1
|
Podder S, Jungi H, Mitra J. In Pursuit of Carbon Neutrality: Progresses and Innovations in Sorbents for Direct Air Capture of CO 2. Chemistry 2025; 31:e202500865. [PMID: 40192268 DOI: 10.1002/chem.202500865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Direct air capture (DAC) is of immense current interest, as a means to facilitate CO2 capture at low concentrations (∼400 ppm) directly from the atmosphere, with the aim of addressing global warming caused by excessive anthropogenic CO2 production. Traditionally, DAC of CO2 has relied on amine scrubbing and metal carbonate /hydroxide solutions. However, recent years have seen notable progress in DAC sorbents, with key advancements aimed at improving efficiency, capacity, and regenerability while reducing energy consumption. This review delivers an exhaustive analysis of contemporary developments in DAC sorbents, addressing the innovations in material design and consequent performance enhancement. The limitations of the sorbents have also been discussed, with future perspectives for improving sustainable CO2 capture strategies. We anticipate that this overview will help lay the groundwork for further development and large-scale implementation of sustainable sorbents and cutting-edge technologies toward attaining carbon neutrality.
Collapse
Affiliation(s)
- Sumana Podder
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hiren Jungi
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Joyee Mitra
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Yan W, Hou J, Yan T, Liu Z, Kang P. Amine-Functionalized Defective MOFs for Direct Air Capture by Postsynthetic Modification. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26631-26638. [PMID: 40296236 DOI: 10.1021/acsami.5c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Amine-functionalized defective metal-organic frameworks (DM) showed promise for direct air capture (DAC) of CO2 under ambient conditions. In this work, chromium-based DM was functionalized via a two-step postsynthetic modification with ethylenediamine (EDA), tris(2-aminoethyl)amine (TAEA), and polyethylene-polyamines (PEPA). Characterization by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM) confirmed successful synthesis and structural integrity. Among the samples, 1:1-PEPA-DM exhibited the best performance, with a CO2 adsorption capacity of 1.26 mmol/g, a regeneration energy of 75.1 kJ/mol, and only 26.62% capacity loss after 12 cycles in ambient air. In contrast, 1:1-TAEA-DM showed a high regeneration energy (158.61 kJ/mol) and a 95.17% capacity loss. Physically impregnating PEPA resulted in a lower capacity (0.94 mmol/g) and a loss of 76.32% after 12 cycles. These results highlight covalent PEPA grafting as a promising strategy for developing durable DAC sorbents.
Collapse
Affiliation(s)
- Wenzhe Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jing Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Tao Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhikun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Peng Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Huang A, Gupta AK, Jiang HZH, Zhuang H, Wenny MB, Klein RA, Kwon H, Meihaus KR, Furukawa H, Brown CM, Reimer JA, de Jong WA, Long JR. Phase Change-Mediated Capture of Carbon Dioxide from Air with a Molecular Triamine Network Solid. J Am Chem Soc 2025; 147:10519-10529. [PMID: 40073297 PMCID: PMC11951144 DOI: 10.1021/jacs.4c18643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The efficient removal of CO2 from exhaust streams and even directly from air is necessary to forestall climate change, lending urgency to the search for new materials that can rapidly capture CO2 at high capacity. The recent discovery that diamine-appended metal-organic frameworks can exhibit cooperative CO2 uptake via the formation of ammonium carbamate chains begs the question of whether simple organic polyamine molecules could be designed to achieve a similar switch-like behavior with even higher separation capacities. Here, we present a solid molecular triamine, 1,3,5-tris(aminomethyl)benzene (TriH), that rapidly captures large quantities of CO2 upon exposure to humid air to form the porous, crystalline, ammonium carbamate network solid TriH(CO2)1.5·xH2O (TriHCO2). The phase transition behavior of TriH converting to TriHCO2 was studied through powder and single-crystal X-ray diffraction analysis, and additional spectroscopic techniques further verified the formation of ammonium carbamate species upon exposing TriH to humid air. Detailed breakthrough analyses conducted under varying temperatures, relative humidities, and flow rates reveal record CO2 absorption capacities as high as 8.9 mmol/g. Computational analyses reveal an activation barrier associated with TriH absorbing CO2 under dry conditions that is lowered under humid conditions through hydrogen bonding with a water molecule in the transition state associated with N-C bond formation. These results highlight the prospect of tunable molecular polyamines as a new class of candidate absorbents for high-capacity CO2 capture.
Collapse
Affiliation(s)
- Adrian
J. Huang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ankur K. Gupta
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Applied
Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Henry Z. H. Jiang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hao Zhuang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Malia B. Wenny
- Center for
Neutron Research, National Institute of
Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ryan A. Klein
- Center for
Neutron Research, National Institute of
Standards and Technology, Gaithersburg, Maryland 20899, United States
- Materials,
Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hyunchul Kwon
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Katie R. Meihaus
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Hiroyasu Furukawa
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Craig M. Brown
- Center for
Neutron Research, National Institute of
Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffrey A. Reimer
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Wibe A. de Jong
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Applied
Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Akaya H, Lamnini S, Sehaqui H, Jacquemin J. Amine-Functionalized Cellulose as Promising Materials for Direct CO 2 Capture: A Review. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16380-16395. [PMID: 40038886 DOI: 10.1021/acsami.4c20801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Herein, the potential use of amine-functionalized cellulose as a low-cost and sustainable sorbent for CO2 capture is reviewed. This literature analysis specifically highlights various advanced preparation methods used to synthesize functionalized cellulose supports with an enhanced affinity for the sorption of CO2 molecules. The mechanism of cellulose functionalization with different types of amines is explicitly detailed, considering amine impregnation and grafting to selectively chemisorb CO2 gas with or without the presence of moisture and at different temperatures and pressures. The final section critically discusses the main limitations to scaling up amine-functionalized cellulose sorbents, particularly issues related to amine oxidation, stability, and degradation.
Collapse
Affiliation(s)
- Hicham Akaya
- Department of Materials Science and Nanoengineering (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Soukaina Lamnini
- Department of Materials Science and Nanoengineering (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Houssine Sehaqui
- Department of Materials Science and Nanoengineering (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Johan Jacquemin
- Department of Materials Science and Nanoengineering (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| |
Collapse
|
5
|
Zhao Z, Wang K, Tao H, Zhang Z, Lin W, Xiao Q, Jiang L, Li H, Wang C. Thermodynamic regulation of carbon dioxide capture by functionalized ionic liquids. Chem Soc Rev 2025; 54:2091-2126. [PMID: 39868855 DOI: 10.1039/d4cs00972j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Carbon dioxide capture has attracted worldwide attention because CO2 emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO2 chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs. The application of thermodynamic regulation methods in CO2 capture is discussed in detail. Among them, the methods of enthalpy regulation are mainly introduced, for which different regulatory targets are proposed for single sites and multiple sites. Furthermore, the strategies of achieving entropy compensation through the design of spatial configurations are discussed. Particular attention is paid to the application of thermodynamic regulation in direct air capture (DAC) due to its great significance. The methods to improve the absorption kinetics are also outlined. Finally, the future development of carbon capture by functionalized ILs is proposed.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Kaili Wang
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Han Tao
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhaowei Zhang
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wenjun Lin
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qiaoxin Xiao
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lili Jiang
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haoran Li
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
| | - Congmin Wang
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Marreiros J, Wang Y, Song M, Koros WJ, Realff MJ, Jones CW, Lively RP. Fiber Sorbents - A Versatile Platform for Sorption-Based Gas Separations. ACCOUNTS OF MATERIALS RESEARCH 2025; 6:6-16. [PMID: 39882339 PMCID: PMC11773446 DOI: 10.1021/accountsmr.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates. These structures overcome limitations such as elevated pressure drops commonly recorded across powder adsorption beds but often accrue thermal limitations arising from elevated particle density and aggregation, which ultimately cap their maximum separation performance. Furthermore, the harsh mechanical strain to which powder particles are subjected during contactor fabrication, in the form of extrusion/compression forces, can result in partial pore occlusion and framework degradation, further limiting their performance. Here, we present the development of porous fiber sorbents as an alternative sorbent contactor design capable of addressing sorbent processability limitations while enabling an array of performance-maximizing heat integration capabilities. This new sorbent form factor leverages pre-existing know-how from hollow fiber spinning to produce fiber-shaped sorbent contactors through the phase inversion of known polymers in a process known as dry-jet/wet quenching. The process of phase inversion allows microporous sorbent particles to be latched onto a macroporous polymer matrix under mild processing conditions, thus making it compatible with soft porous materials prone to amorphization under traditional pelletization conditions. Sorbent fibers can be created with different geometries through control of the spinning apparatus and process, offering the possibility to produce monolithic and hollow fibers alike, the latter of which can be integrated with thermalization fluid flows. In this Account, we summarize our progress in the field of fiber sorbents from both design and application standpoints. We further guide the reader through the evolution of this field from the early inceptive work on zeolite hollow fibers to recent developments on MOF fibers. We highlight the versatile nature of fiber sorbents, both from the composition, fabrication and structure points of view, and further demonstrate how fiber sorbents offer alternative paths in tackling new and challenging chemical separation challenges like direct air capture (DAC), with a final perspective on the future of the field.
Collapse
Affiliation(s)
- João Marreiros
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30322, United States
| | - Yuxiang Wang
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30322, United States
| | - MinGyu Song
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30322, United States
| | - William J. Koros
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30322, United States
| | - Matthew J. Realff
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30322, United States
| | - Christopher W. Jones
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30322, United States
| | - Ryan P. Lively
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Li H, Zhou Z, Ma T, Wang K, Zhang H, Alawadhi AH, Yaghi OM. Bonding of Polyethylenimine in Covalent Organic Frameworks for CO 2 Capture from Air. J Am Chem Soc 2024; 146:35486-35492. [PMID: 39679572 DOI: 10.1021/jacs.4c14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
We have developed a polyethylenimine-functionalized covalent organic framework (COF) for capturing CO2 from the air. It was synthesized by the crystallization of an imine-linked COF, termed imine-COF-709, followed by linkage oxidation and polyamine installation through aromatic nucleophilic substitution. The chemistry of linkage oxidation and amine installation was fully characterized through Fourier transform infrared spectroscopy, elemental analysis, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. Sorption isotherms and dynamic breakthrough were applied to study the sorption behavior of the resulting sorbent (COF-709). The COF exhibited a CO2 capacity of 0.48 mmol g-1 under dry conditions and 1.24 mmol g-1 under 75% relative humidity, both from simulated air containing 400 ppm of CO2 at 25 °C. The CO2 capacity and adsorption rate of COF-709 showed a strong relationship with the relative humidity in the environment, in accordance with the CO2 adsorption mechanism revealed by ssNMR. The chemical stability of C-S bonds utilized to covalently install the polyamine in COF pores prevented its amine loss and hydrolysis, giving COF-709 an excellent cycling stability, which was confirmed by applying 10 adsorption-desorption cycles under simulated direct air capture conditions, showing no uptake loss.
Collapse
Affiliation(s)
- Haozhe Li
- Department of Chemistry and Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Zihui Zhou
- Department of Chemistry and Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Tianqiong Ma
- Department of Chemistry and Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Kaiyu Wang
- Department of Chemistry and Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Heyang Zhang
- Department of Chemistry and Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Ali H Alawadhi
- Department of Chemistry and Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
8
|
Kikkawa S, Kataoka M, Yamazoe S. Development of Amino-Functionalized Silica by Co-condensation and Alkylation for Direct Air Capture. ACS OMEGA 2024; 9:49513-49521. [PMID: 39713653 PMCID: PMC11656256 DOI: 10.1021/acsomega.4c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
CO2 chemisorption using amine-based sorbents is one of the most effective techniques for carbon capture and storage. Solid CO2 sorbents with amines immobilized on their surface have been attracting attention due to the easy collection of sorbents and reusability. In this study, we developed a solid CO2 adsorbent by co-condensation of a silanizing reagent having a chloroalkyl group and tetraethyl ethoxysilane, followed by alkylation of the chloroalkyl group with diamine. The fabricated amine-immobilized silica with a high density of amino groups on its surface achieved the chemical adsorption of 400 ppm of CO2 with 4.3 wtCO2 % loading, CO2 release upon heating at 80 °C, and reusability for adsorption and desorption cycles with high amine utilization efficiency (0.20 molCO2 /mol-N). This surface modification method is applicable to various amines bearing more than two amino functional groups, enabling the development of solid CO2 sorbents for the selective capture of low-concentration CO2 directly from the air.
Collapse
Affiliation(s)
- Soichi Kikkawa
- Department of Chemistry,
Graduate School of Science, Tokyo Metropolitan
University, Hachioji, Tokyo 192-0397, Japan
| | - Miori Kataoka
- Department of Chemistry,
Graduate School of Science, Tokyo Metropolitan
University, Hachioji, Tokyo 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry,
Graduate School of Science, Tokyo Metropolitan
University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
9
|
Oda A, Sawabe K, Satsuma A. Reversible Multi-Complexation of CO 2 to Alkaline Earth Metal Ion-Pair at 400 ppm and 298 K. Angew Chem Int Ed Engl 2024; 63:e202411969. [PMID: 39252177 DOI: 10.1002/anie.202411969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
The efficient capture of low-pressure CO2 remains a significant challenge due to the lack of established multi-complexation of CO2 to active sites in microporous materials. In this study, we introduce a novel concept of reversible multi-complexation of CO2 to alkaline earth metal (AEM) ion pairs, utilizing a host site in ferrierite-type zeolite (FER). This unique site constrains two AEM ions in proximity, thereby enhancing and isotopically spreading their electrostatic potentials within the zeolite cavity. This electrostatic potential-engineered micropore can trap up to four CO2 molecules, forming M2+-(CO2)n-M2+ (n=0-4, M=Ca, Sr, Ba) complexes, where each CO2 molecule is stabilized by interactions between terminal oxygen (Ot) in CO2 and the AEM ions. Notably, the Ba2+ pair site exhibits higher thermodynamic stability for multiple adsorptions due to the optimal binding mode of Ba2+-Ot-Ba2+. Through high-accuracy energy calculations, we have established the relationship among structure, CO2 uptake, and operating temperature/pressure, demonstrating that the Ba2+ pair site can capture four CO2 molecules even at concentrations as low as 400 ppm and at 298 K. Three of the four molecules of CO2 trapped were removable at room temperature and under vacuum. The findings in the present study provide a new direction for developing efficient CO2 adsorbents.
Collapse
Affiliation(s)
- Akira Oda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Kyoichi Sawabe
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Atsushi Satsuma
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| |
Collapse
|
10
|
Qiu L, Li B, Hu J, Ganesan A, Pramanik S, Damron JT, Li E, Jiang DE, Mahurin SM, Popovs I, Steren CA, Fan J, Yang Z, Dai S. Cascade CO 2 Insertion in Carbanion Ionic Liquids Driven by Structure Rearrangement. J Am Chem Soc 2024; 146:29588-29598. [PMID: 39432747 DOI: 10.1021/jacs.4c09933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The CO2 chemisorption in state-of-the-art sorbents based on oxide/hydroxide/amine moieties is driven by strong chemical bonding formation in the carbonate/bicarbonate/carbamate products, which in turn leads to high energy input in sorbent regeneration. In addition, the CO2 uptake capacity was limited by the active sites' utilization efficiency, with each active site incorporating one CO2 molecule or less. In this work, a new concept and generation of sorbent was developed to achieve cascade insertion of multiple CO2 molecules by leveraging structure rearrangement as the driving force, leading to in situ generation of extra CO2-binding sites and significantly reduced energy input for CO2 release. The designed ionic liquids (ILs) containing carbanions with conjugated and asymmetric structure, deprotonated (methylsulfonyl)acetonitrile ([MSA]) anion, allowed the cascade insertion of two CO2 molecules via consecutive C-C and O-C bond formations. The proton transfer and structure rearrangement of the carboxylic acid intermediates played critical roles in stabilizing the first integrated CO2 and generating extra electron-rich oxygen sites for the insertion of the second CO2. The structure variation and reaction pathway were confirmed by operando spectroscopy, magnetic resonance spectroscopy (NMR), mass spectroscopy, and computational chemistry. The energy input in sorbent regeneration could be further reduced by harnessing the phase-changing behavior of the carbanion salts in ether solutions upon reacting with CO2, avoiding the energy consumption in heating the solvent. The fundamental insights obtained herein provide a promising approach to greatly improve the CO2 sorption performance via sophisticated molecular-scale structural engineering of the sorbents.
Collapse
Affiliation(s)
- Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jianzhi Hu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Arvind Ganesan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Subhamay Pramanik
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Errui Li
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Carlos Alberto Steren
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Juntian Fan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
11
|
Potter ME, Cavaye H, Le Brocq JJM, Daemen LL, Cheng Y. Using inelastic neutron scattering spectroscopy to probe CO 2 binding in grafted aminosilanes. Phys Chem Chem Phys 2024; 26:25969-25976. [PMID: 39365254 DOI: 10.1039/d4cp02316a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
While a range of in situ characterisation techniques are available to probe CO2 adsorption processes, inelastic neutron scattering is scarcely used, primarily due to the reliance on hydrogeneous modes. Materials capable of adsorbing CO2, such as solid supported-amines contain a range of C-H and N-H species, which can be probed to explore the adsorption of CO2. Here we show the benefits of using inelastic neutron spectroscopy to probe CO2 adsorption with solid supported-amines, and the complementarity that can be achieved using different world-leading spectrometers.
Collapse
Affiliation(s)
- Matthew E Potter
- Institute for Sustainability, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Hamish Cavaye
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK
| | - Joshua J M Le Brocq
- Department of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831, USA
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831, USA
| |
Collapse
|
12
|
Xie Z, Cui Y, Xing J, Gao Y, Huo Y, Li X, Chen Q. Nickel-Catalyzed, Aminoquinoline-Directed Chemo- and Regioselective Carboamination of Unactivated Olefins with Organoboronic Acids and Anthranils. J Org Chem 2024; 89:14151-14163. [PMID: 39298536 DOI: 10.1021/acs.joc.4c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A nickel-catalyzed three-component carboamination of unactivated alkenes with organoboronic acids and anthranils has been achieved for the expedient synthesis of δ-aryl and γ-amino acid derivatives. The 8-aminoquinoline (AQ) directing group is crucial for the success of the reaction, and anthranil serves as an arylnitrene precursor in this conversion. This method features mild reaction conditions, good chemo- and regioselectivity, and a broad substrate scope with good functional group tolerance.
Collapse
Affiliation(s)
- Zhongke Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Cui
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiale Xing
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Yang RA, Cho S, Hughes SN, Sarazen ML. Implications of Defect Density and Polymer Interactions for CO 2 Capture on Amine-Functionalized MIL-101(Cr). CHEMSUSCHEM 2024; 17:e202400249. [PMID: 38627886 DOI: 10.1002/cssc.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Indexed: 09/25/2024]
Abstract
Rising anthropogenic carbon emissions have dire environmental consequences, necessitating remediative approaches, which includes use of solid sorbents. Here, aminopolymers (poly(ethylene imine) (PEI) and poly(propylene imine) (PPI)) are supported within solid mesoporous MIL-101(Cr) to examine effects of support defect density on aminopolymer-MOF interactions for CO2 uptake and stability during uptake-regeneration cycles. Using simulated flue gas (10 % CO2 in He), MIL-101(Cr)-ρhigh (higher defect density) shows 33 % higher uptake capacity per gram adsorbent than MIL-101(Cr)-ρlow (lower defect density) at 308 K, consistent with increased availability of undercoordinated Cr adsorption sites at missing linker defects. Increasing aminopolymer weight loadings (10-50 wt.%) within MIL-101(Cr)-ρlow and MIL-101(Cr)-ρhigh increases amine efficiencies and CO2 uptake capacities relative to bare MOFs, though both incur CO2 diffusion limitations through confined, viscous polymer phases at higher (40-50 wt.%) loadings. Benchmarked against SBA-15, lower polymer packing densities (PPI>PEI), weaker and less abundant van der Waals interactions between aminopolymers and pore walls, and open framework topology increase amine efficiencies. Interactions between amines and Cr defect sites incur amine efficiency losses but grant higher thermal and oxidative stability during uptake-regeneration cycling. Finally, >25 % higher CO2 uptake capacities are achieved for aminopolymer/MIL-101(Cr)-ρhigh under humid conditions, demonstrating promise for realistic applications.
Collapse
Affiliation(s)
- Rachel A Yang
- Department of Chemical and Biological Engineering, Princeton University, 41 Olden Street, Princeton, New Jersey, 08544, USA
| | - Stanley Cho
- Department of Chemical and Biological Engineering, Princeton University, 41 Olden Street, Princeton, New Jersey, 08544, USA
| | - Sydney N Hughes
- Department of Chemical and Biological Engineering, Princeton University, 41 Olden Street, Princeton, New Jersey, 08544, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, 41 Olden Street, Princeton, New Jersey, 08544, USA
| |
Collapse
|
14
|
Qiu L, Lei M, Wang C, Hu J, He L, Ivanov AS, Jiang DE, Lin H, Popovs I, Song Y, Fan J, Li M, Mahurin SM, Yang Z, Dai S. Ionic Pairs-Engineered Fluorinated Covalent Organic Frameworks Toward Direct Air Capture of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401798. [PMID: 38700074 DOI: 10.1002/smll.202401798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Indexed: 05/05/2024]
Abstract
The covalent organic frameworks (COFs) possessing high crystallinity and capability to capture low-concentration CO2 (400 ppm) from air are still underdeveloped. The challenge lies in simultaneously incorporating high-density active sites for CO2 insertion and maintaining the ordered structure. Herein, a structure engineering approach is developed to afford an ionic pair-functionalized crystalline and stable fluorinated COF (F-COF) skeleton. The ordered structure of the F-COF is well maintained after the integration of abundant basic fluorinated alcoholate anions, as revealed by synchrotron X-ray scattering experiments. The breakthrough test demonstrates its attractive performance in capturing (400 ppm) CO2 from gas mixtures via O─C bond formation, as indicated by the in situ spectroscopy and operando nuclear magnetic resonance spectroscopy using 13C-labeled CO2 sources. Both theoretical and experimental thermodynamic studies reveal the reaction enthalpy of ≈-40 kJ mol-1 between CO2 and the COF scaffolds. This implies weaker interaction strength compared with state-of-the-art amine-derived sorbents, thus allowing complete CO2 release with less energy input. The structure evolution study from synchrotron X-ray scattering and small-angle neutron scattering confirms the well-maintained crystalline patterns after CO2 insertion. The as-developed proof-of-concept approach provides guidance on anchoring binding sites for direct air capture (DAC) of CO2 in crystalline scaffolds.
Collapse
Affiliation(s)
- Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ming Lei
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Caiqi Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Jianzhi Hu
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lilin He
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Hongfei Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yanpei Song
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Juntian Fan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Meijia Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
15
|
Li S, Guta Y, Calegari Andrade MF, Hunter-Sellars E, Maiti A, Varni AJ, Tang P, Sievers C, Pang SH, Jones CW. Competing Kinetic Consequences of CO 2 on the Oxidative Degradation of Branched Poly(ethylenimine). J Am Chem Soc 2024; 146. [PMID: 39214613 PMCID: PMC11487567 DOI: 10.1021/jacs.4c08126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Amine-functionalized porous solid materials are effective sorbents for direct air capture (DAC) of CO2. However, they are prone to oxidative degradation in service, increasing the materials cost for widespread implementation. While the identification of oxidation products has given insights into degradation pathways, the roles of some species, like CO2 itself, remain unresolved, with conflicting information in the literature. Here, we investigate the impact of CO2 on the oxidative degradation of poly(ethylenimine)-alumina (PEI/Al2O3) sorbents under conditions encompassing a wide range of CO2-air mixture compositions and temperatures relevant to DAC conditions, thereby reconciling the conflicting data in the literature. Degradation profiles characterized by thermogravimetric analysis, in situ ATR-FTIR, and CO2 capacity measurements reveal nonmonotonic effects of CO2 concentrations and temperatures on oxidation kinetics. Specifically, 0.04% CO2 accelerates PEI/Al2O3 oxidation more at low temperatures (<90 °C) compared to 1% and 5% CO2, but this trend reverses at high temperatures (>90 °C). First-principles metadynamics, machine learning accelerated molecular dynamics simulations, and 1H relaxometry experiments show that chemisorbed CO2 acid-catalyzes critical oxidation reactions, while extensive CO2 uptake reduces PEI branch mobility, slowing radical propagation. These contrasting kinetic effects of CO2 explain the complex degradation profiles observed in this work and in prior literature. Collectively, this work highlights the importance of considering atmospheric components in the design of DAC sorbents and processes. Additionally, it identifies the unconstrained branch mobility and local acid environment as two of the major culprits in the oxidation of amine-based sorbents, suggesting potential strategies to mitigate sorbent degradation.
Collapse
Affiliation(s)
- Sichi Li
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Yoseph Guta
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marcos F. Calegari Andrade
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Elwin Hunter-Sellars
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Amitesh Maiti
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Anthony J. Varni
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Paco Tang
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carsten Sievers
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Simon H. Pang
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Christopher W. Jones
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Moon H, Heller WT, Osti NC, Song M, Proaño L, Vaghefi I, Jones CW. Probing the Distribution and Mobility of Aminopolymers after Multiple Sorption-Regeneration Cycles: Neutron Scattering Studies. Ind Eng Chem Res 2024; 63:15100-15112. [PMID: 39220859 PMCID: PMC11363015 DOI: 10.1021/acs.iecr.4c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Solid-supported amines are effective CO2 adsorbents capable of capturing CO2 from flue gas streams (10-15 vol % CO2) and from ultradilute streams, such as ambient air (∼400 ppm CO2). Amine sorbents have demonstrated promising performance (e.g., high CO2 uptake and uptake rates) with stable characteristics under repeated, idealized thermal swing conditions, enabling multicycle application. Literature studies suggest that solid-supported amines such as PEI/SBA-15 generally exhibit slowly reducing CO2 uptake rates or capacities over repeated thermal swing capture-regeneration cycles under simulated DAC conditions. While there are experimental reports describing changes in supported amine mass, degradation of amine sites, and changes in support structures over cycling, there is limited knowledge about the structure and mobility of the amine domains in the support pores over extended use. Furthermore, little is known about the effects of H2O on cyclic applications of PEI/SBA-15 despite the inevitable presence of H2O in ambient air. Here, we present a series of neutron scattering studies exploring the distribution and mobility of PEI in mesoporous silica SBA-15 as a function of thermal cycling and cyclic conditions. Small-angle neutron scattering (SANS) and quasielastic neutron scattering (QENS) are used to study the amine and H2O distributions and amine mobility, respectively. Applying repeated thermal swings under dry conditions leads to the thorough removal of water from the sorbent, causing thinner and more rigid wall-coating PEI layers that eventually lead to slower CO2 uptake rates. On the other hand, wet cyclic conditions led to the sorption of atmospheric water at the wall-PEI interfaces. When PEI remains hydrated, the amine distribution (i.e., wall-coating PEI layer thickness) is retained over cycling, while lubrication effects of water yield improved PEI mobility, in turn leading to faster CO2 uptake rates.
Collapse
Affiliation(s)
- Hyun
June Moon
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William T. Heller
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Naresh C. Osti
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - MinGyu Song
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Laura Proaño
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ida Vaghefi
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Li E, Li B, Ganesan A, Qiu L, Jiang DE, Mahurin SM, Pramanik S, Popovs I, Yang Z, Dai S. Supramolecular Complexation-Enhanced CO 2 Chemisorption in Amine-Derived Sorbents. Chemistry 2024; 30:e202402137. [PMID: 38924754 DOI: 10.1002/chem.202402137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
A supramolecular complexation approach is developed to improve the CO2 chemisorption performance of solvent-lean amine sorbents. Operando spectroscopy techniques reveal the formation of carbamic acid in the presence of a crown ether. The reaction pathway is confirmed by theoretical simulation, in which the crown ether acts as a proton acceptor and shuttle to drive the formation and stabilization of carbamic acid. Improved CO2 capacity and diminished energy consumption in sorbent regeneration are achieved.
Collapse
Affiliation(s)
- Errui Li
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Arvind Ganesan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Subhamay Pramanik
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
18
|
Wu WY, Zhang M, Wang C, Tao L, Bu J, Zhu Q. Harnessing Ash for Sustainable CO 2 Absorption: Current Strategies and Future Prospects. Chem Asian J 2024; 19:e202400180. [PMID: 38650439 DOI: 10.1002/asia.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
This review explores the potential of using different types of ash, namely fly ash, biomass ash, and coal ash etc., as mediums for CO2 capture and sequestration. The diverse origins of these ash types - municipal waste, organic biomass, and coal combustion - impart unique physicochemical properties that influence their suitability and efficiency in CO2 absorption. This review first discusses the environmental and economic implications of using ash wastes, emphasizing the reduction in landfill usage and the transformation of waste into value-added products. Then the chemical/physical treatments of ash wastes and their inherent capabilities in binding or reacting with CO2 are introduced, along with current methodologies utilize these ashes for CO2 sequestration, including mineral carbonation and direct air capture techniques. The application of using ash wastes for CO2 capture are highlighted, followed by the discussion regarding challenges associated with ash-based CO2 absorption approach. Finally, the article projects into the future, proposing innovative approaches and technological advancements needed to enhance the efficacy of ash in combating the increasing CO2 levels. By providing a comprehensive analysis of current strategies and envisioning future prospects, this review aims to contribute to the field of sustainable CO2 absorption and environmental management.
Collapse
Affiliation(s)
- Wen-Ya Wu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Cun Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic ofSingapore
| | - Longgang Tao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic ofSingapore
| | - Jie Bu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic ofSingapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic ofSingapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Republic of Singapore
| |
Collapse
|
19
|
Ferrer M, Elguero J, Alkorta I, Azofra LM. Understanding the coupling of non-metallic heteroatoms to CO 2 from a Conceptual DFT perspective. J Mol Model 2024; 30:201. [PMID: 38853233 PMCID: PMC11162977 DOI: 10.1007/s00894-024-05992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
CONTEXT A Conceptual DFT (CDFT) study has been carry out to analyse the coupling reactions of the simplest amine (CH3NH2), alcohol (CH3OH), and thiol (CH3SH) compounds with CO2 to form the corresponding adducts CH3NHCO2H, CH3OCO2H, and CH3SCO2H. The reaction mechanism takes place in a single step comprising two chemical events: nucleophilic attack of the non-metallic heteroatoms to CO2 followed by hydrogen atom transfer (HAT). According to our calculations, the participation of an additional nucleophilic molecule as HAT assistant entails important decreases in activation electronic energies. In such cases, the formation of a six-membered ring in the transition state (TS) reduces the angular stress with respect to the non-assisted paths, characterised by four-membered ring TSs. Through the analysis of the energy and reaction force profiles along the intrinsic reaction coordinate (IRC), the ratio of structural reorganisation and electronic rearrangement for both activation and relaxation energies has been computed. In addition, the analysis of the electronic chemical potential and reaction electronic flux profiles confirms that the highest electronic activity as well as their changes take place in the TS region. Finally, the distortion/interaction model using an energy decomposition scheme based on the electron density along the reaction coordinate has been carried out and the relative energy gradient (REG) method has been applied to identify the most important components associated to the barriers. METHODS The theoretical calculation were performed with Gaussian-16 scientific program. The B3LYP-D3(BJ)/aug-cc-pVDZ level was used for optimization of the minima and TSs. IRC calculations has also been carried out connecting the TS with the associated minima. Conceptual-DFT (CDFT) calculations have been carried out with the Eyringpy program and in-house code. The distortion/interaction model along the reaction coordinate have used the decomposition scheme of Mandado et al. and the analysis of the importance of each components have been done with the relative energy gradient (REG) method.
Collapse
Affiliation(s)
- Maxime Ferrer
- Instituto de Química Médica, CSIC, Juan de La Cierva,3, 28006, Madrid, Spain
- PhD Program in Theoretical Chemistry and Computational Modelling, Doctoral School, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de La Cierva,3, 28006, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de La Cierva,3, 28006, Madrid, Spain.
| | - Luis Miguel Azofra
- Instituto de Estudios Ambientales y Recursos Naturales (iUNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
20
|
Sardo M, Morais T, Soares M, Vieira R, Ilkaeva M, Lourenço MAO, Marín-Montesinos I, Mafra L. Unravelling the structure of CO 2 in silica adsorbents: an NMR and computational perspective. Chem Commun (Camb) 2024; 60:4015-4035. [PMID: 38525497 PMCID: PMC11003455 DOI: 10.1039/d3cc05942a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
This comprehensive review describes recent advancements in the use of solid-state NMR-assisted methods and computational modeling strategies to unravel gas adsorption mechanisms and CO2 speciation in porous CO2-adsorbent silica materials at the atomic scale. This work provides new perspectives for the innovative modifications of these materials rendering them more amenable to the use of advanced NMR methods.
Collapse
Affiliation(s)
- Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tiago Morais
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Chemistry, University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Márcio Soares
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ricardo Vieira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Marina Ilkaeva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Chemical and Environmental Engineering, University of Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - Mirtha A O Lourenço
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ildefonso Marín-Montesinos
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
21
|
Liu H, Lin H, Dai S, Jiang DE. Minimal Kinetic Model of Direct Air Capture of CO 2 by Supported Amine Sorbents in Dry and Humid Conditions. Ind Eng Chem Res 2024; 63:5871-5879. [PMID: 38586216 PMCID: PMC10995953 DOI: 10.1021/acs.iecr.3c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Dilute concentration (∼400 ppm) and humidity are two important factors in the direct air capture (DAC) of CO2 by supported sorbents. In this work, a minimal DAC CO2 adsorption-kinetics model was formulated for supported amine sorbents under dry and humid conditions. Our model fits well with a recent DAC experiment with supported amine sorbent in both dry and humid conditions. Temperature and flow rate effects on breakthrough curves were quantitatively captured, and increasing temperature led to faster CO2 adsorption kinetics. Moisture was shown to broaden the breakthrough curve with slower CO2 adsorption kinetics but significantly improve the uptake capacity. The present minimal model provides a versatile platform for kinetic modeling of the DAC of CO2 on supported amine and other chemisorption systems.
Collapse
Affiliation(s)
- Hongjun Liu
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hongfei Lin
- The
Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Sheng Dai
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - De-en Jiang
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
22
|
Ribó EG, Mao Z, Hirschi JS, Linsday T, Bach K, Walter ED, Simons CR, Zuehlsdorff TJ, Nyman M. Implementing vanadium peroxides as direct air carbon capture materials. Chem Sci 2024; 15:1700-1713. [PMID: 38303956 PMCID: PMC10829016 DOI: 10.1039/d3sc05381d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 02/03/2024] Open
Abstract
Direct air capture (DAC) removal of anthropogenic CO2 from the atmosphere is imperative to slow the catastrophic effects of global climate change. Numerous materials are being investigated, including various alkaline inorganic metal oxides that form carbonates via DAC. Here we explore metastable early d0 transition metal peroxide molecules that undergo stabilization via multiple routes, including DAC. Specifically here, we describe via experiment and computation the mechanistic conversion of A3V(O2)4 (tetraperoxovanadate, A = K, Rb, Cs) to first a monocarbonate VO(O2)2(CO3)3-, and ultimately HKCO3 plus KVO4. Single crystal X-ray structures of rubidium and cesium tetraperoxovanadate are reported here for the first time, likely prior-challenged by instability. Infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), 51V solid state NMR (nuclear magnetic resonance), tandem thermogravimetry-mass spectrometry (TGA-MS) along with calculations (DFT, density functional theory) all converge on mechanisms of CO2 capture and release that involve the vanadium centre, despite the end product of a 300 days study being bicarbonate and metavanadate. Electron Paramagnetic Resonance (EPR) Spectroscopy along with a wet chemical assay and computational studies evidence the presense of ∼5% adventitous superoxide, likely formed by peroxide reduction of vanadium, which also stabilizes via the reaction with CO2. The alkalis have a profound effect on the stability of the peroxovanadate compounds, stability trending K > Rb > Cs. While this translates to more rapid CO2 capture with heavier alkalis, it does not necessarily lead to capture of more CO2. All compounds capture approximately two equivalents CO2 per vanadium centre. We cannot yet explain the reactivity trend of the alkali peroxovanadates, because any change in speciation of the alkalis from reactions to product is not quantifiable. This study sets the stage for understanding and implementing transition metal peroxide species, including peroxide-functionalized metal oxides, for DAC.
Collapse
Affiliation(s)
| | - Zhiwei Mao
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Jacob S Hirschi
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Taylor Linsday
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Karlie Bach
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Eric D Walter
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory Richland WA 99352 USA
| | | | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - May Nyman
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
23
|
Vega LF, Bahamon D. Importance of Bridging Molecular and Process Modeling to Design Optimal Adsorbents for Large-Scale CO 2 Capture. Acc Chem Res 2024; 57:188-197. [PMID: 38156949 PMCID: PMC10795182 DOI: 10.1021/acs.accounts.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
ConspectusCarbon capture, utilization, and storage have been identified as key technologies to decarbonize the energy and industrial sectors. Although postcombustion CO2 capture by absorption in aqueous amines is a mature technology, the required high regeneration energy, losses due to degradation and evaporation, and corrosion carry a high economic cost, precluding this technology to be used today at the scale required to mitigate climate change. Solid adsorbent-based systems with high CO2 capacities, high selectivity, and lower regeneration energy are becoming an attractive alternative for this purpose. Conscious of this opportunity, the search for optimal adsorbents for the capture of CO2 has become an urgent task. To accurately assess the performance of CO2 separation by adsorption at the needed scale, adsorbents should be synthesized and fully characterized under the required operating conditions, and the proper design and simulation of the process should be implemented along with techno-economic and environmental assessments. Several works have examined pure CO2 single-component adsorption or binary mixtures of CO2 with nitrogen for different families of adsorbents, primarily addressing their CO2 adsorption capacity and selectivity; however, very limited data is available under other conditions and/or with impurities, mainly due to the intensive experimental (modeling) efforts required for the large number of adsorbents to be studied, posing a challenge for their assessment under the needed conditions. In this regard, molecular simulations can be employed in synergy with experiments, reliably generating missing adsorption properties of mixtures while providing understanding at the molecular level of the mechanism of the adsorption process.This Account provides an outlook on strategies used for the rational design of materials for CO2 capture from different sources from the understanding of the adsorption mechanism at the molecular level. We illustrate with practical examples from our work and others' work how molecular simulations can be reliably used to link the molecular knowledge of novel adsorbents for which limited data exist for CO2 capture adsorption processes. Molecular simulation results of different adsorbents, including MOFs, zeolites, and carbon-based and silica-based materials, are discussed, focusing on understanding the role of physical and chemical adsorption obtained from simulations and quantifying the impact of impurities in the performance of the materials. Furthermore, simulation results can be used for screening adsorbents from basic key performance indicators, such as cycling the working capacity, selectivity, and energy requirement, or for feeding detailed dynamic models to assess their performance in swing adsorption processes on the industrial scale, additionally including monetized performance indicators such as operating expenses, equipment sizes, and compression cost. Moreover, we highlight the role of molecular simulations in guiding strategies for improving the performance of these materials by functionalization with amines or creating hybrid solid materials. We show how integrating models at different scales provides a robust and reliable assessment of the performance of the adsorbent materials under the required industrial conditions, rationally guiding the search for best performers. Trends in additional computational resources that can be used, including machine learning, and perspectives on practical requirements for leveraging CO2 capture adsorption technologies on the needed scale are also discussed.
Collapse
Affiliation(s)
- Lourdes F. Vega
- Research and Innovation Center
on CO2 and Hydrogen (RICH) and Department of Chemical and
Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Daniel Bahamon
- Research and Innovation Center
on CO2 and Hydrogen (RICH) and Department of Chemical and
Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Confer MP, Dixon DA. Acid Gas Capture by Nitrogen Heterocycle Ring Expansion. J Phys Chem A 2023; 127:10171-10183. [PMID: 37991507 DOI: 10.1021/acs.jpca.3c06094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Acid gases including CO2, OCS, CS2, and SO2 are emitted by industrial processes such as natural gas production or power plants, leading to the formation of acid rain and contributing to global warming as greenhouse gases. An important technological challenge is to capture acid gases and transform them into useful products. The capture of CO2, CS2, SO2, and OCS by ring expansion of saturated and unsaturated substituted nitrogen-strained ring heterocycles was computationally investigated at the G3(MP2) level. The effects of fluorine, methyl, and phenyl substituents on N and/or C were explored. The reactions for the capture CO2, CS2, SO2, and OCS by 3- and 4-membered N-heterocycles are exothermic, whereas ring expansion reactions with 5-membered rings are thermodynamically unfavorable. Incorporation of an OCS into the ring leads to the amide product being thermodynamically favored over the thioamide. CS2 and OCS capture reactions are more exothermic and exergonic than the corresponding CO2 and SO2 capture reactions due to bond dissociation enthalpy differences. Selected reaction energy barriers were calculated and correlated with the reaction thermodynamics for a given acid gas. The barriers are highest for CO2 and OCS and lowest for CS2 and SO2. The ability of a ring to participate in acid gas capture via ring expansion is correlated to ring strain energy but is not wholly dependent upon it. The expanded N-heterocycles produced by acid gas capture should be polymerizable, allowing for upcycling of these materials.
Collapse
Affiliation(s)
- Matthew P Confer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
25
|
Zanatta M. Materials for Direct Air Capture and Integrated CO 2 Conversion: Advancement, Challenges, and Prospects. ACS MATERIALS AU 2023; 3:576-583. [PMID: 38089655 PMCID: PMC10636785 DOI: 10.1021/acsmaterialsau.3c00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 04/02/2025]
Abstract
Direct air capture and integrated CO2 conversion (DACC) technologies have emerged as promising approaches to mitigate the increasing concentration of carbon dioxide (CO2) in the Earth's atmosphere. This Perspective provides a comprehensive overview of recent advancements in materials for capturing and converting atmospheric CO2. It highlights the crucial role of materials in achieving efficient and selective CO2 capture as well as catalysts for CO2 conversion. The paper discusses the performance, limitations, and prospects of various materials in the context of sustainable CO2 mitigation strategies. Furthermore, it explores the multiple roles DACC can play in stabilizing atmospheric CO2.
Collapse
Affiliation(s)
- Marcileia Zanatta
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
26
|
Guo Y, Bolongaro V, Hatton TA. Scalable Biomass-Derived Hydrogels for Sustainable Carbon Dioxide Capture. NANO LETTERS 2023; 23:9697-9703. [PMID: 37555653 DOI: 10.1021/acs.nanolett.3c02157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Carbon capture and sequestration are promising emissions mitigation technologies to counteract ongoing climate change. The aqueous amine scrubbing process is industrially mature but suffers from low energy efficiency and inferior stability. Solid sorbent-based carbon capture systems present a potentially advantageous alternative. However, practical implementation remains challenging due to limited CO2 uptake at dilute concentrations and difficulty in regeneration. Here, we develop sustainable carbon-capture hydrogels (SCCH) with an excellent CO2 uptake of 3.6 mmol g-1 (400 ppm) at room temperature. The biomass gel network consists of konjac glucomannan and hydroxypropyl cellulose, facilitating hierarchically porous structures for active CO2 transport and capture. Precaptured moisture significantly enhances CO2 binding by forming water molecule-stabilized zwitterions to improve the amine utilization efficiency. The thermoresponsive SCCH exhibits a notable advantage of low regeneration temperature at 60 °C, enabling solar-powered regeneration and highlighting the potential for sustainable carbon capture to meet global decarbonization targets.
Collapse
Affiliation(s)
- Youhong Guo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vittoria Bolongaro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Moitra D, Mokhtari-Nori N, Siniard KM, Qiu L, Fan J, Dong Z, Hu W, Liu H, Jiang DE, Lin H, Hu J, Li M, Yang Z, Dai S. High-Performance CO 2 Capture from Air by Harnessing the Power of CaO- and Superbase-Ionic-Liquid-Engineered Sorbents. CHEMSUSCHEM 2023; 16:e202300808. [PMID: 37337311 DOI: 10.1002/cssc.202300808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Direct air capture (DAC) of CO2 by solid porous materials represents an attractive "negative emission" technology. However, state-of-the-art sorbents based on supported amines still suffer from unsolved high energy consumption and stability issues. Herein, taking clues from the CO2 interaction with superbase-derived ionic liquids (SILs), high-performance and tunable sorbents in DAC of CO2 was developed by harnessing the power of CaO- and SIL-engineered sorbents. Deploying mesoporous silica as the substrate, a thin CaO layer was first introduced to consume the surface-OH groups, and then active sites with different basicities (e. g., triazolate and imidazolate) were introduced as a uniformly distributed thin layer. The as-obtained sorbents displayed high CO2 uptake capacity via volumetric (at 0.4 mbar) and breakthrough test (400 ppm CO2 source), rapid interaction kinetics, facile CO2 releasing, and stable sorption/desorption cycles. Operando diffuse reflectance infrared Fourier transformation spectroscopy (DRIFTS) analysis under simulated air atmosphere and solid-state NMR under 13 CO2 atmosphere demonstrated the critical roles of the SIL species in low-concentration CO2 capture. The fundamental insights obtained in this work provide guidance on the development of high-performance sorbents in DAC of CO2 by leveraging the combined advantages of porous solid scaffolds and the unique features of CO2 -philic ionic liquids.
Collapse
Affiliation(s)
- Debabrata Moitra
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
| | - Narges Mokhtari-Nori
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
| | - Kevin M Siniard
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
| | - Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
| | - Juntian Fan
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhun Dong
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, 99164, USA
| | - Wenda Hu
- Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Hongjun Liu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Hongfei Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, 99164, USA
| | - Jianzhi Hu
- Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, 99164, USA
| | - Meijia Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
28
|
Li X, Mathur A, Liu A, Liu Y. Electrifying Carbon Capture by Developing Nanomaterials at the Interface of Molecular and Process Engineering. Acc Chem Res 2023; 56:2763-2775. [PMID: 37751238 DOI: 10.1021/acs.accounts.3c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
ConspectusCarbon capture is an indispensable step toward closing the anthropogenic carbon cycle. However, the large-scale implementation of conventional thermochemical carbon capture technologies is hindered by their low energy efficiency, limited sorbent stability, and complexity in infrastructure integration. A mechanistically different alternative, commonly known as electrochemically mediated carbon capture (EMCC), has garnered increasing research traction over the past few years and relies on electrochemical stimuli instead of thermal or pressure swings for the capture and release of carbon dioxide (CO2). Compared to conventional methods, EMCC can be operated under mild conditions driven by intermittent renewable energy sources and has a flexible design to meet the multiscale demands of carbon capture, offering a potentially sustainable, energy-efficient, and cost-effective solution to CO2 concentration from dilute mixtures or the ambient environment.Nanomaterials have played a crucial role in carbon capture research. For instance, nanoporous materials can provide increased free volumes, surface areas, and active sites for carbon capture through physical or chemical adsorption from the gaseous phase. In contrast, EMCC relies on chemical absorption via acid-base interactions using solubilized CO2 in electrolytes. Therefore, most EMCC sorbents and mediators explored so far have been developed as molecules rather than nanomaterials. In recent years, our team has been focusing on electrifying the carbon capture processes at the molecular, materials, and process levels. We seek to address the most pressing issues associated with EMCC, either in fixed-bed or flow systems, that prevent their practical use. These issues include parasitic reactions with molecular oxygen, insufficient electrode capacity utilization, sorbent crossover, etc. To address these problems, there is an urgent need to develop rationally designed nanomaterials at the interface of molecular electrochemistry and device engineering. This Account provides an overview of recent progress on developing new chemistries and engineering batch/continuous processes for EMCC. We discuss the limitations of current EMCC technology and emphasize why nanomaterials are critical for electrifying carbon capture. First, we introduce the design principles for EMCC sorbents based on redox-active organic CO2 carriers and discuss metrics for their performance evaluation. Second, we showcase how molecular design can tackle problems of sorbent solubility, oxygen stability, and electrolyte compatibility in EMCC. Third, we discuss the early results of nanomaterials as solid sorbents in fixed-bed systems, nonswelling membranes for flow systems, and high-surface-area gas-liquid contactors. Finally, building on the foundation we established through our prior work, we offer perspectives on future directions for nanomaterials to help address the challenges in EMCC.
Collapse
Affiliation(s)
- Xing Li
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anmol Mathur
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Andong Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yayuan Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
29
|
Moon HJ, Carrillo JMY, Jones CW. Distribution and Mobility of Amines Confined in Porous Silica Supports Assessed via Neutron Scattering, NMR, and MD Simulations: Impacts on CO 2 Sorption Kinetics and Capacities. Acc Chem Res 2023; 56:2620-2630. [PMID: 37722889 PMCID: PMC10552550 DOI: 10.1021/acs.accounts.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 09/20/2023]
Abstract
ConspectusSolid-supported amines are a promising class of CO2 sorbents capable of selectively capturing CO2 from diverse sources. The chemical interactions between the amine groups and CO2 give rise to the formation of strong CO2 adducts, such as alkylammonium carbamates, carbamic acids, and bicarbonates, which enable CO2 capture even at low driving force, such as with ultradilute CO2 streams. Among various solid-supported amine sorbents, oligomeric amines infused into oxide solid supports (noncovalently supported) are widely studied due to their ease of synthesis and low cost. This method allows for the construction of amine-rich sorbents while minimizing problems, such as leaching or evaporation, that occur with supported molecular amines.Researchers have pursued improved sorbents by tuning the physical and chemical properties of solid supports and amine phases. In terms of CO2 uptake, the amine efficiency, or the moles of sorbed CO2 per mole of amine sites, and uptake rate (CO2 capture per unit time) are the most critical factors determining the effectiveness of the material. While structure-property relationships have been developed for different porous oxide supports, the interaction(s) of the amine phase with the solid support, the structure and distribution of the organic phase within the pores, and the mobility of the amine phase within the pores are not well understood. These factors are important, because the kinetics of CO2 sorption, particularly when using the prototypical amine oligomer branched poly(ethylenimine) (PEI), follow an unconventional trend, with rapid initial uptake followed by a very slow, asymptotic approach to equilibrium. This suggests that the uptake of CO2 within such solid-supported amines is mass transfer-limited. Therefore, improving sorption performance can be facilitated by better understanding the amine structure and distribution within the pores.In this context, model solid-supported amine sorbents were constructed from a highly ordered, mesoporous silica SBA-15 support, and an array of techniques was used to probe the soft matter domains within these hybrid materials. The choice of SBA-15 as the model support was based on its ordered arrangement of mesopores with tunable physical and chemical properties, including pore size, particle lengths, and surface chemistries. Branched PEI─the most common amine phase used in solid CO2 sorbents─and its linear, low molecular weight analogue, tetraethylenepentamine (TEPA), were deployed as the amine phases. Neutron scattering (NS), including small angle neutron scattering (SANS) and quasielastic neutron scattering (QENS), alongside solid-state NMR (ssNMR) and molecular dynamics (MD) simulations, was used to elucidate the structure and mobility of the amine phases within the pores of the support. Together, these tools, which have previously not been applied to such materials, provided new information regarding how the amine phases filled the support pores as the loading increased and the mobility of those amine phases. Varying pore surface-amine interactions led to unique trends for amine distributions and mobility; for instance, hydrophilic walls (i.e., attractive to amines) resulted in hampered motions with more intimate coordination to the walls, while amines around hydrophobic walls or walls with grafted chains that interrupt amine-wall coordination showed recovered mobility, with amines being more liberated from the walls. By correlating the structural and dynamic properties with CO2 sorption properties, novel relationships were identified, shedding light on the performance of the amine sorbents, and providing valuable guidance for the design of more effective supported amine sorbents.
Collapse
Affiliation(s)
- Hyun June Moon
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jan Michael Y. Carrillo
- Center
of Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Christopher W. Jones
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
30
|
Qiu L, Peng L, Moitra D, Liu H, Fu Y, Dong Z, Hu W, Lei M, Jiang DE, Lin H, Hu J, McGarry KA, Popovs I, Li M, Ivanov AS, Yang Z, Dai S. Harnessing the Hybridization of a Metal-Organic Framework and Superbase-Derived Ionic Liquid for High-Performance Direct Air Capture of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302708. [PMID: 37317018 DOI: 10.1002/smll.202302708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Direct air capture (DAC) of CO2 has emerged as the most promising "negative carbon emission" technologies. Despite being state-of-the-art, sorbents deploying alkali hydroxides/amine solutions or amine-modified materials still suffer from unsolved high energy consumption and stability issues. In this work, composite sorbents are crafted by hybridizing a robust metal-organic framework (Ni-MOF) with superbase-derived ionic liquid (SIL), possessing well maintained crystallinity and chemical structures. The low-pressure (0.4 mbar) volumetric CO2 capture assessment and a fixed-bed breakthrough examination with 400 ppm CO2 gas flow reveal high-performance DAC of CO2 (CO2 uptake capacity of up to 0.58 mmol g-1 at 298 K) and exceptional cycling stability. Operando spectroscopy analysis reveals the rapid (400 ppm) CO2 capture kinetics and energy-efficient/fast CO2 releasing behaviors. The theoretical calculation and small-angle X-ray scattering demonstrate that the confinement effect of the MOF cavity enhances the interaction strength of reactive sites in SIL with CO2 , indicating great efficacy of the hybridization. The achievements in this study showcase the exceptional capabilities of SIL-derived sorbents in carbon capture from ambient air in terms of rapid carbon capture kinetics, facile CO2 releasing, and good cycling performance.
Collapse
Affiliation(s)
- Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Peng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Debabrata Moitra
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hongjun Liu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Yuqing Fu
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Zhun Dong
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Wenda Hu
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ming Lei
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Hongfei Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Jianzhi Hu
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kathryn A McGarry
- Department of Chemistry, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Meijia Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
31
|
Coralli I, Giuri D, Spada L, Ortolani J, Mazzocchetti L, Tomasini C, Stevens LA, Snape CE, Fabbri D. Valorization Strategies in CO 2 Capture: A New Life for Exhausted Silica-Polyethylenimine. Int J Mol Sci 2023; 24:14415. [PMID: 37833862 PMCID: PMC10572583 DOI: 10.3390/ijms241914415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
The search for alternative ways to give a second life to materials paved the way for detailed investigation into three silica-polyethylenimine (Si-PEI) materials for the purpose of CO2 adsorption in carbon capture and storage. A solvent extraction procedure was investigated to recover degraded PEIs and silica, and concomitantly, pyrolysis was evaluated to obtain valuable chemicals such as alkylated pyrazines. An array of thermal (TGA, Py-GC-MS), mechanical (rheology), and spectroscopical (ATR-FTIR, 1H-13C-NMR) methods were applied to PEIs extracted with methanol to determine the relevant physico-chemical features of these polymers when subjected to degradation after use in CO2 capture. Proxies of degradation associated with the plausible formation of urea/carbamate moieties were revealed by Py-GC-MS, NMR, and ATR-FTIR. The yield of alkylpyrazines estimated by Py-GC-MS highlighted the potential of exhausted PEIs as possibly valuable materials in other applications.
Collapse
Affiliation(s)
- Irene Coralli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Demetra Giuri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Lorenzo Spada
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Jacopo Ortolani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (J.O.); (L.M.)
| | - Laura Mazzocchetti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (J.O.); (L.M.)
| | - Claudia Tomasini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Lee A. Stevens
- Faculty of Engineering, University of Nottingham, The Energy Technologies Building, Nottingham NG7 2TU, UK; (L.A.S.); (C.E.S.)
| | - Colin E. Snape
- Faculty of Engineering, University of Nottingham, The Energy Technologies Building, Nottingham NG7 2TU, UK; (L.A.S.); (C.E.S.)
| | - Daniele Fabbri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| |
Collapse
|
32
|
Grossmann Q, Stampi-Bombelli V, Yakimov A, Docherty S, Copéret C, Mazzotti M. Developing Versatile Contactors for Direct Air Capture of CO 2 through Amine Grafting onto Alumina Pellets and Alumina Wash-Coated Monoliths. Ind Eng Chem Res 2023; 62:13594-13611. [PMID: 37663169 PMCID: PMC10472440 DOI: 10.1021/acs.iecr.3c01265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023]
Abstract
The optimization of the air-solid contactor is critical to improve the efficiency of the direct air capture (DAC) process. To enable comparison of contactors and therefore a step toward optimization, two contactors are prepared in the form of pellets and wash-coated honeycomb monoliths. The desired amine functionalities are successfully incorporated onto these industrially relevant pellets by means of a procedure developed for powders, providing materials with a CO2 uptake not influenced by the morphology and the structure of the materials according to the sorption measurements. Furthermore, the amine functionalities are incorporated onto alumina wash-coated monoliths that provide a similar CO2 uptake compared to the pellets. Using breakthrough measurements, dry CO2 uptakes of 0.44 and 0.4 mmol gsorbent-1 are measured for pellets and for a monolith, respectively. NMR and IR studies of CO2 uptake show that the CO2 adsorbs mainly in the form of ammonium carbamate. Both contactors are characterized by estimated Toth isotherm parameters and linear driving force (LDF) coefficients to enable an initial comparison and provide information for further studies of the two contactors. LDF coefficients of 1.5 × 10-4 and of 1.2 × 10-3 s-1 are estimated for the pellets and for a monolith, respectively. In comparison to the pellets, the monolith therefore exhibits particularly promising results in terms of adsorption kinetics due to its hierarchical pore structure. This is reflected in the productivity of the adsorption step of 6.48 mol m-3 h-1 for the pellets compared to 7.56 mol m-3 h-1 for the monolith at a pressure drop approximately 1 order of magnitude lower, making the monoliths prime candidates to enhance the efficiency of DAC processes.
Collapse
Affiliation(s)
- Quirin Grossmann
- Institute
of Energy and Process Engineering, Sonneggstrasse 3, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Alexander Yakimov
- Department
of Chemistry and Applied Biosciences, Vladimir Prelog Weg 2, ETH Zurich, 8093 Zurich, Switzerland
| | - Scott Docherty
- Department
of Chemistry and Applied Biosciences, Vladimir Prelog Weg 2, ETH Zurich, 8093 Zurich, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, Vladimir Prelog Weg 2, ETH Zurich, 8093 Zurich, Switzerland
| | - Marco Mazzotti
- Institute
of Energy and Process Engineering, Sonneggstrasse 3, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
33
|
Miao Y, Wang Y, Ge B, He Z, Zhu X, Li J, Liu S, Yu L. Mixed Diethanolamine and Polyethyleneimine with Enhanced CO 2 Capture Capacity from Air. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207253. [PMID: 37017566 DOI: 10.1002/advs.202207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Supported polyethyleneimine (PEI) adsorbent is one of the most promising commercial direct air capture (DAC) adsorbents with a long research history since 2002. Although great efforts have been input, there are still limited improvements for this material in its CO2 capacity and adsorption kinetics under ultradilute conditions. Supported PEI also suffers significantly reduced adsorption capacities when working at sub-ambient temperatures. This study reports that mixing diethanolamine (DEA) into supported PEI can increase 46% and 176% of pseudoequilibrium CO2 capacities at DAC conditions compared to the supported PEI and DEA, respectively. The mixed DEA/PEI functionalized adsorbents maintain the adsorption capacity at sub-ambient temperatures of -5 to 25 °C. In comparison, a 55% reduction of CO2 capacity is observed for supported PEI when the operating temperature decreases from 25 to -5 °C. In addition, the supported mixed DEA/PEI with a ratio of 1:1 also shows fast desorption kinetics at temperatures as low as 70 °C, resulting in maintaining high thermal and chemical stability over 50 DAC cycles with a high average CO2 working capacity of 1.29 mmol g-1 . These findings suggest that the concept of "mixed amine", widely studied in the solvent system, is also practical to supported amine for DAC applications.
Collapse
Affiliation(s)
- Yihe Miao
- College of Smart Energy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai, 201306, China
| | - Yaozu Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai, 201306, China
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhijun He
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai, 201306, China
| | - Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jia Li
- The Hong Kong University of Science and Technology (Guangzhou), No.2 Huan Shi Road South, Guangzhou, Nansha, 511458, China
- Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China
| | - Shanke Liu
- College of Smart Energy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Lijun Yu
- College of Smart Energy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
34
|
Karimi M, Shirzad M, Silva JAC, Rodrigues AE. Carbon dioxide separation and capture by adsorption: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-44. [PMID: 37362013 PMCID: PMC10018639 DOI: 10.1007/s10311-023-01589-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 06/02/2023]
Abstract
Rising adverse impact of climate change caused by anthropogenic activities is calling for advanced methods to reduce carbon dioxide emissions. Here, we review adsorption technologies for carbon dioxide capture with focus on materials, techniques, and processes, additive manufacturing, direct air capture, machine learning, life cycle assessment, commercialization and scale-up.
Collapse
Affiliation(s)
- Mohsen Karimi
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mohammad Shirzad
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José A. C. Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
35
|
Abdullatif Y, Sodiq A, Mir N, Bicer Y, Al-Ansari T, El-Naas MH, Amhamed AI. Emerging trends in direct air capture of CO 2: a review of technology options targeting net-zero emissions. RSC Adv 2023; 13:5687-5722. [PMID: 36816069 PMCID: PMC9930410 DOI: 10.1039/d2ra07940b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
The increasing concentration of carbon dioxide (CO2) in the atmosphere has compelled researchers and policymakers to seek urgent solutions to address the current global climate change challenges. In order to keep the global mean temperature at approximately 1.5 °C above the preindustrial era, the world needs increased deployment of negative emission technologies. Among all the negative emissions technologies reported, direct air capture (DAC) is positioned to deliver the needed CO2 removal in the atmosphere. DAC technology is independent of the emissions origin, and the capture machine can be located close to the storage or utilization sites or in a location where renewable energy is abundant or where the price of energy is low-cost. Notwithstanding these inherent qualities, DAC technology still has a few drawbacks that need to be addressed before the technology can be widely deployed. As a result, this review focuses on emerging trends in direct air capture (DAC) of CO2, the main drivers of DAC systems, and the required development for commercialization. The main findings point to undeniable facts that DAC's overall system energy requirement is high, and it is the main bottleneck in DAC commercialization.
Collapse
Affiliation(s)
- Yasser Abdullatif
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
- Qatar Environment and Energy Institute (QEERI) Doha Qatar
| | - Ahmed Sodiq
- Qatar Environment and Energy Institute (QEERI) Doha Qatar
| | - Namra Mir
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
| | - Yusuf Bicer
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
| | - Tareq Al-Ansari
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
| | | | | |
Collapse
|
36
|
Yeon Yoo S, Jin Kim Y, Hoon Lee T, Kwan Lee B, Jung Kim M, Hoon Han S, Yong Ha S, Bum Park H. Membrane System for Management and Utilization of Indoor CO2. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
37
|
Short G, Burentugs E, Proaño L, Moon HJ, Rim G, Nezam I, Korde A, Nair S, Jones CW. Single-Walled Zeolitic Nanotubes: Advantaged Supports for Poly(ethylenimine) in CO 2 Separation from Simulated Air and Flue Gas. JACS AU 2023; 3:62-69. [PMID: 36711098 PMCID: PMC9875257 DOI: 10.1021/jacsau.2c00553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Previous research has demonstrated that amine polymers rich in primary and secondary amines supported on mesoporous substrates are effective, selective sorbent materials for removal of CO2 from simulated flue gas and air. Common substrates used include mesoporous alumina and silica (such as SBA-15 and MCM-41). Conventional microporous materials are generally less effective, since the pores are too small to support low volatility amines. Here, we deploy our newly discovered zeolite nanotubes, a first-of-their-kind quasi-1D hierarchical zeolite, as a substrate for poly(ethylenimine) (PEI) for CO2 capture from dilute feeds. PEI is impregnated into the zeolite at specific organic loadings. Thermogravimetric analysis and porosity measurements are obtained to determine organic loading, pore filling, and surface area of the supported PEI prior to CO2 capture studies. MCM-41 with comparable pore size and surface area is also impregnated with PEI to provide a benchmark material that allows for insight into the role of the zeolite nanotube intrawall micropores on CO2 uptake rates and capacities. Over a range of PEI loadings, from 20 to 70 w/w%, the zeolite allows for increased CO2 capture capacity over the mesoporous silica by ∼25%. Additionally, uptake kinetics for nanotube-supported PEI are roughly 4 times faster than that of a comparable PEI impregnated in SBA-15. It is anticipated that this new zeolite will offer numerous opportunities for engineering additional advantaged reaction and separation processes.
Collapse
|
38
|
Cui H, Xu J, Shi J, Yan N, Zhang C, You S. Oxamic acid potassium salt as a novel and bifunctional activator for the preparation of N-doped carbonaceous CO2 adsorbents. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
39
|
Grimm A, Gazzani M. A Machine Learning-Aided Equilibrium Model of VTSA Processes for Sorbents Screening Applied to CO 2 Capture from Diluted Sources. Ind Eng Chem Res 2022; 61:14004-14019. [PMID: 36164596 PMCID: PMC9501812 DOI: 10.1021/acs.iecr.2c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022]
Abstract
![]()
The large design space of the sorbents’ structure
and the
associated capability of tailoring properties to match process requirements
make adsorption-based technologies suitable candidates for improved
CO2 capture processes. This is particularly of interest
in novel, diluted, and ultradiluted separations as direct CO2 removal from the atmosphere. Here, we present an equilibrium model
of vacuum temperature swing adsorption cycles that is suitable for
large throughput sorbent screening, e.g., for direct air capture applications.
The accuracy and prediction capabilities of the equilibrium model
are improved by incorporating feed-forward neural networks, which
are trained with data from rate-based models. This allows one, for
example, to include the process productivity, a key performance indicator
typically obtained in rate-based models. We show that the equilibrium
model reproduces well the results of a sophisticated rate-based model
in terms of both temperature and composition profiles for a fixed
cycle as well as in terms of process optimization and sorbent comparison.
Moreover, we apply the proposed equilibrium model to screen and identify
promising sorbents from the large NIST/ARPA-E database; we do this
for three different (ultra)diluted separation processes: direct air
capture, yCO2 = 0.1%, and yCO2 = 1.0%. In all cases, the tool
allows for a quick identification of the most promising sorbents and
the computation of the associated performance indicators. Also, in
this case, outcomes are very well in line with the 1D model results.
The equilibrium model is available in the GitHub repository https://github.com/UU-ER/SorbentsScreening0D.
Collapse
Affiliation(s)
- Alexa Grimm
- Utrecht University, Copernicus Institute of Sustainable Development, Princetonlaan 8a, 3584 CBUtrecht, The Netherlands
| | - Matteo Gazzani
- Utrecht University, Copernicus Institute of Sustainable Development, Princetonlaan 8a, 3584 CBUtrecht, The Netherlands
- Sustainable Process Engineering, Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612 APEindhoven, The Netherlands
| |
Collapse
|
40
|
Zong K, Chu T, Liu D, Mehmood A, Fan T, Raza W, Hussain A, Deng Y, Liu W, Saad A, Zhao J, Li Y, Aurbach D, Cai X. Bridging 1D Inorganic and Organic Synthesis to Fabricate Ultrathin Bismuth-Based Nanotubes with Controllable Size as Anode Materials for Secondary Li Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204236. [PMID: 35988142 DOI: 10.1002/smll.202204236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The growth of ultrathin 1D inorganic nanomaterials with controlled diameters remains challenging by current synthetic approaches. A polymer chain templated method is developed to synthesize ultrathin Bi2 O2 CO3 nanotubes. This formation of nanotubes is a consequence of registry between the electrostatic absorption of functional groups on polymer template and the growth habit of Bi2 O2 CO3 . The bulk bismuth precursor is broken into nanoparticles and anchored onto the polymer chain periodically. These nanoparticles react with the functional groups and gradually evolve into Bi2 O2 CO3 nanotubes along the chain. 5.0 and 3.0 nm tubes with narrow diameter deviation are synthesized by using branched polyethyleneimine and polyvinylpyrrolidone as the templates, respectively. Such Bi2 O2 CO3 nanotubes show a decent lithium-ion storage capacity of around 600 mA h g-1 at 0.1 A g-1 after 500 cycles, higher than other reported bismuth oxide anode materials. More interestingly, the Bi materials developed herein still show decent capacity at very low temperatures, that is, around 330 mA h g-1 (-22 °C) and 170 mA h g-1 (-35 °C) after 75 cycles at 0.1 A g-1 , demonstrating their promising potential for practical application in extreme conditions.
Collapse
Affiliation(s)
- Kai Zong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianzhi Chu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Dongqing Liu
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Andleeb Mehmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianju Fan
- Department of Chemistry and BINA, BIU Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Arshad Hussain
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yonggui Deng
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Ali Saad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jie Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Doron Aurbach
- Department of Chemistry and BINA, BIU Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
41
|
Shi J, Cui H, Xu J, Yan N, You S. Synthesis of N-doped hierarchically ordered micro-mesoporous carbons for CO2 adsorption. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
43
|
Zhang Q, Wang S, Dong M, Fan W. CO2 Hydrogenation on Metal-Organic Frameworks-Based Catalysts: A Mini Review. Front Chem 2022; 10:956223. [PMID: 35923257 PMCID: PMC9339898 DOI: 10.3389/fchem.2022.956223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Conversion of carbon dioxide (CO2) into value-added fuels and chemicals can not only reduce the emission amount of CO2 in the atmosphere and alleviate the greenhouse effect but also realize carbon recycling. Through hydrogenation with renewable hydrogen (H2), CO2 can be transformed into various hydrocarbons and oxygenates, including methanol, ethanol, methane and light olefins, etc. Recently, metal-organic frameworks (MOFs) have attracted extensive attention in the fields of adsorption, gas separation, and catalysis due to their high surface area, abundant metal sites, and tunable metal-support interface interaction. In CO2 hydrogenation, MOFs are regarded as important supports or sacrificed precursors for the preparation of high-efficient catalysts, which can uniformly disperse metal nanoparticles (NPs) and enhance the interaction between metal and support to prevent sintering and aggregation of active metal species. This work summarizes the recent process on hydrogenation of CO2 to methanol, methane and other C2+ products over various MOFs-based catalysts, and it will provide some dues for the design of MOFs materials in energy-efficient conversion and utilization.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- *Correspondence: Sen Wang, ; Weibin Fan,
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- *Correspondence: Sen Wang, ; Weibin Fan,
| |
Collapse
|
44
|
Lyu H, Li H, Hanikel N, Wang K, Yaghi OM. Covalent Organic Frameworks for Carbon Dioxide Capture from Air. J Am Chem Soc 2022; 144:12989-12995. [PMID: 35786881 DOI: 10.1021/jacs.2c05382] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the first covalent incorporation of reactive aliphatic amine species into covalent organic frameworks (COFs). This was achieved through the crystallization of an imine-linked COF, termed COF-609-Im, followed by conversion of its imine linkage to base-stable tetrahydroquinoline linkage through aza-Diels-Alder cycloaddition, and finally, the covalent incorporation of tris(3-aminopropyl)amine into the framework. The obtained COF-609 exhibits a 1360-fold increase in CO2 uptake capacity compared to the pristine framework and a further 29% enhancement in the presence of humidity. We confirmed the chemistry of framework conversion and corroborated the enhanced CO2 uptake phenomenon with and without humidity through isotope-labeled Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance spectroscopy. With this study, we established a new synthetic strategy to access a class of chemisorbents characterized by high affinity to CO2 in dilute sources, such as the air.
Collapse
Affiliation(s)
- Hao Lyu
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Haozhe Li
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nikita Hanikel
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kaiyu Wang
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States.,KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
45
|
Shi J, Cui H, Xu J, Yan N. N-doped monodisperse carbon nanospheres with high surface area for highly efficient CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Direct capture of low concentration CO2 using tetraethylenepentamine-grafted polyacrylonitrile hollow fibers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Hemmatifar A, Kang JS, Ozbek N, Tan K, Hatton TA. Electrochemically Mediated Direct CO 2 Capture by a Stackable Bipolar Cell. CHEMSUSCHEM 2022; 15:e202102533. [PMID: 35061332 PMCID: PMC9303529 DOI: 10.1002/cssc.202102533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The unprecedented increase in atmospheric CO2 concentration calls for effective carbon capture technologies. With distributed sources contributing to about half of the overall emission, CO2 capture from the atmosphere [direct air capture, (DAC)] is more relevant than ever. Herein, an electrochemically mediated DAC system is reported which utilizes affinity of redox-active quinone moieties towards CO2 molecules, and unlike incumbent chemisorption technologies which require temperature or pH swing, relies solely on the electrochemical voltage for CO2 capture and release. The design and operation of a DAC system is demonstrated with stackable bipolar cells using quinone chemistry. Specifically, poly(vinylanthraquinone) (PVAQ) negative electrode undergoes a two-electron reduction reaction and reversibly complexes with CO2 , leading to CO2 sequestration from the feed stream. The subsequent PVAQ oxidation, conversely, results in release of CO2 . The performance of both small- and meso-scale cells for DAC are evaluated with feed CO2 concentrations as low as 400 ppm (0.04 %), and energy consumption is demonstrated as low as 113 kJ per mole of CO2 captured. Notably, the bipolar cell construct is modular and expandable, equally suitable for small and large plants. Moving forward, this work presents a viable and highly customizable electrochemical method for DAC.
Collapse
Affiliation(s)
- Ali Hemmatifar
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA 02139USA
| | - Jin Soo Kang
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA 02139USA
| | - Nil Ozbek
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA 02139USA
| | - Kai‐Jher Tan
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA 02139USA
| | - T. Alan Hatton
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA 02139USA
| |
Collapse
|
48
|
Fu D, Park Y, Davis ME. Zinc Containing Small‐Pore Zeolites for Capture of Low Concentration Carbon Dioxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Donglong Fu
- Chemical Engineering California Institute of Technology 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Youngkyu Park
- Chemical Engineering California Institute of Technology 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Mark E. Davis
- Chemical Engineering California Institute of Technology 1200 E. California Blvd. Pasadena CA 91125 USA
| |
Collapse
|
49
|
Suo X, Yang Z, Fu Y, Do-Thanh CL, Maltsev D, Luo H, Mahurin SM, Jiang DE, Xing H, Dai S. New-Generation Carbon-Capture Ionic Liquids Regulated by Metal-Ion Coordination. CHEMSUSCHEM 2022; 15:e202102136. [PMID: 34862754 DOI: 10.1002/cssc.202102136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Development of efficient carbon capture-and-release technologies with minimal energy input is a long-term challenge in mitigating CO2 emissions, especially via CO2 chemisorption driven by engineered chemical bond construction. Herein, taking advantage of the structural diversity of ionic liquids (ILs) in tuning their physical and chemical properties, precise reaction energy regulation of CO2 chemisorption was demonstrated deploying metal-ion-amino-based ionic liquids (MAILs) as absorbents. The coordination ability of different metal sites (Cu, Zn, Co, Ni, and Mg) to amines was harnessed to achieve fine-tuning on stability constants of the metal ion-amine complexes, acting as the corresponding cations in the construction of diverse ILs coupled with CO2 -philic anions. The as-afforded MAILs exhibited efficient and controllable CO2 release behavior with great reduction in energy input and minimal sacrifice on CO2 uptake capacity. This coordination-regulated approach offers new prospects for the development of ILs-based systems and beyond towards energy-efficient carbon capture technologies.
Collapse
Affiliation(s)
- Xian Suo
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuqing Fu
- Department of Chemistry, University of California, Riverside, California, 92521, USA
| | - Chi-Linh Do-Thanh
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dmitry Maltsev
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Huimin Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California, 92521, USA
| | - Huabin Xing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
50
|
Shingdilwar S, Dolui S, Banerjee S. Facile Fabrication of Functional Mesoporous Polymer Nanospheres for CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shashikant Shingdilwar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Subrata Dolui
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|