1
|
Yang J, Tan HY, Yuan J, Huang Y, Rosenbaum AI. Detailed Structural Elucidation of Antibody-Drug Conjugate Biotransformation Species Using High Resolution Multiple Reaction Monitoring Mass Spectrometry with Orthogonal Dissociation Methods. ACS Pharmacol Transl Sci 2025; 8:113-123. [PMID: 39816793 PMCID: PMC11729422 DOI: 10.1021/acsptsci.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025]
Abstract
Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs in vitro and in vivo is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability in vivo using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach. Herein, we employed a LC-high resolution multiple reaction monitoring (LC-MRMHR) approach using both collision-induced dissociation (CID) and electron-activated dissociation (EAD) methods, confirming our earlier findings. Furthermore, we were able to obtain additional detailed structural information on the biotransformation products expanding on earlier intact analyses. We also highlight the high sensitivity of LC-MRMHR for successfully identifying minor biotransformation products at low concentrations that were not detectable using the intact protein LC-HRMS workflow. Especially, EAD aided in the confirmation of biotransformation species that contain newly formed disulfide bonds due to the preferential dissociation of disulfide bonds using this method. We observed biotransformation reactions that vary between linker-payload (PL) conjugation sites on the antibody. For example, the trend toward constitutional isomerism in thio-succinimide linker hydrolysis, and the resulting positional isomers from thiol adduct formation following linker-PL deconjugation. The reported orthogonal analytical approaches highly complement and fortify the intact protein LC-HRMS data. This study sheds further light on detailed structural characterization of various ADC species and validates the proposed biotransformation pathways explaining the stability of AZD8205 in vivo.
Collapse
Affiliation(s)
| | - Hui Yin Tan
- Integrated Bioanalysis, Clinical
Pharmacology and Safety Sciences, R&D, AstraZeneca, 121 Oyster
Point Blvd, South San Francisco, California 94080, United States
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical
Pharmacology and Safety Sciences, R&D, AstraZeneca, 121 Oyster
Point Blvd, South San Francisco, California 94080, United States
| | | | | |
Collapse
|
2
|
Qi M, Zhu C, Chen Y, Wang C, Ye X, Li S, Cheng Z, Jiang H, Du Z. Site-Specific Stability Evaluation of Antibody-Drug Conjugate in Serum Using a Validated Liquid Chromatography-Mass Spectrometry Method. J Proteome Res 2024; 23:5131-5142. [PMID: 39363186 DOI: 10.1021/acs.jproteome.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Antibody-drug conjugate (ADC) consists of engineered antibodies and cytotoxic drugs linked via a chemical linker, and the stability of ADC plays a crucial role in ensuring its safety and efficacy. The stability of ADC is closely related to the conjugation site; however, no method has been developed to assess the stability of different conjugation sites due to the low response of conjugated peptides. In this study, an integrated strategy was developed and validated to assess the stability of different conjugation sites on ADC in serum. Initial identification of the conjugated peptides of the model drug ado-trastuzumab emtansine (T-DM1) was achieved by the proteomic method. Subsequently, a semiquantitative method for conjugated peptides was established in liquid chromatography-hybrid linear ion trap triple quadrupole mass spectrometry (LC-QTRAP-MS/MS) based on the qualitative information. The pretreatment method of the serum sample was optimized to reduce matrix interference. The method was then validated and applied to evaluate the stability of the conjugation sites on T-DM1. The results highlighted differences in stability among the different conjugation sites on T-DM1. This is the first study to assess the stability of different conjugation sites on the ADC in serum, which will be helpful for the design and screening of ADCs in the early stages of development.
Collapse
Affiliation(s)
- Meiling Qi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenyue Zhu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenxi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyuan Ye
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhongzhe Cheng
- Wuhan Hongren Biopharmaceutical Inc., Wuhan 430075, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Huang Y, Tan HY, Yuan J, Mu R, Yang J, Ball K, Vijayakrishnan B, Masterson L, Kinneer K, Luheshi N, Liang M, Rosenbaum AI. Extensive Biotransformation Profiling of AZD8205, an Anti-B7-H4 Antibody-Drug Conjugate, Elucidates Pathways Underlying Its Stability In Vivo. Anal Chem 2024; 96:16525-16533. [PMID: 39392424 PMCID: PMC11503519 DOI: 10.1021/acs.analchem.4c02309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
What happens to macromolecules in vivo? What drives the structure-activity relationship and in vivo stability for antibody-drug conjugates (ADCs)? These interrelated questions are increasingly relevant due to the re-emerging importance of ADCs as an impactful therapeutic modality and the gaps that exist in our understanding of ADC structural determinants that underlie ADC in vivo stability. Complex macromolecules, such as ADCs, may undergo changes in vivo due to their intricate structure as biotransformations may occur on the linker, the payload, and/or at the modified conjugation site. Furthermore, the dissection of ADC metabolism presents a substantial analytical challenge due to the difficulty in the identification or quantification of minor changes on a large macromolecule. We employed immunocapture-LCMS methods to evaluate in vivo changes in the drug-antibody ratio (DAR) profile in four different lead ADCs. This comprehensive characterization revealed that a critical structural determinant contributing to the ADC design was the linker, and competition of the thio-succinimide hydrolysis reaction over retro-Michael deconjugation can result in superb conjugation stability in vivo. These data, in conjunction with additional factors, informed the selection of AZD8205, puxitatug samrotecan, a B7-H4-directed cysteine-conjugated ADC bearing a novel topoisomerase I inhibitor payload, with durable DAR, currently being studied in the clinic for the potential treatment of solid malignancies (NCT05123482). These results highlight the relevance of studying macromolecule biotransformation and elucidating the ADC structure-in vivo stability relationship. The comprehensive nature of this work increases our confidence in the understanding of these processes. We hope this analytical approach can inform future development of bioconjugate drug candidates.
Collapse
Affiliation(s)
- Yue Huang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Hui Yin Tan
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jiaqi Yuan
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Ruipeng Mu
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Junyan Yang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Kathryn Ball
- Clinical
Pharmacology and Quantitative Pharmacology, Clinical Pharmacology
and Safety Sciences, R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | | | - Luke Masterson
- TTD,
Oncology R&D, AstraZeneca, London E1 2AX, United Kingdom
| | - Krista Kinneer
- Translational
Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Nadia Luheshi
- Oncology
R&D, AstraZeneca, Cambridge CB2 8PA, United
Kingdom
| | - Meina Liang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Anton I. Rosenbaum
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| |
Collapse
|
4
|
Mirzaei Y, Hussein Mer A, Fattah Maran B, Omidvar L, Misamogooe F, Amirkhani Z, Javaheri Haghighi N, Bagheri N, Keshtkaran Z, Rezaei B, Bargrizaneh F, Jahandideh S, Barpour N, Shahsavarani H, Bazyari A, Abdollahpour-Alitappeh M. Clinical and preclinical advances in PSMA-Directed Antibody-Drug conjugates (ADCs): Current status and hope for the future. Bioorg Chem 2024; 153:107803. [PMID: 39270526 DOI: 10.1016/j.bioorg.2024.107803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is a type II membrane glycoprotein overexpressed in a variety of tumors, especially in nearly all prostate cancers, which makes it a potentially attractive antigen for targeted cancer therapies. More importantly, PSMA, due to no shedding into circulation and efficient internalization after antibody binding, becomes a potential target for antibody-drug conjugates (ADCs), a valid and emerging paradigm of cancer treatment. Four and eight PSMA-directed ADCs have been or are currently being investigated in clinical trials (three of which failed to confirm the promising results while one is currently being evaluated in an ongoing clinical study) and preclinical studies, respectively, for the treatment of PSMA-positive solid tumors, especially prostate cancer. The present study aims to completely review clinical- and preclinical-stage PSMA-directed ADCs.
Collapse
Affiliation(s)
- Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Bahia Fattah Maran
- Department of business administration, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Leila Omidvar
- Department of Internal Medicine, School of Medicine, Clinical Research Development Unit (CRDU), Valiasr Hospital, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Misamogooe
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Zahra Amirkhani
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813733450, Iran
| | - Zahra Keshtkaran
- Community Based Psychiatric Care Research Center, Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Rezaei
- Laparoscopy Research Center, Department of Surgery, School of Medicine, Shiraz University of Medical Sciences, Fars province, Iran
| | - Farshad Bargrizaneh
- Student Research Committee, School of Health Management and Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Jahandideh
- Department of Research and Development, Orchidgene co, Tehran 1387837584, Iran
| | - Nesa Barpour
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983963113, Iran; Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran 1533734716, Iran
| | - Ahmadreza Bazyari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
5
|
Yang J, Ostafe R, Bruening ML. In-Membrane Enrichment and Peptic Digestion to Facilitate Analysis of Monoclonal Antibody Glycosylation. Anal Chem 2024; 96:6347-6355. [PMID: 38607313 PMCID: PMC11283323 DOI: 10.1021/acs.analchem.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The number of therapeutic monoclonal antibodies (mAbs) is growing rapidly due to their widespread use for treating various diseases and health conditions. Assessing the glycosylation profile of mAbs during production is essential to ensuring their safety and efficacy. This research aims to rapidly isolate and digest mAbs for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of glycans and monitoring of glycosylation patterns, potentially during manufacturing. Immobilization of an Fc region-specific ligand, oFc20, in a porous membrane enables the enrichment of mAbs from cell culture supernatant and efficient elution with an acidic solution. Subsequent digestion of the mAb eluate occurred in a pepsin-modified membrane within 5 min. The procedure does not require alkylation and desalting, greatly shortening the sample preparation time. Subsequent LC-MS/MS analysis identified 11 major mAb N-glycan proteoforms and assessed the relative peak areas of the glycosylated peptides. This approach is suitable for the glycosylation profiling of various human IgG mAbs, including biosimilars and different IgG subclasses. The total time required for this workflow is less than 2 h, whereas the conventional enzymatic release and labeling of glycans can take much longer. Thus, the integrated membranes are suitable for facilitating the analysis of mAb glycosylation patterns.
Collapse
Affiliation(s)
- Junyan Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production Facility; Purdue Institute for Inflammation, Immunology and Infection Diseases, Purdue University, West Lafayette, IN 47907, United States
| | - Merlin L. Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
6
|
Huang Y, Woolf MS, Wang CC, Naser SM, Wheeler AM, Mylott WR, Ma E, Rosenbaum AI. Comprehensive performance evaluation of ligand-binding assay-LC-MS/MS method for co-dosed monoclonal anti-SARS-CoV-2 antibodies (AZD7442). Bioanalysis 2024; 16:149-163. [PMID: 38385904 PMCID: PMC11845114 DOI: 10.4155/bio-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Aims: AZD7442 is a combination SARS-CoV-2 therapy comprising two co-dosed monoclonal antibodies. Materials & methods: The authors validated a hybrid ligand-binding assay-LC-MS/MS method for pharmacokinetic assessment of AZD7442 in human serum with nominal concentration range of each analyte of 0.300-30.0 μg/ml. Results: Validation results met current regulatory acceptance criteria. The validated method supported three clinical trials that spanned more than 17 months and ≥720 analytical runs (∼30,000 samples and ∼3000 incurred sample reanalyses per analyte). The data generated supported multiple health authority interactions, across the globe. AZD7442 (EVUSHELD) was approved in 12 countries for pre-exposure prophylaxis of COVID-19. Conclusion: The results reported here demonstrate the robust, high-throughput capability of the hybrid ligand-binding assay-LC-MS/MS approach being employed to support-next generation versions of EVUSHELD, AZD3152.
Collapse
Affiliation(s)
- Yue Huang
- Integrated Bioanalysis Clinical Pharmacology & Safety Sciences R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Michael Shane Woolf
- Chromatographic Services – Research & Development Biologics by LC–MS/MSPPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Chun-Chi Wang
- Integrated Bioanalysis Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Sami M Naser
- Chromatographic Services – Research & Development Biologics by LC–MS/MSPPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Aaron M Wheeler
- Chromatographic Services – Research & Development Biologics by LC–MS/MSPPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - William R Mylott
- Chromatographic Services – Research & Development Biologics by LC–MS/MSPPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Eric Ma
- Chromatographic Services – Research & Development Biologics by LC–MS/MSPPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis Clinical Pharmacology & Safety Sciences R&D, AstraZeneca, South San Francisco, CA 94080, USA
| |
Collapse
|
7
|
Szapacs M, Jian W, Spellman D, Cunliffe J, Verburg E, Kaur S, Kellie J, Li W, Mehl J, Qian M, Qiu X, Sirtori FR, Rosenbaum AI, Sikorski T, Surapaneni S, Wang J, Wilson A, Zhang J, Xue Y, Post N, Huang Y, Goykhman D, Yuan L, Fang K, Casavant E, Chen L, Fu Y, Huang M, Ji A, Johnson J, Lassman M, Li J, Saad O, Sarvaiya H, Tao L, Wang Y, Zheng N, Dasgupta A, Abhari MR, Ishii-Watabe A, Saito Y, Mendes Fernandes DN, Bower J, Burns C, Carleton K, Cho SJ, Du X, Fjording M, Garofolo F, Kar S, Kavetska O, Kossary E, Lu Y, Mayer A, Palackal N, Salha D, Thomas E, Verhaeghe T, Vinter S, Wan K, Wang YM, Williams K, Woolf E, Yang L, Yang E, Bandukwala A, Hopper S, Maher K, Xu J, Brodsky E, Cludts I, Irwin C, Joseph J, Kirshner S, Manangeeswaran M, Maxfield K, Pedras-Vasconcelos J, Solstad T, Thacker S, Tounekti O, Verthelyi D, Wadhwa M, Wagner L, Yamamoto T, Zhang L, Zhou L. 2022 White Paper on Recent Issues in Bioanalysis: ICH M10 BMV Guideline & Global Harmonization; Hybrid Assays; Oligonucleotides & ADC; Non-Liquid & Rare Matrices; Regulatory Inputs ( Part 1A - Recommendations on Mass Spectrometry, Chromatography and Sample Preparation, Novel Technologies, Novel Modalities, and Novel Challenges, ICH M10 BMV Guideline & Global Harmonization Part 1B - Regulatory Agencies' Inputs on Regulated Bioanalysis/BMV, Biomarkers/CDx/BAV, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2023; 15:955-1016. [PMID: 37650500 DOI: 10.4155/bio-2023-0167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Mehl
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | - Yongjun Xue
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | - Yue Huang
- AstraZeneca, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Ola Saad
- Genentech, South San Francisco, CA, USA
| | | | | | | | - Naiyu Zheng
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Li Yang
- US FDA, Silver Spring, MD, USA
| | - Eric Yang
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Suh MJ, Powers JB, Daniels CM, Wu Y. Enhanced Pharmacokinetic Bioanalysis of Antibody-drug Conjugates using Hybrid Immunoaffinity Capture and Microflow LC-MS/MS. AAPS J 2023; 25:68. [PMID: 37386323 DOI: 10.1208/s12248-023-00835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
The increasing complexity and diversity of antibody-drug conjugates (ADCs) have led to a need for comprehensive and informative bioanalytical methods to enhance pharmacokinetic (PK) understanding. This study aimed to evaluate the feasibility of a hybrid immunoaffinity (IA) capture microflow LC-MS/MS (μLC-MS/MS) method for ADC analysis, utilizing a minimal sample volume for PK assessments in a preclinical study. A robust workflow was established for the quantitative analysis of ADCs by the implementation of solid-phase extraction (SPE) and semi-automation in µLC-MS/MS. Utilizing the µLC-MS/MS approach in conjunction with 1 µL of ADC-dosed mouse plasma sample volume, standard curves of two representative surrogate peptides for total antibody (heavy chain, HC) and intact antibody (light chain, LC) ranged from 1.00 ng/mL (LLOQ) to 5000 ng/mL with correlation coefficients (r2) values of > 0.99. The linear range of the standard curve for payload as a surrogate for the concentration of total ADC was from 0.5 ng/mL (LLOQ) to 2000 ng/mL with high accuracy and precision (< 10% CV at all concentrations). Moreover, a high correlation of concentrations of total antibody between two assay approaches (µLC-MS and ELISA) was achieved with less than 20% difference at all time points, indicating that the two methods are comparable in quantitation of total antibody in plasma samples. The µLC-MS platform demonstrated a greater dynamic range, sensitivity, robustness, and good reproducibility. These findings demonstrated that the cost-effective µLC-MS method can reduce reagent consumption and minimize the use of mice plasma samples while providing more comprehensive information about ADCs being analyzed, including the total antibody, intact antibody, and total ADC.
Collapse
Affiliation(s)
- Moo-Jin Suh
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA.
| | - Joshua B Powers
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA
| | - Casey M Daniels
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA
| | - Yuling Wu
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA.
| |
Collapse
|
9
|
Yang J, Ostafe R, Welch CJ, Verhalen B, Budyak IL, Bruening ML. Rapid Quantitation of Various Therapeutic Monoclonal Antibodies Using Membranes with Fc-Specific Ligands. Anal Chem 2023. [PMID: 37216615 DOI: 10.1021/acs.analchem.3c00531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Therapeutic monoclonal antibodies (mAbs) provide effective treatments for many diseases, including cancer, autoimmune disorders, and, lately, COVID-19. Monitoring the concentrations of mAbs is important during their production and subsequent processing. This work demonstrates a 5 min quantitation of most human immunoglobulin G (IgG) antibodies through capture of mAbs in membranes modified with ligands that bind to the fragment crystallizable (Fc) region. This enables binding and quantitation of most IgG mAbs. Layer-by-layer (LBL) adsorption of carboxylic acid-rich polyelectrolytes in glass-fiber membranes in 96-well plates allows functionalization of the membranes with Protein A or a peptide, oxidized Fc20 (oFc20), with high affinity for the Fc region of human IgG. mAb capture occurs in <1 min during the flow of solutions through modified membranes, and subsequent binding of a fluorophore-labeled secondary antibody enables quantitation of the captured mAbs using fluorescence. The intra- and inter-plate coefficients of variations (CV) are <10 and 15%, respectively, satisfying the acceptance criteria for many assays. The limit of detection (LOD) of 15 ng/mL is on the high end of commercial enzyme-linked immunosorbent assays (ELISAs) but certainly low enough for monitoring of manufacturing solutions. Importantly, the membrane-based method requires <5 minutes, whereas ELISAs typically take at least 90 min. Membranes functionalized with oFc20 show greater mAb binding and lower LODs than membranes with Protein A. Thus, the membrane-based 96-well-plate assay, which is effective in diluted fermentation broths and in mixtures with cell lysates, is suitable for near-real-time monitoring of the general class of human IgG mAbs during their production.
Collapse
Affiliation(s)
- Junyan Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production Facility, Purdue Institute for Inflammation, Immunology and Infection Diseases, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher J Welch
- Indiana Consortium for Analytical Science & Engineering (ICASE), 410 W. 10th St., # 1020H, Indianapolis, Indiana 46202, United States
| | - Brandy Verhalen
- Corteva Agriscience, 8325 NW 62nd Ave, Johnston, Iowa 50131, United States
| | - Ivan L Budyak
- Biopharmaceutical Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
10
|
Mu R, Huang Y, Bouquet J, Yuan J, Kubiak RJ, Ma E, Naser S, Mylott WR, Ismaiel OA, Wheeler AM, Burkart R, Cortes DF, Bruton J, Arends RH, Liang M, Rosenbaum AI. Multiplex Hybrid Antigen-Capture LC-MRM Quantification in Sera and Nasal Lining Fluid of AZD7442, a SARS-CoV-2-Targeting Antibody Combination. Anal Chem 2022; 94:14835-14845. [PMID: 36269894 DOI: 10.1021/acs.analchem.2c01320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AZD7442 (tixagevimab [AZD8895]/cilgavimab [AZD1061]) is a monoclonal antibody (mAb) combination in development for the prevention and treatment of coronavirus disease 2019. Traditionally, bioanalysis of mAbs is performed using ligand binding assays (LBAs), which offer sensitivity, robustness, and ease of implementation. However, LBAs frequently require generation of critical reagents that typically take several months. Instead, we developed a highly sensitive (5 ng/mL limit of quantification) method using a hybrid LBA-liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approach for quantification of the two codosed antibodies in serum and nasal lining fluid (NLF), a rare matrix. The method was optimized by careful selection of multiple reaction monitoring, capture reagents, magnetic beads, chromatographic conditions, evaluations of selectivity, and matrix effect. The final assay used viral spike protein receptor-binding domain as capture reagent and signature proteotypic peptides from the complementarity-determining region of each mAb for detection. In contrast to other methods of similar/superior sensitivity, our approach did not require multidimensional separations and can be operated in an analytical flow regime, ensuring high throughput and robustness required for clinical analysis at scale. The sensitivity of this method significantly exceeds typical sensitivity of ∼100 ng/mL for analytical flow 1D LBA-LC-MS/MS methods for large macromolecules, such as antibodies. Furthermore, infection and vaccination status did not impact method performance, ensuring method robustness and applicability to a broad patient population. This report demonstrated the general applicability of the hybrid LBA-LC-MS/MS approach to platform quantification of antibodies with high sensitivity and reproducibility, with specialized extension to matrices of increasing interest, such as NLF.
Collapse
Affiliation(s)
- Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jerome Bouquet
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Robert J Kubiak
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Eric Ma
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Sami Naser
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - William R Mylott
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Omnia A Ismaiel
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States.,Faculty of Pharmacy, Zagazig University, Zagazig 2, Zagazig, Egypt
| | - Aaron M Wheeler
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Rebecca Burkart
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Diego F Cortes
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - James Bruton
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Rosalinda H Arends
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| |
Collapse
|
11
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
12
|
Mu R, Yuan J, Huang Y, Meissen JK, Mou S, Liang M, Rosenbaum AI. Bioanalytical Methods and Strategic Perspectives Addressing the Rising Complexity of Novel Bioconjugates and Delivery Routes for Biotherapeutics. BioDrugs 2022; 36:181-196. [PMID: 35362869 PMCID: PMC8972746 DOI: 10.1007/s40259-022-00518-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
In recent years, an increase in the discovery and development of biotherapeutics employing new modalities, such as bioconjugates or novel routes of delivery, has created bioanalytical challenges. The inherent complexity of conjugated molecular structures means that quantification of the bioconjugate and its multiple components is critical for preclinical/clinical studies to inform drug discovery and development. Moreover, bioconjugates involve additional multifactorial complexity because of the potential for in vivo catabolism and biotransformation, which may require thorough investigations in multiple biological matrices. Furthermore, excipients that enhance absorption are frequently evaluated and employed for the development of oral and inhaled biotherapeutics. Risk-benefit assessments are required for novel or existing excipients that utilize dosages above previously approved levels. Bioanalytical methods that can measure both excipients and potential drug metabolites in biological matrices are highly relevant to these emerging bioanalysis challenges. We discuss the bioanalytical strategies for analyzing bioconjugates such as antibody-drug conjugates and antibody-oligonucleotide conjugates and review recent advances in bioanalytical methods for the quantification and characterization of novel bioconjugates. We also discuss bioanalytical considerations for both biotherapeutics and excipients through novel administration routes and review analyses in various biological matrices, from the extensively studied serum or plasma to tissue biopsy in the context of preclinical and clinical studies from both technical and regulatory perspectives.
Collapse
Affiliation(s)
- Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - John K Meissen
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Si Mou
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA.
| |
Collapse
|
13
|
Sang H, Liu J, Zhou F, Zhang X, Zhang J, Liu Y, Wang G, Ye H. Target-responsive subcellular catabolism analysis for early-stage antibody-drug conjugates screening and assessment. Acta Pharm Sin B 2021; 11:4020-4031. [PMID: 35024323 PMCID: PMC8727762 DOI: 10.1016/j.apsb.2021.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Events including antibody‒antigen affinity, internalization, trafficking and lysosomal proteolysis combinatorially determine the efficiency of antibody-drug conjugate (ADC) catabolism and hence the toxicity. Nevertheless, an approach that conveniently identifies proteins requisite for payload release and the ensuing toxicity for mechanistic studies and quality assessment is lacking. Considering the plethora of ADC candidates under development, we developed a target-responsive subcellular catabolism (TARSC) approach that examines ADC catabolism and probes changes in response to targeted interferences of proteins of interest. We firstly applied TARSC to study the commercial T-DM1 and the biosimilar. We recorded unequivocal catabolic behaviors regardless of the absence and presence of the targeted interferences. Their negligible differences in TARSC profiles agreed with their undifferentiated anti-tumoral efficacy according to further in vitro viability and in vivo tumor growth assays, highlighting TARSC analysis as a useful tool for biosimilarity assessment and functional dissection of proteins requisite for ADC catabolism. Additionally, we employed TARSC to investigate the catabolic behavior of a new trastuzumab-toxin conjugate. Collectively, TARSC can not only characterize ADC catabolism at (sub)cellular level but also comprehensively determine which protein targets affect payload release and therapeutic outcomes. Future use of TARSC is thus anticipated in early-stage screening, quality assessment and mechanistic investigations of ADCs.
Collapse
Affiliation(s)
- Hua Sang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacy, the Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jiali Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Zhou
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaofang Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jingwei Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yazhong Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel.: +86 25 83271176 (Guangji Wang), +86 25 83271179 (Hui Ye)
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel.: +86 25 83271176 (Guangji Wang), +86 25 83271179 (Hui Ye)
| |
Collapse
|
14
|
Pegram MD, Hamilton EP, Tan AR, Storniolo AM, Balic K, Rosenbaum AI, Liang M, He P, Marshall S, Scheuber A, Das M, Patel MR. First-in-Human, Phase 1 Dose-Escalation Study of Biparatopic Anti-HER2 Antibody-Drug Conjugate MEDI4276 in Patients with HER2-positive Advanced Breast or Gastric Cancer. Mol Cancer Ther 2021; 20:1442-1453. [PMID: 34045233 PMCID: PMC9398097 DOI: 10.1158/1535-7163.mct-20-0014] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
MEDI4276 is a biparatopic tetravalent antibody targeting two nonoverlapping epitopes in subdomains 2 and 4 of the HER2 ecto-domain, with site-specific conjugation to a tubulysin-based microtubule inhibitor payload. MEDI4276 demonstrates enhanced cellular internalization and cytolysis of HER2-positive tumor cells in vitro This was a first-in-human, dose-escalation clinical trial in patients with HER2-positive advanced or metastatic breast cancer or gastric cancer. MEDI4276 doses escalated from 0.05 to 0.9 mg/kg (60- to 90-minute intravenous infusion every 3 weeks). Primary endpoints were safety and tolerability; secondary endpoints included antitumor activity (objective response, progression-free survival, and overall survival), pharmacokinetics, and immunogenicity. Forty-seven patients (median age 59 years; median of seven prior treatment regimens) were treated. The maximum tolerated dose was exceeded at 0.9 mg/kg with two patients experiencing dose-limiting toxicities (DLTs) of grade 3 liver function test (LFT) increases, one of whom also had grade 3 diarrhea, which resolved. Two additional patients reported DLTs of grade 3 LFT increases at lower doses (0.4 and 0.6 mg/kg). The most common (all grade) drug-related adverse events (AEs) were nausea (59.6%), fatigue (44.7%), aspartate aminotransferase (AST) increased (42.6%), and vomiting (38.3%). The most common grade 3/4 drug-related AE was AST increased (21.3%). Five patients had drug-related AEs leading to treatment discontinuation. In the as-treated population, there was one complete response (0.5 mg/kg; breast cancer), and two partial responses (0.6 and 0.75 mg/kg; breast cancer)-all had prior trastuzumab, pertuzumab, and ado-trastuzumab emtansine (T-DM1). MEDI4276 has demonstrable clinical activity but displays intolerable toxicity at doses >0.3 mg/kg.
Collapse
Affiliation(s)
- Mark D Pegram
- Stanford Comprehensive Cancer Institute, Stanford, California.
| | - Erika P Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Antoinette R Tan
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Anna Maria Storniolo
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
| | - Kemal Balic
- AstraZeneca, South San Francisco, California
| | | | - Meina Liang
- AstraZeneca, South San Francisco, California
| | - Peng He
- AstraZeneca, Gaithersburg, Maryland
| | | | | | | | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| |
Collapse
|
15
|
de Bono JS, Fleming MT, Wang JS, Cathomas R, Miralles MS, Bothos J, Hinrichs MJ, Zhang Q, He P, Williams M, Rosenbaum AI, Liang M, Vashisht K, Cho S, Martinez P, Petrylak DP. Phase I Study of MEDI3726: A Prostate-Specific Membrane Antigen-Targeted Antibody-Drug Conjugate, in Patients with mCRPC after Failure of Abiraterone or Enzalutamide. Clin Cancer Res 2021; 27:3602-3609. [PMID: 33795255 DOI: 10.1158/1078-0432.ccr-20-4528] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE MEDI3726 is an antibody-drug conjugate targeting the prostate-specific membrane antigen and carrying a pyrrolobenzodiazepine warhead. This phase I study evaluated MEDI3726 monotherapy in patients with metastatic castration-resistant prostate cancer after disease progression on abiraterone and/or enzalutamide and taxane-based chemotherapy. PATIENTS AND METHODS MEDI3726 was administered at 0.015-0.3 mg/kg intravenously every 3 weeks until disease progression/unacceptable toxicity. The primary objective was to assess safety, dose-limiting toxicities (DLT), and MTD/maximum administered dose (MAD). Secondary objectives included assessment of antitumor activity, pharmacokinetics, and immunogenicity. The main efficacy endpoint was composite response, defined as confirmed response by RECIST v1.1, and/or PSA decrease of ≥50% after ≥12 weeks, and/or decrease from ≥5 to <5 circulating tumor cells/7.5 mL blood. RESULTS Between February 1, 2017 and November 13, 2019, 33 patients received MEDI3726. By the data cutoff (January 17, 2020), treatment-related adverse events (TRAE) occurred in 30 patients (90.9%), primarily skin toxicities and effusions. Grade 3/4 TRAEs occurred in 15 patients (45.5%). Eleven patients (33.3%) discontinued because of TRAEs. There were no treatment-related deaths. One patient receiving 0.3 mg/kg had a DLT of grade 3 thrombocytopenia. The MTD was not identified; the MAD was 0.3 mg/kg. The composite response rate was 4/33 (12.1%). MEDI3726 had nonlinear pharmacokinetics with a short half-life (0.3-1.8 days). The prevalence of antidrug antibodies was 3/32 (9.4%), and the incidence was 13/32 (40.6%). CONCLUSIONS Following dose escalation, no MTD was identified. Clinical responses occurred at higher doses, but were not durable as patients had to discontinue treatment due to TRAEs.
Collapse
Affiliation(s)
| | | | - Judy S Wang
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | | | | | | | | | - Qu Zhang
- AstraZeneca, Gaithersburg, Maryland
| | - Peng He
- AstraZeneca, Gaithersburg, Maryland
| | | | | | - Meina Liang
- AstraZeneca, South San Francisco, California
| | | | - Song Cho
- AstraZeneca, Gaithersburg, Maryland
| | | | | |
Collapse
|
16
|
The role of ligand-binding assay and LC-MS in the bioanalysis of complex protein and oligonucleotide therapeutics. Bioanalysis 2021; 13:931-954. [PMID: 33998268 DOI: 10.4155/bio-2021-0009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-binding assay (LBA) and LC-MS have been the preferred bioanalytical techniques for the quantitation and biotransformation assessment of various therapeutic modalities. This review provides an overview of the applications of LBA, LC-MS/MS and LC-HRMS for the bioanalysis of complex protein therapeutics including antibody-drug conjugates, fusion proteins and PEGylated proteins as well as oligonucleotide therapeutics. The strengths and limitations of LBA and LC-MS, along with some guidelines on the choice of appropriate bioanalytical technique(s) for the bioanalysis of these therapeutic modalities are presented. With the discovery of novel and more complex therapeutic modalities, there is an increased need for the biopharmaceutical industry to develop a comprehensive bioanalytical strategy integrating both LBA and LC-MS.
Collapse
|
17
|
Huang Y, Mou S, Wang Y, Mu R, Liang M, Rosenbaum AI. Characterization of Antibody-Drug Conjugate Pharmacokinetics and in Vivo Biotransformation Using Quantitative Intact LC-HRMS and Surrogate Analyte LC-MRM. Anal Chem 2021; 93:6135-6144. [PMID: 33835773 DOI: 10.1021/acs.analchem.0c05376] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antibody-drug conjugates (ADCs) pose challenges to bioanalysis because of their inherently intricate structures and potential for very complex catabolism. Common bioanalysis strategy is to measure the concentration of ADCs and Total Antibody (Ab) as well as deconjugated warhead in circulation. The ADCs and the Total Ab can be quantified with ligand binding assays (LBA) or with hybrid immunocapture-liquid chromatography coupled with multiple reaction monitoring mass spectrometry (LBA-LC-MRM). With the LBA-LC-MRM approach, a surrogate analyte, often the signature peptide, and released warhead can be used for the quantification of the Total Ab and ADCs, respectively. Recent advances in analytical instrumentation, especially the development of high resolution mass spectrometers (HRMS), have enabled characterization and quantification of intact macromolecules such as ADCs. The LBA-LC-HRMS approach employs immunocapture, followed by chromatographic separation at the macromolecule level and detection of the intact analyte. We developed an intact quantification method with 1-10 μg/mL linear dynamic range using 25 μL of plasma sample volume. This method was qualified for the measurement of naked monoclonal antibody (mAb), a site-specific cysteine-conjugated ADC with drug to antibody ratio ∼2 (DAR2) and a site-nonspecific cysteine-conjugated ADC (DAR8) in rat plasma. Samples from a rat pharmacokinetic (PK) study were analyzed with both methods. For the naked mAb, the results from both assays matched well. For ADCs, new species were observed from the LBA-HRMS method. The results demonstrated that potential biotransformation of the ADC was unveiled using the intact quantification approach while not being observed with traditional LBA-LC-MRM approach. Our work demonstrated an application of novel intact quantification by supporting animal PK studies. Moreover, our results suggest that the intact quantification method can provide novel perspectives on ADC in vivo characterization and quantification, which can benefit future drug candidate optimization as well as the immunogenicity impact evaluation and safety assessment.
Collapse
Affiliation(s)
- Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Si Mou
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Yadi Wang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, California 94080, United States
| |
Collapse
|
18
|
2020 White Paper on Recent Issues in Bioanalysis: BMV of Hybrid Assays, Acoustic MS, HRMS, Data Integrity, Endogenous Compounds, Microsampling and Microbiome ( Part 1 - Recommendations on Industry/Regulators Consensus on BMV of Biotherapeutics by LCMS, Advanced Application in Hybrid Assays, Regulatory Challenges in Mass Spec, Innovation in Small Molecules, Peptides and Oligos). Bioanalysis 2021; 13:203-238. [PMID: 33470871 DOI: 10.4155/bio-2020-0324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by Mass Spectrometry (hybrid assays, LCMS and HRMS) were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication covers the recommendations on (Part 1) Hybrid Assays, Innovation in Small Molecules, & Regulated Bioanalysis. Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation), Part 2B (Regulatory Input) and Part 3 (Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity) are published in volume 13 of Bioanalysis, issues 5, and 6 (2021), respectively.
Collapse
|