Consistent with its unique electronic structure, complex 2 can deliver Pb(0) atoms to perform redox reaction with an iminoquinone to produce a cyclic plumbylene (4) and perform 2,5-dimethyl-3,4-dimethylimidazol-1-ylidene (IMe2 Me2 ) induced phosphorus cation abstraction to give an anionic PbP3 complex (6).
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhaoyin Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Jun Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
32
|
Cabeza JA, Reynes JF, García F, García-Álvarez P, García-Soriano R. Fast and scalable solvent-free access to Lappert's heavier tetrylenes E{N(SiMe 3) 2} 2 (E = Ge, Sn, Pb) and ECl{N(SiMe 3) 2} (E = Ge, Sn). Chem Sci 2023; 14:12477-12483. [PMID: 38020393 PMCID: PMC10646885 DOI: 10.1039/d3sc02709k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/03/2023] [Accepted: 09/24/2023] [Indexed: 12/01/2023] Open
Abstract
Iconic Lappert's heavier tetrylenes E{N(SiMe3)2}2 (E = Ge (1), Sn (2), Pb (3)) have been efficiently prepared from GeCl2·(1,4-dioxane), SnCl2 or PbCl2 and Li{N(SiMe3)2} via a completely solvent-free one-pot mechanochemical route followed by sublimation. This fast, high-yielding and scalable approach (2 has been prepared in a 100 mmol scale), which involves a small environmental footprint, represents a remarkable improvement over any synthetic route reported over the last five decades, being a so far rare example of the use of mechanochemistry in the realm of main group chemistry. This solventless route has been successfully extended to the preparation of other heavier tetrylenes, such as ECl{N(SiMe3)2} (E = Ge (4), Sn (5)).
Collapse
Affiliation(s)
- Javier A Cabeza
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Javier F Reynes
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Pablo García-Álvarez
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Rubén García-Soriano
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| |
Collapse
|
33
|
Wang X, Lei B, Zhang Z, Chen M, Rong H, Song H, Zhao L, Mo Z. Isolation and characterization of bis(silylene)-stabilized antimony(I) and bismuth(I) cations. Nat Commun 2023; 14:2968. [PMID: 37221189 DOI: 10.1038/s41467-023-38606-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Monovalent group 15 cations L2Pn + (L = σ-donor ligands, Pn = N, P, As, Sb, Bi) have attracted significant experimental and theoretical interest because of their unusual electronic structures and growing synthetic potential. Herein, we describe the synthesis of a family of antimony(I) and bismuth(I) cations supported by a bis(silylene) ligand [(TBDSi2)Pn][BArF4] (TBD = 1, 8, 10, 9-triazaboradecalin; ArF = 3,5-CF3-C6H3; Pn = Sb, (2); Bi, (3)). The structures of 2 and 3 have been unambiguously characterized spectroscopically and by X-ray diffraction analysis and DFT calculations. They feature bis-coordinated Sb and Bi atoms which exhibit two lone pairs of electrons. The reactions of 2 and 3 with methyl trifluoromethane sulfonate provide a approach for the preparation of dicationic antimony(III) and bismuth(III) methyl complexes. Compounds 2 and 3 serve as 2e donors to group 6 metals (Cr, Mo), giving rise to ionic antimony and bismuth metal carbonyl complexes 6-9.
Collapse
Affiliation(s)
- Xuyang Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Binglin Lei
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Zhaoyin Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Ming Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Hua Rong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Haibin Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 211816, Nanjing, China.
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China.
| |
Collapse
|
34
|
Cooperative Bond Activation and Catalytic CO 2 Functionalization with a Geometrically Constrained Bis(silylene)-Stabilized Borylene. J Am Chem Soc 2023; 145:7011-7020. [PMID: 36939300 DOI: 10.1021/jacs.3c00949] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Metal-ligand cooperativity has emerged as an important strategy to tune the reactivity of transition-metal complexes for the catalysis and activation of small molecules. Studies of main-group compounds, however, are scarce. Here, we report the synthesis, structural characterization, and reactivity of a geometrically constrained bis(silylene)-stabilized borylene. The one-pot reaction of [(SiNSi)Li(OEt2)] (SiNSi = 4,5-bis(silylene)-2,7,9,9-tetramethyl-9H-acridin-10-ide) with 1 equiv of [BBr3(SMe2)] in toluene at room temperature followed by reduction with 2 equiv of potassium graphite (KC8) leads to borylene [(SiNSi)B] (1), isolated as blue crystals in 45% yield. X-ray crystallography shows that borylene (1) has a tricoordinate boron center with a distorted T-shaped geometry. Computational studies reveal that the HOMO of 1 represents the lone pair orbital on the boron center and is delocalized over the Si-B-Si unit, while the geometric perturbation significantly increases its energy. Borylene (1) shows single electron transfer reactivity toward tris(pentafluorophenyl)borane (B(C6F5)3), forming a frustrated radical pair [(SiNSi)B]•+[B(C6F5)3]•-, which can be trapped by its reaction with PhSSPh, affording an ion pair [(SiNSi)BSPh][PhSB(C6F5)3] (3). Remarkably, the cooperation between borylene and silylene allows the facile cleavage of the N-H bond of aniline, the P-P bond in white phosphorus, and the C═O bond in ketones and carbon dioxide, thus representing a new type of main-group element-ligand cooperativity for the activation of small molecules. In addition, 1 is a strikingly effective catalyst for carbon dioxide reduction. Computational studies reveal that the cooperation between borylene and silylene plays a key role in the catalytic chemical bond activation process.
Collapse
|