1
|
Shen S, Tian M, Xia W, Song J, Wang Y, Wei J, Wang X, Yuan Y, Feng F. A selenium-based fluorescent sensor for the reversible detection of ClO - and H 2S in foods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125570. [PMID: 39674110 DOI: 10.1016/j.saa.2024.125570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
HClO/ClO- and H2S are two kinds of momentous biological small molecules in the organism, and the redox balance between them is considerable for the physiological and pathological properties of organisms. Hence, it is very crucial to monitor the redox course between HClO and H2S. Herein, a reversible fluorescent sensor (IPSe) for ClO- and H2S was firstly constructed with the selenium atom as the response site and the dicyanoisophorone as the fluorophore. The sensor IPSe could detect ClO- with good selectivity and sensitivity due to the oxidation reaction of the selenium atom triggered by ClO-. The recognition of IPSe to hypochlorite induced a hypsochromic shift of the absorption maximum from 420 nm to 380 nm. IPSe exhibited the prominent low detection limit of 55.3 nM for detecting ClO-, accompanied by distinct fluorescent attenuation. Moreover, H2S could efficiently return the fluorescence of the IPSe solution to the original level by H2S reducing selenoxide. The experimental results show that the suggested method has high precision and accuracy for the detection of ClO- and H2S. The applications in real water samples, beverages and cell imaging verified that the IPSe was capable of monitoring the changes in the concentration of ClO-/H2S, which indicates that it is of great meaning to survey the biological functions of ClO- and H2S via IPSe.
Collapse
Affiliation(s)
- Siyi Shen
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Maozhong Tian
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Wenhui Xia
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Jinping Song
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yuzhen Wang
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Jiyuan Wei
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Xiaohui Wang
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yuehua Yuan
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
2
|
Zheng Z, Liao R, Du Y. Ratiometric Fluorescent Probe for Sensitive Tracking of Peroxynitrite during Drug-Induced Hepatotoxicity. Chembiochem 2025; 26:e202400907. [PMID: 39870582 DOI: 10.1002/cbic.202400907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
As an essential component of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in redox homeostasis and signal transduction, with anomalous levels implicated in various clinical conditions. Therefore, accurate and rapid detection of intracellular ONOO- levels is crucial for revealing its role in physiological and pathological processes. In this study, we developed a ratiometric fluorescent probe to detect ONOO- levels in biological systems. The probe demonstrated a fast reaction rate (within 15 min), outstanding selectivity, high sensitivity (limit of detection=13.32 nM), and stability in the presence of ONOO-. The proposed probe was successfully used for visualizing endogenous ONOO- in living cells and tracking changes in intracellular ONOO- levels during drug-induced hepatotoxicity using ratiometric fluorescence.
Collapse
Affiliation(s)
- Zhijie Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ruhe Liao
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuting Du
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| |
Collapse
|
3
|
Boothe R, Oppelt J, Franke A, Moore JL, Squarcina A, Zahl A, Senft L, Kellner I, Awalah AL, Bradford A, Obisesan SV, Schwartz DD, Ivanović-Burmazović I, Goldsmith CR. Nickel(II) complexes with covalently attached quinols rely on ligand-derived redox couples to catalyze superoxide dismutation. Dalton Trans 2025; 54:3733-3749. [PMID: 39868440 DOI: 10.1039/d4dt03331k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Although nickel is found in the active sites of a class of superoxide dismutase (SOD), nickel complexes with non-peptidic ligands normally do not catalyze superoxide degradation, and none has displayed activity comparable to those of the best manganese-containing SOD mimics. Here, we find that nickel complexes with polydentate quinol-containing ligands can exhibit catalytic activity comparable to those of the most efficient manganese-containing SOD mimics. The nickel complexes retain a significant portion of their activity in phosphate buffer and under operando conditions and rely on ligand-centered redox processes for catalysis. Although nickel SODs are known to cycle through Ni(II) and Ni(III) species during catalysis, cryo-mass spectrometry studies indicate that the nickel atoms in our catalysts remain in the +2 oxidation state throughout SOD mimicry.
Collapse
Affiliation(s)
- Robert Boothe
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Julian Oppelt
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandster. 1, 91508 Erlangen, Germany
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandster. 1, 91508 Erlangen, Germany
| | - Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Andrea Squarcina
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandster. 1, 91508 Erlangen, Germany
| | - Laura Senft
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Ina Kellner
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Akudo L Awalah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Alisabeth Bradford
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Dean D Schwartz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
4
|
Chhillar B, Sodhi N, Kadian R, Neres ER, Yadav M, Kundu M, Venkatareddy VK, Malakalapalli RR, Rafique J, Saba S, Singh VP. Naphthalene peri-Diselenide-Based BODIPY Probe for the Detection of Hydrogen Peroxide, tert-Butylhydroperoxide, Hydroxyl Radical, and Peroxynitrite Ion. ACS OMEGA 2025; 10:6396-6405. [PMID: 40028082 PMCID: PMC11865972 DOI: 10.1021/acsomega.4c05366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
Dimethoxynaphthalene peri-diselenide-based BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) probe has been synthesized. The probe demonstrated selectivity and sensitivity for hydrogen peroxide (H2O2) and tert-butylhydroperoxide (t-BuOOH), hydroxyl radical (•OH), and peroxynitrite ion (ONOO-) detection and reversibility upon treatment with glutathione. The limits of detection of the probe were observed to be 0.40 μM for H2O2, 0.41 μM for t-BuOOH, 0.95 μM for •OH, and 0.46 μM for ONOO-, respectively. A proposed mechanism for the "turn-on" event has been suggested and corroborated by spectroscopic and computational data. It has been proposed that electron transfer occurred from the Se center to the BODIPY moiety, followed by the photoinduced electron transfer (PET) mechanism.
Collapse
Affiliation(s)
- Babli Chhillar
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Nikhil Sodhi
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Rajni Kadian
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Eliane Ribeiro Neres
- LabSO,
Instituto de Química – IQ, Universidade Federal de Goiás – UFG, Goiânia 74690-900, GO, Brazil
| | - Manisha Yadav
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Manisha Kundu
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Vinutha K. Venkatareddy
- Department
of Chemistry, Indian Institute of Technology
Dharwad, WALMI Campus, Dharwad 580011, Karnataka, India
| | - Rajeswara Rao Malakalapalli
- Department
of Chemistry, Indian Institute of Technology
Dharwad, WALMI Campus, Dharwad 580011, Karnataka, India
| | - Jamal Rafique
- LabSO,
Instituto de Química – IQ, Universidade Federal de Goiás – UFG, Goiânia 74690-900, GO, Brazil
- Instituto
de Química – INQUI, Universidade
Federal do Mato Grosso do Sul – UFMS, Campo Grande 79074-460, MS, Brazil
| | - Sumbal Saba
- LabSO,
Instituto de Química – IQ, Universidade Federal de Goiás – UFG, Goiânia 74690-900, GO, Brazil
| | - Vijay P. Singh
- Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
- Instituto
de Química – INQUI, Universidade
Federal do Mato Grosso do Sul – UFMS, Campo Grande 79074-460, MS, Brazil
| |
Collapse
|
5
|
Malankar GS, Shelar DS, Butcher RJ, Manjare ST. Development of diselenide-based fluorogenic system for the selective and sensitive detection of the Hg(II) in aqueous media. Dalton Trans 2025; 54:3911-3920. [PMID: 39886849 DOI: 10.1039/d4dt02967d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Mercury(II) is highly toxic thus the selective and sensitive detection of Hg(II) is important. This research article deals with the synthesis and characterization of the fluorogenic system based on diselenide containing rhodamine by single crystal XRD. The probe has been used for selective detection of Hg(II) in aqueous media with detection limit of 62.3 nM. The reaction of the Hg(II) with the probe induces opening of the spirolactam ring triggering fluorescence turn-on response. This reaction causes color change of the probe solution from colorless to pink. In addition, the probe showed the reversible binding behavior with Hg(II) and S2-. The effectiveness of the probe was evaluated using prostate cancer cell line through live cell imaging.
Collapse
Affiliation(s)
- Gauri S Malankar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
- Oregon Health and Science University, Portland, Oregon, USA
| | - Divyesh S Shelar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
| | | | - Sudesh T Manjare
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
| |
Collapse
|
6
|
Ewing AG. New horizons in nanoelectrochemistry: concluding remarks. Faraday Discuss 2025; 257:425-436. [PMID: 39817555 PMCID: PMC11736851 DOI: 10.1039/d4fd00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
The aim of this paper is to overview the meeting on New horizons in nanoelectrochemistry held at Nanjing University in China in October 2024 and to give some perspective to the work presented. This paper is based on my summary talk and breaks down the subjects in the following areas of nanoelectrochemistry presented at the meeting: nanowires, nanonets, and nanoarrays; nanopores; nanopipettes; spectroelectrochemistry, scanning ion-conductance microscopy and light-active processes at nanointerfaces; scanning electrochemical microscopy and scanning electrochemical cell microscopy; and nanosensors. I end with some discussion of online meetings and where the field might go including artificial intelligence and by asking AI to define the challenges and future of nanoelectrochemistry.
Collapse
Affiliation(s)
- Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41350, Sweden.
| |
Collapse
|
7
|
Yang Y, Ma Y, Gooding JJ. The electrochemical modulation of single molecule fluorescence. Faraday Discuss 2025; 257:333-343. [PMID: 39431849 DOI: 10.1039/d4fd00111g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Recently it has been shown that electrochemistry, instead of using high intensity lasers, can be used to modulate the intensity of emission of fluorophores and even switch fluorophores between their ON and OFF states as required for single molecule localisation microscopy. This modulation of fluorescence does not necessarily correlate with direct oxidation and reduction of the dyes. Questions arise from this unexpected observation related to what is the electrochemistry that occurs, what are the important variables in switching fluorophores electrochemically and what range of dyes can be modulated with electrochemistry. Herein we seek to answer some of these questions. We demonstrate how to effectively modulate the fluorescence intensity of organic dye-labelled cell samples on an indium tin oxide surface using electrochemistry with redox-active mediators present in an oxygen scavenger buffer. We showed the electrochemical fluorescence modulation is sensitive to the applied potential and the excitation laser intensity, indicating the possibility of coupled photochemical and electrochemical reactions occurring. We also compared the electrochemical fluorescence modulation of representative oxazine, rhodamine, and cyanine dyes using ATTO 655, Alexa Fluor 488, and Alexa Fluor 647. Different dyes with distinctly different structural cores show fluorescence modulation to different extents. The electrochemical fluorescence modulation will be applicable in fluorescence imaging techniques as well as biosensing.
Collapse
Affiliation(s)
- Ying Yang
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - Yuanqing Ma
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
8
|
Liu X, Liu Z, Li Y, Wang Y, Zhang W. Anthracene carboxyimide-based selenide as a fluorescent probe for the ultrasensitive detection of hypochlorous acid. Org Biomol Chem 2025; 23:1708-1713. [PMID: 39804073 DOI: 10.1039/d4ob01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
In situ detection of hypochlorous acid (HOCl) is critical for understanding its complex physiological and pathological roles. Fluorescent probes, known for their sensitivity and selectivity, are the preferred approach for such detections. Anthracene carboxyimide, an analog of naphthalimide, offers extended excitation and emission wavelengths, making it an excellent candidate for developing new fluorescent probes that address the limitations of naphthalimide. In this study, we designed a novel HOCl-specific fluorescent probe, AC-Se, by incorporating highly reactive selenium into anthracene carboxyimide. The probe exhibits a 104-fold fluorescence enhancement, a large Stokes shift of 72 nm, and a low detection limit of 36.2 nM. Moreover, AC-Se responds rapidly to HOCl within 4 seconds, enabling real-time intracellular monitoring of both exogenous and endogenous HOCl.
Collapse
Affiliation(s)
- Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Ziqi Liu
- Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tang Shan, 063000, China.
| | - Yujia Li
- Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tang Shan, 063000, China.
| | - Yali Wang
- Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tang Shan, 063000, China.
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
9
|
Dupouy B, Cotos L, Binder A, Slavikova L, Rottmann M, Mäser P, Jacquemin D, Ganter M, Davioud‐Charvet E, Elhabiri M. Click Coupling of Flavylium Dyes with Plasmodione Analogues: Towards New Redox-Sensitive Pro-Fluorophores. Chemistry 2025; 31:e202403691. [PMID: 39654502 PMCID: PMC11771622 DOI: 10.1002/chem.202403691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 12/17/2024]
Abstract
The development of redox-sensitive molecular fluorescent probes for the detection of redox changes in Plasmodium falciparum-parasitized red blood cells remains of interest due to the limitations of current genetically encoded biosensors. This study describes the design, screening and synthesis of new pro-fluorophores based on flavylium azido dyes coupled by CuAAC click chemistry to alkynyl analogues of plasmodione oxide, the key metabolite of the potent redox-active antimalarial plasmodione. The photophysical and electrochemical properties of these probes were evaluated, focusing on their fluorogenic responses. The influence of both the redox status of the quinone and the length of the PEG chain separating the fluorophore from the electrophore on the photophysical properties was investigated. The fluorescence quenching by photoinduced electron transfer is reversible and of high amplitude for probes in oxidized quinone forms and fluorescence is reinstated for reduced hydroquinone forms. Our results demonstrate that shortening the PEG chain has the effect of enhancing the fluorogenic response, likely due to non-covalent interactions between the two chromophores. All these systems were evaluated for their antiparasitic activities and fluorescence imaging suggests the efficacy of the fluorescent flavylium dyes in P. falciparum-parasitized red blood cells, paving the way for future parasite imaging studies to monitor cellular redox processes.
Collapse
Affiliation(s)
- Baptiste Dupouy
- Laboratoire d'Innovation Moléculaire et Applications, UMR 7042CNRS-Unistra-UHA, ECPM25 Rue Becquerel67200StrasbourgFrance
| | - Leandro Cotos
- Laboratoire d'Innovation Moléculaire et Applications, UMR 7042CNRS-Unistra-UHA, ECPM25 Rue Becquerel67200StrasbourgFrance
| | - Annika Binder
- Heidelberg UniversityMedical Faculty, Centre for Infectious DiseasesIm Neuenheimer Feld 324/34469120HeidelbergGermany
| | - Lucie Slavikova
- Laboratoire d'Innovation Moléculaire et Applications, UMR 7042CNRS-Unistra-UHA, ECPM25 Rue Becquerel67200StrasbourgFrance
| | - Matthias Rottmann
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAMF-44000NantesFrance
- Institut Universitaire de France (IUF)F-75005ParisFrance
| | - Markus Ganter
- Heidelberg UniversityMedical Faculty, Centre for Infectious DiseasesIm Neuenheimer Feld 324/34469120HeidelbergGermany
| | - Elisabeth Davioud‐Charvet
- Laboratoire d'Innovation Moléculaire et Applications, UMR 7042CNRS-Unistra-UHA, ECPM25 Rue Becquerel67200StrasbourgFrance
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications, UMR 7042CNRS-Unistra-UHA, ECPM25 Rue Becquerel67200StrasbourgFrance
| |
Collapse
|
10
|
Li T, Zhang Y, Wu F, Chen G, Li C, Wang Q. Rational Design of NIR-II Ratiometric Fluorescence Probes for Accurate Bioimaging and Biosensing In Vivo. SMALL METHODS 2025; 9:e2400132. [PMID: 38470209 DOI: 10.1002/smtd.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Intravital fluorescence imaging in the second near-infrared window (NIR-II, 900-1700 nm) has emerged as a promising method for non-invasive diagnostics in complex biological systems due to its advantages of less background interference, high tissue penetration depth, high imaging contrast, and sensitivity. However, traditional NIR-II fluorescence imaging, which is characterized by the "always on" or "turn on" mode, lacks the ability of quantitative detection, leading to low reproducibility and reliability during bio-detection. In contrast, NIR-II ratiometric fluorescence imaging can realize quantitative and reliable analysis and detection in vivo by providing reference signals for fluorescence correction, generating new opportunities and prospects during in vivo bioimaging and biosensing. In this review, the current design strategies and sensing mechanisms of NIR-II ratiometric fluorescence probes for bioimaging and biosensing applications are systematically summarized. Further, current challenges, future perspectives and opportunities for designing NIR-II ratiometric fluorescence probes are also discussed. It is hoped that this review can provide effective guidance for the design of NIR-II ratiometric fluorescence probes and promote its adoption in reliable biological imaging and sensing in vivo.
Collapse
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
11
|
Ma K, Jiang Q, Yang Y, Zhang F. Recent advances of versatile fluorophores for multifunctional biomedical imaging in the NIR-II region. J Mater Chem B 2024; 13:15-36. [PMID: 39534990 DOI: 10.1039/d4tb01957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Fluorescence imaging in the second near-infrared region (NIR-II, 1000-1700 nm) enables high-resolution visualization of deep-tissue biological architecture and physiopathological events, due to the reduced light absorption, scattering and tissue autofluorescence. Numerous versatile NIR-II fluorescent probes have been reported over the past decades. In this review, we first provide a detailed account of the advantages of fluorescence imaging in the NIR-II region. Following this, the classification, design and performance optimization strategies of NIR-II fluorescent probes are systematically discussed, along with a broad range of biomedical applications in vivo. Finally, the discussion extends to the next generation of fluorescent probes for in vivo imaging and the challenges and perspectives for the clinical translation of fluorescence imaging technology in the NIR-II region.
Collapse
Affiliation(s)
- Kaiming Ma
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Qunying Jiang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yang Yang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Fan Zhang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
12
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
13
|
Ying J, Tan Y, Lu Z. Cobalt-catalyzed hydrothiolation of alkynes for the diverse synthesis of branched alkenyl sulfides. Nat Commun 2024; 15:8057. [PMID: 39277596 PMCID: PMC11401953 DOI: 10.1038/s41467-024-52249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024] Open
Abstract
Alkenyl sulfides have gained increasing prominence in medicinal chemistry and materials. Hydrothiolation of alkynes for the diverse synthesis of alkenyl sulfides is an appealing method. Herein, we report a cobalt-catalyzed Markovnikov hydromethylthiolation of alkynes to afford branched alkenyl methylsulfanes with good yields and high regioselectivity. This method also enables the diverse synthesis of branched alkenyl sulfides. The reaction shows good functional group tolerance and could be scaled up. The mechanistic studies including control experiments, deuterium-labeling experiments, and Hammett plot indicated alkynes insertion followed by electrophilic thiolation pathway.
Collapse
Affiliation(s)
- Jiale Ying
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yan Tan
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhan Lu
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Dong Y, Liang W, Yi L. Fast Intramolecular Thiol-Activated Arylselenoamides Provide Access to Triggered, Fluorogenic H 2Se Donors. J Am Chem Soc 2024; 146:24776-24781. [PMID: 39185866 DOI: 10.1021/jacs.4c09215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
H2Se is the precursor for the biosynthesis of selenocompounds and is a potential gasotransmitter. Chemical tools for H2Se delivery and detection are important for Se-related biology research. Key challenges in the field include developing compound platforms that are triggered to release H2Se under various stimuli and developing fluorogenic donors that allow for real-time tracking of H2Se delivery. Here we report a new general platform for triggered H2Se donors based on controllable deprotection of a thiol, which can quickly activate an intramolecular arylselenoamide (t1/2 < 1 min) to release H2Se efficiently. Furthermore, we leverage this platform to develop the first examples of fluorogenic H2Se donors, which can be used to monitor H2Se release by fluorescence in real time. We anticipate that the well-defined donation chemistries will significantly advance the development of H2Se donors and stimulate further in-depth studies of H2Se biomedicine.
Collapse
Affiliation(s)
- Yalun Dong
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenfang Liang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Zhang W, Liu J, Li P, Wang X, Tang B. Reversible Fluorescent Probes for Dynamic Imaging of Liver Ischemia-Reperfusion Injury. Acc Chem Res 2024; 57:2594-2605. [PMID: 39164205 DOI: 10.1021/acs.accounts.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is an inevitable complication of clinical surgeries such as liver resection or transplantation, often resulting in postoperative liver dysfunction, hepatic failure in up to 13% of postresection patients, and early graft failure in 11-18% of liver transplantation patients. HIRI involves a series of biochemical events triggered by abnormal alterations in multiple biomarkers, characterized by short lifespans, dynamic changes, subcellular regional distribution, and multicollaborative regulation. However, traditional diagnosis, including serology, imaging, and liver puncture biopsy, suffers from low sensitivity, poor resolution, and hysteresis, which hinder effective monitoring of HIRI markers. Thus, to address the unique properties of HIRI markers, there is a pressing demand for developing novel detection strategies that are highly selective, transiently responsive, dynamically reversible, subcellular organelle-targeted, and capable of simultaneous multicomponent analysis. Optical probe-based fluorescence imaging is a powerful tool for real-time monitoring of biomarkers with the advantages of high sensitivity, noninvasiveness, rapid analysis, and high-fidelity acquisition of spatiotemporal information on signaling molecules compared with conventional methods. Moreover, with the growing demand for continuous monitoring of biomarkers, probes with reversible detection features are receiving more and more attention. Importantly, reversible probes can not only monitor fluctuations in marker concentrations but also distinguish between transient bursts of markers during physiological events and long-term sustained increases in pathological marker levels. This can effectively avoid false-positive test results, and in addition, reversible probes can be reutilized with green and economical features. Therefore, our team has employed various effective methods to design reversible optical probes for HIRI. We proposed reversible recognition strategies based on specific reactions or interactions to detect dynamic changes in markers. Given the biomarkers' unique signaling in subcellular organelles and the synergistic regulatory properties of multiple markers for HIRI, bifunctional reversible detection strategies are exploited, including organelle-targeted reversible and multicomponent simultaneous detection. With these strategies, we have tailored a variety of high-fidelity fluorescent probes for a series of HIRI markers, including reactive oxygen/nitrogen species (O2•- and ONOO-), ATP, protein (Keap1), mitochondrial DNA, etc. Utilizing the probes, the in situ dynamic imaging detection of the HIRI markers was successfully achieved. While performing the precise examination of the earlier occurrence of HIRI disease and visualizing the real-time monitoring of the disease process, we have also further elucidated the HIRI-associated signaling pathways. It is envisioned that our summarized work will inspire the design of future reversible fluorescent probes and help to improve the clinical diagnosis and therapeutic efficiency of these diseases.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
- Laoshan Laboratory, Qingdao 266237, Shandong, People's Republic of China
| |
Collapse
|
16
|
Shelar DS, Malankar GS, Salunkhe SS, Manikandan M, Chavan AD, Pinjari RV, Patra M, Butcher RJ, Manjare ST. Synthesis and characterization of organoselenium based BODIPY and its application in living cells. Bioorg Chem 2024; 150:107568. [PMID: 38905887 DOI: 10.1016/j.bioorg.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Phenylselenide based BODIPY probe was successfully synthesized and characterized by NMR spectroscopic techniques (1H, 13C and 77Se NMR), mass spectrometry and single crystal XRD. Surprisingly, crystal packing diagram of the probe showed formation of 1-D strip through intermolecular F---H interaction. The probe was screened with various Reactive Oxygen Species (ROS) and found to be selective for superoxide ion over other ROS via "turn-on" fluorescence response. The probe selectively and sensitively detects superoxide with a lower detection limit (43.34 nM) without interfering with other ROS. The quantum yield of the probe was found to increase from 0.091 % to 30.4 % (334-fold) after oxidation. Theoretical calculations (DFT and TD-DFT) were also performed to understand the sensing mechanism of the probe. The probe was able to effectively detect superoxide inside living cells without any toxic effect.
Collapse
Affiliation(s)
- Divyesh S Shelar
- Department of Chemistry, University of Mumbai, Mumbai 400098, India
| | - Gauri S Malankar
- Department of Chemistry, University of Mumbai, Mumbai 400098, India
| | | | - M Manikandan
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Mumbai 400005, India
| | - Arjun D Chavan
- School of Chemical Science, Swami Ramanand Teerth Marathwada University, Nanded, 431606, India
| | - Rahul V Pinjari
- School of Chemical Science, Swami Ramanand Teerth Marathwada University, Nanded, 431606, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Mumbai 400005, India.
| | | | - Sudesh T Manjare
- Department of Chemistry, University of Mumbai, Mumbai 400098, India.
| |
Collapse
|
17
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
18
|
Lalji RSK, Monika, Gupta M, Kumar S, Butcher RJ, Singh BK. Expedient, regioselective C-H chalcogenation of 3,4-dihydro-1,4-benzoxazines using a palladium-copper catalyst. Org Biomol Chem 2024; 22:5809-5815. [PMID: 38946460 DOI: 10.1039/d4ob00524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The palladium-catalysed regioselective C-H chalcogenation of benzoxazines with disulfides and diselenides in air has been described. In this protocol, palladium acetate serves as the catalyst in conjunction with copper as an oxidizing agent. Through this approach, a wide array of sulfenylation and selenylation reactions of benzomorpholines have been effected, yielding results ranging from good to excellent. Thus, the established procedure demonstrates superb regioselectivity and a strong tolerance towards various functional groups and is suitable for gram-scale synthesis. Additionally, this synthetic approach offers a practical and convenient pathway for late-stage functionalization leading to the Rosenmund-von Braun reaction.
Collapse
Affiliation(s)
- Ram Sunil Kumar Lalji
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
- Department of Chemistry, Kirori Mal College, Delhi University, Delhi-110007, India
| | - Monika
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Mohit Gupta
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
- Department of Chemistry, L.N.M.S. College, Birpur, Supaul, Bihar-854340, India
| | - Sandeep Kumar
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Ray J Butcher
- Inorganic & Structural Chemistry, Howard University, Washington DC 20059, USA
| | - Brajendra Kumar Singh
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
19
|
Yang P, Tang AL, Tan S, Wang GY, Huang HY, Niu W, Liu ST, Ge MH, Yang LL, Gao F, Zhou X, Liu LW, Yang S. Recent progress and outlooks in rhodamine-based fluorescent probes for detection and imaging of reactive oxygen, nitrogen, and sulfur species. Talanta 2024; 274:126004. [PMID: 38564824 DOI: 10.1016/j.talanta.2024.126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.
Collapse
Affiliation(s)
- Ping Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - A-Ling Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shuai Tan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Guang-Ye Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hou-Yun Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Niu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shi-Tao Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Mei-Hong Ge
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Lin-Lin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Feng Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
20
|
Zhang S, Ji L, Xu K, Xiong X, Ai B, Qian W, Dong J. Detection of redox potential evolution during the initial stage of an acute wound based on a redox-sensitive SERS-active optical fiber. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3263-3270. [PMID: 38738477 DOI: 10.1039/d4ay00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
To detect redox potential evolution during the initial stage of an acute wound, a redox-sensitive SERS-active optical fiber was fabricated by integrating redox-sensitive SERS probes in a hole of an optical fiber. The redox-sensitive SERS-active optical fibers carried redox-sensitive SERS probes into the inside of a wound to sense its redox potential. The laser was transmitted to the redox-sensitive SERS probes in the body by optical fibers, and the SERS signals of the redox-sensitive SERS probes were transferred out of the body by optical fibers to indicate the redox potentials in the wound. The redox-sensitive SERS probes dynamically sensed the redox potential in vivo, and their SERS signals were collected constantly to indicate the redox potentials. The assessments in vivo and in vitro proved the responsiveness of redox-sensitive SERS-active optical fibers. The redox potential evolution during the initial stage of an acute wound with the treatments of different concentrations of glucose was detected to verify the feasibility of redox-sensitive SERS-active optical fibers to dynamically detect redox potentials in vivo. The redox-sensitive SERS-active optical fiber would be a versatile tool to explore the roles of redox potentials in living organisms.
Collapse
Affiliation(s)
- Shuyu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Lingling Ji
- Department of Acupuncture-Moxibustion, Massage and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Department of Acupuncture and Moxibustion, Suzhou Chinese Medicine Hospital Affiliated to Nanjing Chinese Medicine University, Suzhou 215003, China
| | - Kun Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xiulei Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Bingwei Ai
- Department of Acupuncture-Moxibustion, Massage and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jian Dong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| |
Collapse
|
21
|
Zhao Y, Zhang J, Zhang J, Zhang Z, Liu R. Iodine-Catalyzed Cyclization of o-Nitrothiophenols with Cyclohexanones to Phenothiazines. J Org Chem 2024. [PMID: 38773694 DOI: 10.1021/acs.joc.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Here, a novel iodine-catalyzed direct cyclization of o-nitrothiophenols with cyclohexanones to phenothiazines has been described without external oxidants and hydrogen acceptors. The nitro of o-nitrothiophenol works as both a hydrogen acceptor and a coupling group, and water is the only byproduct. The reaction involves the reduction of nitro groups, C-H bond thioetherification, and C-H bond dehydroaromatization. This scheme offers broad synthetic value for further elaborations, as exemplified by a 3-step total synthesis of antipsychotic chlorpromazine.
Collapse
Affiliation(s)
- Yinglin Zhao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jin Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jingwu Zhang
- Shandong Medicine Technician College, Fengtian Road 999, Tai'an 271000, Shandong, P. R. China
| | - Zhida Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Renhua Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
22
|
Dunnington EL, Wong BS, Fu D. Innovative Approaches for Drug Discovery: Quantifying Drug Distribution and Response with Raman Imaging. Anal Chem 2024; 96:7926-7944. [PMID: 38625100 PMCID: PMC11108735 DOI: 10.1021/acs.analchem.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Affiliation(s)
| | | | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
23
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
24
|
Lu J, Lew MD. Single-molecule electrochemical imaging resolves the midpoint potentials of individual fluorophores on nanoporous antimony-doped tin oxide. Chem Sci 2024; 15:2037-2046. [PMID: 38332827 PMCID: PMC10848685 DOI: 10.1039/d3sc05293a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
We report reversible switching of oxazine, cyanine, and rhodamine dyes by a nanoporous antimony-doped tin oxide electrode that enables single-molecule (SM) imaging of electrochemical activity. Since the emissive state of each fluorophore is modulated by electrochemical potential, the number of emitting single molecules follows a sigmoid function during a potential scan, and we thus optically determine the formal redox potential of each dye. We find that the presence of redox mediators (phenazine methosulfate and riboflavin) functions as an electrochemical switch on each dye's emissive state and observe significantly altered electrochemical potential and kinetics. We are therefore able to measure optically how redox mediators and the solid-state electrode modulate the redox state of fluorescent molecules, which follows an electrocatalytic (EC') mechanism, with SM sensitivity over a 900 μm2 field of view. Our observations indicate that redox mediator-assisted SM electrochemical imaging (SMEC) could be potentially used to sense any electroactive species. Combined with SM blinking and localization microscopy, SMEC imaging promises to resolve the nanoscale spatial distributions of redox species and their redox states, as well as the electron transfer kinetics of electroactive species in various bioelectrochemical processes.
Collapse
Affiliation(s)
- Jin Lu
- Preston M. Green Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
- Institute of Materials Science and Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| | - Matthew D Lew
- Preston M. Green Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
- Institute of Materials Science and Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| |
Collapse
|
25
|
Ni X, Marutani E, Shieh M, Lam Y, Ichinose F, Xian M. Selenium-Based Catalytic Scavengers for Concurrent Scavenging of H 2 S and Reactive Oxygen Species. Angew Chem Int Ed Engl 2024; 63:e202317487. [PMID: 38100749 PMCID: PMC10873471 DOI: 10.1002/anie.202317487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Hydrogen sulfide (H2 S) is an endogenous gasotransmitter that plays important roles in redox signaling. H2 S overproduction has been linked to a variety of disease states and therefore, H2 S-depleting agents, such as scavengers, are needed to understand the significance of H2 S-based therapy. It is known that elevated H2 S can induce oxidative stress with elevated reactive oxygen species (ROS) formation, such as in H2 S acute intoxication. We explored the possibility of developing catalytic scavengers to simultaneously remove H2 S and ROS. Herein, we studied a series of selenium-based molecules as catalytic H2 S/H2 O2 scavengers. Inspired by the high reactivity of selenoxide compounds towards H2 S, 14 diselenide/monoselenide compounds were tested. Several promising candidates such as S6 were identified. Their activities in buffers, as well as in plasma- and cell lysate-containing solutions were evaluated. We also studied the reaction mechanism of this scavenging process. Finally, the combination of the diselenide catalyst and photosensitizers was used to achieve light-induced H2 S removal. These Se-based scavengers can be useful tools for understanding H2 S/ROS regulations.
Collapse
Affiliation(s)
- Xiang Ni
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Eizo Marutani
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Yannie Lam
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
26
|
Yu D, Wang L, Li J, Zeng X, Jia Y, Tian J, Campbell A, Sun H, Fan H. Dual-responsive probe and DNA interstrand crosslink precursor target the unique redox status of cancer cells. Chem Commun (Camb) 2023; 59:14705-14708. [PMID: 37997159 DOI: 10.1039/d3cc05175g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Elevated GSH and H2O2 in cancer cells is sometimes doubted due to their contrary reactivities. Here, we construct a dual-responsive fluorescent probe to confirm the conclusion, and employ this to exploit a redox-inducible DNA interstrand crosslink (ICL) precursor. It crosslinks DNA upon activation by GSH and H2O2, affording an alternative dual-responsive strategy.
Collapse
Affiliation(s)
- Dehao Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Luo Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Jingao Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Xuanwei Zeng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Yuanyuan Jia
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Junyu Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Anahit Campbell
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Huabing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Heli Fan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| |
Collapse
|
27
|
Ma W, Chen R, Hu T, Xing S, Zhou G, Qin X, Ren H, Zhang Z, Chen J, Niu Q. New dual-responsive fluorescent sensor for hypochlorite and cyanide sensing and its imaging application in live cells and zebrafish. Talanta 2023; 265:124910. [PMID: 37418961 DOI: 10.1016/j.talanta.2023.124910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Excessive levels of cyanide (CN-) and hypochlorite (ClO-) anions are the significant threats to the human health and the environment. Thus, great efforts have been to design and synthesize molecular sensors for the simple, instantaneous and efficient detecting environmentally and biologically important anions. Currently, developing a single molecular sensor for multi-analyte sensing is still a challenging task. In our present work, we developed a new molecular sensor (3TM) based on oligothiophene and Meldrum's acid units for detecting cyanide and hypochlorite anions in biological, environmental and food samples. The detecting ability of 3TM has been examined to various testing substances containing amino acids, reactive oxygen species, cations and anions, showing its high selectivity, excellent sensitivity, short response time (ClO-: 30 s, CN-: 100 s), and broad pH working range (4-10). The detection limits were calculated as 4.2 nM for ClO- in DMSO/H2O (1/8, v/v) solution and 6.5 nM for CN- in DMSO/H2O (1/99, v/v) solution. Sensor 3TM displayed sharp turn-on fluorescence increasement (555 nm, 435 nm) and sensitive fluorescence color changes caused by CN-/ClO-, which is ascribed to the nucleophilic addition and oxidation of ethylenic linkage by cyanide and hypochlorite, respectively. Moreover, sensor 3TM was applied for hypochlorite and cyanide detecting in real-world water, food samples and bio-imaging in live cells and zebrafish. To our knowledge, the developed 3TM sensor is the seventh single-molecular sensor for simultaneous and discriminative detecting hypochlorite and cyanide in food, biological and aqueous environments using two distinct sensing modes.
Collapse
Affiliation(s)
- Wenwen Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ruiming Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Tingting Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Shu Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guanglian Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xiaoxu Qin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Huijun Ren
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhengyang Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
28
|
Ren YY, Deng BY, Liao ZH, Zhou ZR, Tung CH, Wu LZ, Wang F. A Smart Single-Fluorophore Polymer: Self-Assembly Shapechromic Multicolor Fluorescence and Erasable Ink. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307971. [PMID: 37743568 DOI: 10.1002/adma.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Indexed: 09/26/2023]
Abstract
A novel smart fluorescent polymer polyethyleneimine-grafted pyrene (PGP) is developed by incorporating four stimuli-triggers at molecular level. The triggers are amphiphilicity, supramolecular host-guest sites, pyrene fluorescence indicator, and reversible chelation sites. PGP exhibits smart deformation and shape-dependent fluorescence in response to external stimuli. It can deform into three typical shapes with a characteristic fluorescence color, namely, spherical core-shell micelles of cyan-green fluorescence, standard rectangular nanosheets of yellow fluorescence, and irregular branches of deep-blue fluorescence. A quasi-reversible deformation between the first two shapes can be dynamically manipulated. Moreover, driven by reversible coordination and the resulting intramolecular photoinduced electron transfer, PGP can be used as an aqueous fluorescence ink with erasable and recoverable properties. The fluorescent patterns printed by PGP ink on paper can be rapidly erased and recovered by simple spraying a sequence of Cu2+ and ethylene diamine tetraacetic acid aqueous solutions. This erase/recover transformation can be repeated multiple times on the same paper. The multiple stimulus responsiveness of PGP makes it have potential applications in nanorobots, sensing, information encryption, and anticounterfeiting.
Collapse
Affiliation(s)
- Ying-Yi Ren
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bo-Yi Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Hao Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Rong Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
29
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Li J, Song L, Hu W, Zuo Q, Li R, Dai M, Zhou Y, Qing Z. A Reversible Fluorescent Probe for In Situ Monitoring Redox Imbalance during Mitophagy. Anal Chem 2023; 95:13668-13673. [PMID: 37644392 DOI: 10.1021/acs.analchem.3c02717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mitophagy is the lysosome-dependent degradation of damaged and dysfunctional mitochondria, which is closely associated with H2O2-related redox imbalance and pathological processes. However, development of fast-responding and highly sensitive reversible fluorescent probes for monitoring of mitochondrial H2O2 dynamics is still lacking. Herein, we report a reversible fluorescent probe (M-HP) that enables real-time imaging of H2O2-related redox imbalance. In vitro studies demonstrated that M-HP had a rapid response and high sensitivity to the H2O2/GSH redox cycle, with a detection limit of 17 nM for H2O2. M-HP was applied to imaging of H2O2 fluctuation in living cells with excellent reversibility and mitochondrial targeting. M-HP reveals an increase in mitochondrial H2O2 under lipopolysaccharide stimulation and a decrease in H2O2 following the combined treatment with rapamycin. This suggests that the level of oxidative stress is significantly suppressed after the enhancement of mitophagy. The rationally designed M-HP offers a powerful tool for understanding redox imbalance during mitophagy.
Collapse
Affiliation(s)
- Junbin Li
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Lifei Song
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Weiguo Hu
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Qin Zuo
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Roumei Li
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Min Dai
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| |
Collapse
|
31
|
Zhao J, Liu C. Computational Insights into Excited State Intramolecular Double Proton Transfer Behavior Associated with Atomic Electronegativity for Bis(2'-benzothiazolyl)hydroquinone. Molecules 2023; 28:5951. [PMID: 37630203 PMCID: PMC10458628 DOI: 10.3390/molecules28165951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Inspired by the distinguished regulated photochemical and photophysical properties of 2-(2'-hydroxyphenyl)benzazole derivatives, in this work, the novel bis(2'-benzothiazolyl)hydroquinone (BBTHQ) fluorophore is explored, looking at its photo-induced behaviors associated with different substituted atomic electronegativities, i.e., BBTHQ-SO, BBTHQ-SS and BBTHQ-Se compounds. From the structural changes, infrared (IR) vibrational variations and simulated core-valence bifurcation (CVB) indexes for the dual hydrogen bonds for the three BBTHQ derivatives, we see that low atomic electronegativity could be conducive to enhancing hydrogen bonding effects in the S1 state. Particularly, the O4-H5⋯N6 of BBTHQ-SO and the O1-H2⋯N3 of BBTHQ-SSe could be strengthened to be more intensive in the S1 state, respectively. Looking into the charge recombination induced by photoexcitation, we confirm a favorable ESDPT trend deriving from the charge reorganization of the dual hydrogen bonding regions. By constructing the potential energy surfaces (PESs) along with the ESDPT paths for the BBTHQ-SO, BBTHQ-SS and BBTHQ-Se compounds, we not only unveil stepwise ESDPT behaviors, but also present an atomic electronegativity-regulated ESDPT mechanism.
Collapse
Affiliation(s)
- Jinfeng Zhao
- College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China;
| | | |
Collapse
|
32
|
Poonia T, van Wijngaarden J. Exploring the distinct conformational preferences of allyl ethyl ether and allyl ethyl sulfide using rotational spectroscopy and computational chemistry. J Chem Phys 2023; 158:2895228. [PMID: 37290071 DOI: 10.1063/5.0153479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
The conformational energy landscapes of allyl ethyl ether (AEE) and allyl ethyl sulfide (AES) were investigated using Fourier transform microwave spectroscopy in the frequency range of 5-23 GHz aided by density functional theory B3LYP-D3(BJ)/aug-cc-pVTZ calculations. The latter predicted highly competitive equilibria for both species, including 14 unique conformers of AEE and 12 for the sulfur analog AES within 14 kJ mol-1. The experimental rotational spectrum of AEE was dominated by transitions arising from its three lowest energy conformers, which differ in the arrangement of the allyl side chain, while in AES, transitions due to the two most stable forms, distinct in the orientation of the ethyl group, were observed. Splitting patterns attributed to methyl internal rotation were analyzed for AEE conformers I and II, and the corresponding V3 barriers were determined to be 12.172(55) and 12.373(32) kJ mol-1, respectively. The experimental ground state geometries of both AEE and AES were derived using the observed rotational spectra of the 13C and 34S isotopic species and are highly dependent on the electronic properties of the linking chalcogen (oxygen vs sulfur). The observed structures are consistent with a decrease in hybridization in the bridging atom from oxygen to sulfur. The molecular-level phenomena that drive the conformational preferences are rationalized through natural bond orbital and non-covalent interaction analyses. These show that interactions involving the lone pairs on the chalcogen atom with the organic side chains favor distinct geometries and energy orderings for the conformers of AEE and AES.
Collapse
Affiliation(s)
- Tamanna Poonia
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jennifer van Wijngaarden
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
33
|
Cha Y, Gopala L, Lee MH. A bio-friendly biotin-coupled and azide-functionalized naphthalimide for real-time endogenous hydrogen sulfide analysis in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122385. [PMID: 36696861 DOI: 10.1016/j.saa.2023.122385] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2S) is involved in various biological processes. Thereby, abnormal levels of H2S are reported to be related to various human diseases including cancer. Currently, many fluorescent probes are pioneered to detect H2S by taking advantages of naphthalimides' unique internal charge transfer (ICT) property. However, most probes often require a high content of organic solvents or surfactants, and are limited to the analysis of exogenous H2S treated externally in live cell studies, and have difficulties in analyzing endogenous H2S, thus limiting their practical use. In this study, we developed a bio-friendly biotin-coupled and azide-functionalized naphthalimide (1) as a fluorescent probe enabling real-time analysis of H2S in living system. Probe was able to provide a fluorescence at 545 nm via H2S-mediated azide reduction selectively without interference by biologically abundant constituents and pH effects. In a biological study using A549 cells, probe readily penetrated living cells without cytotoxicity, and unreacted probes showed almost no fluorescence, enabling real-time detection of H2S in living cells without requiring separate washing process. More importantly, under stimulation with various H2S inducers and inhibitors, probe was able to provide an effective fluorescence response against fluctuations in endogenous H2S, a key requirement for H2S studies. Probe 1 can be applied as a useful chemical tool and enables the analysis of H2S and the study of H2S-related cell functions in a variety of environments.
Collapse
Affiliation(s)
- Yujin Cha
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Lavanya Gopala
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| |
Collapse
|
34
|
Liang Y, Chen Z, Liu Q, Huang H, Meng Z, Gong S, Wang Z, Wang S. A NIR BODIPY-based ratiometric fluorescent probe for HClO detection with high selectivity and sensitivity in real water samples and living zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122268. [PMID: 36580754 DOI: 10.1016/j.saa.2022.122268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Hypochlorous acid (HClO) plays an important role in many physiological and pathological activities. In this work, a novel BODIPY-based Near-infrared (NIR) ratiometric fluorescent probe BODIPY-Hyp was designed for the rapid detection of HClO. The probe BODIPY-Hyp was highly selective and sensitive for HClO with a low detection limit of 16.74 nM and short response time of less than 60 s. The probe BODIPY-Hyp in response to HClO exhibited a significant blue-shifted fluorescence emission from 700 nm to 530 nm, and its fluorescence intensity ratio (I530 nm/I700 nm) increased about 1200 times before and after adding HClO. Moreover, the reaction mechanism of BODIPY-Hyp with HClO was verified by HRMS analysis, 1H NMR titration and DFT calculations. Furthermore, BODIPY-Hyp was successfully processed into a portable test strip-based device for the detection of HClO. In addition, the probe BODIPY-Hyp could be used in real time to monitor the levels of HClO in living zebrafish larvae. In conclusion, BODIPY-Hyp has great application potential in the life and environmental sciences.
Collapse
Affiliation(s)
- Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhen Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qianting Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haiting Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
35
|
Huang P, Lu J, Jin L, Liu E, Li L. A DFT/TDDFT Investigation on Fluorescence and Electronic Properties of Chromone Derivatives. J Fluoresc 2023; 33:453-458. [PMID: 36441339 DOI: 10.1007/s10895-022-03095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
The development of quick and precise detection technologies for active compounds in vivo is critical for disease prevention, diagnosis and pathological investigation. The fluorescence signal of the fluorophore usually defines the probe's sensitivity to the chemical being examined. Many natural compounds containing flavone and isoflavone scaffolds exhibit a certain amount fluorescence, albeit with poor fluorescence quantum yields. Therefore, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations to investigate the fluorescence characteristics of chromium-derived fluorophores in more depth. Different substituents are introduced at different positions of the chromone. As weak electron donor groups, alkyl and aromatic groups were discovered to have varying quantum yields on the fluorophore scaffold, and longer alkyl chains are favorable to enhance fluorescence quantum yield. In comparison to the amino group, substituted amino group can avoid group rotation, and the introduction of cyclic amines such as pyrrolidine and heterocyclic amines can improve optical characteristics. The electron-donating methoxy group at position 6 helps to increase the fluorescence quantum yield.
Collapse
Affiliation(s)
- Pei Huang
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ernu Liu
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Li Li
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
36
|
Synthesis and Photophysical Study of Tetraphenyl Substituted BODIPY Based Phenyl-Monoselenide Probe for Selective Detection of Superoxide. J Fluoresc 2023; 33:437-444. [PMID: 36435906 DOI: 10.1007/s10895-022-03096-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Selenium containing tetraphenyl substituted BODIPY probe was successfully synthesized from respective selenium aldehyde and tetraphenyl pyrrole using Knoevenagel-type condensation. The product was characterized using various spectroscopic techniques (1 H, 13 C, 77Se, 11B, and 19 F) and mass spectrometry. The probe was found to be selective and sensitive towards detection of superoxide over other ROS with a "turn-off" (quenched) fluorescence response. The detection limit of the probe was found to be 4.87 µM. The probe reacted with superoxide in less than a sec with a stoke shift of 35 nm.
Collapse
|
37
|
Ding Y, Zhong R, Jiang R, Yang X, He L, Yuan L, Cheng D. Redox-Reversible Near-Infrared Fluorescent Probe for Imaging of Acute Kidney Oxidative Injury and Remedy. ACS Sens 2023; 8:914-922. [PMID: 36790368 DOI: 10.1021/acssensors.2c02610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Drug-induced acute kidney injury (DIAKI) is associated with high morbidity and mortality. It remains a diagnostic and therapeutic dilemma due to failure of providing unambiguous real-time feedback on nephrotoxicity, which is regarded as a serious problem in clinics. Herein, we report a reversible fluorescence probe, NRN, to monitor the ONOO-/GSH in an acute kidney injury model. The NRN near-infrared fluorescent probe features a big Stokes shift (83 nm), which was oxidized by ONOO- and reduced by succussive glutathione (GSH) with excellent selectivity and good sensitivity (detection limit: 418 nM and 0.28 mM, respectively). Taking the reversibility of NRN toward ONOO- and GSH, real-time evaluations in vivo with cisplatin (CP) alone and CP combined with acetaminophen-stimulated acute kidney injury and the following remedy process with l-carnitine were realized for the first time. The experiments revealed that acute kidney injury caused by combined drugs might be more serious and irreversible under certain conditions. Therefore, NRN could act as a potential tool for understanding oxidative stress-related DIAKI disease processes.
Collapse
Affiliation(s)
- Yiteng Ding
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Rongbin Zhong
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Renfeng Jiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Xuefeng Yang
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Dan Cheng
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
38
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
39
|
Sun K, Xu R, Xue B, Liu P, Bai J, Tian Y, Li X, Tang Q. ROS-responsive ADPH nanoparticles for image-guided surgery. Front Chem 2023; 11:1121957. [PMID: 36846853 PMCID: PMC9944124 DOI: 10.3389/fchem.2023.1121957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
In recent years, organic fluorescent probes with tumor microenvironment (TME)-responsive fluorescence turn-on properties have been increasingly used in imaging-guided tumor resection due to their higher signal-to-noise ratio for tumor imaging compared to non-responsive fluorescent probes. However, although researchers have developed many organic fluorescent nanoprobes responsive to pH, GSH, and other TME, few probes that respond to high levels of reactive oxygen species (ROS) in the TME have been reported in imaging-guided surgery applications. In this work, we prepared Amplex® Red (ADHP) with excellent ROS response performance as an ROS-responsive nanoprobe and studied its application in image-guided tumor resection for the first time. To confirm whether the nanoprobe can be used as an effective biological indicator to distinguish tumor sites, we first detected 4T1 cells with the ADHP nanoprobe, demonstrating that the probe can utilize ROS in tumor cells for responsive real-time imaging. Furthermore, we conducted fluorescence imaging in vivo in 4T1 tumor-bearing mice, and the ADHP probe can rapidly oxidize to form resorufin in response to ROS, which can effectively reduce the background fluorescence signal compared with the single resorufin probe. Finally, we successfully carried out image-guided surgery of 4T1 abdominal tumors under the guidance of fluorescence signals. This work provides a new idea for developing more TME-responsive fluorescent probes and exploring their application in image-guided surgery.
Collapse
Affiliation(s)
| | - Ruitong Xu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingyan Xue
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Liu
- Department of Gastroenterology, Jiangyin People’s Hospital, Jiangyin, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Qiyun Tang,
| |
Collapse
|
40
|
Synthesis of Selenium-based BOPHY Sensor for Imaging of Cu(II) in Living HeLa Cells. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
41
|
Shen Y, Zhang X, Zhang C, Tang Y. An ESIPT-based reversible ratiometric fluorescent sensor for detecting HClO/H 2S redox cycle in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121881. [PMID: 36152505 DOI: 10.1016/j.saa.2022.121881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
HClO and H2S, as two kinds of crucial small biomolecules, are endowed various roles in biological organisms. The redox balance between HClO and H2S is closely related to the physiological and pathological processes. Thus, it is significant to monitor the redox process between HClO and H2S. Inspired by the advantages of ratiometric fluorescent probes, we firstly developed a reversible ratiometric fluorescent probe (BT-Se) for HClO and H2S via combination of phenyl selenide as the response group and 2-(2'-hydroxyphenyl)benzothiazole dye as the fluorophore. The proposed probe BT-Se could detect HClO with well-separated dual emission (110 nm), fast response, good selectivity and sensitivity owing to the oxidation reaction of the Se atom induced by HClO. Moreover, only H2S could effectively recover the fluorescence of the detection system to the original state via H2S induced-reduction of selenoxide. Cell imaging studies demonstrated that the probe BT-Se was capable of ratiometric monitoring the changes of intracellular HClO/H2S, which suggested that it has great potential for researching the biological functions of HClO and H2S.
Collapse
Affiliation(s)
- Youming Shen
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| | - Xiangyang Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Chunxiang Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Yucai Tang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| |
Collapse
|
42
|
Chang B, Chen J, Bao J, Dong K, Chen S, Cheng Z. Design strategies and applications of smart optical probes in the second near-infrared window. Adv Drug Deliv Rev 2023; 192:114637. [PMID: 36476990 DOI: 10.1016/j.addr.2022.114637] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, a series of synergistic advances in the synthesis chemistries and imaging instruments have largely boosted a significant revolution, in which large-scale biomedical applications are now benefiting from optical bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm). The large tissue penetration and limited autofluorescence associated with long-wavelength imaging improve translational potential of NIR-II imaging over common visible-light (400-650 nm) and NIR-I (750-900 nm) imaging, with ongoing profound effects on the studies of precision medicine. Unfortunately, the majority of NIR-II probes are designed as "always-on" luminescent imaging contrasts, continuously generating unspecific signals regardless of whether they reach pathological locations. Thus, in vivo imaging by traditional NIR-II probes usually suffers from weak detect precision due to high background noise. In this context, the advances of optical imaging now enter into an era of precise control of NIR-II photophysical kinetics. Developing NIR-II optical probes that can efficiently activate their luminescent signal in response to biological targets of interest and substantially suppress the background interferences have become a highly prospective research frontier. In this review, the merits and demerits of optical imaging probes from visible-light, NIR-I to NIR-II windows are carefully discussed along with the lens of stimuli-responsive photophysical kinetics. We then highlight the latest development in engineering methods for designing smart NIR-II optical probes. Finally, to appreciate such advances, challenges and prospect in rapidly growing study of smart NIR-II probes are addressed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kangfeng Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha 410008, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China.
| |
Collapse
|
43
|
Liu H, Li G, Peng Z, Zhang S, Zhou X, Liu Q, Wang J, Liu Y, Jia T. Tagging Peptides with a Redox Responsive Fluorescent Probe Enabled by Photoredox Difunctionalization of Phenylacetylenes with Sulfinates and Disulfides. JACS AU 2022; 2:2821-2829. [PMID: 36590269 PMCID: PMC9795567 DOI: 10.1021/jacsau.2c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 05/09/2023]
Abstract
Herein, we describe a photoredox three-component atom-transfer radical addition (ATRA) reaction of aryl alkynes directly with dialkyl disulfides and alkylsulfinates, circumventing the utilization of chemically unstable and synthetically challenging S-alkyl alkylthiosulfonates as viable addition partners. A vast array of (E)-β-alkylsulfonylvinyl alkylsulfides was prepared with great regio- and stereoselectivity. Moreover, this powerful tactic could be employed to tag cysteine residues of complex polypeptides in solution or on resin merging with solid phase peptide synthesis (SPPS) techniques. A sulfonyl-derived redox responsive fluorescent probe could be conveniently introduced on the peptide, which displays green fluorescence in cells while showing blue fluorescence in medium. The photophysical investigations reveal that the red shift of the emission fluorescence is attested to reduction of carbonyl group to the corresponding hydroxyl moiety. Interestingly, the fluorescence change of tagged peptide could be reverted in cells by treatment of H2O2, arising from the reoxidation of hydroxyl group back to ketone by the elevated level of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hong Liu
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Guolin Li
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- Department
of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shanxi 710069, P. R. China
| | - Zhiyuan Peng
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Shishuo Zhang
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Xin Zhou
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- Department
of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shanxi 710069, P. R. China
| | - Qingchao Liu
- Department
of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shanxi 710069, P. R. China
| | - Junfeng Wang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Materia Medica/Innovation Academy of South
China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xinggang Road, Guangzhou 510301, P. R. China
| | - Yonghong Liu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Materia Medica/Innovation Academy of South
China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xinggang Road, Guangzhou 510301, P. R. China
- E-mail:
| | - Tiezheng Jia
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94
Weijin Road, Tianjin 300071, P. R. China
- E-mail:
| |
Collapse
|
44
|
Wang BD, Wei R, Gao MJ, Wang YH, Zhang CF, Guo XH, Liang ZS, Zhou JT, Sun JX, Xu JQ, Kang YF. Development of peroxynitrite-responsive fluorescence probe for recognition of drug-induced liver injury. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121755. [PMID: 35985230 DOI: 10.1016/j.saa.2022.121755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/26/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Peroxynitrite (ONOO-) as an active substance, is produced during normal physiological process, which plays an important role in maintaining cell REDOX balance and cell function. Moreover, the peroxynitrite is involved in many diseases and especially can be used as a biomarker of drug-induced liver injury (DILI). Therefore, in this work, we synthesized a fluorescent probe JQ-3 for detecting ONOO-. The results showed the probe JQ-3 possessed excellent selectivity, fast response time (10 min) and low detection limit (32 nM). The probe JQ-3 is almost unaffected by pH, showing the potential application in biological systems. Moreover, the probe JQ-3 can be successfully used for the detection of exogenous and endogenous ONOO- in living cells and zebrafish. At the same time, the DILI was successfully recognized by visualizing ONOO- with JQ-3 in living cells and zebrafish. Therefore, the probe JQ-3 provides a potential tool for detecting ONOO- to understand physiological and pathology processes of disease.
Collapse
Affiliation(s)
- Bing-Dan Wang
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Ran Wei
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Meng-Jiao Gao
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yi-Hua Wang
- College of Chemical Engineering, Lanzhou University of Arts and Sciences, Lanzhou 730010, China
| | - Chu-Fan Zhang
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Xiao-Han Guo
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Zi-Shan Liang
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jia-Tong Zhou
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jia-Xing Sun
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jia-Qi Xu
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| | - Yan-Fei Kang
- College of Laboratory Medicine, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| |
Collapse
|
45
|
Zhong Y, Guo L, Lu Z, Wang D. 3-Aminophenylboronic acid-functionalized molybdenum disulfide quantum dots for fluorescent determination of hypochlorite. Mikrochim Acta 2022; 190:7. [PMID: 36471018 DOI: 10.1007/s00604-022-05598-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
A simple method is reported for hypochlorite determination based on fluorescence 3-aminophenylboronic acid-functionalized molybdenum disulfide quantum dots (B-MoS2 QDs). B-MoS2 QDs with strong fluorescence at 380 nm have been successfully synthesized by the amidation reaction between APBA and hydrothermal MoS2 QDs. Hypochlorite sensing was proposed utilizing the fluorescent quenching effect of 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB) on B-MoS2 QDs and the fast redox reaction between hypochlorite and TMB. The fluorescent quenching effect of TMB to B-MoS2 QDs was proved to be caused by static dynamic quenching and inner filter effect. A good linear relationship was obtained in the hypochlorite concentration range from 1 to 20 μM, and the limit of detection (LOD) was 36.8 nM. The proposed fluorescent detection assay was simple and fast, taking only 5 min at room temperature. Satisfactory results were obtained in the standard spike recovery tests on tap water and milk samples, which indicate high potential in constructing fluorescent bio-detection assays.
Collapse
Affiliation(s)
- Yaping Zhong
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| | - Lijuan Guo
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
46
|
Liu X, Liu J, Jiang J, Wang Y. A Ratiometric Fluorescent Probe 4-(benzothiazol-2-yl)-2-hydroxy Benzaldehyde for Detecting Malononitrile: Theoretical Investigation on the ICT and ESIPT Mechanism. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Galetto FZ, da Silva C, Beche RIM, Balaguez RA, Franco MS, de Assis FF, Frizon TEA, Su X. Decarboxylative ring-opening of 2-oxazolidinones: a facile and modular synthesis of β-chalcogen amines. RSC Adv 2022; 12:34496-34502. [PMID: 36545628 PMCID: PMC9710311 DOI: 10.1039/d2ra06070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
We report herein the synthesis of primary and secondary β-chalcogen amines through the regioselective ring-opening reaction of non-activated 2-oxazolidinones promoted by in situ generated chalcogenolate anions. The developed one-step protocol enabled the preparation of β-selenoamines, β-telluroamines and β-thioamines with appreciable structural diversity and in yields of up to 95%.
Collapse
Affiliation(s)
- Fábio Z Galetto
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Cleiton da Silva
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Ricardo I M Beche
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Renata A Balaguez
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Marcelo S Franco
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Francisco F de Assis
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Tiago E A Frizon
- Department of Energy and Sustainability, Federal University of Santa Catarina Araranguá SC Brazil
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
48
|
Wang M, Gu X, Chen J, Yang X, Cheng P, Xu K. A novel near-infrared colorimetric-fluorescent probe for hydrogen sulfide and application in bioimaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Huang P, Yue Y, Yin C, Huo F. Design of Dual‐responsive ROS/RSS Fluorescent Probes and Their Application in Bioimaging. Chem Asian J 2022; 17:e202200907. [DOI: 10.1002/asia.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pei Huang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry Shanxi University Taiyuan 030006 P. R. China
| |
Collapse
|
50
|
Dai M, Zhang P, Tang Z, Liu X, Wang Y, Fei X, Tian J. The fluorescence mechanism of a probe based on benzothiazole group to detect HClO. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|