1
|
Werle Y, Kovermann M. Fluorine Labeling and 19F NMR Spectroscopy to Study Biological Molecules and Molecular Complexes. Chemistry 2025; 31:e202402820. [PMID: 39466678 DOI: 10.1002/chem.202402820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
High-resolution nuclear magnetic resonance (NMR) spectroscopy represents a key methodology for studying biomolecules and their interplay with other molecules. Recent developments in labeling strategies have made it possible to incorporate fluorine into proteins and peptides reliably, with manageable efforts and, importantly, in a highly site-specific manner. Paired with its excellent NMR spectroscopic properties and absence in most biological systems, fluorine has enabled scientists to investigate a rather wide range of scientific objectives, including protein folding, protein dynamics and drug discovery. Furthermore, NMR spectroscopic experiments can be conducted in complex environments, such as cell lysate or directly inside living cells. This review presents selected studies demonstrating how 19F NMR spectroscopic approaches enable to contribute to the understanding of biomolecular processes. Thereby the focus has been set to labeling strategies available and specific NMR experiments performed to answer the underlying scientific objective.
Collapse
Affiliation(s)
- Yannick Werle
- Department of Chemistry and Graduate School of Chemical-Biology (KoRS-CB), Universität Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry and Graduate School of Chemical-Biology (KoRS-CB), Universität Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
2
|
Toscano G, Rosati M, Barbieri L, Maier K, Banci L, Luchinat E, Konrat R, Lichtenecker RJ. The synthesis of specifically isotope labelled fluorotryptophan and its use in mammalian cell-based protein expression for 19F-NMR applications. Chem Commun (Camb) 2024; 60:14188-14191. [PMID: 39512115 DOI: 10.1039/d4cc04789c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
19F nuclei serve as versatile sensors for detecting protein interactions and dynamics in biomolecular NMR spectroscopy. Although various methods have been developed to incorporate fluorine-containing aromatic residues into proteins using E. coli or cell-free expression techniques, similar approaches for protein production in mammalian cell lines remain limited. Here, we present a cost-effective synthetic route to obtain selectively deuterated, carbon-13 labeled fluorotryptophan and demonstrate its use in introducing 19F-13C spin pairs into carbonic anhydrase 2 and superoxide dismutase, following an expression protocol utilizing HEK cells.
Collapse
Affiliation(s)
- Giorgia Toscano
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Martina Rosati
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Letizia Barbieri
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
| | - Katharina Maier
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
| | - Lucia Banci
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Enrico Luchinat
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030-Vienna, Austria
- Mag-Lab, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| | - Roman J Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Mag-Lab, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| |
Collapse
|
3
|
Suleiman M, Frere GA, Törner R, Tabunar L, Bhole GV, Taverner K, Tsuchimura N, Pichugin D, Lichtenecker RJ, Vozny O, Gunning P, Arthanari H, Sljoka A, Prosser RS. Characterization of conformational states of the homodimeric enzyme fluoroacetate dehalogenase by 19F- 13C two-dimensional NMR. RSC Chem Biol 2024:d4cb00176a. [PMID: 39398890 PMCID: PMC11465415 DOI: 10.1039/d4cb00176a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Tryptophan plays a critical role in proteins by contributing to stability, allostery, and catalysis. Using fluorine (19F) nuclear magnetic resonance (NMR), protein conformational dynamics and structure-activity relationships (SARs) can be studied via fluorotryptophan reporters. Tryptophan analogs such as 4-, 5-, 6-, or 7-fluorotryptophan can be routinely incorporated into proteins during heterologous expression by arresting endogenous tryptophan biosynthesis. Building upon the large 19F chemical shift dispersion associated with 5-fluorotryptophan, we introduce an approach to the incorporation of 13C-enriched 5-fluorotryptophan using a direct biosynthetic precursor, 5-fluoroanthranilic acid-(phenyl-13C6). The homodimeric enzyme fluoroacetate dehalogenase (FAcD), a thermophilic alpha/beta hydrolase responsible for the hydrolysis of a C-F bond in fluoroacetate, was expressed and biosynthetically labeled with (phenyl-13C6) 5-fluorotryptophan. The resulting two-dimensional 19F-13C (transverse relaxation optimized spectroscopy) TROSY heteronuclear correlation spectra provide complete resolution of all 9 tryptophan residues in the apo enzyme and FAcD saturated with the substrate analog bromoacetate. The (19F,13C) correlation spectra also reveal a multitude of minor resonances in the apo sample. The role of each tryptophan residue in allosteric communication was validated with computational rigidity transmission allostery analysis, which in this case explores the relative interprotomer communication between all possible tryptophan pairs.
Collapse
Affiliation(s)
- Motasem Suleiman
- Department of Chemistry, University of Toronto UTM, 3359 Mississauga Rd Mississauga ON Canada L5L 1C6
| | - Geordon A Frere
- Department of Chemistry, University of Toronto UTM, 3359 Mississauga Rd Mississauga ON Canada L5L 1C6
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University Boston USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston USA
| | - Lauren Tabunar
- Department of Chemistry, University of Toronto UTM, 3359 Mississauga Rd Mississauga ON Canada L5L 1C6
| | - Gaurav Vijay Bhole
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University Boston USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston USA
| | - Keith Taverner
- Department of Chemistry, University of Toronto UTM, 3359 Mississauga Rd Mississauga ON Canada L5L 1C6
| | - Nobuyuki Tsuchimura
- Kwansei Gakuin University, Department of Informatics Nishinomiya 530-0012 Japan
| | - Dmitry Pichugin
- Department of Chemistry, University of Toronto UTM, 3359 Mississauga Rd Mississauga ON Canada L5L 1C6
| | - Roman J Lichtenecker
- Institute of Organic Chemistry, University of Vienna Währingerstr 38 1090 Vienna Austria
| | - Oleksandr Vozny
- Department of Chemistry, University of Toronto, UTSC, EV 564 - Environmental Science & Chemistry 1065 Military Trail Scarborough ON Canada M1C 1A4
| | - Patrick Gunning
- Department of Chemistry, University of Toronto UTM, 3359 Mississauga Rd Mississauga ON Canada L5L 1C6
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University Boston USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston USA
| | - Adnan Sljoka
- RIKEN, Center for Advanced Intelligence Project 1-4-1 Nihombashi, Chuo-Ku Tokyo 103-0027 Japan
| | - Robert S Prosser
- Department of Chemistry, University of Toronto UTM, 3359 Mississauga Rd Mississauga ON Canada L5L 1C6
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Room 5207 Toronto ON Canada M5S 1A8
| |
Collapse
|
4
|
Nguyen K, Strauss T, Refaeli B, Hiller R, Vinogradova O, Khananshvili D. 19F-NMR Probing of Ion-Induced Conformational Changes in Detergent-Solubilized and Nanodisc-Reconstituted NCX_Mj. Int J Mol Sci 2024; 25:6909. [PMID: 39000018 PMCID: PMC11241019 DOI: 10.3390/ijms25136909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Consecutive interactions of 3Na+ or 1Ca2+ with the Na+/Ca2+ exchanger (NCX) result in an alternative exposure (access) of the cytosolic and extracellular vestibules to opposite sides of the membrane, where ion-induced transitions between the outward-facing (OF) and inward-facing (IF) conformational states drive a transport cycle. Here, we investigate sub-state populations of apo and ion-bound species in the OF and IF states by analyzing detergent-solubilized and nanodisc-reconstituted preparations of NCX_Mj with 19F-NMR. The 19F probe was covalently attached to the cysteine residues at entry locations of the cytosolic and extracellular vestibules. Multiple sub-states of apo and ion-bound species were observed in nanodisc-reconstituted (but not in detergent-solubilized) NCX_Mj, meaning that the lipid-membrane environment preconditions multiple sub-state populations toward the OF/IF swapping. Most importantly, ion-induced sub-state redistributions occur within each major (OF or IF) state, where sub-state interconversions may precondition the OF/IF swapping. In contrast with large changes in population redistributions, the sum of sub-state populations within each inherent state (OF or IF) remains nearly unchanged upon ion addition. The present findings allow the further elucidation of structure-dynamic modules underlying ion-induced conformational changes that determine a functional asymmetry of ion access/translocation at opposite sides of the membrane and ion transport rates concurring physiological demands.
Collapse
Affiliation(s)
- Khiem Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Tali Strauss
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Bosmat Refaeli
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Reuben Hiller
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Costantino A, Pham LBT, Barbieri L, Calderone V, Ben‐Nissan G, Sharon M, Banci L, Luchinat E. Controlling the incorporation of fluorinated amino acids in human cells and its structural impact. Protein Sci 2024; 33:e4910. [PMID: 38358125 PMCID: PMC10868450 DOI: 10.1002/pro.4910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Fluorinated aromatic amino acids (FAAs) are promising tools when studying protein structure and dynamics by NMR spectroscopy. The incorporation FAAs in mammalian expression systems has been introduced only recently. Here, we investigate the effects of FAAs incorporation in proteins expressed in human cells, focusing on the probability of incorporation and its consequences on the 19 F NMR spectra. By combining 19 F NMR, direct MS and x-ray crystallography, we demonstrate that the probability of FAA incorporation is only a function of the FAA concentration in the expression medium and is a pure stochastic phenomenon. In contrast with the MS data, the x-ray structures of carbonic anhydrase II reveal that while the 3D structure is not affected, certain positions lack fluorine, suggesting that crystallization selectively excludes protein molecules featuring subtle conformational modifications. This study offers a predictive model of the FAA incorporation efficiency and provides a framework for controlling protein fluorination in mammalian expression systems.
Collapse
Affiliation(s)
- Azzurra Costantino
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Lan B. T. Pham
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Letizia Barbieri
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
| | - Vito Calderone
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Gili Ben‐Nissan
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Michal Sharon
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Lucia Banci
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Enrico Luchinat
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| |
Collapse
|
6
|
Caceres-Cortes J, Falk B, Mueller L, Dhar TGM. Perspectives on Nuclear Magnetic Resonance Spectroscopy in Drug Discovery Research. J Med Chem 2024; 67:1701-1733. [PMID: 38290426 DOI: 10.1021/acs.jmedchem.3c02389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The drug discovery landscape has undergone a significant transformation over the past decade, owing to research endeavors in a wide range of areas leading to strategies for pursuing new drug targets and the emergence of novel drug modalities. NMR spectroscopy has been a technology of fundamental importance to these research pursuits and has seen its use expanded both within and outside of traditional medicinal chemistry applications. In this perspective, we will present advancement of NMR-derived methods that have facilitated the characterization of small molecules and novel drug modalities including macrocyclic peptides, cyclic dinucleotides, and ligands for protein degradation. We will discuss innovations in NMR spectroscopy at the chemistry and biology interface that have broadened NMR's utility from hit identification through lead optimization activities. We will also discuss the promise of emerging NMR approaches in bridging our understanding and addressing challenges in the pursuit of the therapeutic agents of the future.
Collapse
Affiliation(s)
- Janet Caceres-Cortes
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Bradley Falk
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Luciano Mueller
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - T G Murali Dhar
- Discovery Chemistry, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 085401, United States
| |
Collapse
|
7
|
Luchinat E, Barbieri L, Davis B, Brough PA, Pennestri M, Banci L. Ligand-Based Competition Binding by Real-Time 19F NMR in Human Cells. J Med Chem 2024; 67:1115-1126. [PMID: 38215028 PMCID: PMC10823471 DOI: 10.1021/acs.jmedchem.3c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024]
Abstract
The development of more effective drugs requires knowledge of their bioavailability and binding efficacy directly in the native cellular environment. In-cell nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for investigating ligand-target interactions directly in living cells. However, the target molecule may be NMR-invisible due to interactions with cellular components, while observing the ligand by 1H NMR is impractical due to the cellular background. Such limitations can be overcome by observing fluorinated ligands by 19F in-cell NMR as they bind to the intracellular target. Here we report a novel approach based on real-time in-cell 19F NMR that allows measuring ligand binding affinities in human cells by competition binding, using a fluorinated compound as a reference. The binding of a set of compounds toward Hsp90α was investigated. In principle, this approach could be applied to other pharmacologically relevant targets, thus aiding the design of more effective compounds in the early stages of drug development.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum—Università di Bologna, Piazza Goidanich 60, Cesena 47521, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine—CIRMMP, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Letizia Barbieri
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine—CIRMMP, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Ben Davis
- Vernalis
Research, Granta Park, Great Abington, Cambridge CB21 6GB, U.K.
| | - Paul A. Brough
- Vernalis
Research, Granta Park, Great Abington, Cambridge CB21 6GB, U.K.
| | - Matteo Pennestri
- Pharmaceutical
Business Unit, Bruker UK Limited, Banner Lane, Coventry CV4 9GH, U.K.
| | - Lucia Banci
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine—CIRMMP, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
- Centro
di Risonanze Magnetiche—CERM, Università
degli Studi di Firenze, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, Sesto Fiorentino 50019, Italy
| |
Collapse
|
8
|
Miles SA, Nillama JA, Hunter L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules 2023; 28:6192. [PMID: 37687021 PMCID: PMC10489206 DOI: 10.3390/molecules28176192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino acid side chains and for elaborating such building blocks into more complex fluorinated peptides and proteins. We then describe the diverse benefits that fluorine can offer when located within amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
Collapse
Affiliation(s)
| | | | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
9
|
Cosottini L, Zineddu S, Massai L, Ghini V, Turano P. 19F: A small probe for a giant protein. J Inorg Biochem 2023; 244:112236. [PMID: 37146532 DOI: 10.1016/j.jinorgbio.2023.112236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Herein we describe a method for the efficient production (∼90% fluorination) of 5-F-Trp human H ferritin via the selective incorporation of 19F into the side chain of W93 using 5-fluoroindole as the fluorinated precursor of the amino acid. Human H ferritin is a nanocage composed of 24 identical subunits, each containing a single Trp belonging to a loop exposed on the external surface of the protein nanocage. This makes 5-F-Trp a potential probe for the study of intermolecular interactions in solution by exploiting its intrinsic fluorescence. More interestingly, albeit the large size of the cage (12 nm external diameter, ∼500 kDa molecular mass) we observe a broad but well defined NMR 19F resonance that can be used for the dual purpose of detecting solution intermolecular interactions via chemical shift perturbation mapping and monitoring the uptake of ferritin by cells treated with ferritin-based drug carriers, the latter being an application area of increasing importance.
Collapse
Affiliation(s)
- Lucrezia Cosottini
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Stefano Zineddu
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy.
| |
Collapse
|
10
|
Jeong KB, Ryu M, Kim JS, Kim M, Yoo J, Chung M, Oh S, Jo G, Lee SG, Kim HM, Lee MK, Chi SW. Single-molecule fingerprinting of protein-drug interaction using a funneled biological nanopore. Nat Commun 2023; 14:1461. [PMID: 37015934 PMCID: PMC10073129 DOI: 10.1038/s41467-023-37098-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
In drug discovery, efficient screening of protein-drug interactions (PDIs) is hampered by the limitations of current biophysical approaches. Here, we develop a biological nanopore sensor for single-molecule detection of proteins and PDIs using the pore-forming toxin YaxAB. Using this YaxAB nanopore, we demonstrate label-free, single-molecule detection of interactions between the anticancer Bcl-xL protein and small-molecule drugs as well as the Bak-BH3 peptide. The long funnel-shaped structure and nanofluidic characteristics of the YaxAB nanopore enable the electro-osmotic trapping of diverse folded proteins and high-resolution monitoring of PDIs. Distinctive nanopore event distributions observed in the two-dimensional (ΔI/Io-versus-IN) plot illustrate the ability of the YaxAB nanopore to discriminate individual small-molecule drugs bound to Bcl-xL from non-binders. Taken together, our results present the YaxAB nanopore as a robust platform for label-free, ultrasensitive, single-molecule detection of PDIs, opening up a possibility for low-cost, highly efficient drug discovery against diverse drug targets.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Minju Ryu
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Minsoo Kim
- Department of Physics, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jejoong Yoo
- Department of Physics, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Minji Chung
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sohee Oh
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Gyunghee Jo
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Seong-Gyu Lee
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
11
|
Montgomery K, Elhabashy A, Chen G, Chen QH, Krishnan VV. Targeted F 19 - tags to detect amino acids in complex mixtures using NMR spectroscopy. J Fluor Chem 2023; 266:110084. [PMID: 39450044 PMCID: PMC11500796 DOI: 10.1016/j.jfluchem.2022.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nuclear magnetic resonance spectroscopy of fluorine-19 nucleus ( F 19 -NMR) emerges as a powerful tool because of the high sensitivity due to its high natural abundance, broad spectral range, and the simplicity of a spin-half system. However, it is still seldom utilized in the chemistry classroom or research. This article thus aims to demonstrate the power of NMR by investigating the kinetics when a F 19 - tag reacts with individual amino acids (AA) and eventually utilizing the approach to identify and quantify various AAs from a complex mixture such as a metabolomics sample. The F 19 - tag named 2,5-dioxopyrrolidin-1-yl-2-(trifluoromethyl)benzoate was synthesized following a previously established method. The reaction kinetics of the tag was then continuously measured using F 19 NMR in the presence of selected AAs. The estimated reaction rate constants to form the F 19 - tags with each AA differ, which could be used as an identification tool. The tag formations were typically completed in 24-48 h in water for all the samples. These demonstrations suggest that F 19 - tags could form the basis for chemical kinetics and AA detection using F 19 -NMR.
Collapse
Affiliation(s)
- Keeton Montgomery
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Aya Elhabashy
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - V V Krishnan
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
12
|
Olson NM, Johnson JA, Peterson KE, Henisch SC, Marshall AP, Smanski MJ, Carlson EE, Pomerantz WC. Development of a single culture E. coli expression system for the enzymatic synthesis of fluorinated tyrosine and its incorporation into proteins. J Fluor Chem 2022; 261-262. [PMID: 37197608 PMCID: PMC10187777 DOI: 10.1016/j.jfluchem.2022.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current experiments that rely on biosynthetic metabolic protein labeling with 19F often require fluorinated amino acids, which in the case of 2- and 3-fluorotyrosine can be expensive. However, using these amino acids has provided valuable insight into protein dynamics, structure, and function. Here, we develop a new in-cell method for fluorinated tyrosine generation from readily available substituted phenols and subsequent metabolic labeling of proteins in a single bacterial expression culture. This approach uses a dual-gene plasmid encoding for a model protein BRD4(D1) and a tyrosine phenol lyase from Citrobacter freundii, which catalyzes the formation of tyrosine from phenol, pyruvate, and ammonium. Our system demonstrated both enzymatic fluorotyrosine production and expression of 19F-labeled proteins as analyzed by 19F NMR and LC-MS methods. Further optimization of our system should provide a cost-effective alternative to a variety of traditional protein-labeling strategies.
Collapse
|
13
|
Stadler KA, Becker W, Darnhofer B, Birner-Gruenberger R, Zangger K. Overexpression of recombinant proteins containing non-canonical amino acids in Vibrio natriegens: p-azido-L-phenylalanine as coupling site for 19F-tags. Amino Acids 2022; 54:1041-1053. [PMID: 35419750 PMCID: PMC9217835 DOI: 10.1007/s00726-022-03148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/27/2022] [Indexed: 11/26/2022]
Abstract
Vibrio natriegens is the fastest growing organism identified so far. The minimum doubling time of only 9.4 min, the ability to utilize over 60 different carbon sources and its non-pathogenic properties make it an interesting alternative to E. coli as a new production host for recombinant proteins. We investigated the ability of the engineered V. natriegens strain, Vmax™ Express, to incorporate the non-canonical amino acid (ncAA) p-azido-L-phenylalanine (AzF) into recombinant proteins for NMR applications. AzF was incorporated into enhanced yellow fluorescent protein (EYFP) and MlaC, an intermembrane transport protein, by stop codon suppression. AzF incorporation into EYFP resulted in an improved suppression efficiency (SE) of up to 35.5 ± 0.8% and a protein titer of 26.7 ± 0.7 mg/L. The expression levels of MlaC-AzF even exceeded those of E. coli BL21 cells. For the recording of 1H-15N and 19F NMR spectra, EYFP-AzF was expressed and isotopically labeled in minimal medium and the newly introduced azido-group was used as coupling site for NMR sensitive 19F-tags. Our findings show that Vmax is a flexible expression host, suitable for the incorporation of ncAAs in recombinant proteins with the potential to surpass protein yields of E. coli. The presented method suggests the implementation of V. natriegens for expression of isotopically labeled proteins containing ncAAs, which can be chemically modified for the application in protein-observed 19F-NMR.
Collapse
Affiliation(s)
- Karina A Stadler
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Walter Becker
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| |
Collapse
|
14
|
Nguyen A, Gemmecker G, Softley CA, Movsisyan LD, Pfaffeneder T, Heine A, Reuter K, Diederich F, Sattler M, Klebe G. 19F-NMR Unveils the Ligand-Induced Conformation of a Catalytically Inactive Twisted Homodimer of tRNA-Guanine Transglycosylase. ACS Chem Biol 2022; 17:1745-1755. [PMID: 35763700 DOI: 10.1021/acschembio.2c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the structural arrangements of protein oligomers can support the design of ligands that interfere with their function in order to develop new therapeutic concepts for disease treatment. Recent crystallographic studies have elucidated a novel twisted and functionally inactive form of the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative target in the fight against shigellosis. Active-site ligands have been identified that stimulate the rearrangement of one monomeric subunit by 130° against the other one to form an inactive twisted homodimer state. To assess whether the crystallographic observations also reflect the conformation in solution and rule out effects from crystal packing, we performed 19F-NMR spectroscopy with the introduction of 5-fluorotryptophans at four sites in TGT. The inhibitor-induced conformation of TGT in solution was assessed based on 19F-NMR chemical shift perturbations. We investigated the effect of C(4) substituted lin-benzoguanine ligands and identified a correlation between dynamic protein rearrangements and ligand-binding features in the corresponding crystal structures. These involve the destabilization of a helix next to the active site and the integrity of a flexible loop-helix motif. Ligands that either completely lack an attached C(4) substituent or use it to stabilize the geometry of the functionally competent dimer state do not indicate the presence of the twisted dimer form in the NMR spectra. The perturbation of crucial structural motifs in the inhibitors correlates with an increasing formation of the inactive twisted dimer state, suggesting these ligands are able to shift a conformational equilibrium from active C2-symmetric to inactive twisted dimer conformations. These findings suggest a novel concept for the design of drug candidates for further development.
Collapse
Affiliation(s)
- Andreas Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, Marburg D-35032, Germany
| | - Gerd Gemmecker
- Biomolecular NMR, Bavarian NMR Center, Technical University of Munich, Lichtenbergstraße 4, Garching D-85747, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Charlotte A Softley
- Biomolecular NMR, Bavarian NMR Center, Technical University of Munich, Lichtenbergstraße 4, Garching D-85747, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Levon D Movsisyan
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich CH-8093, Switzerland
| | - Toni Pfaffeneder
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich CH-8093, Switzerland
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, Marburg D-35032, Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, Marburg D-35032, Germany
| | - François Diederich
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich CH-8093, Switzerland
| | - Michael Sattler
- Biomolecular NMR, Bavarian NMR Center, Technical University of Munich, Lichtenbergstraße 4, Garching D-85747, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, Marburg D-35032, Germany
| |
Collapse
|
15
|
Bankaitis VA, Tripathi A, Chen XR, Igumenova TI. New strategies for combating fungal infections: Inhibiting inositol lipid signaling by targeting Sec14 phosphatidylinositol transfer proteins. Adv Biol Regul 2022; 84:100891. [PMID: 35240534 PMCID: PMC9149032 DOI: 10.1016/j.jbior.2022.100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Virulent fungi represent a particularly difficult problem in the infectious disease arena as these organisms are eukaryotes that share many orthologous activities with their human hosts. The fact that these activities are often catalyzed by conserved proteins places additional demands on development of pharmacological strategies for specifically inhibiting target fungal activities without imposing undesirable secondary effects on the host. While deployment of a limited set of anti-mycotics has to date satisfied the clinical needs for treatment of fungal infections, the recent emergence of multi-drug resistant fungal 'superbugs' now poses a serious global health threat with rapidly diminishing options for treatment. This escalating infectious disease problem emphasizes the urgent need for development of new classes of anti-mycotics. In that regard, Sec14 phosphatidylinositol transfer proteins offer interesting possibilities for interfering with fungal phosphoinositide signaling with exquisite specificity and without targeting the highly conserved lipid kinases responsible for phosphoinositide production. Herein, we review the establishment of proof-of-principle that demonstrates the feasibility of such an approach. We also describe the lead compounds of four chemotypes that directly target fungal Sec14 proteins. The rules that pertain to the mechanism(s) of Sec14 inhibition by validated small molecule inhibitors, and the open questions that remain, are discussed - as are the challenges that face development of next generation Sec14-directed inhibitors.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843-0014, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-0014, USA.
| | - Ashutosh Tripathi
- Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843-0014, USA
| | - Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-0014, USA
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-0014, USA
| |
Collapse
|
16
|
Ayotte Y, Woo S, LaPlante SR. Practical Considerations and Guidelines for Spectral Referencing for Fluorine NMR Ligand Screening. ACS OMEGA 2022; 7:13155-13163. [PMID: 35474811 PMCID: PMC9026065 DOI: 10.1021/acsomega.2c00613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fluorine (19F) NMR strategies are increasingly being employed for evaluating ligand binding to macromolecules, among many other uses. 19F NMR offers many advantages as a result of its sensitive spin 1/2 nucleus, 100% natural abundance, and wide chemical shift range. Moreover, because of its absence from biological samples, one can directly monitor ligand binding without background interference from the macromolecule. Therefore, all these aforementioned features make it an attractive approach for screening compounds. However, the detection of ligand binding, especially those with weak affinities, can require interpretations of minor changes in chemical shifts. Thus, chemical shift referencing is critical for accurate measurements and interpretations. Unfortunately, one cannot rely on spectrometer indirect referencing alone, and internal chemical references have sample-dependent issues. Here, we evaluated 10 potential candidate compounds that could serve as 19F NMR chemical references. Multiple factors were systematically evaluated for each candidate to monitor the suitability for 19F NMR screening purposes. These factors include aqueous solubility, buffer compatibility, salt compatibility, aqueous stability, tolerability to pH changes, temperature changes, and compound pooling. It was concluded that there was no ideal candidate, but five compounds had properties that met the screening requirements.
Collapse
Affiliation(s)
- Yann Ayotte
- Centre
Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX
Research and Solutions Inc., 500 boulevard Cartier Ouest, Suite 6000, Laval, Québec H7V 5B7, Canada
| | - Simon Woo
- Centre
Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX
Research and Solutions Inc., 500 boulevard Cartier Ouest, Suite 6000, Laval, Québec H7V 5B7, Canada
| | - Steven R. LaPlante
- Centre
Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX
Research and Solutions Inc., 500 boulevard Cartier Ouest, Suite 6000, Laval, Québec H7V 5B7, Canada
| |
Collapse
|
17
|
Gossert AD, Wider G. Relaxation optimized double acquisition (RODA) as an alternative for virtual decoupling of NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107177. [PMID: 35290935 DOI: 10.1016/j.jmr.2022.107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
We introduce an alternative way for spin-state selection, RODA, which yields higher sensitivity for spin systems exhibiting a TROSY effect. With RODA, the TROSY component of a doublet is recorded twice using a double acquisition scheme. RODA works by simple addition of consecutive NMR signals, and does not require any special processing. Thus, this pulse sequence element can seamlessly be integrated into existing experiments. We demonstrate the broad applicability of RODA with several systems exhibiting a TROSY effect on 15N-1H, 19F-13C or 1H-13C moieties. Further, we show that virtual decoupling with increased sensitivity is possible in a single double acquisition experiment in situations as encountered with dissolution DNP.
Collapse
Affiliation(s)
- Alvar D Gossert
- Department of Biology, Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093 Zürich, Switzerland.
| | - Gerhard Wider
- Department of Biology, Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Maleckis A, Abdelkader EH, Herath ID, Otting G. Synthesis of fluorinated leucines, valines and alanines for use in protein NMR. Org Biomol Chem 2022; 20:2424-2432. [PMID: 35262139 DOI: 10.1039/d2ob00145d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Efficient syntheses of fluorinated leucines, valines and alanines are described. The synthetic routes provide expedient access to various 13C/15N/D isotopologues requiring solely readily available and inexpensive isotope containing reagents such as NaBD4, carbon-13C dioxide and sodium azide-1-15N. The lightly fluorinated leucines and valines were found to be good substrates for cell-free protein expression and even 3-fluoroalanine, which is highly toxic to bacteria in vivo, could be incorporated into proteins this way. 19F-NMR spectra of the protein GB1 produced with these amino acids showed large chemical shift dispersions. Particularly high incorporation yields and clean 19F-NMR spectra were obtained for GB1 produced with valine residues, which had been synthesized with a single fluorine substituting a hydrogen stereospecifically in one of the methyl groups.
Collapse
Affiliation(s)
- Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Iresha D Herath
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
19
|
Hartman MCT. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem 2022; 23:e202100299. [PMID: 34416067 PMCID: PMC9651912 DOI: 10.1002/cbic.202100299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
Collapse
Affiliation(s)
- Matthew C T Hartman
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 1001 W Main St., Richmond, VA 23220, USA
| |
Collapse
|
20
|
Banerjee R, Srinivas V, Lebrette H. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes. Subcell Biochem 2022; 99:109-153. [PMID: 36151375 DOI: 10.1007/978-3-031-00793-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferritin-like proteins share a common fold, a four α-helix bundle core, often coordinating a pair of metal ions. Although conserved, the ferritin fold permits a diverse set of reactions, and is central in a multitude of macromolecular enzyme complexes. Here, we emphasize this diversity through three members of the ferritin-like superfamily: the soluble methane monooxygenase, the class I ribonucleotide reductase and the aldehyde deformylating oxygenase. They all rely on dinuclear metal cofactors to catalyze different challenging oxygen-dependent reactions through the formation of multi-protein complexes. Recent studies using cryo-electron microscopy, serial femtosecond crystallography at an X-ray free electron laser source, or single-crystal X-ray diffraction, have reported the structures of the active protein complexes, and revealed unprecedented insights into the molecular mechanisms of these three enzymes.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
21
|
Wu Q, Liu X, Chai Z, Cheng K, Xu G, Jiang L, Liu M, Li C. Lanmodulin Remains Unfold and Fails to Interact with Lanthanide Ions in Escherichia coli Cells. Chem Commun (Camb) 2022; 58:8230-8233. [DOI: 10.1039/d2cc02038f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the conformation of a newly discovered specific lanthanide ions (Ln3+) binding protein, Lanmodulin (LanM), and its inteaction with Ln3+ in Escherichia coli cells using In-cell NMR. We found...
Collapse
|
22
|
Kehl A, Hiller M, Hecker F, Tkach I, Dechert S, Bennati M, Meyer A. Resolution of chemical shift anisotropy in 19F ENDOR spectroscopy at 263 GHz/9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107091. [PMID: 34749036 DOI: 10.1016/j.jmr.2021.107091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Pulsed 19F ENDOR spectroscopy provides a selective method for measuring angstrom to nanometer distances in structural biology. Here, the performance of 19F ENDOR at fields of 3.4 T and 9.4 T is compared using model compounds containing one to three 19F atoms. CF3 groups are included in two compounds, for which the possible occurrence of uniaxial rotation might affect the distance distribution. At 9.4 T, pronounced asymmetric features are observed in many of the presented 19F ENDOR spectra. Data analysis by spectral simulations shows that these features arise from the chemical shift anisotropy (CSA) of the 19F nuclei. This asymmetry is also observed at 3.4 T, albeit to a much smaller extent, confirming the physical origin of the effect. The CSA parameters are well consistent with DFT predicted values and can be extracted from simulation of the experimental data in favourable cases, thereby providing additional information about the geometrical and electronic structure of the spin system. The feasibility of resolving the CSA at 9.4 T provides important information for the interpretation of line broadening in ENDOR spectra also at lower fields, which is relevant for developing methods to extract distance distributions from 19F ENDOR spectra.
Collapse
Affiliation(s)
- Annemarie Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Hiller
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fabian Hecker
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Igor Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sebastian Dechert
- Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany
| | - Marina Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany.
| | - Andreas Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
23
|
Orton HW, Qianzhu H, Abdelkader EH, Habel EI, Tan YJ, Frkic RL, Jackson CJ, Huber T, Otting G. Through-Space Scalar 19F- 19F Couplings between Fluorinated Noncanonical Amino Acids for the Detection of Specific Contacts in Proteins. J Am Chem Soc 2021; 143:19587-19598. [PMID: 34780162 DOI: 10.1021/jacs.1c10104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorine atoms are known to display scalar 19F-19F couplings in nuclear magnetic resonance (NMR) spectra when they are sufficiently close in space for nonbonding orbitals to overlap. We show that fluorinated noncanonical amino acids positioned in the hydrophobic core or on the surface of a protein can be linked by scalar through-space 19F-19F (TSJFF) couplings even if the 19F spins are in the time average separated by more than the van der Waals distance. Using two different aromatic amino acids featuring CF3 groups, O-trifluoromethyl-tyrosine and 4-trifluoromethyl-phenylalanine, we show that 19F-19F TOCSY experiments are sufficiently sensitive to detect TSJFF couplings between 2.5 and 5 Hz in the 19 kDa protein PpiB measured on a two-channel 400 MHz NMR spectrometer with a regular room temperature probe. A quantitative J evolution experiment enables the measurement of TSJFF coupling constants that are up to five times smaller than the 19F NMR line width. In addition, a new aminoacyl-tRNA synthetase was identified for genetic encoding of N6-(trifluoroacetyl)-l-lysine (TFA-Lys) and 19F-19F TOCSY peaks were observed between two TFA-Lys residues incorporated into the proteins AncCDT-1 and mRFP despite high solvent exposure and flexibility of the TFA-Lys side chains. With the ready availability of systems for site-specific incorporation of fluorinated amino acids into proteins by genetic encoding, 19F-19F interactions offer a straightforward way to probe the spatial proximity of selected sites without any assignments of 1H NMR resonances.
Collapse
Affiliation(s)
- Henry W Orton
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Edan I Habel
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yi Jiun Tan
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Rebecca L Frkic
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
24
|
Devillers E, Chelain E, Dalvit C, Brigaud T, Pytkowicz J. (R)-α-Trifluoromethylalanine as a 19 F NMR Probe for the Monitoring of Protease Digestion of Peptides. Chembiochem 2021; 23:e202100470. [PMID: 34738292 DOI: 10.1002/cbic.202100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Indexed: 11/07/2022]
Abstract
Fluorinated non-natural amino acids are useful tools for improving the bioavailability of peptides but can also serve as fluorinated probes in 19 F NMR-based enzymatic assays. We report herein that the use of the non-natural α-quaternarized (R)-α-trifluoromethylalanine ((R)-α-TfmAla) provides convenient and accurate monitoring of trypsin proteolytic activity and increases resistance towards pepsin degradation.
Collapse
Affiliation(s)
- Emmanuelle Devillers
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Evelyne Chelain
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Claudio Dalvit
- Faculty of Science, University of Neuchatel, Avenue de Bellevaux 51, 2000, Neuchatel, Switzerland.,Present address: Lavis, Trento, Italy
| | - Thierry Brigaud
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Julien Pytkowicz
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
25
|
Buchholz CR, Pomerantz WCK. 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2021; 2:1312-1330. [PMID: 34704040 PMCID: PMC8496043 DOI: 10.1039/d1cb00085c] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
19F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of 19F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This review will cover developments in ligand-observed and protein-observed 19F NMR experiments tailored towards drug discovery with a focus on fragment screening. We also cover the key advances that have furthered the field in recent years, including quantitative, structural, and in-cell methodologies. Several case studies are described for each application to highlight areas for innovation and to further catalyze new NMR developments for using this versatile nucleus.
Collapse
Affiliation(s)
- Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
| | - William C K Pomerantz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
26
|
Zahid H, Olson NM, Pomerantz WCK. Opportunity knocks for uncovering the new function of an understudied nucleosome remodeling complex member, the bromodomain PHD finger transcription factor, BPTF. Curr Opin Chem Biol 2021; 63:57-67. [PMID: 33706239 PMCID: PMC8384639 DOI: 10.1016/j.cbpa.2021.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/27/2022]
Abstract
Nucleosome remodeling provides access to genomic DNA for recruitment of the transcriptional machinery to mediate gene expression. The aberrant function of nucleosome remodeling complexes has been correlated to human cancer, making them emerging therapeutic targets. The bromodomain PHD finger transcription factor, BPTF, is the largest member of the human nucleosome remodeling factor NURF. Over the last five years, BPTF has become increasingly identified as a protumorigenic factor, prompting investigations into the molecular mechanisms associated with BPTF function. Despite a druggable bromodomain, small molecule discovery is at an early stage. Here we highlight recent investigations into the biology being discovered for BPTF, chemical biology approaches used to study its function, and small molecule inhibitors being designed as future chemical probes and therapeutics.
Collapse
Affiliation(s)
- Huda Zahid
- 207Pleasant St. SE, Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Noelle M Olson
- 207Pleasant St. SE, Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - William C K Pomerantz
- 207Pleasant St. SE, Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
27
|
Jones JC, Banerjee R, Shi K, Semonis MM, Aihara H, Pomerantz WCK, Lipscomb JD. Soluble Methane Monooxygenase Component Interactions Monitored by 19F NMR. Biochemistry 2021; 60:1995-2010. [PMID: 34100595 PMCID: PMC8345336 DOI: 10.1021/acs.biochem.1c00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme capable of catalyzing the fissure of the C-H bond of methane and the insertion of one atom of oxygen from O2 to yield methanol. Efficient multiple-turnover catalysis occurs only in the presence of all three sMMO protein components: hydroxylase (MMOH), reductase (MMOR), and regulatory protein (MMOB). The complex series of sMMO protein component interactions that regulate the formation and decay of sMMO reaction cycle intermediates is not fully understood. Here, the two tryptophan residues in MMOB and the single tryptophan residue in MMOR are converted to 5-fluorotryptophan (5FW) by expression in defined media containing 5-fluoroindole. In addition, the mechanistically significant N-terminal region of MMOB is 19F-labeled by reaction of the K15C variant with 3-bromo-1,1,1-trifluoroacetone (BTFA). The 5FW and BTFA modifications cause minimal structural perturbation, allowing detailed studies of the interactions with sMMOH using 19F NMR. Resonances from the 275 kDa complexes of sMMOH with 5FW-MMOB and BTFA-K15C-5FW-MMOB are readily detected at 5 μM labeled protein concentration. This approach shows directly that MMOR and MMOB competitively bind to sMMOH with similar KD values, independent of the oxidation state of the sMMOH diiron cluster. These findings suggest a new model for regulation in which the dynamic equilibration of MMOR and MMOB with sMMOH allows a transient formation of key reactive complexes that irreversibly pull the reaction cycle forward. The slow kinetics of exchange of the sMMOH:MMOB complex is proposed to prevent MMOR-mediated reductive quenching of the high-valent reaction cycle intermediate Q before it can react with methane.
Collapse
Affiliation(s)
- Jason C. Jones
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Manny M. Semonis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Maleckis A, Herath ID, Otting G. Synthesis of 13C/ 19F/ 2H labeled indoles for use as tryptophan precursors for protein NMR spectroscopy. Org Biomol Chem 2021; 19:5133-5147. [PMID: 34032255 DOI: 10.1039/d1ob00611h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis of indoles labeled with 13C-1H and 13C-19F spin pairs is described. All syntheses utilize inexpensive carbon-13C dioxide as the 13C isotope source. Ruthenium-mediated ring-closing metathesis is the key step in construction of the 13C containing indole carbocycle. Fluorine is introduced via electrophilic fluorination at the 7-position and via palladium-mediated cross-coupling at the 4-position. Indole and fluoroindoles are viable tryptophan precursors for in vivo protein expression. We show that they are viable also in in vitro protein synthesis using standard E. coli S30 extracts. Incorporation of the synthesized 13C-1H and 13C-19F spin pair labeled tryptophans into proteins enables high-resolution and high-sensitivity nuclear magnetic resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - Iresha D Herath
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
29
|
Bur SK, Pomerantz WCK, Bade ML, Gee CT. Fragment-Based Ligand Discovery Using Protein-Observed 19F NMR: A Second Semester Organic Chemistry CURE Project. JOURNAL OF CHEMICAL EDUCATION 2021; 98:1963-1973. [PMID: 37274366 PMCID: PMC10237086 DOI: 10.1021/acs.jchemed.1c00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Curriculum-based undergraduate research experiences (CUREs) have been shown to increase student retention in STEM fields and are starting to become more widely adopted in chemistry curricula. Here we describe a 10-week CURE that is suitable for a second-semester organic chemistry laboratory course. Students synthesize small molecules and use protein-observed 19F (PrOF) NMR to assess the small molecule's binding affinity to a target protein. The research project introduced students to multistep organic synthesis, structure-activity relationship studies, quantitative biophysical measurements (measuring Kd from PrOF NMR experiments), and scientific literacy. Docking experiments could be added to help students understand how changes in a ligand structure may affect binding to a protein. Assessment using the CURE survey indicates self-perceived skill gains from the course that exceed gains measured in a traditional and an inquiry-based laboratory experience. Given the speed of the binding experiment and the alignment of the synthetic methods with a second-semester organic chemistry laboratory course, a PrOF NMR fragment-based ligand discovery lab can be readily implemented in the undergraduate chemistry curriculum.
Collapse
Affiliation(s)
- Scott K Bur
- Department of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56028, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Morgan L Bade
- Department of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56028, United States
| | - Clifford T Gee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Diethelm-Varela B. Using NMR Spectroscopy in the Fragment-Based Drug Discovery of Small-Molecule Anticancer Targeted Therapies. ChemMedChem 2020; 16:725-742. [PMID: 33236493 DOI: 10.1002/cmdc.202000756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/21/2020] [Indexed: 12/19/2022]
Abstract
Against the challenge of providing personalized cancer care, the development of targeted therapies stands as a promising approach. The discovery of these agents can benefit from fragment-based drug discovery (FBDD) methods that help guide ligand design and provide key structural information on the targets of interest. In particular, nuclear magnetic resonance spectroscopy is a promising biophysical tool in fragment discovery due to its detection capabilities and versatility. This review provides an overview of FBDD, describes the basis of NMR-based fragment screening, summarizes some exciting technical advances reported over the past decades, and closes with a discussion of selected case studies where this technique has been used as part of drug discovery campaigns to produce lead compounds towards the design of anti-cancer targeted therapies.
Collapse
Affiliation(s)
- Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Miller MA, Sletten EM. Perfluorocarbons in Chemical Biology. Chembiochem 2020; 21:3451-3462. [PMID: 32628804 PMCID: PMC7736518 DOI: 10.1002/cbic.202000297] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Indexed: 01/10/2023]
Abstract
Perfluorocarbons, saturated carbon chains in which all the hydrogen atoms are replaced with fluorine, form a separate phase from both organic and aqueous solutions. Though perfluorinated compounds are not found in living systems, they can be used to modify biomolecules to confer orthogonal behavior within natural systems, such as improved stability, engineered assembly, and cell-permeability. Perfluorinated groups also provide handles for purification, mass spectrometry, and 19 F NMR studies in complex environments. Herein, we describe how the unique properties of perfluorocarbons have been employed to understand and manipulate biological systems.
Collapse
Affiliation(s)
- Margeaux A Miller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| |
Collapse
|
32
|
Kalra P, McGraw L, Kimbrough JR, Pandey AK, Solberg J, Cui H, Divakaran A, John K, Hawkinson JE, Pomerantz WCK. Quantifying the Selectivity of Protein-Protein and Small Molecule Interactions with Fluorinated Tandem Bromodomain Reader Proteins. ACS Chem Biol 2020; 15:3038-3049. [PMID: 33138352 PMCID: PMC8185897 DOI: 10.1021/acschembio.0c00720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidomain bromodomain-containing proteins regulate gene expression via chromatin binding, interactions with the transcriptional machinery, and by recruiting enzymatic activity. Selective inhibition of members of the bromodomain and extra-terminal (BET) family is important to understand their role in disease and gene regulation, although due to the similar binding sites of BET bromodomains, selective inhibitor discovery has been challenging. To support the bromodomain inhibitor discovery process, here we report the first application of protein-observed fluorine (PrOF) NMR to the tandem bromodomains of BRD4 and BRDT to quantify the selectivity of their interactions with acetylated histones as well as small molecules. We further determine the selectivity profile of a new class of ligands, 1,4-acylthiazepanes, and find them to have ≥3-10-fold selectivity for the C-terminal bromodomain of both BRD4 and BRDT. Given the speed and lower protein concentration required over traditional protein-observed NMR methods, we envision that these fluorinated tandem proteins may find use in fragment screening and evaluating nucleosome and transcription factor interactions.
Collapse
Affiliation(s)
- Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Logan McGraw
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Anil K Pandey
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jonathan Solberg
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Huarui Cui
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| | - Kristen John
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jon E Hawkinson
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Dalvit C, Veronesi M, Vulpetti A. Fluorine NMR functional screening: from purified enzymes to human intact living cells. JOURNAL OF BIOMOLECULAR NMR 2020; 74:613-631. [PMID: 32347447 DOI: 10.1007/s10858-020-00311-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The substrate- or cofactor-based fluorine NMR screening, also known as n-FABS (n fluorine atoms for biochemical screening), represents a powerful method for performing a direct functional assay in the search of inhibitors or enhancers of an enzymatic reaction. Although it suffers from the intrinsic low sensitivity compared to other biophysical techniques usually applied in functional assays, it has some distinctive features that makes it appealing for tackling complex chemical and biological systems. Its strengths are represented by the easy set-up, robustness, flexibility, lack of signal interference and rich information content resulting in the identification of bona fide inhibitors and reliable determination of their inhibitory strength. The versatility of the n-FABS allows its application to either purified enzymes, cell lysates or intact living cells. The principles, along with theoretical, technical and practical aspects, of the methodology are discussed. Furthermore, several applications of the technique to pharmaceutical projects are presented.
Collapse
Affiliation(s)
| | - Marina Veronesi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002, Basel, Switzerland
| |
Collapse
|
34
|
Becette OB, Zong G, Chen B, Taiwo KM, Case DA, Dayie TK. Solution NMR readily reveals distinct structural folds and interactions in doubly 13C- and 19F-labeled RNAs. SCIENCE ADVANCES 2020; 6:6/41/eabc6572. [PMID: 33028531 PMCID: PMC7541061 DOI: 10.1126/sciadv.abc6572] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 06/10/2023]
Abstract
RNAs form critical components of biological processes implicated in human diseases, making them attractive for small-molecule therapeutics. Expanding the sites accessible to nuclear magnetic resonance (NMR) spectroscopy will provide atomic-level insights into RNA interactions. Here, we present an efficient strategy to introduce 19F-13C spin pairs into RNA by using a 5-fluorouridine-5'-triphosphate and T7 RNA polymerase-based in vitro transcription. Incorporating the 19F-13C label in two model RNAs produces linewidths that are twice as sharp as the commonly used 1H-13C spin pair. Furthermore, the high sensitivity of the 19F nucleus allows for clear delineation of helical and nonhelical regions as well as GU wobble and Watson-Crick base pairs. Last, the 19F-13C label enables rapid identification of a small-molecule binding pocket within human hepatitis B virus encapsidation signal epsilon (hHBV ε) RNA. We anticipate that the methods described herein will expand the size limitations of RNA NMR and aid with RNA-drug discovery efforts.
Collapse
Affiliation(s)
- Owen B Becette
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA
| | - Bin Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA
| | - Kehinde M Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - T Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA.
| |
Collapse
|
35
|
Boeszoermenyi A, Ogórek B, Jain A, Arthanari H, Wagner G. The precious fluorine on the ring: fluorine NMR for biological systems. JOURNAL OF BIOMOLECULAR NMR 2020; 74:365-379. [PMID: 32651751 PMCID: PMC7539674 DOI: 10.1007/s10858-020-00331-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 05/08/2023]
Abstract
The fluorine-19 nucleus was recognized early to harbor exceptional properties for NMR spectroscopy. With 100% natural abundance, a high gyromagnetic ratio (83% sensitivity compared to 1H), a chemical shift that is extremely sensitive to its surroundings and near total absence in biological systems, it was destined to become a favored NMR probe, decorating small and large molecules. However, after early excitement, where uptake of fluorinated aromatic amino acids was explored in a series of animal studies, 19F-NMR lost popularity, especially in large molecular weight systems, due to chemical shift anisotropy (CSA) induced line broadening at high magnetic fields. Recently, two orthogonal approaches, (i) CF3 labeling and (ii) aromatic 19F-13C labeling leveraging the TROSY (Transverse Relaxation Optimized Spectroscopy) effect have been successfully applied to study large biomolecular systems. In this perspective, we will discuss the fascinating early work with fluorinated aromatic amino acids, which reveals the enormous potential of these non-natural amino acids in biological NMR and the potential of 19F-NMR to characterize protein and nucleic acid structure, function and dynamics in the light of recent developments. Finally, we explore how fluorine NMR might be exploited to implement small molecule or fragment screens that resemble physiological conditions and discuss the opportunity to follow the fate of small molecules in living cells.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| | - Barbara Ogórek
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, MA, 02115, USA
| | - Akshay Jain
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
Combined Protein- and Ligand-Observed NMR Workflow to Screen Fragment Cocktails against Multiple Proteins: A Case Study Using Bromodomains. Molecules 2020; 25:molecules25173949. [PMID: 32872491 PMCID: PMC7504435 DOI: 10.3390/molecules25173949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
As fragment-based drug discovery has become mainstream, there has been an increase in various screening methodologies. Protein-observed 19F (PrOF) NMR and 1H CPMG NMR are two fragment screening assays that have complementary advantages. Here, we sought to combine these two NMR-based assays into a new screening workflow. This combination of protein- and ligand-observed experiments allows for a time- and resource-efficient multiplexed screen of mixtures of fragments and proteins. PrOF NMR is first used to screen mixtures against two proteins. Hit mixtures for each protein are identified then deconvoluted using 1H CPMG NMR. We demonstrate the benefit of this fragment screening method by conducting the first reported fragment screens against the bromodomains of BPTF and Plasmodium falciparum (Pf) GCN5 using 467 3D-enriched fragments. The hit rates were 6%, 5% and 4% for fragments binding BPTF, PfGCN5, and fragments binding both proteins, respectively. Select hits were characterized, revealing a broad range of affinities from low µM to mM dissociation constants. Follow-up experiments supported a low-affinity second binding site on PfGCN5. This approach can be used to bias fragment screens towards more selective hits at the onset of inhibitor development in a resource- and time-efficient manner.
Collapse
|
37
|
Singh N, Chaput L, Villoutreix BO. Fast Rescoring Protocols to Improve the Performance of Structure-Based Virtual Screening Performed on Protein-Protein Interfaces. J Chem Inf Model 2020; 60:3910-3934. [PMID: 32786511 DOI: 10.1021/acs.jcim.0c00545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein-protein interactions (PPIs) are attractive targets for drug design because of their essential role in numerous cellular processes and disease pathways. However, in general, PPIs display exposed binding pockets at the interface, and as such, have been largely unexploited for therapeutic interventions with low-molecular weight compounds. Here, we used docking and various rescoring strategies in an attempt to recover PPI inhibitors from a set of active and inactive molecules for 11 targets collected in ChEMBL and PubChem. Our focus is on the screening power of the various developed protocols and on using fast approaches so as to be able to apply such a strategy to the screening of ultralarge libraries in the future. First, we docked compounds into each target using the fast "pscreen" mode of the structure-based virtual screening (VS) package Surflex. Subsequently, the docking poses were postprocessed to derive a set of 3D topological descriptors: (i) shape similarity and (ii) interaction fingerprint similarity with a co-crystallized inhibitor, (iii) solvent-accessible surface area, and (iv) extent of deviation from the geometric center of a reference inhibitor. The derivatized descriptors, together with descriptor-scaled scoring functions, were utilized to investigate possible impacts on VS performance metrics. Moreover, four standalone scoring functions, RF-Score-VS (machine-learning), DLIGAND2 (knowledge-based), Vinardo (empirical), and X-SCORE (empirical), were employed to rescore the PPI compounds. Collectively, the results indicate that the topological scoring algorithms could be valuable both at a global level, with up to 79% increase in areas under the receiver operating characteristic curve for some targets, and in early stages, with up to a 4-fold increase in enrichment factors at 1% of the screened collections. Outstandingly, DLIGAND2 emerged as the best scoring function on this data set, outperforming all rescoring techniques in terms of VS metrics. The described methodology could help in the rational design of small-molecule PPI inhibitors and has direct applications in many therapeutic areas, including cancer, CNS, and infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Ludovic Chaput
- Université de Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Bruno O Villoutreix
- Université de Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| |
Collapse
|
38
|
Ycas PD, Zahid H, Chan A, Olson NM, Johnson JA, Talluri SK, Schonbrunn E, Pomerantz WCK. New inhibitors for the BPTF bromodomain enabled by structural biology and biophysical assay development. Org Biomol Chem 2020; 18:5174-5182. [PMID: 32588860 PMCID: PMC7393680 DOI: 10.1039/d0ob00506a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bromodomain-containing proteins regulate transcription through protein-protein interactions with chromatin and serve as scaffolding proteins for recruiting essential members of the transcriptional machinery. One such protein is the bromodomain and PHD-containing transcription factor (BPTF), the largest member of the nucleosome remodeling complex, NURF. Despite an emerging role for BPTF in regulating a diverse set of cancers, small molecule development for inhibiting the BPTF bromodomain has been lacking. Here we cross-validate three complementary biophysical assays to further the discovery of BPTF bromodomain inhibitors for chemical probe development: two direct binding assays (protein-observed 19F (PrOF) NMR and surface plasmon resonance (SPR)) and a competitive inhibition assay (AlphaScreen). We first compare the assays using three small molecules and acetylated histone peptides with reported affinity for the BPTF bromodomain. Using SPR with both unlabeled and fluorinated BPTF, we further determine that there is a minimal effect of 19F incorporation on ligand binding for future PrOF NMR experiments. To guide medicinal chemistry efforts towards chemical probe development, we subsequently evaluate two new BPTF inhibitor scaffolds with our suite of biophysical assays and rank-order compound affinities which could not otherwise be determined by PrOF NMR. Finally, we cocrystallize a subset of small molecule inhibitors and present the first published small molecule-protein structures with the BPTF bromodomain. We envision the biophysical assays described here and the structural insights from the crystallography will guide researchers towards developing selective and potent BPTF bromodomain inhibitors.
Collapse
Affiliation(s)
- Peter D Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| | - Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| | - Alice Chan
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Noelle M Olson
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| | - Jorden A Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| | - Siva K Talluri
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| | - Ernst Schonbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
39
|
Shanina E, Siebs E, Zhang H, Varón Silva D, Joachim I, Titz A, Rademacher C. Protein-observed 19F NMR of LecA from Pseudomonas aeruginosa. Glycobiology 2020; 31:159-165. [PMID: 32573695 PMCID: PMC7874386 DOI: 10.1093/glycob/cwaa057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
The carbohydrate-binding protein LecA (PA-IL) from Pseudomonas aeruginosa plays an important role in the formation of biofilms in chronic infections. Development of inhibitors to disrupt LecA-mediated biofilms is desired but it is limited to carbohydrate-based ligands. Moreover, discovery of drug-like ligands for LecA is challenging because of its weak affinities. Therefore, we established a protein-observed 19F (PrOF) nuclear magnetic resonance (NMR) to probe ligand binding to LecA. LecA was labeled with 5-fluoroindole to incorporate 5-fluorotryptophanes and the resonances were assigned by site-directed mutagenesis. This incorporation did not disrupt LecA preference for natural ligands, Ca2+ and d-galactose. Following NMR perturbation of W42, which is located in the carbohydrate-binding region of LecA, allowed to monitor binding of low-affinity ligands such as N-acetyl d-galactosamine (d-GalNAc, Kd = 780 ± 97 μM). Moreover, PrOF NMR titration with glycomimetic of LecA p-nitrophenyl β-d-galactoside (pNPGal, Kd = 54 ± 6 μM) demonstrated a 6-fold improved binding of d-Gal proving this approach to be valuable for ligand design in future drug discovery campaigns that aim to generate inhibitors of LecA.
Collapse
Affiliation(s)
- Elena Shanina
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg, 14424 Potsdam, Germany.,Free University of Berlin, Department of Biochemistry and Chemistry, 14195 Berlin, Germany
| | - Eike Siebs
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany.,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Hengxi Zhang
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg, 14424 Potsdam, Germany.,Free University of Berlin, Department of Biochemistry and Chemistry, 14195 Berlin, Germany
| | - Daniel Varón Silva
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg, 14424 Potsdam, Germany.,Free University of Berlin, Department of Biochemistry and Chemistry, 14195 Berlin, Germany
| | - Ines Joachim
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany.,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany.,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg, 14424 Potsdam, Germany.,Free University of Berlin, Department of Biochemistry and Chemistry, 14195 Berlin, Germany
| |
Collapse
|
40
|
Lingel A, Vulpetti A, Reinsperger T, Proudfoot A, Denay R, Frommlet A, Henry C, Hommel U, Gossert AD, Luy B, Frank AO. Comprehensive and High-Throughput Exploration of Chemical Space Using Broadband 19 F NMR-Based Screening. Angew Chem Int Ed Engl 2020; 59:14809-14817. [PMID: 32363632 DOI: 10.1002/anie.202002463] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Fragment-based lead discovery has become a fundamental approach to identify ligands that efficiently interact with disease-relevant targets. Among the numerous screening techniques, fluorine-detected NMR has gained popularity owing to its high sensitivity, robustness, and ease of use. To effectively explore chemical space, a universal NMR experiment, a rationally designed fragment library, and a sample composition optimized for a maximal number of compounds and minimal measurement time are required. Here, we introduce a comprehensive method that enabled the efficient assembly of a high-quality and diverse library containing nearly 4000 fragments and screening for target-specific binders within days. At the core of the approach is a novel broadband relaxation-edited NMR experiment that covers the entire chemical shift range of drug-like 19 F motifs in a single measurement. Our approach facilitates the identification of diverse binders and the fast ligandability assessment of new targets.
Collapse
Affiliation(s)
- Andreas Lingel
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA.,Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Tony Reinsperger
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Andrew Proudfoot
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Regis Denay
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Alexandra Frommlet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Christelle Henry
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Ulrich Hommel
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Alvar D Gossert
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Andreas O Frank
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| |
Collapse
|
41
|
Lingel A, Vulpetti A, Reinsperger T, Proudfoot A, Denay R, Frommlet A, Henry C, Hommel U, Gossert AD, Luy B, Frank AO. Comprehensive and High‐Throughput Exploration of Chemical Space Using Broadband
19
F NMR‐Based Screening. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andreas Lingel
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 5300 Chiron Way Emeryville CA 94608 USA
- Global Discovery Chemistry Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Anna Vulpetti
- Global Discovery Chemistry Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Tony Reinsperger
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Andrew Proudfoot
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 5300 Chiron Way Emeryville CA 94608 USA
| | - Regis Denay
- Global Discovery Chemistry Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Alexandra Frommlet
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 5300 Chiron Way Emeryville CA 94608 USA
| | - Christelle Henry
- Chemical Biology and Therapeutics Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Ulrich Hommel
- Chemical Biology and Therapeutics Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Alvar D. Gossert
- Chemical Biology and Therapeutics Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Andreas O. Frank
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 5300 Chiron Way Emeryville CA 94608 USA
| |
Collapse
|
42
|
Stadmiller SS, Aguilar JS, Waudby CA, Pielak GJ. Rapid Quantification of Protein-Ligand Binding via 19F NMR Lineshape Analysis. Biophys J 2020; 118:2537-2548. [PMID: 32348722 PMCID: PMC7231920 DOI: 10.1016/j.bpj.2020.03.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Fluorine incorporation is ideally suited to many NMR techniques, and incorporation of fluorine into proteins and fragment libraries for drug discovery has become increasingly common. Here, we use one-dimensional 19F NMR lineshape analysis to quantify the kinetics and equilibrium thermodynamics for the binding of a fluorine-labeled Src homology 3 (SH3) protein domain to four proline-rich peptides. SH3 domains are one of the largest and most well-characterized families of protein recognition domains and have a multitude of functions in eukaryotic cell signaling. First, we showe that fluorine incorporation into SH3 causes only minor structural changes to both the free and bound states using amide proton temperature coefficients. We then compare the results from lineshape analysis of one-dimensional 19F spectra to those from two-dimensional 1H-15N heteronuclear single quantum coherence spectra. Their agreement demonstrates that one-dimensional 19F lineshape analysis is a robust, low-cost, and fast alternative to traditional heteronuclear single quantum coherence-based experiments. The data show that binding is diffusion limited and indicate that the transition state is highly similar to the free state. We also measured binding as a function of temperature. At equilibrium, binding is enthalpically driven and arises from a highly positive activation enthalpy for association with small entropic contributions. Our results agree with those from studies using different techniques, providing additional evidence for the utility of 19F NMR lineshape analysis, and we anticipate that this analysis will be an effective tool for rapidly characterizing the energetics of protein interactions.
Collapse
Affiliation(s)
| | - Jhoan S Aguilar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher A Waudby
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
43
|
Reviving Protein-Observed 19F Lineshape Analysis for Deep Insight into Protein-Ligand Binding Events. Biophys J 2020; 118:2333-2335. [DOI: 10.1016/j.bpj.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/23/2022] Open
|
44
|
Welte H, Zhou T, Mihajlenko X, Mayans O, Kovermann M. What does fluorine do to a protein? Thermodynamic, and highly-resolved structural insights into fluorine-labelled variants of the cold shock protein. Sci Rep 2020; 10:2640. [PMID: 32060391 PMCID: PMC7021800 DOI: 10.1038/s41598-020-59446-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Fluorine labelling represents one promising approach to study proteins in their native environment due to efficient suppressing of background signals. Here, we systematically probe inherent thermodynamic and structural characteristics of the Cold shock protein B from Bacillus subtilis (BsCspB) upon fluorine labelling. A sophisticated combination of fluorescence and NMR experiments has been applied to elucidate potential perturbations due to insertion of fluorine into the protein. We show that single fluorine labelling of phenylalanine or tryptophan residues has neither significant impact on thermodynamic stability nor on folding kinetics compared to wild type BsCspB. Structure determination of fluorinated phenylalanine and tryptophan labelled BsCspB using X-ray crystallography reveals no displacements even for the orientation of fluorinated aromatic side chains in comparison to wild type BsCspB. Hence we propose that single fluorinated phenylalanine and tryptophan residues used for protein labelling may serve as ideal probes to reliably characterize inherent features of proteins that are present in a highly biological context like the cell.
Collapse
Affiliation(s)
- Hannah Welte
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.,Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Tiankun Zhou
- Department of Biology, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Xenia Mihajlenko
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Olga Mayans
- Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.,Department of Biology, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany. .,Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany. .,Zukunftskolleg, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.
| |
Collapse
|