1
|
Mao L, Lu J, Wen X, Song Z, Sun C, Zhao Y, Huang F, Chen S, Jiang D, Che W, Zhong C, Yu C, Li K, Lu X, Shi J. Cuproptosis: mechanisms and nanotherapeutic strategies in cancer and beyond. Chem Soc Rev 2025. [PMID: 40433941 DOI: 10.1039/d5cs00083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Cuproptosis, a novel form of copper (Cu)-dependent programmed cell death, is induced by directly binding Cu species to lipoylated components of the tricarboxylic acid (TCA) cycle. Since its discovery in 2022, cuproptosis has been closely linked to the field of materials science, offering a biological basis and bright prospects for the use of Cu-based nanomaterials in various disease treatments. Owing to the unique physicochemical properties of nanomaterials, Cu delivery nanosystems can specifically increase Cu levels at disease sites, inducing cuproptosis to achieve disease treatment while minimizing the undesirable release of Cu in normal tissues. This innovative nanomaterial-mediated cuproptosis, termed as "nanocuproptosis", positions at the intersection of chemistry, materials science, pharmaceutical science, and clinical medicine. This review aims to comprehensively summarize and discuss recent advancements in cuproptosis across various diseases, with a particular focus on cancer. It delves into the biochemical basis of nanomaterial-mediated cuproptosis, the rational design for cuproptosis inducers, strategies for enhancing therapeutic specificity, and cuproptosis-centric synergistic cancer therapeutics. Beyond oncology, this review also explores the expanded applications of cuproptosis, such as antibacterial, wound healing, and bone tissue engineering, highlighting its great potential to open innovative therapeutic strategies. Furthermore, the clinical potential of cuproptosis is assessed from basic, preclinical to clinical research. Finally, this review addresses current challenges, proposes potential solutions, and discusses the future prospects of this burgeoning field, highlighting cuproptosis nanomedicine as a highly promising alternative to current clinical therapeutics.
Collapse
Affiliation(s)
- Lijie Mao
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Ji Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinyu Wen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Zhiyi Song
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cai Sun
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuanru Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fang Huang
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Si Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Dongyang Jiang
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhong
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Ke Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xiangyu Lu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Jianlin Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
2
|
Qin Y, Chen X, Willner I. Nucleic Acid-Modified Nanoparticles for Cancer Therapeutic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500843. [PMID: 40420627 DOI: 10.1002/smll.202500843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/20/2025] [Indexed: 05/28/2025]
Abstract
Nanomaterials including metal or metal oxide nanoparticles, carbonous nanomaterial (e.g., carbon dots) or metal-organic framework nanoparticles provide porous, catalytically active surfaces and functional interfaces for binding of ions or molecular agents. By the conjugation of nucleic acids to the nanoparticles, hybrid nanostructures revealing emerging multimodal catalytic/photocatalytic activities, high loading capacities, and effective targeted cell permeation efficacies are formed. The review article exemplifies the application of nucleic acid-modified nanoparticles conjugates for therapeutic treatment of cancer cells. Stimuli-responsive reconfiguration of nucleic acid strands and the specific recognition and catalytic function of oligonucleotides associated with porous, catalytic, and photocatalytic nanoparticles yield hybrid composites demonstrating cooperative synergistic properties for medical applications. The targeted chemodynamic, photodynamic, photothermal and chemotherapeutic treatment of cancer cells by the oligonucleotide/nanoparticle conjugates is addressed. In addition, the application of oligonucleotide/nanoparticle conjugates for gene therapy treatment of cancer cells is discussed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xinghua Chen
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
3
|
Zhou H, Li D, Lv Q, Lee C. Integrative plasmonics: optical multi-effects and acousto-electric-thermal fusion for biosensing, energy conversion, and photonic circuits. Chem Soc Rev 2025. [PMID: 40354162 DOI: 10.1039/d4cs00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Surface plasmons, a unique optical phenomenon arising at the interface between metals and dielectrics, have garnered significant interest across fields such as biochemistry, materials science, energy, optics, and nanotechnology. Recently, plasmonics is evolving from a focus on "classical plasmonics," which emphasizes fundamental effects and applications, to "integrative plasmonics," which explores the integration of plasmonics with multidisciplinary technologies. This review explores this evolution, summarizing key developments in this technological shift and offering a timely discussion on the fusion mechanisms, strategies, and applications. First, we examine the integration mechanisms of plasmons within the realm of optics, detailing how fundamental plasmonic effects give rise to optical multi-effects, such as plasmon-phonon coupling, nonlinear optical effects, electromagnetically induced transparency, chirality, nanocavity resonance, and waveguides. Next, we highlight strategies for integrating plasmons with technologies beyond optics, analyzing the processes and benefits of combining plasmonics with acoustics, electronics, and thermonics, including comprehensive plasmonic-electric-acousto-thermal integration. We then review cutting-edge applications in biochemistry (molecular diagnostics), energy (harvesting and catalysis), and informatics (photonic integrated circuits). These applications involve surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), chirality, nanotweezers, photoacoustic imaging, perovskite solar cells, photocatalysis, photothermal therapy, and triboelectric nanogenerators (TENGs). Finally, we conclude with a forward-looking perspective on the challenges and future of integrative plasmonics, considering advances in mechanisms (quantum effects, spintronics, and topology), materials (Dirac semimetals and hydrogels), technologies (machine learning, edge computing, in-sensor computing, and neuroengineering), and emerging applications (5G, 6G, virtual reality, and point-of-care testing).
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Qiaoya Lv
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
4
|
Cheng L, Zhang H, Zhou B, Wang H, Sun Y, Pang Y, Dong B. Polydopamine-modified hydroxyapatite and manganese tetroxide nanozyme incorporated gelatin methacryloyl hydrogel: A multifunctional platform for anti-bacteria, immunomodulation, angiogenesis, and enhanced regeneration in infected wounds. Int J Biol Macromol 2025; 307:141834. [PMID: 40081722 DOI: 10.1016/j.ijbiomac.2025.141834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Intensive inflammation induced via bacterial infection seriously disturbs the immune-microenvironment and compromise the neovascularization in the skin wound. On the basis of reducing bacterial infections, alleviating inflammatory response and rebuild the crosstalk between macrophages and vascular endothelial cell (VEC) serve as the key strategy for facilitating infected wound healing. Herein, manganese tetroxide (Mn3O4) nanozymes and polydopamine-coated hydroxyapatite (PHA) nanoparticles were loaded on the gelatin methacryloyl (GelMA) hydrogel, which was subsequently crosslinked by the UV light to construct a multifunctional hydrogel wound dressing GelMA-PHA-Mn3O4 with excellent anti-bacterial, immuno-regulation and angiogenic properties. Triggered by near infrared (NIR), PHA exhibited photothermal effect and effectively eradicated Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilm. On the other hand, Mn3O4 nanozymes in hydrogel exhibit desirable reactive oxygen species (ROS) scavenging capacity due to the redox cycle between Mn2+ and Mn3+, which successfully transform the LPS-induced macrophage phenotype from pro-inflammation M1 to anti-inflammation M2. Notably, the interaction between macrophages and VECs was subsequently reconstructed and exhibited an evident pro-angiogenic phenomenon along with the improvement of local immuno-microenvironment. In vivo study further verified that the GelMA-PHA-Mn3O4 hydrogel combined with NIR irradiation could accelerate the healing of infected wound through the prominent anti-bacterial and immuno-regulation effect. The collagen deposition and formation of blood vessel in the wound were active. Above, this study demonstrated that the GelMA-PHA-Mn3O4 hydrogel represents a promising approach for managing infected wounds, with an anticipated prospect in clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Huan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Bingshuai Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Huaiwu Wang
- Director of Surgery Center, The Changchun hospital of Guowen Medical Group, Changchun 130022, China
| | - Yue Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China; Department of Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China, 130021.
| | - Yuxuan Pang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Zhang Y, Zhou J, Luo K, Zhou W, Wang F, Li J, He Q. Ferritin-Inspired Encapsulation and Stabilization of Gold Nanoclusters for High-Performance Photothermal Conversion. Angew Chem Int Ed Engl 2025; 64:e202500058. [PMID: 40007416 DOI: 10.1002/anie.202500058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
Gold nanoclusters (AuNCs) are highly promising for applications in photothermal conversion due to their exceptional surface area and optical properties. However, their high surface energy often leads to aggregation, compromising stability and performance. To address this, we developed a ferritin-inspired covalent organic cage with a near-enclosed cavity to physically stabilize AuNCs. This superphane cage coordinates with Au3⁺ ions, forming highly stable and uniform AuNCs upon reduction. The encapsulated AuNCs exhibit broad absorption (250-2500 nm) and achieve remarkable photothermal conversion efficiency of 92.8% under 808 nm laser irradiation. At low power densities (0.5 W/cm2), temperatures reach 150 °C, and under one-sun illumination (1 kW/m2), the solar-to-vapor generation efficiency reaches 95.1%, with a water evaporation rate of 2.35 kg m-2 h-1. Even after 20 seawater desalination cycles, the system maintains a stable evaporation rate of 2.24 kg m-2 h-1, demonstrating excellent salt tolerance and durability. This ferritin-inspired strategy offers a robust platform for enhancing the stability and performance of AuNCs, advancing sustainable energy and water purification technologies.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Juan Zhou
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Ke Luo
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Wei Zhou
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Fei Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Jialian Li
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Qing He
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
6
|
Zhang S, Cui J, Li Z, Huang H, Zhang W, Wang Z, Zhao F, Guo S. Waste reutilization: Carbon foam-red mud composites with photothermal effects for wastewater purification in outdoor environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125200. [PMID: 40186967 DOI: 10.1016/j.jenvman.2025.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
The problems associated with the lack of clean fresh water are well-known and expected to worsen in the coming decades owing to water scarcity, which is a global occurrence even in regions currently considered water-rich. Addressing these problems calls for a tremendous amount of research to be conducted to identify robust methods for purifying water at a lower cost and with less energy, while simultaneously minimizing the use of chemicals and their impact on the environment. Herein, we prepared photothermal/photodegradation materials based on carbon foam and red mud for use in wastewater purification on basis of waste reutilization. Owing to the coupling of the photothermal effect, adsorption properties, and photodegradation performance of these materials, wastewater samples containing various organic substances (RhB and MB solutions) and industrial heavy ions were effectively purified. We designed a practical device based on these materials for use in water purification in outdoor environments under natural sunlight. The device demonstrated satisfactory purification performance, indicating its potential practicability.
Collapse
Affiliation(s)
- Shangqing Zhang
- Shanxi Province Key Laboratory of Metallogeny and Assessment of Strategic Mineral Resources, No. 288-1 Pingyang Road, Taiyuan, 030006, China; College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Jing Cui
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 030024, Taiyuan, Shanxi, China
| | - Zhijie Li
- Beijing Changping District Commission of Housing and Urban-Rural Development, No.5 Taian Hutong, Changping District, Beijing, 102200, China
| | - Hucheng Huang
- Shanxi Province Key Laboratory of Metallogeny and Assessment of Strategic Mineral Resources, No. 288-1 Pingyang Road, Taiyuan, 030006, China; School of Geophysics and Geomatics at China University of Geosciences, No. 388 Lumo Rd., Wuhan, Hubei, 430074, China
| | - Wenkai Zhang
- Key Laboratory of Investigation, Monitoring and Protection of Natural Resources in Mining Cities, Ministry of Natural Resources, Jinzhong, 030600, China
| | - Zhiqiang Wang
- Shanxi Province Key Laboratory of Metallogeny and Assessment of Strategic Mineral Resources, No. 288-1 Pingyang Road, Taiyuan, 030006, China; School of Geophysics and Geomatics at China University of Geosciences, No. 388 Lumo Rd., Wuhan, Hubei, 430074, China
| | - Fenghua Zhao
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Shaohui Guo
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 030024, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
Cui S, Pan X, Fan S, Cao C, Jiao Y, Fu Y, Niu J, Lin S, Lao J, Liu Y. A novel conjugated polymer synthesized via a noble metal-free catalyst in photothermal therapy of hepatocellular carcinoma mediated by second near-infrared (NIR-II) laser. Mater Today Bio 2025; 31:101488. [PMID: 39906201 PMCID: PMC11791355 DOI: 10.1016/j.mtbio.2025.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 02/06/2025] Open
Abstract
Photothermal therapy (PTT) utilizes photothermal materials to convert light energy into heat under external light irradiation, effectively killing cancer cells. Therefore, the efficacy of PTT is largely determined by the photothermal conversion efficiency of the material. In this study, we developed a novel ladder-type conjugated polymer, PPAPA, via a phenazine ring fusion reaction. PPAPA exhibits a high photothermal conversion efficiency of 75.2 % under 1064 nm laser irradiation, comparable to the benchmark organic photothermal agent SWCNT. Notably, the synthesis of PPAPA avoids the use of noble metal catalysts, eliminating potential biotoxicity caused by residual catalysts and ensuring optimal photothermal stability and efficiency. Furthermore, PPAPA demonstrates efficient photothermal conversion under near-infrared II (NIR-II) 1064 nm laser irradiation, enabling deeper tissue penetration and reduced tissue absorption. This work comprehensively investigates the photothermal properties of PPAPA and evaluates its efficacy in tumor PTT, demonstrating its potential as a novel and effective therapeutic strategy for cancer treatment, offering new hope for patients.
Collapse
Affiliation(s)
- Shengsheng Cui
- Institute of Intelligent Health Diagnosis and Treatment, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
- National Engineering Center for Nanotechnology, Shanghai, 200240, PR China
| | - Xinni Pan
- Institute of Intelligent Health Diagnosis and Treatment, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Shanshan Fan
- Institute of Intelligent Health Diagnosis and Treatment, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Cheng Cao
- Institute of Intelligent Health Diagnosis and Treatment, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Yingao Jiao
- Institute of Intelligent Health Diagnosis and Treatment, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Yanfei Fu
- Institute of Intelligent Health Diagnosis and Treatment, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jiaqi Niu
- Institute of Intelligent Health Diagnosis and Treatment, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Shujin Lin
- Institute of Intelligent Health Diagnosis and Treatment, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jingmao Lao
- Gastrointestinal Surgery, The First People's Hospital of Qinzhou, Qinzhou, 535000, PR China
| | - Yanlei Liu
- Institute of Intelligent Health Diagnosis and Treatment, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
- National Engineering Center for Nanotechnology, Shanghai, 200240, PR China
| |
Collapse
|
8
|
Chen S, Zhang P, Bai H, Yi W. Recent advances in nano-molybdenum oxide for photothermal cancer therapy. Nanomedicine (Lond) 2025; 20:883-901. [PMID: 40063363 PMCID: PMC11988261 DOI: 10.1080/17435889.2025.2476386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Cancer remains a significant global health challenge, driving the search for innovative treatments. Photothermal therapy (PTT) has emerged as a promising approach, using photothermal agents to convert near-infrared (NIR) light into heat for tumor ablation. Among these agents, nano-molybdenum oxide, particularly non-stoichiometric MoO3-x (0 < x < 1), stands out due to its unique defect structure, strong NIR absorption, high photothermal conversion efficiency (PCE), and pH-responsive degradation. This review summarized recent advancements in nano-molybdenum oxide for PTT, covering its classification, synthesis, surface modification, and tumor-targeting mechanisms. Subsequently, we explored its applications in PTT and combination therapies, evaluated biocompatibility and toxicity, and discussed current achievements, challenges, and future perspectives in cancer treatment.
Collapse
Affiliation(s)
- Shihai Chen
- College of Science, Northwest A&F University, Xianyang, China
| | - Ping Zhang
- College of Science, Northwest A&F University, Xianyang, China
| | - Hongmei Bai
- College of Science, Northwest A&F University, Xianyang, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of ShaanXi Province & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
9
|
Chen L, Tang W, Liu J, Zhu M, Mu W, Tang X, Liu T, Zhu Z, Weng L, Cheng Y, Zhang Y, Chen X. On-demand reprogramming of immunosuppressive microenvironment in tumor tissue via multi-regulation of carcinogenic microRNAs and RNAs dependent photothermal-immunotherapy using engineered gold nanoparticles for malignant tumor treatment. Biomaterials 2025; 315:122956. [PMID: 39549441 DOI: 10.1016/j.biomaterials.2024.122956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
The frequent immune escape of tumor cells and fluctuating therapeutic efficiency vary with each individual are two critical issues for immunotherapy against malignant tumor. Herein, we fabricated an intelligent core-shell nanoparticle (SNAs@CCMR) to significantly inhibit the PD-1/PD-L1 mediated immune escape by on-demand regulation of various oncogenic microRNAs and perform RNAs dependent photothermal-immunotherapy to achieve precise and efficient treatment meeting the individual requirements of specific patients by in situ generation of customized tumor-associated antigens. The SNAs@CCMR consisted of antisense oligonucleotides grafted gold nanoparticles (SNAs) as core and TLR7 agonist imiquimod (R837) functionalized cancer cell membrane (CCM) as shell, in which the acid-labile Schiff base bond was used to connect the R837 and CCM. During therapy, the acid environment of tumor tissue cleaved the Schiff base to generate free R837 and SNAs@CCM. The SNAs@CCM further entered tumor cells via CCM mediated internalization, and then specifically hybridized with over-expressed miR-130a and miR-21, resulting in effective inhibition of the migration and PD-L1 expression of tumor cells to avoid their immune escape. Meanwhile, the RNAs capture also caused significant aggregation of SNAs, which immediately generated photothermal agents within tumor cells to perform highly selective photothermal therapy under NIR irradiation. These chain processes not only damaged the primary tumor, but also produced plenty of tumor-associated antigens, which matured the surrounding dendritic cells (DCs) and activated anti-tumor T cells along with the released R837, resulting in the enhanced immunotherapy with suppressive immune escape. Both in vivo and in vitro experiments demonstrated that our nanoparticles were able to inhibit primary tumor and its metastasis via multi-regulation of carcinogenic microRNAs and RNAs dependent photothermal-immune activations, which provided a promising strategy to reprogram the immunosuppressive microenvironment in tumor tissue for better malignant tumor therapy.
Collapse
Affiliation(s)
- Li Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyun Mu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Cheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
10
|
Fang B, Geng S, Wang K, Wang F, Zhou Y, Qin J, Luo S, Chen Y, Yu Z. A phosphomolybdenum blue nano-photothermal agent with dual peak absorption and biodegradable properties based on ssDNA in near-infrared photothermal therapy for breast cancer. NANOSCALE HORIZONS 2025; 10:733-747. [PMID: 39895458 DOI: 10.1039/d4nh00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Photothermal therapy (PTT) stands as an emerging and promising treatment modality and is being developed for the treatment of breast cancer, prostate cancer, and a series of superficial tumors. This innovative approach harnesses photothermal agents (PTAs) that convert near-infrared light (NIR) energy into heat, efficiently heating and ablating localized lesion tissue. Notably, the low scattering of NIR-II (1000-1500 nm) band light within biological tissue ensures superior penetration depth, surpassing that of NIR I (700-900 nm) band light. Consequently, developing PTAs with excellent absorption performance and biocompatibility in the NIR-II band has attracted significant attention in photothermal therapy research. We successfully synthesized phosphomolybdenum blue (PMB) nanoparticles using single-strand DNA (ssDNA) as a template in this innovative study. Subsequently, we delved into this material's absorption characteristics and photothermal properties across the NIR-I and NIR-II spectral regions. Furthermore, we evaluated the therapeutic efficacy of PMB on 4T1 cells and tumor-bearing mouse models of breast cancer. Our findings revealed that PMB not only exhibits remarkable biocompatibility but also possesses stellar photothermal performance. Specifically, under 808 nm and 1064 nm laser irradiation, PMB achieved photothermal conversion efficiencies of 21.37% and 28.84%, respectively. Notably, compared to 808 nm laser irradiation, even when transmitting through a 2 mm thick tumor tissue homogenate, the 1064 nm laser irradiation maintained a robust tumor ablation effect. What's more, PMB possesses critical pH-responsive degradation properties. For instance, PMB nanoparticles degrade rapidly under physiological conditions (pH 7.2-7.4) while degrading slower in the acidic tumor microenvironment (pH 6.0-6.9). This unique characteristic significantly mitigates the systemic toxicity of PMB and enhances the safety of photothermal therapy implementation. Moreover, our study represents the first instance of utilizing ssDNA as a template for synthesizing a PMB nano photothermal agent and demonstrating its exceptional tumor thermal ablation efficacy. This groundbreaking work offers novel insights into the development of safe, efficient, and pH-responsive photothermal agents for cancer therapy.
Collapse
Affiliation(s)
- Baoru Fang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China
| | - Siqi Geng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China
| | - Ke Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China
| | - Fang Wang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China
| | - Yiqing Zhou
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China
| | - Jiaying Qin
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China
| | - Shengnan Luo
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
| | - Yanping Chen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China
| | - Zhangsen Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China
| |
Collapse
|
11
|
Ma S, Jiang L, Yang W, Liu F, Wang D, Wang F, Huang J. Advances of Nanomaterials in Cancer Photocatalysis Therapy. MATERIALS TODAY SUSTAINABILITY 2025; 29:101023. [DOI: 10.1016/j.mtsust.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Zhuang J, Jia L, Li C, Yang R, Wang J, Wang WA, Zhou H, Luo X. Recent advances in photothermal nanomaterials for ophthalmic applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:195-215. [PMID: 39995756 PMCID: PMC11849557 DOI: 10.3762/bjnano.16.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The human eye, with its remarkable resolution of up to 576 million pixels, grants us the ability to perceive the world with astonishing accuracy. Despite this, over 2 billion people globally suffer from visual impairments or blindness, primarily because of the limitations of current ophthalmic treatment technologies. This underscores an urgent need for more advanced therapeutic approaches to effectively halt or even reverse the progression of eye diseases. The rapid advancement of nanotechnology offers promising pathways for the development of novel ophthalmic therapies. Notably, photothermal nanomaterials, particularly well-suited for the transparent tissues of the eye, have emerged as a potential game changer. These materials enable precise and controllable photothermal therapy by effectively manipulating the distribution of the thermal field. Moreover, they extend beyond the conventional boundaries of thermal therapy, achieving unparalleled therapeutic effects through their diverse composite structures and demonstrating enormous potential in promoting retinal drug delivery and photoacoustic imaging. This paper provides a comprehensive summary of the structure-activity relationship between the photothermal properties of these nanomaterials and their innovative therapeutic mechanisms. We review the latest research on photothermal nanomaterial-based treatments for various eye diseases. Additionally, we discuss the current challenges and future perspectives in this field, with a focus on enhancing global visual health.
Collapse
Affiliation(s)
- Jiayuan Zhuang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- School of Public Health, Yangzhou University, Yangzhou 225009, P. R. China
| | - Linhui Jia
- School of Marine Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Chenghao Li
- Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Rui Yang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Jiapeng Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Wen-an Wang
- The first school of clinical medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Heng Zhou
- School of Public Health, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiangxia Luo
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Gansu Provincial Hospital of TCM, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Zhang H, Liu H, Liu X, Song A, Jiang H, Wang X. Progress on Carbon Dots with Intrinsic Bioactivities for Multimodal Theranostics. Adv Healthc Mater 2025; 14:e2402285. [PMID: 39440645 DOI: 10.1002/adhm.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
14
|
Debnath M, Sarkar S, Debnath SK, Dkhar DS, Kumari R, Vaskuri GSSJ, Srivastava A, Chandra P, Prasad R, Srivastava R. Photothermally Active Quantum Dots in Cancer Imaging and Therapeutics: Nanotheranostics Perspective. ACS APPLIED BIO MATERIALS 2024; 7:8126-8148. [PMID: 39526826 DOI: 10.1021/acsabm.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cancer is becoming a global threat, as the cancerous cells manipulate themselves frequently, resulting in mutants and more abnormalities. Early-stage and real-time detection of cancer biomarkers can provide insight into designing cost-effective diagnostic and therapeutic modalities. Nanoparticle and quantum dot (QD)-based approaches have been recognized as clinically relevant methods to detect disease biomarkers at the molecular level. Over decades, as an emergent noninvasive approach, photothermal therapy has evolved to eradicate cancer. Moreover, various structures, viz., nanoparticles, clusters, quantum dots, etc., have been tested as bioimaging and photothermal agents to identify tumor cells selectively. Among them, QDs have been recognized as versatile probes. They have attracted enormous attention for imaging and therapeutic applications due to their unique colloidal stability, optical and physicochemical properties, biocompatibility, easy surface conjugation, scalable production, etc. However, a few critical concerns of QDs, viz., precise engineering for molecular imaging and sensing, selective interaction with the biological system, and their associated toxicity, restrict their potential intervention in curing cancer and are yet to be explored. According to the U.S. Food and Drug Administration (FDA), there is no specific regulation for the approval of nanomedicines. Therefore, these nanomedicines undergo the traditional drug, biological, and device approval process. However, the market survey of QDs is increasing, and their prospects in translational nanomedicine are very promising. From this perspective, we discuss the importance of QDs for imaging, sensing, and therapeutic usage pertinent to cancer, especially in its early stages. Moreover, we also discuss the rapidly growing translational view of QDs. The long-term safety studies and cellular interaction of these QDs could enhance their visibility and bring photothermally active QDs to the clinical stage and concurrently to FDA approval.
Collapse
Affiliation(s)
- Monalisha Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sayoni Sarkar
- Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
15
|
Sabu A, Kandel M, Sarma RR, Ramesan L, Roy E, Sharmila R, Chiu HC. Heterojunction semiconductor nanocatalysts as cancer theranostics. APL Bioeng 2024; 8:041502. [PMID: 39381587 PMCID: PMC11459490 DOI: 10.1063/5.0223718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Cancer nanotechnology is a promising area of cross-disciplinary research aiming to develop facile, effective, and noninvasive strategies to improve cancer diagnosis and treatment. Catalytic therapy based on exogenous stimulus-responsive semiconductor nanomaterials has shown its potential to address the challenges under the most global medical needs. Semiconductor nanocatalytic therapy is usually triggered by the catalytic action of hot electrons and holes during local redox reactions within the tumor, which represent the response of nontoxic semiconductor nanocatalysts to pertinent internal or external stimuli. However, careful architecture design of semiconductor nanocatalysts has been the major focus since the catalytic efficiency is often limited by facile hot electron/hole recombination. Addressing these challenges is vital for the progress of cancer catalytic therapy. In recent years, diverse strategies have been developed, with heterojunctions emerging as a prominent and extensively explored method. The efficiency of charge separation under exogenous stimulation can be heightened by manipulating the semiconducting performance of materials through heterojunction structures, thereby enhancing catalytic capabilities. This review summarizes the recent applications of exogenous stimulus-responsive semiconducting nanoheterojunctions for cancer theranostics. The first part of the review outlines the construction of different heterojunction types. The next section summarizes recent designs, properties, and catalytic mechanisms of various semiconductor heterojunctions in tumor therapy. The review concludes by discussing the challenges and providing insights into their prospects within this dynamic and continuously evolving field of research.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Manoj Kandel
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ritwick Ranjan Sarma
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Lakshminarayan Ramesan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ekta Roy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ramalingam Sharmila
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
16
|
Zhang W, Wang S, Zheng H, Zhang W, Yang L, Li Z, Yu M. Spotlight on Mitochondrial Health: A Trailblazing Fluorescent Tool for Cancer Detection and Surgical Guidance. Anal Chem 2024; 96:18455-18463. [PMID: 39501707 DOI: 10.1021/acs.analchem.4c03706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Mitochondria play a pivotal role in maintaining normal physiological functions. Mitochondrial autophagy, namely, mitophagy, is a selective catabolic disposal of impaired mitochondria through an autophagic mechanism during episodes of mitochondrial harm. This selective removal, e.g., mitophagy, is essential for mitochondrial quality control and is closely related to the pathogenesis of many diseases. The abnormal buildup of defective mitochondria in vivo was used as a target to prevent the development of cancer. The mitochondrial autophagy process of disease-related cells is usually accompanied by a decrease in polarity and pH, and the fluorescence sensing effects caused by these two factors are usually contradictory. Here, we propose a reinventing strategy to develop a dual-channel and dual-responsive fluorescent probe HDTVB that is capable of tracking mitochondrial autophagy by monitoring fluctuations in mitochondrial pH and polarity. Based on the aggregation-induced emission (AIE) moiety and hemicarpine moiety push-pull system with activated near-infrared (NIR) emission and pH-activatable cyclization reaction, HDTVB was able to differentiate tumors from normal sites via polarity- and acidity-triggered structural changes of the probe in the course of mitochondrial autophagy. HDTVB is expected to be applied to clinical diagnosis and tumor excision guided by fluorescence, offering a new route in physiological and biochemical research.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuo Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hongyong Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Wenjing Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Zhanxian Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mingming Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Mottaghitalab F, Farokhi M. Stimulus-responsive biomacromolecule wound dressings for enhanced drug delivery in chronic wound healing: A review. Int J Biol Macromol 2024; 281:136496. [PMID: 39419149 DOI: 10.1016/j.ijbiomac.2024.136496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Addressing the challenge of poor wound healing in chronic wounds remains complex, as the underlying physiological mechanisms are still not fully understood. Traditional wound dressings often fail to meet the specific needs of the chronic wound healing process. Recently, considerable interest has shifted toward employing biomacromolecule-based smart wound dressings to facilitate wound healing. These stimuli-responsive dressings have undergone substantial development to manage local drug delivery, demonstrating promising therapeutic effects in treating chronic wound defects. They have displayed improved drug release profiles both in vitro and in vivo. Recently, there have been advancements in the development of innovative dual and multi-stimuli responsive dressings that react to combinations of signals including pH-temperature, pH-enzyme, pH-ROS, pH-glucose, pH-NIR, and multiple stimuli. This paper offers an in-depth review of recent progress in responsive wound dressings based on biomacromolecules, with a specific focus on their design, drug release capabilities, and therapeutic advantages.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
18
|
Wu J, Wang K, Wei C, Ma J, Xu H, Zheng W, Zhu R. Ideal Photothermal Materials Based on Ge Subwavelength Structure. Molecules 2024; 29:5008. [PMID: 39519649 PMCID: PMC11547708 DOI: 10.3390/molecules29215008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Photothermal materials often prioritize solar absorption while neglecting thermal radiation losses, which diminishes thermal radiation conversion efficiency. This study addresses this gap by introducing a germanium (Ge) subwavelength structure (SWS) designed to optimize both solar absorption and infrared emissivity. Using a self-masked reactive ion etching (RIE) technique, we achieved a peak absorption of 98.8% within the 300 nm to 1800 nm range, with an infrared emissivity as low as 0.32. Under solar illumination of 1000 W/m2, the structure's temperature increased by 50 °C, generating a heating power of 800 W/m2. Additionally, it demonstrated good mechanical and thermal stability at high temperatures and possessed a hydrophobic angle of 132°, ensuring effective self-cleaning. These characteristics make the Ge SWS suitable for application in solar panels, displays, sensors, and other optoelectronic devices.
Collapse
Affiliation(s)
- Jingjun Wu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| | - Kaixuan Wang
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| | - Cong Wei
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| | - Jun Ma
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| | - Hongbo Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wanguo Zheng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| | - Rihong Zhu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| |
Collapse
|
19
|
Li X, Wang Y, Geng X, Sun J, Liu Y, Dong A, Zhang R. Melanin-intercalated layered double hydroxide LDH/MNP as a stable photothermal agent. BMC Chem 2024; 18:198. [PMID: 39396055 PMCID: PMC11471033 DOI: 10.1186/s13065-024-01312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Melanin nanoparticles (MNPs) are a type of electronegative compound that can be used as photothermal agent for cancer treatment. Nevertheless, the agglomeration of MNP, which is one of the limitations in practice, contributes to the instability of MNP. Pristine layered double hydroxide (LDH), as a kind of positive inorganic material when there exist no other cargo between its layers, can accommodate electronegative molecules between its layers to endow them with stable properties. Hence, in this study, electronegative MNP was intercalated into LDH lamellas via ion-exchange method to obtain the stable original photothermal agent LDH/MNP, solving the tough problem of MNP's agglomeration. The surface morphology, X-ray diffraction and fourier transform infrared spectra affirmed the successful intercalation of MNP between LDH lamellas. The Z-average particle sizes of LDH/MNP on day 0, 7 and 14 were measured as 221.8 nm, 227.6 nm and 230.5 nm without obvious fluctuation, while the particle sizes of MNP went through dramatic enlargement from 105.8 nm (day 0) to 856.1 nm (day 7), indicating the better stability of LDH/MNP than MNP. The typical polymer dispersity index (PDI) values on day 0, 7 and 14 verified the better stability of LDH/MNP, too. Photothermal properties of LDH/MNP were assessed and the results ensured the representative photothermal properties of LDH/MNP. The fine cytocompatibility of LDH/MNP was verified via cytotoxicity test. Results confirmed that the agglomeration of MNP disappeared after its intercalation into LDH and LDH/MNP possessed fine stability as well as typical photothermal property. The intercalation of MNP into LDH gave the photothermal agent MNP a promising way for its better stability and long-term availability in photothermal treatment.
Collapse
Affiliation(s)
- Xue Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Department of Chemistry, School of Basic Medicine, Shanxi Medical University, Shanxi, 030001, China
| | - Yixuan Wang
- The First Clinical Medical College of Shanxi Medical University, Shanxi, 030001, China
| | - Xinkai Geng
- The First Clinical Medical College of Shanxi Medical University, Shanxi, 030001, China
| | - Jinghua Sun
- The First Clinical Medical College of Shanxi Medical University, Shanxi, 030001, China
| | - Yulong Liu
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Fifth Hospital of Shanxi Medical University, Shanxi, 030001, China.
| |
Collapse
|
20
|
Zhang F, Cui J, Zhang Y, Yan M, Wu X, Liu X, Yan D, Zhang Z, Han T, Tan H, Wang D, Tang BZ. Regulating Aggregation-Induced Emission Luminogen for Multimodal Imaging-Navigated Synergistic Therapy Involving Anti-Angiogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302713. [PMID: 39206553 PMCID: PMC11515900 DOI: 10.1002/advs.202302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2024] [Indexed: 09/04/2024]
Abstract
As a new avenue for cancer research, phototheranostics has shown inexhaustible and vigorous vitality as it permits real-time diagnosis and concurrent in situ therapy upon non-invasive light-initiation. However, construction of an advanced material, allowing prominent phototheranostic outputs and synchronously surmounting the inherent deficiency of phototheranostics, would be an appealing yet significantly challenging task. Herein, an aggregation-induced emission (AIE)-active luminogen (namely DBD-TM) featured by intensive electron donor-acceptor strength and twisted architecture with finely modulated intramolecular motion, is tactfully designed and prepared. DBD-TM simultaneously possessed fluorescence emission in the second near-infrared (NIR-II) region and high-efficiency photothermal conversion. By integrating DBD-TM with anti-angiogenic agent sorafenib, a versatile nanomaterial is smoothly fabricated and utilized for trimodal imaging-navigated synergistic therapy involving photothermal therapy and anti-angiogenesis toward cancer. This advanced approach is capable of affording accurate tumor diagnosis, complete tumor elimination, and largely restrained tumor recurrence, evidently denoting a prominent theranostic formula beyond phototheranostics. This study will offer a blueprint for exploiting a new generation of cancer theranostics.
Collapse
Affiliation(s)
- Fei Zhang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
- Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsSchool of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyHubei437000China
| | - Jie Cui
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Yao Zhang
- School of Health Service and ManagementShanxi University of Chinese Medicine121 University StreetJinzhongShanxi030619China
| | - Miao Yan
- Department of ChemistryXinzhou Normal UniversityXinzhouShanxi034000China
| | - Xiaoxiao Wu
- Xianning Public Inspection and Testing CenterXianningHubei437000China
| | - Xue Liu
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Dingyuan Yan
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Zhijun Zhang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Ting Han
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518034China
| | - Dong Wang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
21
|
Shi Y, Wang Y, Meng N, Liao Y. Photothermal Conversion Porous Organic Polymers: Design, Synthesis, and Applications. SMALL METHODS 2024; 8:e2301554. [PMID: 38485672 DOI: 10.1002/smtd.202301554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Indexed: 10/18/2024]
Abstract
Solar energy is a primary form of renewable energy, and photothermal conversion is a direct conversion process with tunable conversion efficiency. Among various kinds of photothermal conversion materials, porous organic polymers (POP) are widely investigated owing to their controllable molecular design, tailored porous structures, good absorption of solar light, and low thermal conductivity. A variety of POP, such as conjugated microporous polymers (CMP), covalent organic frameworks (COF), hyper-crosslinked porous polymers (HCP), polymers of intrinsic microporosity (PIM), porous ionic polymers (PIP), are developed and applied in photothermal conversion applications of seawater desalination, latent energy storage, and biomedical fields. In this review, a comprehensive overview of the recent advances in POP for photothermal conversion is provided. The micro molecular structure characteristics and macro morphology of POP are designed for applications such as seawater desalination, latent heat energy storage, phototherapy and photodynamic therapy, and drug delivery. Besides, a probe into the underlying mechanism of structural design for constructing POP with excellent photothermal conversion performance is methodicalized. Finally, the remaining challenges and prospective opportunities for the future development of POP for solar energy-driven photothermal conversion applications are elucidated.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuzhu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nan Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
22
|
Ma R, Zhang P, Chen X, Zhang M, Han Q, Yuan Q. Dual-responsive nanoplatform for integrated cancer diagnosis and therapy: Unleashing the power of tumor microenvironment. Front Chem 2024; 12:1475131. [PMID: 39391835 PMCID: PMC11464441 DOI: 10.3389/fchem.2024.1475131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Chemodynamic therapy (CDT), designed to trigger a tumor-specific hydrogen peroxide (H2O2) reaction generating highly toxic hydroxyl radicals (·OH), has been investigated for cancer treatment. Unfortunately, the limited Fenton or Fenton-like reaction rate and the significant impact of excessive reducing glutathione (GSH) in the tumor microenvironment (TME) have severely compromised the effectiveness of CDT. To address this issue, we designed a dual-responsive nanoplatform utilizing a metal-polyphenol network (MPN) -coated multi-caged IrOx for efficient anti-tumor therapy in response to the acidic TME and intracellular excess of GSH, in which MPN composed of Fe3+ and tannic acid (TA). Initially, the acidic TME and intracellular excess of GSH lead to the degradation of the MPN shell, resulting in the release of Fe3+ and exposure of the IrOx core, facilitating the efficient dual-pathway CDT. Subsequently, the nanoplatform can mitigate the attenuation of CDT by consuming the excessive GSH within the tumor. Finally, the multi-caged structure of IrOx is advantageous for effectively implementing photothermal therapy (PTT) in coordination with CDT, further enhancing the therapeutic efficacy of tumors. Moreover, the outstanding Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) (T1/T2) multimodal imaging capabilities of IrOx@MPN enable early diagnosis and timely treatment. This work provides a typical example of the construction of a novel multifunctional platform for dual-responsive treatment of tumors.
Collapse
Affiliation(s)
| | | | | | | | - Qinghe Han
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Qinghai Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Gu W, Zhou Y, Wang W, You Q, Fan W, Zhao Y, Bian G, Wang R, Fang L, Yan N, Xia N, Liao L, Wu Z. Concomitant Near-Infrared Photothermy and Photoluminescence of Rod-Shaped Au 52(PET) 32 and Au 66(PET) 38 Synthesized Concurrently. Angew Chem Int Ed Engl 2024; 63:e202407518. [PMID: 38752452 DOI: 10.1002/anie.202407518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 07/04/2024]
Abstract
Gold nanoclusters exhibiting concomitant photothermy (PT) and photoluminescence (PL) under near-infrared (NIR) light irradiation are rarely reported, and some fundamental issues remain unresolved for such materials. Herein, we concurrently synthesized two novel rod-shaped Au nanoclusters, Au52(PET)32 and Au66(PET)38 (PET = 2-phenylethanethiolate), and precisely revealed that their kernels were 4 × 4 × 6 and 5 × 4 × 6 face-centered cubic (fcc) structures, respectively, based on the numbers of Au layers in the [100], [010], and [001] directions. Following the structural growth mode from Au52(PET)32 to Au66(PET)38, we predicted six more novel nanoclusters. The concurrent synthesis provides rational comparison of the two nanoclusters on the stability, absorption, emission and photothermy, and reveals the aspect ratio-related properties. An interesting finding is that the two nanoclusters exhibit concomitant PT and PL under 785 nm light irradiation, and the PT and PL are in balance, which was explained by the qualitative evaluation of the radiative and non-radiative rates. The ligand effects on PT and PL were also investigated.
Collapse
Affiliation(s)
- Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Wenying Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| |
Collapse
|
24
|
Ji W, Ji X, Cao L, Wang W, Chen S. Silver sulfide anchored bismuth molybdate p-n heterojunction nano-coating with excellent photo-thermal self-healing performance. J Colloid Interface Sci 2024; 665:109-124. [PMID: 38520928 DOI: 10.1016/j.jcis.2024.03.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
In this research, a self-healing nano-coating with excellent photo-thermal response to near-infrared (NIR) laser is prepared. This coating incorporates silver sulfide anchored bismuth molybdate (Ag2S@Bi2MoO6) into a shape memory epoxy resin to achieve for a good photo-thermal conversion capability. The Ag2S@Bi2MoO6 p-n heterojunction could photo-generate more electron-holes pairs under the NIR laser irradiation. Also, it shows a wider absorption range of visible light, leading to effectively absorb the light energy, generate enough heat to induce the shape memory recovery in the coating, and seal the scratch. The results indicate that the temperature of EP-1 % Ag2S@Bi2MoO6 coating has reached about 88 °C, while good self-healing and anti-corrosion properties with a self-healing rate of 88.41 % have been achieved. Furthermore, calculations based on Density Functional Theory and Finite Element Method pointed out that the formation of p-n heterojunction effectively has enhanced the photo-thermal effect. This research opens a new way for developing self-healing coatings with an ultra-fast response time and high self-healing efficiency.
Collapse
Affiliation(s)
- Wenhui Ji
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohong Ji
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
25
|
Du S, Zhang H. Application of photothermal effects of nanomaterials in food safety detection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:261-303. [PMID: 39103215 DOI: 10.1016/bs.afnr.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Numerous nanomaterials endowed with outstanding light harvesting and photothermal conversion abilities have been extensively applied in various fields, such as photothermal diagnosis and therapy, trace substance detection, and optical imaging. Although photothermal detection methods have been established utilizing the photothermal effect of nanomaterials in recent years, there is a scarcity of reviews regarding their application in food safety detection. Herein, the recent advancements in the photothermal conversion mechanism, photothermal conversion efficiency calculation, and preparation method of photothermal nanomaterials were reviewed. In particular, the application of photothermal nanomaterials in various food hazard analyses and the newly established photothermal detection methods were comprehensively discussed. Moreover, the development and promising future trends of photothermal nanomaterial-based detection methods were discussed, which provide a reference for researchers to propose more effective, sensitive, and accurate detection methods.
Collapse
Affiliation(s)
- Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, P.R. China.
| |
Collapse
|
26
|
Chen Z, Li Y, Xiang Q, Wu Y, Ran H, Cao Y. Metallic Copper-Based Dual-Enzyme Biomimetic Nanoplatform for Mild Photothermal Enhancement of Anticancer Catalytic Activity. Biomater Res 2024; 28:0034. [PMID: 38840654 PMCID: PMC11151172 DOI: 10.34133/bmr.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Background: Chemodynamic therapy (CDT) is recognized as a promising cancer treatment. Recently, copper sulfide nanostructures have been extensively employed as Fenton-like reagents that catalyze the formation of acutely toxic hydroxyl radicals (·OH) from hydrogen peroxide (H2O2). However, CDT therapeutic potency is restricted by the tumor microenvironment (TME), such as insufficient amounts of hydrogen peroxide, excessive glutathione levels, etc. To address these disadvantages, glucose oxidase (GOx) or catalase (CAT) can be utilized to enhance CDT, while low therapeutic efficacy still inhibits their future applications. Our previous study revealed that mild photothermal effect could boost the CDT catalytic effectiveness as well as GOx enzyme activity over a range. Results: We engineered and constructed a hollow CuS nanoplatform loaded with GOx and CAT, coating with macrophage membranes (M@GOx-CAT@CuS NPs). The nanoplatforms allowed enhancement of the reactive oxygen species creation rate and GOx catalytic activeness of CDT through mild phototherapy directed by photoacoustic imaging. After actively targeting vascular cell adhesion molecule-1 (VCAM-1) in cancer cells mediated by macrophage membrane coating, M@GOx-CAT@CuS NPs released GOx and CAT under near-infrared irradiation. GOx catalyzed the formation of H2O2 and gluconic acid with glucose, creating a better catalytic environment for CDT. Meanwhile, CAT-catalyzed H2O2 decomposition to generate sufficient oxygen, appropriately alleviating the oxygen shortage in the TME. In addition, starvation effects decreased adenosine triphosphate levels and further underregulated heat shock protein expression to reduce the heat resistance of tumor cells, resulting in a better mild phototherapy outcome. Both in vitro and in vivo experiments demonstrated that the newly developed M@GOx-CAT@CuS nanoplatform has remarkable synergistic anticancer therapeutic effects. Conclusion: The cascade reaction-enhanced biomimetic nanoplatform opens up a new avenue for precision tumor diagnostic and therapeutic research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Institute of Ultrasound Imaging,
State Key Laboratory of Ultrasound in Medicine and Engineering of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
27
|
Li WZ, Wang ZX, Xu SY, Zhou N, Xiao J, Wang W, Liu Y, Zhang H, Wang XQ. Chaotropic Effect-Induced Sol-Gel Transition and Radical Stabilization for Bacterially Sensitive Near-Infrared Photothermal Therapy. NANO LETTERS 2024; 24:4649-4657. [PMID: 38572971 DOI: 10.1021/acs.nanolett.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.
Collapse
Affiliation(s)
- Wen-Zhen Li
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Zi-Xin Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Shi-Yuan Xu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Na Zhou
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Ju Xiao
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Wenjing Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Yi Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Haibo Zhang
- National Demonstration Center for Experimental Chemistry and Engineering Research Center of Organosilicon Compounds Materials (MOE), Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Qiang Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| |
Collapse
|
28
|
Sandbhor P, Palkar P, Bhat S, John G, Goda JS. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. NANOSCALE 2024. [PMID: 38470224 DOI: 10.1039/d3nr06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent years have witnessed dramatic improvements in nanotechnology-based cancer therapeutics, and it continues to evolve from the use of conventional therapies (chemotherapy, surgery, and radiotherapy) to increasingly multi-complex approaches incorporating thermal energy-based tumor ablation (e.g. magnetic hyperthermia and photothermal therapy), dynamic therapy (e.g. photodynamic therapy), gene therapy, sonodynamic therapy (e.g. ultrasound), immunotherapy, and more recently real-time treatment efficacy monitoring (e.g. theranostic MRI-sensitive nanoparticles). Unlike monotherapy, these multimodal therapies (bimodal, i.e., a combination of two therapies, and trimodal, i.e., a combination of more than two therapies) incorporating nanoplatforms have tremendous potential to improve the tumor tissue penetration and retention of therapeutic agents through selective active/passive targeting effects. These combinatorial therapies can correspondingly alleviate drug response against hypoxic/acidic and immunosuppressive tumor microenvironments and promote/induce tumor cell death through various multi-mechanisms such as apoptosis, autophagy, and reactive oxygen-based cytotoxicity, e.g., ferroptosis, etc. These multi-faced approaches such as targeting the tumor vasculature, neoangiogenic vessels, drug-resistant cancer stem cells (CSCs), preventing intra/extravasation to reduce metastatic growth, and modulation of antitumor immune responses work complementary to each other, enhancing treatment efficacy. In this review, we discuss recent advances in different nanotechnology-mediated synergistic/additive combination therapies, emphasizing their underlying mechanisms for improving cancer prognosis and survival outcomes. Additionally, significant challenges such as CSCs, hypoxia, immunosuppression, and distant/local metastasis associated with therapy resistance and tumor recurrences are reviewed. Furthermore, to improve the clinical precision of these multimodal nanoplatforms in cancer treatment, their successful bench-to-clinic translation with controlled and localized drug-release kinetics, maximizing the therapeutic window while addressing safety and regulatory concerns are discussed. As we advance further, exploiting these strategies in clinically more relevant models such as patient-derived xenografts and 3D organoids will pave the way for the application of precision therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Pranoti Palkar
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Sakshi Bhat
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Geofrey John
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jayant S Goda
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| |
Collapse
|
29
|
Liu L, Fan X, Lu Q, Wang P, Wang X, Han Y, Wang R, Zhang C, Han S, Tsuboi T, Dai H, Yeow J, Geng H. Antimicrobial research of carbohydrate polymer- and protein-based hydrogels as reservoirs for the generation of reactive oxygen species: A review. Int J Biol Macromol 2024; 260:129251. [PMID: 38211908 DOI: 10.1016/j.ijbiomac.2024.129251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Reactive oxygen species (ROS) play an important role in biological milieu. Recently, the rapid growth in our understanding of ROS and their promise in antibacterial applications has generated tremendous interest in the combination of ROS generators with bulk hydrogels. Hydrogels represent promising supporters for ROS generators and can locally confine the nanoscale distribution of ROS generators whilst also promoting cellular integration via biomaterial-cell interactions. This review highlights recent efforts and progress in developing hydrogels derived from biological macromolecules with embedded ROS generators with a focus on antimicrobial applications. Initially, an overview of passive and active antibacterial hydrogels is provided to show the significance of proper hydrogel selection and design. These are followed by an in-depth discussion of the various approaches for ROS generation in hydrogels. The structural engineering and fabrication of ROS-laden hydrogels are given with a focus on their biomedical applications in therapeutics and diagnosis. Additionally, we discuss how a compromise needs to be sought between ROS generation and removal for maximizing the efficacy of therapeutic treatment. Finally, the current challenges and potential routes toward commercialization in this rapidly evolving field are discussed, focusing on the potential translation of laboratory research outcomes to real-world clinical outcomes.
Collapse
Affiliation(s)
- Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Pengxu Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Yuxing Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Runming Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Canyang Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Tatsuhisa Tsuboi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Jonathan Yeow
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney, Sydney, NSW 2052, Australia.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
30
|
Wang M, Huang Q, Ma R, Wang S, Li X, Hu Y, Zhu S, Zhang M, Huang Q. Construction of Mn doped Cu 7S 4 nanozymes for synergistic tumor therapy in NIR-I/II bio-windows. Colloids Surf B Biointerfaces 2024; 234:113689. [PMID: 38103429 DOI: 10.1016/j.colsurfb.2023.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
In photothermal therapy (PTT) and chemodynamic therapy (CDT) of cancer, poor performance of nanoagents severely impaired the therapeutic effect of cancer. To solve the problem, we proposed and constructed a novel Mn doped Cu7S4 phothermal nanoagent both in the first near-infrared (NIR-I) and the second near- infrared (NIR-II) windows in this work, which exhibited high photothermal conversion efficiency of 40.3% at 808 nm (NIR-I window) and 33.4% at 1064 nm (NIR-II window), as well as outstanding pH-sensitive catalytic performance (peroxidase-like catalytic activity and Fenton-like catalytic activities). The as-prepared Mn doped Cu7S4 could be used to load chemotherapy drug doxorubicin (DOX) after modified by folic acid. Both in vitro and in vivo studies indicated that it could be used as nanoagent for chemodynamic therapy (CDT)/photothermal therapy (PTT)/ chemotherapy of cervical carcinoma. This study thus provided an NIR-I/NIR-II/pH responsive nanoagent for potential synergistic therapy of deep-seated tumors.
Collapse
Affiliation(s)
- Meng Wang
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China
| | - Qi Huang
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China; School of Life Sciences, Nursing, Medical Imaging and Pharmacy of Xuzhou Medical University, Xuzhou city, Jiangsu 221000, China
| | - Ruixin Ma
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China
| | - Shuozhe Wang
- School of Life Sciences, Nursing, Medical Imaging and Pharmacy of Xuzhou Medical University, Xuzhou city, Jiangsu 221000, China
| | - Xinxiu Li
- School of Life Sciences, Nursing, Medical Imaging and Pharmacy of Xuzhou Medical University, Xuzhou city, Jiangsu 221000, China
| | - Youhui Hu
- School of Life Sciences, Nursing, Medical Imaging and Pharmacy of Xuzhou Medical University, Xuzhou city, Jiangsu 221000, China
| | - Shunhua Zhu
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China
| | - Min Zhang
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China
| | - Qingli Huang
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China.
| |
Collapse
|
31
|
Zhou J, Yang L, Cao X, Ma Y, Sun H, Li J, Zhu Z, Jiao R, Liang W, Li A. MXene nanosheets coated conjugated microporous polymers hollow microspheres incorporating with phase change material for continuous desalination. J Colloid Interface Sci 2024; 654:819-829. [PMID: 37898066 DOI: 10.1016/j.jcis.2023.10.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
The inevitable intermittency of solar illumination during the interfacial evaporation process can cause a reduction in the evaporation performance of solar evaporators. Here, we report the fabrication of a new solar-driven interfacial evaporator using MXene nanosheets as the photothermal layer, modifying them with conjugated microporous polymer hollow microspheres, and then compounding them with the phase change material, in this case, cetyl alcohol, to form a composite evaporator (CE) that can perform all-weather solar interfacial evaporation. By combining interfacial evaporation photothermal conversion with energy storage, the evaporator achieves an evaporation rate of 1.57 kg⋅m-2⋅h-1 at a light intensity of 1 kW⋅m-2 and 2.79 kg⋅m-2⋅h-1 at a light intensity of 2 kW⋅m-2. In addition, the evaporator attains an excellent solar evaporation efficiency of over 91% in both cases and even in salt water. In addition, interestingly, our CE exhibits excellent continuous evaporation ability, e.g., the mass of evaporated water was increased by 0.36 kg⋅m-2 at a light intensity of 2 kW⋅m-2 compared to the cavity evaporator without the phase change material (PCM) when solar light was turned off. These results could be attributed to the fact that the energy released by the incorporated phase change material allows the evaporator to maintain stable evaporation under conditions of insufficient or intermittent solar irradiation, potentially providing a new opportunity for addressing the intermittent problem of evaporation at the solar interface due to unstable light intensity, thus showing great potential for practical continuous desalination.
Collapse
Affiliation(s)
- Jiaxuan Zhou
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Lijuan Yang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Xiaoyin Cao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Yingjiao Ma
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Rui Jiao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China.
| |
Collapse
|
32
|
Hou M, Jiang Z, Sun W, Chen Z, Chu F, Lai NC. Efficient Photothermal Anti-/Deicing Enabled by 3D Cu 2-x S Encapsulated Phase Change Materials Mixed Superhydrophobic Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310312. [PMID: 37991469 DOI: 10.1002/adma.202310312] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Photothermal superhydrophobic surfaces are one of the most promising anti-/deicing materials, yet they are limited by the low energy density and intermittent nature of solar energy. Here, a coupling solution based on microencapsulated phase change materials (MPCMs) that integrates photothermal effect and phase change thermal storage is proposed. Dual-shell octahedral MPCMs with Cu2 O as the first layer and 3D Cu2-x S as the second layer for the first time is designed. By morphology and phase manipulation of the Cu2-x S shell, the local surface plasmonic heating modulation of MPCMs is realized, and the MPCM reveals full-spectrum high absorption with a photothermal conversion efficiency up to 96.1%. The phase change temperature and enthalpy remain in good consistency after 200 cycles. Multifunctional photothermal phase-change superhydrophobic composite coatings are fabricated by combining the hydrolyzed and polycondensation products of octadecyl trichlorosilane and the dual-shell MPCM. The multifunctional coatings exhibit excellent anti-/deicing performance under low temperature and high humidity conditions. This work not only provides a new approach for the design of high-performance MPCMs but also opens up an avenue for the anti-icing application of photothermal phase-change superhydrophobic composite coatings.
Collapse
Affiliation(s)
- Mingtai Hou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wen Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhenghao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Research Center of Energy Saving and Environmental Protection, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
33
|
Lin X, Xu Z, Li J, Shi H, Fu Z, Chen Y, Zhang W, Zhang Y, Lin H, Xu G, Chen X, Chen S, Chen M. Visualization of photothermal therapy by semiconducting polymer dots mediated photoacoustic detection in NIR II. J Nanobiotechnology 2023; 21:468. [PMID: 38062508 PMCID: PMC10701955 DOI: 10.1186/s12951-023-02243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Visualization of photothermal therapy mediated by photothermal transduction agents (PTAs) is important to promote individual treatment of patients with low side effects. Photoacoustic detection has emerged as a promising noninvasive method for the visualization of PTAs distribution but still has limitations in temperature measurement, including poor measurement accuracy and low tissue penetration depth. In this study, we developed biocompatible semiconducting polymer dots (SPD) for in situ coupling of photothermal and photoacoustic detection in the near-infrared II window. SPD has dual photostability under pulsed laser and continuous-wave laser irradiation with a photothermal conversion efficiency of 42.77%. Meanwhile, a strong correlation between the photoacoustic signal and the actual temperature of SPD can be observed. The standard deviation of SPD-mediated photoacoustic thermometry can reach 0.13 °C when the penetration depth of gelatin phantom is 9.49 mm. Preliminary experimental results in vivo show that SPD-mediated photoacoustic signal has a high signal-to-noise ratio, as well as good performance in temperature response and tumor enrichment. Such a study not only offers a new nanomaterial for the visualization of photothermal therapy but will also promote the theranostic platform for clinical applications.
Collapse
Affiliation(s)
- Xiangwei Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhourui Xu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jiangao Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hongji Shi
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhenyu Fu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yuqing Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Wenguang Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yibin Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Haoming Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Gaixia Xu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Mian Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
34
|
Lu S, Wu Y, Liu Y, Sun X, Li J, Li J. Multifunctional Photothermal Hydrogel in the Second Near-Infrared Window for Localized Tumor Therapy. ACS APPLIED BIO MATERIALS 2023; 6:4694-4702. [PMID: 37824829 DOI: 10.1021/acsabm.3c00492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A copper selenide-embedded gellan gum hydrogel (Cu2-xSe@GG) is designed as an "all-in-one" antitumor agent. The obtained nanocomposite hydrogel exhibits strong near-infrared light absorption and high photothermal conversion efficiency in both the NIR-I and NIR-II biowindows. The photothermal conversion efficiency achieves 58.8% under the irradiation of 0.75 W/cm2 with a 1064 nm laser. Furthermore, the nanocomposite hydrogel has catalase- and peroxidase-mimicking activities, which could alter the tumor microenvironment by reducing hypoxia and/or increasing the production of reactive oxygen species. Moreover, the multifunctional Cu2-xSe@GG nanocomposite hydrogel can also be used as an immune agonist resiquimod (R848) carrier to promote immune regulation and enhance the therapeutic effect. The single-syringe R848/Cu2-xSe@GG treatment achieves synergetic photothermal immunotherapy, showing 97.4% of tumor regression rate from an initial large tumor of 300 mm3.
Collapse
Affiliation(s)
- Sha Lu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yingjiao Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yandi Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoyi Sun
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jianghua Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha 410008, China
| |
Collapse
|
35
|
Zhou B, Chen H, Ji C, Yin M. Regulating steric hindrances of perylenediimide to construct NIR photothermal J-aggregates with a large red-shift. NANOSCALE 2023; 15:17350-17355. [PMID: 37873593 DOI: 10.1039/d3nr03571a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Perylene diimide (PDI)-based photothermal agents (PTAs) possess excellent stability and high photothermal conversion efficiency. However, developing PDIs with strong near-infrared absorption under biological conditions remains a challenge. In this study, we introduce a novel approach to facilitate the formation of J-aggregate-based PTAs with significantly red-shifted absorption by modulating steric hindrances of PDIs. PDIA, featuring larger steric hindrances at the bay position and smaller steric hindrances at the imide position, self-assembles into J-aggregates which exhibit a remarkable red-shift of over 100 nm. After encapsulation by DPSE-PEG, PDIA nanoparticles (PDIA-NPs) demonstrated a uniform and stable size, while retaining their significant red-shift. In vitro experiments demonstrated the great potential of PDIA-NPs in photothermal therapies for tumors and thrombi under 808 nm laser irradiation. This research provides valuable insights into the design of stable J-aggregates based on PDIs suitable for biological applications, paving the way for the development of more effective PTAs.
Collapse
Affiliation(s)
- Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
36
|
Zhang W, Li J, Chen L, Chen H, Zhang L. Palladium-based multifunctional nanoparticles for combined chemodynamic/photothermal and calcium overload therapy of tumors. Colloids Surf B Biointerfaces 2023; 230:113529. [PMID: 37708713 DOI: 10.1016/j.colsurfb.2023.113529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Due to the high mortality and incidence rates associated with tumors and the specificity of the tumor microenvironment (TME), it is difficult to achieve a complete cure for tumors using a single therapy. In this study, calcium carbonate-modified palladium hydride nanoparticles (PdH@CaCO3) were prepared and utilized for the combined treatment of tumors through chemodynamic therapy (CDT)/photothermal therapy (PTT) and calcium overload therapy. After entering tumor cells, PdH@CaCO3 releases calcium ions (Ca2+) and PdH once it reaches the TME due to the pH reactivity of the calcium carbonate coating. The mitochondrial membrane potential is lowered by the Ca2+, leading to irreversible cell damage. Meanwhile, PdH reacts with excessive hydrogen peroxide (H2O2) in the TME via the Fenton reaction, generating hydroxyl radicals (·OH). Moreover, PdH is an excellent photothermal agent that can kill tumor cells under laser irradiation, leading to significant anti-tumor effects. In vitro and in vivo studies have demonstrated that PdH@CaCO3 could combine CDT/PTT and calcium overload therapy, exhibiting great clinical potential in the treatment of tumors.
Collapse
Affiliation(s)
- Wenge Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jiangyong Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lamei Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Huan Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
37
|
Xu K, Weng J, Li J, Chen X. Advances in Intelligent Stimuli-Responsive Microneedle for Biomedical Applications. Macromol Biosci 2023; 23:e2300014. [PMID: 37055877 DOI: 10.1002/mabi.202300014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Microneedles (MNs) are a new type of drug delivery method that can be regarded as an alternative to traditional transdermal drug delivery systems. Recently, MNs have attracted widespread attention for their advantages of effectiveness, safety, and painlessness. However, the functionality of traditional MNs is too monotonous and limits their application. To improve the efficiency of disease treatment and diagnosis by combining the advantages of MNs, the concept of intelligent stimulus-responsive MNs is proposed. Intelligent stimuli-responsive MNs can exhibit unique biomedical functions according to the internal and external environment changes. This review discusses the classification and principles of intelligent stimuli-responsive MNs, such as magnet, temperature, light, electricity, reactive oxygen species, pH, glucose, and protein. This review also highlights examples of intelligent stimuli-responsive MNs for biomedical applications, such as on-demand drug delivery, tissue repair, bioimaging, detection and monitoring, and photothermal therapy. These intelligent stimuli-responsive MNs offer the advantages of high biocompatibility, targeted therapy, selective detection, and precision treatment. Finally, the prospects and challenges for the application of intelligent stimuli-responsive MNs are discussed.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
38
|
He S, Jia X, Feng S, Hu J. Three Strategies in Engineering Nanomedicines for Tumor Microenvironment-Enabled Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300078. [PMID: 37226364 DOI: 10.1002/smll.202300078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Indexed: 05/26/2023]
Abstract
Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
Collapse
Affiliation(s)
- Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiao Jia
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Sai Feng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
39
|
Chang K, Sun X, Qi Q, Fu M, Han B, Zhang Y, Zhao W, Ni T, Li Q, Yang Z, Ge C. NIR-II Absorbing Conjugated Polymer Nanotheranostics for Thermal Initiated NO Enhanced Photothermal Therapy. BIOSENSORS 2023; 13:642. [PMID: 37367007 DOI: 10.3390/bios13060642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Photothermal therapy (PTT) has received constant attention as a promising cancer treatment. However, PTT-induced inflammation can limit its effectiveness. To address this shortcoming, we developed second near-infrared (NIR-II) light-activated nanotheranostics (CPNPBs), which include a thermosensitive nitric oxide (NO) donor (BNN6) to enhance PTT. Under a 1064 nm laser irradiation, the conjugated polymer in CPNPBs serves as a photothermal agent for photothermal conversion, and the generated heat triggers the decomposition of BNN6 to release NO. The combination of hyperthermia and NO generation under single NIR-II laser irradiation allows enhanced thermal ablation of tumors. Consequently, CPNPBs can be exploited as potential candidates for NO-enhanced PTT, holding great promise for their clinical translational development.
Collapse
Affiliation(s)
- Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaolin Sun
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiaofang Qi
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Mingying Fu
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing Han
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yang Zhang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei Zhao
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Tianjun Ni
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| | - Zhijun Yang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunpo Ge
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
40
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 358] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
41
|
Wu X, Zhao G, Ruan Y, Feng K, Gao M, Liu Y, Sun X. Temperature-Responsive Nanoassemblies for Self-Regulated Photothermal Therapy and Controlled Copper Release to Accelerate Chronic Wound Healing. ACS APPLIED BIO MATERIALS 2023; 6:2003-2013. [PMID: 37129536 DOI: 10.1021/acsabm.3c00267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photothermal therapy (PTT) is an effective therapeutic method against multidrug-resistant bacteria. The heating temperature is of great significance to completely eliminate bacteria but not damage surrounding healthy tissue. To meet the need for chronic wound management, a pH and temperature dual-responsive copper-gold nanoassembly (sCuAu NAs) was constructed by cross-linking the CuAu nanoparticles (CuAu NPs) with small molecules involved in the Edman degradation reaction. At room temperature, the sCuAu NAs could quickly heat up to eliminate the biofilm upon laser irradiation due to the surface plasmon resonance coupling effect. On arriving at the degradation temperature of around 50 °C, the sCuAu NAs are disassembled into CuAu NPs in the wound infection site, which not only prevents overheating but also promotes deep penetration and accelerates copper-ion release to remove residual bacteria and promote wound healing. This study not only provides an effective treatment that can simultaneously alleviate wound infection and accelerate wound healing but also brings up an idea on the development and application of temperature self-regulated photothermal agents in various diseases.
Collapse
Affiliation(s)
- Xiaojing Wu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Guizhen Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Maoyu Gao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
42
|
Fang J, Wei H, Chen Y, Dai B, Ni Y, Kou J, Lu C, Xu Z. Low-Energy Photons Dual Harvest for Photocatalytic Hydrogen Evolution: Bimodal Surface Plasma Resonance Related Synergism of Upconversion and Pyroelectricity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207467. [PMID: 36634976 DOI: 10.1002/smll.202207467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Indexed: 05/04/2023]
Abstract
Utilization of low-energy photons for efficient photocatalysis remains a challenging pursuit. Herein, a strategy is reported to boost the photocatalytic performance, by promoting low-energy photons dual harvest through bimodal surface plasmon resonance (SPR)-enhanced synergistically upconversion and pyroelectricity. It is achieved by introducing triplet-triplet annihilation upconversion (TTA-UC) materials and plasmonic material (Au nanorods, AuNRs) into composite fibers composed of pyroelectric substrate (poly(vinylidene fluoride)) and photocatalyst Cd0.5 Zn0.5 S. Interestingly, the dual combination of TTA-UC and AuNRs SPR in the presence of polyvinylidene fluoride substrate with pyroelectric property promotes the photocatalytic hydrogen evolution performance by 2.88 folds with the highest average apparent quantum yield of 7.0% under the low-energy light (λ > 475 nm), which far outweighs the role of separate application of TTA-UC (34%) and AuNRs SPR (76%). The presence of pyroelectricity plays an important role in the built-in electric field as well as the accordingly photogenerated carrier behavior in the composite photocatalytic materials, and the pyroelectricity can be affected by AuNRs with different morphologies, which is proved by the Kelvin probe force microscopy and photocurrent data. This work provides a new avenue for fully utilizing low-energy photons in the solar spectrum for improving photocatalytic performance.
Collapse
Affiliation(s)
- Jiaojiao Fang
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Huimin Wei
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yukai Chen
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Baoying Dai
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yaru Ni
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jiahui Kou
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Chunhua Lu
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Zhongzi Xu
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
43
|
Liu T, Zhu M, Chang X, Tang X, Yuan P, Tian R, Zhu Z, Zhang Y, Chen X. Tumor-Specific Photothermal-Therapy-Assisted Immunomodulation via Multiresponsive Adjuvant Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300086. [PMID: 36782382 DOI: 10.1002/adma.202300086] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Indexed: 05/05/2023]
Abstract
Multiresponsive adjuvant nanoparticles (RMmAGL) are fabricated to perform tumor-specific photothermal therapy while regulating the behavior of tumor-associated immune cells for primary tumor eradication and metastasis inhibition. Core-satellite-like RMmAGL have a core of mannose-functionalized mesoporous silica nanoparticles loaded with the TLR7 agonist imiquimod (R837@MSN-mannose) connected via hydrazone bonds to satellites of glutamine (Glu)- and lysine (Lys)-comodified gold nanoparticles (AuNPs-Glu/Lys). During therapy, the acidic environment in tumor tissue cleaves the hydrazone bonds to release AuNPs-Glu/Lys, which further accumulate in tumor cells. After internalization, photothermal agents (aggregated AuNPs-Glu/Lys) are generated in situ through the intratumoral enzyme-catalyzed reaction between Glu and Lys, resulting in tumor-specific photothermal therapy. The detachment of AuNPs-Glu/Lys also triggers the release of R837, which matured dendritic cells (DCs) via a vaccine-like mechanism along with the tumor-associated antigens generated by photothermal therapy. These matured DCs further activates surrounding T cells for immunotherapy. Moreover, the resulting free MSN-mannose serves as an artificial glycocalyx to continuously induce the polarization of tumor-associated macrophages from an immunosuppressive phenotype to an inflammatory phenotype, thus further enhancing immunotherapy. Both in vivo and in vitro experiments demonstrate significant inhibition of malignant tumors after therapy.
Collapse
Affiliation(s)
- Tao Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xiaowei Chang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Pingyun Yuan
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ran Tian
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
44
|
Yu Q, Wang Q, Feng T, Wang L, Fan Z. A Novel Functionalized MoS 2-Based Coating for Efficient Solar Desalination. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3105. [PMID: 37109940 PMCID: PMC10141543 DOI: 10.3390/ma16083105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Molybdenum disulfide (MoS2) has emerged as a promising photothermal material for solar desalination. However, its limitation in integrating with organic substances constrains its application because of the lack of functional groups on its surface. Here, this work presents a functionalization approach to introduce three different functional groups (-COOH -OH -NH2) on the surface of MoS2 by combining them with S vacancies. Subsequently, the functionalized MoS2 was coated on the polyvinyl alcohol-modified polyurethane sponge to fabricate a MoS2-based double-layer evaporator through an organic bonding reaction. Photothermal desalination experiments show that the functionalized material has higher photothermal efficiency. The evaporation rate of the hydroxyl functionalized the MoS2 evaporator evaporation rate is 1.35 kg m-2 h-1, and the evaporation efficiency is 83% at one sun. This work provides a new strategy for efficient, green, and large-scale utilization of solar energy by MoS2-based evaporators.
Collapse
Affiliation(s)
- Qinghong Yu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Center of Green Control and Remediation Technologies for Environmental Pollution, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qingmiao Wang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Center of Green Control and Remediation Technologies for Environmental Pollution, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Tao Feng
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Center of Green Control and Remediation Technologies for Environmental Pollution, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Li Wang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Center of Green Control and Remediation Technologies for Environmental Pollution, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhixuan Fan
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Center of Green Control and Remediation Technologies for Environmental Pollution, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
45
|
Yan T, Su M, Wang Z, Zhang J. Second Near-Infrared Plasmonic Nanomaterials for Photoacoustic Imaging and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300539. [PMID: 37060228 DOI: 10.1002/smll.202300539] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Photoacoustic imaging (PAI) and imaging-guided photothermal therapy (PTT) in the second near-infrared window (NIR-II, 1000-1700 nm) have received increasing attention owing to their advantages of greater penetration depth and higher signal-to-noise ratio. Plasmonic nanomaterials with tunable optical properties and strong light absorption provide an alternative to dye molecules, showing great prospects for phototheranostic applications. In this review, the research progress in principally modulating the optical properties of plasmonic nanomaterials, especially affecting parameters such as size, morphology, and surface chemical modification, is introduced. The commonly used plasmonic nanomaterials in the NIR-II window, including noble metals, semiconductors, and heterostructures, are then summarized. In addition, the biomedical applications of these NIR-II plasmonic nanomaterials for PAI and PTT in phototheranostics are highlighted. Finally, the perspectives and challenges for advancing plasmonic nanomaterials for practical use and clinical translation are discussed.
Collapse
Affiliation(s)
- Tingjun Yan
- Institute of Engineering Medicine, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyao Su
- Institute of Engineering Medicine, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiatao Zhang
- Institute of Engineering Medicine, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
46
|
Shahcheraghi SH, Shahcheraghi SH, Lotfi M, Lotfi M, Khaleghinejad SH, Tambuwala ZM, Mishra V, Mishra Y, Serrano-Aroca Á, A Aljabali AA, El-Tanani M, Naikoo GA, Chava SR, Charbe NB, Bharti S, Jaganathan SK, Goyal R, Negi P, Tambuwala MM, Folorunso O. Photonic nanoparticles: emerging theranostics in cancer treatment. Ther Deliv 2023; 14:311-329. [PMID: 37403985 DOI: 10.4155/tde-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
This review explores the potential of photonic nanoparticles for cancer theranostics. Photonic nanoparticles offer unique properties and photonics capabilities that make them promising materials for cancer treatment, particularly in the presence of near-infrared light. However, the size of the particles is crucial to their absorption of near-infrared light and therapeutic potential. The limitations and challenges associated with the clinical use of photonic nanoparticles, such as toxicity, immune system clearance, and targeted delivery to the tumor are also discussed. Researchers are investigating strategies such as surface modification, biodegradable nanoparticles, and targeting strategies to improve biocompatibility and accumulation in the tumor. Ongoing research suggests that photonic nanoparticles have potential for cancer theranostics, further investigation and development are necessary for clinical use.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of medical sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Hadi Shahcheraghi
- Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Iran
- Laboratory & Quality Control Unit, Gohar Zamin Iron Ore Company, Sirjan, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Malihe Lotfi
- Department of Medical Genetics & Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zara M Tambuwala
- College of Science, University of Lincoln, Brayford Campus, Lincoln, LN6 7TS, UK
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia, 46001, Spain
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Mohamed El-Tanani
- Pharmacological & Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Gowhar A Naikoo
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| | | | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Shivani Bharti
- School of Physical sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saravana Kumar Jaganathan
- School of Engineering, College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK
| | - Oladipo Folorunso
- Department of Electrical & Electronical Engineering Technology, University of Johannesburg, Johannesburg, 2006, South Africa
- Department of Electrical/Electronic & Computer Engineering, Afe Babalola University, Km 8.5, Afe Babalola Way, Ado-Ekiti, Nigeria
| |
Collapse
|
47
|
Nanofiber-based systems against skin cancers: Therapeutic and protective approaches. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
48
|
Wang Z, Ren X, Wang D, Guan L, Li X, Zhao Y, Liu A, He L, Wang T, Zvyagin AV, Yang B, Lin Q. Novel strategies for tumor radiosensitization mediated by multifunctional gold-based nanomaterials. Biomater Sci 2023; 11:1116-1136. [PMID: 36601661 DOI: 10.1039/d2bm01496c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is one of the most effective and commonly used cancer treatments for malignant tumors. However, the existing radiosensitizers have a lot of side effects and poor efficacy, which limits the curative effect and further application of radiotherapy. In recent years, emerging nanomaterials have shown unique advantages in enhancing radiosensitization. In particular, gold-based nanomaterials, with high X-ray attenuation capacity, good biocompatibility, and promising chemical, electronic and optical properties, have become a new type of radiotherapy sensitizer. In addition, gold-based nanomaterials can be used as a carrier to load a variety of drugs and immunosuppressants; in particular, its photothermal therapy, photodynamic therapy and multi-mode imaging functions aid in providing excellent therapeutic effect in coordination with RT. Recently, many novel strategies of radiosensitization mediated by multifunctional gold-based nanomaterials have been reported, which provides a new idea for improving the efficacy and reducing the side effects of RT. In this review, we systematically summarize the recent progress of various new gold-based nanomaterials that mediate radiosensitization and describe the mechanism. We further discuss the challenges and prospects in the field. It is hoped that this review will help researchers understand the latest progress of gold-based nanomaterials for radiosensitization, and encourage people to optimize the existing methods or explore novel approaches for radiotherapy.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Dongzhou Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Liang He
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
49
|
Kang Y, Kong N, Ou M, Wang Y, Xiao Q, Mei L, Liu B, Chen L, Zeng X, Ji X. A novel cascaded energy conversion system inducing efficient and precise cancer therapy. Bioact Mater 2023; 20:663-676. [PMID: 35891799 PMCID: PMC9289784 DOI: 10.1016/j.bioactmat.2022.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/18/2022] [Accepted: 07/05/2022] [Indexed: 12/20/2022] Open
Abstract
Cancer therapies based on energy conversion, such as photothermal therapy (PTT, light-to-thermal energy conversion) and photodynamic therapy (PDT, light-to-chemical energy conversion) have attracted extensive attention in preclinical research. However, the PTT-related hyperthermia damage to surrounding tissues and shallow penetration of PDT-applied light prevent further advanced clinical practices. Here, we developed a thermoelectric therapy (TET) based on thermoelectric materials constructed p-n heterojunction (SrTiO3/Cu2Se nanoplates) on the principle of light-thermal-electricity-chemical energy conversion. Upon irradiation and natural cooling-induced the temperature gradient (35-45 oC), a self-build-in electric field was constructed and thereby facilitated charges separation in bulk SrTiO3 and Cu2Se. Importantly, the contact between SrTiO3 (n type) and Cu2Se (p type) constructed another interfacial electric field, further guiding the separated charges to re-locate onto the surfaces of SrTiO3 and Cu2Se. The formation of two electric fields minimized probability of charges recombination. Of note, high-performance superoxide radicals and hydroxyl radicals' generation from O2 and H2O under catalyzation by separated electrons and holes, led to intracellular ROS burst and cancer cells apoptosis without apparent damage to surrounding tissues. Construction of bulk and interfacial electric fields in heterojunction for improving charges separation and transfer is also expected to provide a robust strategy for diverse applications.
Collapse
Affiliation(s)
- Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Na Kong
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Meitong Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Ying Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Bing Liu
- Department of Disease Control and Prevention, Rocket Force Characteristic Medical Center, 16 Xinjiekouwai Street, Xicheng District, Beijing, 10088, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
50
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|