1
|
Zhu B, Wei Y, Zheng X, Tang C, Xie X, Lv Y. Enhanced Breath Aldehyde Analysis by Dual-Membrane-Assisted Charge Tagging, Enrichment, and Onsite Elution NanoESI-MS. Anal Chem 2025; 97:8021-8029. [PMID: 40165712 DOI: 10.1021/acs.analchem.5c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Aldehydes, crucial volatile organic compounds present in exhaled breath, have been established as promising biomarkers for cancer diagnosis. However, their rapid and sensitive detection through widely employed spray-based ionization mass spectrometry is still challenging. To address this, we introduce a charged "iridium isotopic signature" probe tailored for efficient capture and unambiguous identification of ubiquitous aldehydes in the gas phase. This 191/193Ir-tagged mass spectrometric probe, equipped with a reactive amine moiety capable of interacting with aldehydes, is immobilized on the porous Nylon-6 membrane that facilitates efficient gas transport and enriches aldehydes from the complex breath matrix. Following a rapid solvent extraction, the Ir-tagging aldehyde derivatives were successfully eluted with efficient removal of excess probes by the oxidized cellulose membrane, yielding a purified sample ideally suited for direct, rapid, and ultrasensitive (with a detection limit below 0.1 ppt) nanoelectrospray ionization mass spectrometry (nanoESI-MS) analysis. By utilizing an analogous iridium complex as an internal standard, our method precisely identified and quantified 12 aldehydes in exhaled breath (EB), with several exhibiting significant elevations in esophageal cancer patients compared with healthy controls. This highlights its efficacy as a rapid and accurate tool for detecting breath aldehyde biomarkers, offering promising avenues for cancer diagnosis.
Collapse
Affiliation(s)
- Beichen Zhu
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yifan Wei
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiumei Zheng
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610040, China
| | - Chengxi Tang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610040, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
2
|
Sevgen S, Kara G, Kir AS, Şahin A, Boyaci E. A critical review of bioanalytical and clinical applications of solid phase microextraction. J Pharm Biomed Anal 2025; 252:116487. [PMID: 39378761 DOI: 10.1016/j.jpba.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Studying the functions, mechanisms, and effects of drugs and other exogenous compounds on biological systems, together with investigations performed to understand biosystems better, comprises one of the most fascinating areas of research. Although classical sample preparation techniques are dominantly used to infer the relevant information from the investigated system, they fail to meet various imperative requirements, such as being environmentally friendly, applicable in-vivo, and compatible with online analysis. As a chameleon in the analytical toolbox, solid phase microextraction (SPME) is one of the best tools available for studying biological systems in unconventional ways. In this review, SPME is spotlighted, and its capability for bioanalytical applications, including drug analysis, untargeted and targeted metabolomics, in-vivo and clinical studies, is scrutinized based on studies reported in the past five years. In addition, novel extractive phases and instrumental coupling strategies developed to serve bioanalytical research are discussed to give the perspective for state-of-the-art and future developments. The literature assessment showed that SPME could act as a critical tool to investigate in-vivo biological systems and provide information about the elusive portion of the metabolome. Moreover, recently introduced miniaturized SPME probes further improved the low-invasive nature of the sampling and enabled sampling even from a single cell. The coupling of SPME directly to mass spectrometry significantly reduced the total analytical workflow and became one of the promising tools suitable for fast diagnostic purposes and drug analysis. The numerous applications and advancements reported in bioanalysis using SPME show that it will continue to be an indispensable technique in the future.
Collapse
Affiliation(s)
- Sılanur Sevgen
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Gökşin Kara
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysegul Seyma Kir
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Alper Şahin
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye.
| |
Collapse
|
3
|
Geng X, Wang Y, Li H, Chen DDY. Characterization of cigarette smokeomics by in situ solid-phase microextraction and confined-space direct analysis in real time mass spectrometry. Talanta 2024; 280:126680. [PMID: 39128317 DOI: 10.1016/j.talanta.2024.126680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Characterization of chemical composition in cigarette smoke is essential for establishing smoke-related exposure estimates. Currently used methods require complex sample preparation with limited capability for obtaining accurate chemical information. We have developed an in situ solid-phase microextraction (SPME) method for online processing of smoke aerosols and directly coupling the SPME probes with confined-space direct analysis in real time (cDART) ion source for high-resolution mass spectrometry (MS) analysis. In a confined space, the substances from SPME probes can be efficiently desorbed and ionized using the DART ion source, and the diffusion and evaporation of volatile species into the open air can be largely avoided. Using SPME-cDART-MS, mainstream smoke (MSS) and side-stream smoke (SSS) can be investigated and the whole analytical protocol can be accomplished in a few min. More than five hundred substances and several classes of compounds were detected and identified. The relative contents of 13 tobacco alkaloids were compared between MSS and SSS. Multivariate data analysis unveiled differences between different types of cigarette smoke and also discovered the characteristic ions. The method is reliable with good reproducibility and repeatability, and has the potential to be quantitative. This study provides a simple and high-efficiency method for smokeomics profiling of complex aerosol samples with in situ online extraction of volatile samples, and direct integration of extracted probes with a modified ambient ionization technique.
Collapse
Affiliation(s)
- Xin Geng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yanqiu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
4
|
Zhai Y, Fu X, Xu W. Miniature mass spectrometers and their potential for clinical point-of-care analysis. MASS SPECTROMETRY REVIEWS 2024; 43:1172-1191. [PMID: 37610153 DOI: 10.1002/mas.21867] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Mass spectrometry (MS) has become a powerful technique for clinical applications with high sensitivity and specificity. Different from conventional MS diagnosis in laboratory, point-of-care (POC) analyses in clinics require mass spectrometers and analytical procedures to be friendly for novice users and applicable for on-site clinical diagnosis. The recent decades have seen the progress in the development of miniature mass spectrometers, providing a promising solution for clinical POC applications. In this review, we report recent advances of miniature mass spectrometers and their exploration in clinical applications, mainly including the rapid analysis of illegal drugs, on-site monitoring of therapeutic drugs, and detection of biomarkers. With improved analytical performance, miniature mass spectrometers are also expected to apply to more and more clinical applications. Some promising POC analyses that can be performed by miniature mass spectrometers in the future are discussed. Lastly, we also provide our perspectives on the challenges in technical development of miniature mass spectrometers for clinical POC analysis.
Collapse
Affiliation(s)
- Yanbing Zhai
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Xinyan Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Mo W, Li L, Yang BC, Wang X, Wang B, Zhang J, Huang Q, Yao ZP, Zhang D, Hu B. Wearable solid-phase microextraction sampling for enhanced detection of volatile analytes in human ears. Anal Chim Acta 2024; 1318:342923. [PMID: 39067915 DOI: 10.1016/j.aca.2024.342923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Investigating ear at molecule level is challenging task, since there is a lack of molecular detection by traditional diagnosis techniques such as otologic endoscopy, ear swab culture, and imaging diagnostic technique. Therefore, new development of noninvasive, highly sensitive, and convenient analytical method for investigating human ears is highly needed. RESULTS We developed a wearable sampling device for extracting trace analytes in ear by fixing solid-phase microextraction fibers into modified earmuffs (SPME-in-earmuffs). After sampling, SPME fiber was coupled with gas chromatography-mass spectrometry (GC-MS) for identification and quantification of extracted analytes. Enhanced detection of various analytes such as volatile metabolites, exposures, and therapeutic drugs of ears were demonstrated in this work. Particularly, sport-induced metabolic changes such as fatty acids, aldehyde compounds and oxidative produces were found from human ears using this method. Acceptable analytical performances were obtained by using this newly developed method for detecting ear medicines, e.g., low limit of detection (LOD, 0.005-0.021 ng/mL) and limit of quantification (LOQ, 0.018-0.071 ng/mL), excellent linear dynamic responses (R2 > 0.99, ranging from 0.050-8.00 ng/mL), good relative standard deviations (RSDs, 13.19 % ∼ 21.40 %, n = 6) and accuracy (84.43-150.18 %, n = 6) at different concentrations. SIGNIFICANCE For the first time, this work provides a simple, convenient, and wearable microextraction method for enhanced detection of trace volatiles in human ears. The enclosed space between ear and earmuff allows headspace SPME sampling of volatile analytes, and thus provides a new wearable method for monitoring ear metabolites and human exposures, showing potential applications in human health, disease diagnosis, and sport science.
Collapse
Affiliation(s)
- Wenzheng Mo
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Lei Li
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bi-Cheng Yang
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, China.
| | - Xiangjie Wang
- School of Physical Education, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, 510632, China
| | - Baixue Wang
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Jianfeng Zhang
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Qiaoyun Huang
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Dong Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China.
| | - Bin Hu
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Chen C, Liu J, Lu J, Wang Y, Zhai J, Zhao H, Lu N. In Situ Collection and SERS Detection of Nitrite in Exhalations on Facemasks Based on Wettability Differences. ACS Sens 2024; 9:3680-3688. [PMID: 38958469 DOI: 10.1021/acssensors.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As one of the common carriers of biological information, along with human urine specimens and blood, exhaled breath condensate (EBC) carries reliable and rich information about the body's metabolism to track human physiological normal/abnormal states and environmental exposures. What is more, EBC has gained extensive attention because of the convenient and nondestructive sampling. Facemasks, which act as a physical filter barrier between human exhaled breath and inhaled substances from the external environment, are safe, noninvasive, and economic devices for direct sampling of human exhaled breath and inhaled substances. Inspired by the ability of fog collection of Namib desert beetle, a strategy for in situ collecting and detecting EBC with surface-enhanced Raman scattering is illustrated. Based on the intrinsic and unique wettability differences between the squares and the surrounding area of the pattern on facemasks, the hydrophilic squares can capture exhaled droplets and spontaneously enrich the analytes and silver nanocubes (AgNCs), resulting in good repeatability in situ detection. Using R6G as the probe molecule, the minimal detectable concentration can reach as low as 10-16 M, and the relative standard deviation is less than 7%. This proves that this strategy can achieve high detection sensitivity and high detection repeatability. Meanwhile, this strategy is applicable for portable nitrite analysis in EBC and may provide an inspiration for monitoring other biomarkers in EBC.
Collapse
Affiliation(s)
- Chunning Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaqi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaxin Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yalei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jingtong Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongkun Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Nan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Haworth-Duff A, Smith BL, Sham TT, Boisdon C, Loughnane P, Burnley M, Hawcutt DB, Raval R, Maher S. Rapid differentiation of cystic fibrosis-related bacteria via reagentless atmospheric pressure photoionisation mass spectrometry. Sci Rep 2024; 14:17067. [PMID: 39048618 PMCID: PMC11269582 DOI: 10.1038/s41598-024-66851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Breath analysis is an area of significant interest in medical research as it allows for non-invasive sampling with exceptional potential for disease monitoring and diagnosis. Volatile organic compounds (VOCs) found in breath can offer critical insight into a person's lifestyle and/or disease/health state. To this end, the development of a rapid, sensitive, cost-effective and potentially portable method for the detection of key compounds in breath would mark a significant advancement. Herein, we have designed, built and tested a novel reagent-less atmospheric pressure photoionisation (APPI) source, coupled with mass spectrometry (MS), utilising a bespoke bias electrode within a custom 3D printed sampling chamber for direct analysis of VOCs. Optimal APPI-MS conditions were identified, including bias voltage, cone voltage and vaporisation temperature. Calibration curves were produced for ethanol, acetone, 2-butanone, ethyl acetate and eucalyptol, yielding R2 > 0.99 and limits of detection < 10 pg. As a pre-clinical proof of concept, this method was applied to bacterial headspace samples of Escherichia coli (EC), Pseudomonas aeruginosa (PSA) and Staphylococcus aureus (SA) collected in 1 L Tedlar bags. In particular, PSA and SA are commonly associated with lung infection in cystic fibrosis patients. The headspace samples were classified using principal component analysis with 86.9% of the total variance across the first three components and yielding 100% classification in a blind-sample study. All experiments conducted with the novel APPI arrangement were carried out directly in real-time with low-resolution MS, which opens up exciting possibilities in the future for on-site (e.g., in the clinic) analysis with a portable system.
Collapse
Affiliation(s)
- Adam Haworth-Duff
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Barry L Smith
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tung-Ting Sham
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Paul Loughnane
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool, UK
| | - Mark Burnley
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- NIHR Alder Hey Clinical Research Facility, Liverpool, UK
| | - Rasmita Raval
- Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Wu M, Ma Q, Li M, Zhou Z, Xu J, Waterhouse GIN, Song N, Zhao WW, Chen G. Online sequential analysis of volatile and semivolatile organic compounds in water matrices by double robotic sample preparations and dual-channel mono and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry system. J Chromatogr A 2024; 1726:464963. [PMID: 38723493 DOI: 10.1016/j.chroma.2024.464963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
The monitoring of organic compounds in aquatic matrices poses challenges due to its complexity and time-intensive nature. To address these challenges, we introduce a novel approach utilizing a dual-channel mono (1D) and comprehensive two-dimensional (2D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) system, integrated with a robotic pretreatment platform, for online monitoring of both volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) in water matrices. Employing the robotic platform, we establish a suite of online liquid-liquid extraction (LLE) pretreatment processes for water samples, marking the first instance of such procedures. Leveraging the automatic headspace (HS) module, dual robotic preparations of HS and LLE are sequentially executed to extract VOCs and SVOCs from water matrices. The GC × GC-TOFMS system is distinguished by its dual-channel analytical column configuration, facilitating sequential analysis of VOCs in GC-TOFMS mode and SVOCs in GC × GC-TOFMS mode. Quantitative detection of 55 target VOCs and 104 SVOCs is achieved in a water sample using the instrument system. Our method demonstrates excellent correlation coefficients ranging from 0.990 to 1.000, method detection limits ranging from 0.08 to 4.78 μg L-1, relative standard deviations below 19.3 %, and recovery rates ranging from 50.0 % to 124.0 %. To validate the online monitoring capabilities of our system, we assess target SVOCs at three different concentration levels over a 3-day period. Most compounds exhibit recovery rates ranging from 70.0 % to 130.0 %. Furthermore, we apply our method to analyze a real water sample, successfully identifying over 100 target and nontarget VOCs/SVOCs, including alcohols, aldehydes, ketones, acids, esters, and phenols. These results highlight the efficacy of the proposed analysis system, capable of conducting two distinct analyses in automatic sequence, thereby enhancing the efficiency and accuracy of organic compound analysis in water matrices.
Collapse
Affiliation(s)
- Manman Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, PR China
| | - Qin Ma
- Hangzhou Lin'an Ecological Environment Monitoring Station, Hangzhou 311300, China
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, PR China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, PR China
| | - Jingwei Xu
- Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou 510530, China
| | | | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Hong H, Habib A, Bi L, Qais DS, Wen L. Hollow Cathode Discharge Ionization Mass Spectrometry: Detection, Quantification and Gas Phase Ion-Molecule Reactions of Explosives and Related Compounds. Crit Rev Anal Chem 2024; 54:148-174. [PMID: 35467991 DOI: 10.1080/10408347.2022.2067467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mass spectrometry (MS) has become an essential analytical method in every sector of science and technology. Because of its unique ability to provide direct molecular structure information on analytes, an extra method is rarely required. This review describes fabrication of a variable-pressure hollow cathode discharge (HCD) ion source for MS in detection, quantification and investigation of gas-phase ion molecule reactions of explosives and related compounds using air as a carrier gas. The HCD ion source has been designed in such a way that by altering the ion source pressures, the system can generate both HCD and conventional GD. This design enables for the selective detection and quantification of explosives at trace to ultra-trace levels. The pressure-dependent HCD ion source has also been used to investigate ion-molecule reactions in the gas phase of explosives and related compounds. The mechanism of ion formation in explosive reactions is also discussed.
Collapse
Affiliation(s)
- Huanhuan Hong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | | | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
10
|
Cai SH, Wang B, Zhang J, Guo J, Hu B. Wearable sampling of proteins from human exhaled aerosols for nano-liquid chromatography-tandem mass spectrometry analysis: A pilot study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9737. [PMID: 38533583 DOI: 10.1002/rcm.9737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
RATIONALE Human exhaled breath usually contains unique proteins that may provide clues to characterize individual physiological activities and many diseases. However, the concentration of exhaled proteins in exhaled breath is extremely low and usually does not reach the detection limits of all online breath mass spectrometry instruments. Therefore, developing a new breath sampler for collecting and characterizing exhaled proteins is important. METHODS In this study, a new mask-based wearable sampler was developed by fixing metal materials into the inner surface of the KN95 mask. Human exhaled proteins could be directly adsorbed onto the metal material while wearing the mask. After sampling, the collected proteins were eluted, digested, and identified using nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS). RESULTS The adsorption of exhaled proteins was evaluated, showing that modified gold foil is an effective material for collecting exhaled proteins. Various endogenous proteins were successfully identified from exhaled breath, many of which can be potential biomarkers for disease diagnosis. CONCLUSIONS By coupling the newly developed mask sampler with nano-LC-MS/MS, human exhaled proteins were successfully collected and identified. Our results show that the mask sampler is wearable, simple, and convenient, and the method is noninvasive for investigating disease diagnosis and human health.
Collapse
Affiliation(s)
- Shen-Hui Cai
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Baixue Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Jiubiao Guo
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Martínez-Pérez-Cejuela H, Gionfriddo E. Evolution of Green Sample Preparation: Fostering a Sustainable Tomorrow in Analytical Sciences. Anal Chem 2024; 96:7840-7863. [PMID: 38687329 DOI: 10.1021/acs.analchem.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Affiliation(s)
- H Martínez-Pérez-Cejuela
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - E Gionfriddo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
12
|
Li N, Zhang Z, Li G. Recent advance on microextraction sampling technologies for bioanalysis. J Chromatogr A 2024; 1720:464775. [PMID: 38452559 DOI: 10.1016/j.chroma.2024.464775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The contents of target substances in biological samples are usually at low concentration levels, and the matrix of biological samples is usually complex. Sample preparation is considered a very critical step in bioanalysis. At present, the utilization of microextraction sampling technology has gained considerable prevalence in the realm of biological analysis. The key developments in this field focus on the efficient microextraction media and the miniaturization and automation of adaptable sample preparation methods currently. In this review, the recent progress on the microextraction sampling technologies for bioanalysis has been introduced from point of view of the preparation of microextraction media and the microextraction sampling strategies. The advance on the microextraction media was reviewed in detail, mainly including the aptamer-functionalized materials, molecularly imprinted polymers, carbon-based materials, metal-organic frameworks, covalent organic frameworks, etc. The advance on the microextraction sampling technologies was summarized mainly based on in-vivo sampling, in-vitro sampling and microdialysis technologies. Moreover, the current challenges and perspective on the future trends of microextraction sampling technologies for bioanalysis were briefly discussed.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
14
|
Subbaraj AK, Deb-Choudhury S, Pavan E, Realini CE. Volatile fingerprints of beef cooking methods using sol-gel-based solid-phase microextraction (SPME) and direct analysis in real-time mass spectrometry (DART-MS). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9655. [PMID: 38073203 DOI: 10.1002/rcm.9655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 12/18/2023]
Abstract
RATIONALE The aroma profile of food is a complex mixture of volatile compounds that constitutes a major component of the overall eating experience. The food service industry and chefs therefore constantly seek ways to investigate and thereby enhance the aroma profile. Oven cooking, sous vide and pan fry are three cooking methods of beef commonly practised by chefs. Near real-time analysis of volatile compounds from these three cooking methods will provide insight into respective volatile fingerprints and help improve cooking techniques. METHODS Volatile compounds from three beef cooking methods were captured using an in-house sol-gel based solid phase microextraction (SPME) method and analysed using direct analysis in real-time mass spectrometry (DART-MS). A volatile organic compound (VOC) standard was used to demonstrate successful implementation of the sol-gel coating technique. Volatile features discriminating the three cooking methods were shortlisted and statistically assessed by univariate and multivariate analyses. RESULTS The VOC standard was successfully adsorbed by the sol-gel method and detected by DART-MS. Hierarchical cluster analysis clearly demarcated three beef cooking methods based on their volatile fingerprints. Out of 65 significant features differentiating the cooking methods, 50 were at highest concentrations from pan-fry cooking only, followed by 14 with highest concentrations from oven cooking followed by pan frying. Sous vide followed by pan frying showed lowest concentrations of almost all volatile features. CONCLUSIONS The sol-gel-based solid-phase microextraction technique combined with DART-MS was successful in differentiating beef cooking methods based on their volatile fingerprints. A workflow for rapid assessment of the volatile profile from beef cooking methods was established, providing a baseline to further explore volatile profiles from other key ingredients.
Collapse
Affiliation(s)
- Arvind K Subbaraj
- Proteins and Metabolites Team, AgResearch Limited, Lincoln, New Zealand
| | | | - Enrique Pavan
- Food Technology and Processing Team, AgResearch Limited, Palmerston North, New Zealand
- Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina
| | - Carolina E Realini
- Food Technology and Processing Team, AgResearch Limited, Palmerston North, New Zealand
| |
Collapse
|
15
|
Hou G, Wang Q, Li N, Zhao Y, Wang Z, Shi S, Liu D, Zhang Y, Hu P, Zhao L, Cao Z. Face mask as an indicator and shield of human exposure to traditional and novel organophosphate esters. ENVIRONMENT INTERNATIONAL 2024; 183:108389. [PMID: 38118213 DOI: 10.1016/j.envint.2023.108389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023]
Abstract
Herein, the trapping effectiveness of N95, filter KN95, medical surgical masks (MSMs), and disposable medical masks (DMMs) against 19 airborne traditional and novel organophosphate esters (OPEs) was evaluated. Laboratory simulations (n = 24 for each type of mask) showed that time-dependent accumulation of ∑19OPEs on the four types of masks ranged between 30.1 and 86.6 ng in 24 h, with the highest and lowest median amounts trapped by the N95 masks (53.3 ng) and DMMs (43.2 ng), respectively. The trapping efficiency of the four types of masks for ∑19OPEs decreased over time from 84 % to 39 % in 24 h, with N95 masks showing the highest median efficiency (70 %). Further, field investigations were conducted in five types of microenvironments (train, hospital, bus, supermarket, and canteen), and an analysis of 200 samples showed that ∑19OPEs were accumulated in the masks with a variable amount from 3.7 to 117 ng/mask. Consistent with the laboratory simulations, the N95 masks (29.0 ng/mask) exhibited the highest hourly median amount of trapped OPEs, followed by the KN95 masks (24.5 ng/mask), MSMSs (17.4 ng/mask), and DMMs (15.8 ng/mask). Triethyl phosphate (TEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri-n-butyl phosphate (TNBP), and cresyl diphenyl phosphate (CDP) as well as 4-isopropylphenyl diphenyl phosphate (4IPPDPP) and 2,4-diisopropylphenyl diphenyl phosphate (24DIPPDPP) were the most commonly detected traditional and novel OPEs. Based on the amount of OPEs trapped on the masks, we estimated the concentration of ∑19OPEs in the train microenvironment to be the highest (222 ng/m3), which is approximately 2-5 times higher than that in the other microenvironments. The results of this study prove that masks can effectively protect humans from exposure to OPEs and act as low-cost indicators of indoor contamination.
Collapse
Affiliation(s)
- Guodong Hou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qiyue Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Na Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Youhua Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhexi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Donghai Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yacai Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
16
|
Fitzgerald S, Holland L, Ahmed W, Piechulla B, Fowler SJ, Morrin A. Volatilomes of human infection. Anal Bioanal Chem 2024; 416:37-53. [PMID: 37843549 PMCID: PMC10758372 DOI: 10.1007/s00216-023-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The human volatilome comprises a vast mixture of volatile emissions produced by the human body and its microbiomes. Following infection, the human volatilome undergoes significant shifts, and presents a unique medium for non-invasive biomarker discovery. In this review, we examine how the onset of infection impacts the production of volatile metabolites that reflects dysbiosis by pathogenic microbes. We describe key analytical workflows applied across both microbial and clinical volatilomics and emphasize the value in linking microbial studies to clinical investigations to robustly elucidate the metabolic species and pathways leading to the observed volatile signatures. We review the current state of the art across microbial and clinical volatilomics, outlining common objectives and successes of microbial-clinical volatilomic workflows. Finally, we propose key challenges, as well as our perspectives on emerging opportunities for developing clinically useful and targeted workflows that could significantly enhance and expedite current practices in infection diagnosis and monitoring.
Collapse
Affiliation(s)
- Shane Fitzgerald
- SFI Insight Centre for Data Analytics, School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Waqar Ahmed
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Birgit Piechulla
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Stephen J Fowler
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Respiratory Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Aoife Morrin
- SFI Insight Centre for Data Analytics, School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| |
Collapse
|
17
|
Gao Y, Feng H, Xia B, He L, Yang C, Zhao L, Pan Y. Ultrasensitive and Green Bubbling Extraction Strategies: An Extensible Solvent-Free Re-Enrichment Approach for Ultratrace Pollutants in Aqueous Samples. Anal Chem 2023; 95:13683-13689. [PMID: 37624983 DOI: 10.1021/acs.analchem.3c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Ultratrace organic pollutants in the environment pose severe threats to human health; hence, their accurate detection is essential. In this study, we develop a secondary solvent-free enrichment strategy based on bubbling extraction (BE). Especially, we used BE solid-phase microextraction and BE carbon nanotube paper absorption to capture aerosols from a liquid water surface, desorb analytes, and analyze the analytes using mass spectrometry. The application of a solvent-free enrichment strategy helps overcome technical challenges in implementing BE technology, including reproducibility, quantification, and sensitivity. This approach objectively demonstrates the enrichment efficiency of BE, resulting in improved mass spectrometry response and quantification. It effectively tackles the difficulties in detecting and quantifying ultratrace environmental pollutants in mass spectrometric analysis. The present study successfully conducted a quantitative analysis of 16 polycyclic aromatic hydrocarbons and 7 antibiotics in 48 environmental water samples. This strategy proved effective in detecting the presence and distribution of polar and nonpolar environmental pollutants in rivers and lakes. Moreover, this strategy has several advantages, such as ultrahigh sensitivity at the femtograms per liter level, good greenness, multiplexed quantitation, low sample consumption, and ease of operation. Overall, the utilization of the ultrasensitive and environmentally friendly BE approach presents a reliable and adaptable method for the identification of ultratrace environmental pollutants in water specimens, thereby enabling early monitoring of pollutant levels.
Collapse
Affiliation(s)
- Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P. R. China
| | - Lei He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Congling Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
18
|
Zhang J, Zhang Y, Xu C, Huang Z, Hu B. Detection of abused drugs in human exhaled breath using mass spectrometry: A review. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37 Suppl 1:e9503. [PMID: 36914281 DOI: 10.1002/rcm.9503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE Human breath analysis has been attracting increasing interest in the detection of abused drugs in forensic and clinical applications because of its noninvasive sampling and distinctive molecular information. Mass spectrometry (MS)-based approaches have been proven to be powerful tools for accurately analyzing exhaled abused drugs. The major advantages of MS-based approaches include high sensitivity, high specificity, and versatile couplings with various breath sampling methods. METHODS Recent advances in the methodological development of MS analysis of exhaled abused drugs are discussed. Breath collection and sample pretreatment methods for MS analysis are also introduced. RESULTS Recent advances in technical aspects of breath sampling methods are summarized, highlighting active and passive sampling. MS methods for detecting different exhaled abused drugs are reviewed, emphasizing their features, advantages, and limitations. The future trends and challenges in MS-based breath analysis of exhaled abused drugs are also discussed. CONCLUSIONS The coupling of breath sampling methods with MS approaches has been proven to be a powerful tool for the detection of exhaled abused drugs, offering highly attractive results in forensic investigations. MS-based detection of exhaled abused drugs in exhaled breath is a relatively new field and is still in the early stages of methodological development. New MS technologies promise a substantial benefit for future forensic analysis.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Ying Zhang
- Key Laboratory of Forensic Toxicology (Ministry of Public Security), Beijing Municipal Public Security Bureau, Beijing, China
| | - Chunhua Xu
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, China
| | - Zhengxu Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Guo W, Yu JZ, Chan W. Face Mask as a Versatile Sampling Device for the Assessment of Personal Exposure to 54 Toxic Compounds in Environmental Tobacco Smoke. Chem Res Toxicol 2023. [PMID: 37406339 DOI: 10.1021/acs.chemrestox.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Exposure to environmental tobacco smoke (ETS), which contains hundreds of toxic compounds, significantly increases the risk of developing many human diseases, including lung cancer. The most common method of assessing personal exposure to ETS-borne toxicants is by sampling sidestream smoke generated by a smoking machine through a sorbent tube or filter, followed by solvent extraction and instrumental analysis. However, the ETS sampled may not truly represent the ETS in the ambient environment, due to complicating factors from the smoke released by the burning end of the cigarette and from the absorption of the chemicals in the respiratory tract of the smoker. In this study, we developed and validated an alternative air sampling method involving breathing through a face mask to simultaneously determine personal exposure to 54 ETS-borne compounds, including polycyclic aromatic hydrocarbons, aromatic amines, alkaloids, and phenolic compounds in real smoking scenarios. The newly developed method was used to evaluate the risk associated with exposure to ETS released from conventional cigarettes (CCs) and that from novel tobacco products such as e-cigarettes (ECs) and heated tobacco products (HTPs), with the observation of cancer risk associated with exposure to ETS released from CCs significantly higher than that from ECs and HTPs. It is anticipated that this method offers a convenient and sensitive way to collect samples for assessing the health impacts of ETS exposure.
Collapse
|
20
|
Schulz E, Woollam M, Grocki P, Davis MD, Agarwal M. Methods to Detect Volatile Organic Compounds for Breath Biopsy Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. Molecules 2023; 28:molecules28114533. [PMID: 37299010 DOI: 10.3390/molecules28114533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Volatile organic compounds (VOCs) are byproducts from metabolic pathways that can be detected in exhaled breath and have been reported as biomarkers for different diseases. The gold standard for analysis is gas chromatography-mass spectrometry (GC-MS), which can be coupled with various sampling methods. The current study aims to develop and compare different methods for sampling and preconcentrating VOCs using solid-phase microextraction (SPME). An in-house sampling method, direct-breath SPME (DB-SPME), was developed to directly extract VOCs from breath using a SPME fiber. The method was optimized by exploring different SPME types, the overall exhalation volume, and breath fractionation. DB-SPME was quantitatively compared to two alternative methods involving the collection of breath in a Tedlar bag. In one method, VOCs were directly extracted from the Tedlar bag (Tedlar-SPME) and in the other, the VOCs were cryothermally transferred from the Tedlar bag to a headspace vial (cryotransfer). The methods were verified and quantitatively compared using breath samples (n = 15 for each method respectively) analyzed by GC-MS quadrupole time-of-flight (QTOF) for compounds including but not limited to acetone, isoprene, toluene, limonene, and pinene. The cryotransfer method was the most sensitive, demonstrating the strongest signal for the majority of the VOCs detected in the exhaled breath samples. However, VOCs with low molecular weights, including acetone and isoprene, were detected with the highest sensitivity using the Tedlar-SPME. On the other hand, the DB-SPME was less sensitive, although it was rapid and had the lowest background GC-MS signal. Overall, the three breath-sampling methods can detect a wide variety of VOCs in breath. The cryotransfer method may be optimal when collecting a large number of samples using Tedlar bags, as it allows the long-term storage of VOCs at low temperatures (-80 °C), while Tedlar-SPME may be more effective when targeting relatively small VOCs. The DB-SPME method may be the most efficient when more immediate analyses and results are required.
Collapse
Affiliation(s)
- Eray Schulz
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Mark Woollam
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Paul Grocki
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Michael D Davis
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mangilal Agarwal
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA
- Department of Mechanical & Energy Engineering, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Liu X, Hu B. Mask device as a new wearable sampler for breath analysis: what can we expect in the future? Anal Bioanal Chem 2023:10.1007/s00216-023-04673-z. [PMID: 37017724 PMCID: PMC10074379 DOI: 10.1007/s00216-023-04673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Human exhaled breath is becoming an attractive clinical source as it is foreseen to enable noninvasive diagnosis of many diseases. Because mask devices can be used for efficiently filtering exhaled substances, mask-wearing has been required in the past few years in daily life since the unprecedented COVID-19 pandemic. In recent years, there is a new development of mask devices as new wearable breath samplers for collecting exhaled substances for disease diagnosis and biomarker discovery. This paper attempts to identify new trends in mask samplers for breath analysis. The couplings of mask samplers with different (bio)analytical approaches, including mass spectrometry (MS), polymerase chain reaction (PCR), sensor, and others for breath analysis, are summarized. The developments and applications of mask samplers in disease diagnosis and human health are reviewed. The limitations and future trends of mask samplers are also discussed.
Collapse
Affiliation(s)
- Ximeng Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Geng X, Zhang K, Li H, Da Yong Chen D. Online mass spectrometry of exhaled breath with a modified ambient ion source. Talanta 2023; 255:124254. [PMID: 36634427 DOI: 10.1016/j.talanta.2023.124254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Exhaled breath (EB) may contain metabolites that are closely related to human health conditions. Real time analysis of EB is important to study its true composition, however, it has been difficult. A robust ambient ionization mass spectrometry method using a modified direct analysis in real time (DART) ion source was developed for the online analysis of breath volatiles. The modified DART ion source can provide a confined region for direct sampling, rapid transmission and efficient ionization of exhaled breath. With different sampling methods, offline analysis and near real-time evaluation of exhaled breath were also achieved, and their unique molecular features were characterized. High resolution MS data aided the putative metabolite identification in breath samples, resulting in hundreds of volatile organic compounds being identified in the exhalome. The method was sensitive enough to be used for monitoring the breath feature changes after taking different food and over-the-counter medicine. Quantification was performed for pyridine and valeric acid with fasting and after ingesting different food. The developed method is fast, simple, versatile, and potentially useful for evaluating the true state of human exhaled breath.
Collapse
Affiliation(s)
- Xin Geng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Zhang
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Gastroenterology, Dongying People's Hospital, Dongying, Shandong, 257091, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Department of Chemistry, University of British Columbia, Vancouver BC, V6T 1Z1, Canada.
| |
Collapse
|
23
|
Hu B. Non-invasive Sampling of Human Body Fluids Using In Vivo SPME. EVOLUTION OF SOLID PHASE MICROEXTRACTION TECHNOLOGY 2023:451-465. [DOI: 10.1039/bk9781839167300-00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Noninvasive body fluids offer attractive sources to gain insights into human health. The in vivo solid-phase microextraction (SPME) technique is a fast and versatile sample preparation technique for the noninvasive sampling of human body fluids in various fields. This chapter summarizes the applications of SPME coupled with mass spectrometry (MS)-based approaches for noninvasive investigations of human body fluids, including urine, sweat, and saliva. New features of noninvasive SPME sampling and MS-based analysis are highlighted, and the prospects on their further development are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment Jinan University Guangzhou 510632 China
| |
Collapse
|
24
|
Cabanas-Garrido EC, Ledesma-Escobar CA, Priego-Capote F. Use of surgical masks for sampling in the determination of volatile organic compounds. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Online coupling of matrix solid-phase dispersion to direct analysis in real time mass spectrometry for high-throughput analysis of regulated chemicals in consumer products. Anal Chim Acta 2023; 1239:340677. [PMID: 36628757 DOI: 10.1016/j.aca.2022.340677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The current work is the first study on online coupling of matrix solid-phase dispersion (MSPD) to direct analysis in real time mass spectrometry (DART-MS) bridging with solid-phase analytical derivatization (SPAD) based on a graphene oxide nanosheets (GONs)-coated cotton swab. Proof-of-concept demonstrations were explored for high-throughput analysis of a diversity of regulated chemicals in consumer products such as textiles, toys, and cosmetics. On-demand sorbent combinations were blended with samples, packed into MSPD columns, and mounted on a homemade 3D-printed rack module for automated sample feeding. To achieve good synergy between MSPD and DART-MS, a cotton swab with a conical tip deposited with GONs was attached to the bottom of the MSPD column. The swabs serve as a solid-phase microextraction probe for convenient enrichment of the eluted analytes from MSPD, thermal desorption of the enriched analytes by DART, and sensitive detection by a hybrid quadrupole-Orbitrap mass spectrometer. Furthermore, the utility of an on-swab SPAD strategy was demonstrated for the detection of formaldehyde by use of the derivatizing reagent of dansyl hydrazine, contributing to improved ionization efficiency without compromising the overall coherence of the analytical workflow. The MSPD-DART-MS methodology was systematically optimized and validated, obtaining acceptable recovery (71.7-110.3%), repeatability (11.8-19.3%), and sensitivity (limits of detection and quantitation in the ranges of 6.2-19.5 and 23.7-75.9 μg/kg) for 32 target analytes. The developed protocol streamlined sample extraction, clean-up, desorption, ionization, and detection, highlighting the appealing potential for high-throughput analysis of samples with complex matrices.
Collapse
|
26
|
Exhaled breath condensate as bioanalyte: from collection considerations to biomarker sensing. Anal Bioanal Chem 2023; 415:27-34. [PMID: 36396732 PMCID: PMC9672542 DOI: 10.1007/s00216-022-04433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Since the SARS-CoV-2 pandemic, the potential of exhaled breath (EB) to provide valuable information and insight into the health status of a person has been revisited. Mass spectrometry (MS) has gained increasing attention as a powerful analytical tool for clinical diagnostics of exhaled breath aerosols (EBA) and exhaled breath condensates (EBC) due to its high sensitivity and specificity. Although MS will continue to play an important role in biomarker discovery in EB, its use in clinical setting is rather limited. EB analysis is moving toward online sampling with portable, room temperature operable, and inexpensive point-of-care devices capable of real-time measurements. This transition is happening due to the availability of highly performing biosensors and the use of wearable EB collection tools, mostly in the form of face masks. This feature article will outline the last developments in the field, notably the novel ways of EBA and EBC collection and the analytical aspects of the collected samples. The inherit non-invasive character of the sample collection approach might open new doors for efficient ways for a fast, non-invasive, and better diagnosis.
Collapse
|
27
|
Yue H, He F, Zhao Z, Duan Y. Plasma-based ambient mass spectrometry: Recent progress and applications. MASS SPECTROMETRY REVIEWS 2023; 42:95-130. [PMID: 34128567 DOI: 10.1002/mas.21712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 06/12/2023]
Abstract
Ambient mass spectrometry (AMS) has grown as a group of advanced analytical techniques that allow for the direct sampling and ionization of the analytes in different statuses from their native environment without or with minimum sample pretreatments. As a significant category of AMS, plasma-based AMS has gained a lot of attention due to its features that allow rapid, real-time, high-throughput, in vivo, and in situ analysis in various fields, including bioanalysis, pharmaceuticals, forensics, food safety, and mass spectrometry imaging. Tens of new methods have been developed since the introduction of the first plasma-based AMS technique direct analysis in real-time. This review first provides a comprehensive overview of the established plasma-based AMS techniques from their ion source configurations, mechanisms, and developments. Then, the progress of the representative applications in various scientific fields in the past 4 years (January 2017 to January 2021) has been summarized. Finally, we discuss the current challenges and propose the future directions of plasma-based AMS from our perspective.
Collapse
Affiliation(s)
- Hanlu Yue
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Feiyao He
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongjun Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yixiang Duan
- College of Life Sciences, Sichuan University, Chengdu, China
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Xu L, Zhang K, Geng X, Li H, Chen DDY. High-resolution mass spectrometry exhalome profiling with a modified direct analysis in real time ion source. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9406. [PMID: 36169592 DOI: 10.1002/rcm.9406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Exhaled breath contains many substances that are closely related to human metabolism. Analysis of its composition is important for human health, but it is difficult. Since the volatile molecules in breath samples are exhaled instantaneously, easily diffused and modified, and at low level of presence, they are difficult to identify and quantify. METHODS A modified direct analysis in real time ion source was used for high-resolution mass spectrometry measurement of human metabolites in exhaled breath through online monitoring and offline analysis, in both positive and negative ion modes. The improved system enabled the breath volatiles as well as condensates to be directly sampled, rapidly transmitted and efficiently ionized in a confined region, and then detected using an Orbitrap mass analyzer. RESULTS The molecular features with online and offline analysis of exhaled breath were demonstrated with obvious differences. A total of about 65 metabolites in positive ion mode and about 55 metabolites in negative ion mode were identified based on accurate m/z values. Exhalome profile and the composition proportion of different classes of compounds were obtained. The relative contents of metabolites from breath varied during different time periods throughout a day. CONCLUSIONS A more complete picture of the human breath metabolome was provided combining the results obtained from both online and offline analysis. The developed method allows analysis of breath samples with different status rapidly and directly, and it features simple operation and metabolite identification, requiring little or no sample preparation.
Collapse
Affiliation(s)
- Liping Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Kai Zhang
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastroenterology, Dongying People's Hospital, Dongying, Shandong, China
| | - Xin Geng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Chen W, Zou Y, Mo W, Di D, Wang B, Wu M, Huang Z, Hu B. Onsite Identification and Spatial Distribution of Air Pollutants Using a Drone-Based Solid-Phase Microextraction Array Coupled with Portable Gas Chromatography-Mass Spectrometry via Continuous-Airflow Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17100-17107. [PMID: 36395360 DOI: 10.1021/acs.est.2c05259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hazardous air pollutants can be unintentionally and intentionally released in many cases, such as industrial emissions, accidental events, and pesticide application. Under such events, the onsite operation is highly dependent on the molecular composition and spatial distribution of air pollutants in ambient air. However, it is usually difficult for people to reach hazardous and upper sites rapidly. In this work, we designed a new drone-based microextraction sampler array in which a solid-phase microextraction (SPME) fiber was mounted on drones for remote-control sampling at different spaces and was then coupled with a portable gas chromatography-mass spectrometry (PGC-MS) approach for quickly identifying hazardous air pollutants and their spatial distribution in ambient air within minutes. Acceptable analytical performances, including good sensitivity (detection limit at nanogram per liter level), reproducibility (relative standard deviation < 20%, n = 6), analytical speed (single sample within minutes), and excellent linear dynamic response (3 orders of magnitude) were obtained for direct measurement of air samples. The drone-SPME sampling mechanism of air pollutants involving an airflow adsorptive microextraction process was proposed. Overall, this drone-SPME sampling array can access hard-to-reach and dangerous environmental sites and provide air pollution distribution in different spaces, showing versatile potential applications in environmental analysis.
Collapse
Affiliation(s)
- Weini Chen
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou510632, China
| | - Yingtong Zou
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Wenzheng Mo
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou510632, China
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou510632, China
- Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou510530, China
| | - Bin Wang
- Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou510530, China
| | - Manman Wu
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
- School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Zhengxu Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou510632, China
| |
Collapse
|
30
|
Zivkovic Semren T, Majeed S, Fatarova M, Laszlo C, Pak C, Steiner S, Vidal-de-Miguel G, Kuczaj A, Mazurov A, Peitsch MC, Ivanov NV, Hoeng J, Guy PA. Application of Secondary Electrospray Ionization Coupled with High-Resolution Mass Spectrometry in Chemical Characterization of Thermally Generated Aerosols. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2147-2155. [PMID: 36218284 PMCID: PMC9634908 DOI: 10.1021/jasms.2c00222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Inhalation as a route for administering drugs and dietary supplements has garnered significant attention over the past decade. We performed real-time analyses of aerosols using secondary electrospray ionization (SESI) technology interfaced with high-resolution mass spectrometry (HRMS), primarily developed for exhaled breath analysis with the goal to detect the main aerosol constituents. Several commercially available inhalation devices containing caffeine, melatonin, cannabidiol, and vitamin B12 were tested. Chemical characterization of the aerosols produced by these devices enabled detection of the main constituents and screening for potential contaminants, byproducts, and impurities in the aerosol. In addition, a programmable syringe pump was connected to the SESI-HRMS system to monitor aerosolized active pharmaceutical ingredients (APIs) such as chloroquine, hydroxychloroquine, and azithromycin. This setup allowed us to detect caffeine, melatonin, hydroxychloroquine, chloroquine, and cannabidiol in the produced aerosols. Azithromycin and vitamin B12 in the aerosols could not be detected; however, our instrument setup enabled the detection of vitamin B12 breakdown products that were generated during the aerosolization process. Positive control was realized by liquid chromatography-HRMS analyses. The compounds detected in the aerosol were confirmed by exact mass measurements of the protonated and/or deprotonated species, as well as their respective collision-induced dissociation tandem mass spectra. These results reveal the potential wide application of this technology for the real-time monitoring of aerosolized active pharmaceutical ingredients that can be administered through the inhalation route.
Collapse
Affiliation(s)
- Tanja Zivkovic Semren
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Shoaib Majeed
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Maria Fatarova
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Csaba Laszlo
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Claudius Pak
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Sandro Steiner
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | | | - Arkadiusz Kuczaj
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Anatoly Mazurov
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Manuel C. Peitsch
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Nikolai V. Ivanov
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Julia Hoeng
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Philippe A. Guy
- PMI
R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| |
Collapse
|
31
|
Xu F, Zhou J, Yang H, Chen L, Zhong J, Peng Y, Wu K, Wang Y, Fan H, Yang X, Zhao Y. Recent advances in exhaled breath sample preparation technologies for drug of abuse detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Yang J, Xiong W, Liu C, Li J, Zhu R, Xia J, Yin Z, Tian R, Tang S, Li Z, Li H, Han Y, Si X, Jiang W, He P, Zhang F, Xu Y, Liu Z. Direct adsorption sampling and ambient mass spectrometry analysis of tobacco smoke with porous paper strips. Front Chem 2022; 10:1037542. [PMID: 36386000 PMCID: PMC9643588 DOI: 10.3389/fchem.2022.1037542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Chemical analysis of atmospheric aerosols by conventional analytical methods is usually required to perform complicated and time-consuming sample preparation processes. In recent decades, ambient ionization mass spectrometry (AI-MS) methods have been proven to be simple, rapid, and effective analytical tools for direct analysis of various complex samples. In this work, we applied porous paper filters for direct adsorptive sampling of tobacco smoke, and then the sampled paper filters were performed the emitters of the paper spray ionization (PSI) device. An auto-sampling device was made to control the generation and collection of tobacco smoke. Nicotine, the typical compound of tobacco smoke, was used to optimize the key conditions of auto-sampling. Moreover, different types of tobacco smoke were also compared with multivariate variable analysis, and the makers of tobacco smoke from different sources of tobacco smoke were investigated. By using this method, direct sampling and analysis of a single tobacco sample can be completed within minutes. Overall, our results show that PSI-MS is a powerful tool that integrates collection, extraction, ionization, and identification analytes in smoke.
Collapse
|
33
|
Shi L, Habib A, Bi L, Hong H, Begum R, Wen L. Ambient Ionization Mass Spectrometry: Application and Prospective. Crit Rev Anal Chem 2022; 54:1584-1633. [PMID: 36206159 DOI: 10.1080/10408347.2022.2124840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mass spectrometry (MS) is a formidable analytical tool for the analysis of non-polar to polar compounds individually and/or from mixtures, providing information on the molecular weights and chemical structures of the analytes. During the last more than one-decade, ambient ionization mass spectrometry (AIMS) has developed quickly, producing a wide range of platforms and proving scientific improvements in a variety of domains, from biological imaging to quick quality control. These methods have made it possible to detect target analytes in real time without sample preparation in an open environment, and they can be connected to any MS system with an atmospheric pressure interface. They also have the ability to analyze explosives, illicit drugs, disease diagnostics, drugs in biological samples, adulterants in food and agricultural products, reaction progress, and environmental monitoring. The development of novel ambient ionization techniques, such as probe electrospray ionization, paper spray ionization, and fiber spray ionization, employed even at picolitre to femtolitre solution levels to provide femtogram to attogram levels of the target analytes. The special characteristic of this ambient ion source, which has been extensively used, is the noninvasive property of PESI of examination of biological real samples. The results in the current review supports the idea that AIMS has emerged as a pioneer in MS-based approaches and that methods will continue to be developed along with improvements to existing ones in the near future.
Collapse
Affiliation(s)
- Lulu Shi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Huanhuan Hong
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Rockshana Begum
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Luhong Wen
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
34
|
Chen M, Li M, Zhang W, Bai H, Ma Q. Natural Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction Coupled with Direct Analysis in Real Time Mass Spectrometry: A Green Temperature-Mediated Analytical Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10919-10928. [PMID: 36000560 DOI: 10.1021/acs.jafc.2c03561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Green analytical chemistry (GAC) represents a rapidly growing research field that aims at developing novel analytical approaches with minimal consumption of hazardous reagents and solvents. The current study reports on a GAC methodology exploiting the unique physicochemical properties of natural deep eutectic solvents (NADESs), a supposedly environmentally friendly class of solvents. Based on a temperature-mediated strategy, the NADESs were manipulated to undergo multiple phase transitions for favorable functionality and performance. As proof-of-concept demonstrations, both hydrophobic and hydrophilic NADESs were prepared for the extraction and analysis of eight phthalate esters in aqueous samples (food simulants) and three aflatoxins in oily samples (edible oils), respectively. NADES-based dispersive liquid-liquid microextraction (DLLME) was employed to achieve high-efficiency sample pretreatment. Afterward, the NADESs were transformed from liquids into solids by tuning the peripheral temperature for a convenient phase separation from the sample matrices. The solidified NADES extracts were melted and vaporized at elevated temperatures by transmission-mode direct analysis in real time (DART) for further quadrupole-Orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS) analysis. The developed protocol was validated, achieving good repeatability with relative standard deviations (RSDs) of less than 9% and satisfactory sensitivity with limits of detection (LODs) and quantitation (LOQs) ranging from 0.1 to 0.8 and 0.2 to 2.0 μg/kg, respectively. The greenness of the analytical methodology was assessed with the calculated scores of 0.66 and 0.57 for the hydrophobic and hydrophilic NADES-based protocols, respectively. The method was applied to marketed samples, highlighting the great potential for green chemical analysis.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ming Li
- School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
| | - Wenxi Zhang
- Shaanxi Product Quality Supervision and Inspection Institute, Xi'an 710048, China
| | - Hua Bai
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
35
|
Sun Z, Guo W, Chan CK, Jin L, Griffith SM, Yu JZ, Chan W. Polyurethane Foam Face Masks as a Dosimeter for Quantifying Personal Exposure to Airborne Volatile and Semi-Volatile Organic Compounds. Chem Res Toxicol 2022; 35:1604-1613. [PMID: 35972223 DOI: 10.1021/acs.chemrestox.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Airborne volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) are commonly quantitated by collecting the analytes on solid sorbent tubes or passive air samplers, followed by solvent extraction and instrumental analysis, or by grab bag/canister measurements. We report herein a user-friendly sampling method by breathing through polyurethane foam (PUF) face masks to collect airborne VOCs and SVOCs for chemical analysis. Specifically, dibasic esters, phthalate esters, polycyclic aromatic hydrocarbons, linalool, and nicotine trapped on PUF masks were quantitated by gas chromatography-mass spectrometry analysis as model VOCs and SVOCs. Results showed that the amount of these model VOCs and SVOCs trapped on PUF masks is proportional to the exposure duration. After cross-validation by parallel sampling using XAD-2 packed sorbent tubes, the method was used to quantitate VOCs and SVOCs in a variety of indoor and outdoor environments with varying air concentrations of analytes, temperature, humidity, and wind speed. Because air pollution is considered a major cause of many human diseases and premature deaths and the developed PUF mask sampling method showed high trapping efficiencies for both VOCs and SVOCs, it is believed that the developed sampling method will find wide application in assessing air pollution-associated disease risks with possible extension to more classes of VOCs and SVOCs when coupled with suitable instrumental detection methods.
Collapse
Affiliation(s)
- Zhihan Sun
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Wanlin Guo
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Long Jin
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Jian Zhen Yu
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Wan Chan
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
36
|
Kahremanoğlu K, Tosun H, Eroğlu AE, Boyaci E. Recent progress in wearable extractive sampling technology. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Chen Z, Zhang W, Yang H, Min K, Jiang J, Lu D, Huang X, Qu G, Liu Q, Jiang G. A pandemic-induced environmental dilemma of disposable masks: solutions from the perspective of the life cycle. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:649-674. [PMID: 35388819 DOI: 10.1039/d1em00509j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has swept the world and still afflicts humans. As an effective means of protection, wearing masks has been widely adopted by the general public. The massive use of disposable masks has raised some emerging environmental and bio-safety concerns: improper handling of used masks may transfer the attached pathogens to environmental media; disposable masks mainly consist of polypropylene (PP) fibers which may aggravate the global plastic pollution; and the risks of long-term wearing of masks are elusive. To maximize the utilization and minimize the risks, efforts have been made to improve the performance of masks (e.g., antivirus properties and filtration efficiency), extend their functions (e.g., respiration monitoring and acting as a sampling device), develop new disinfection methods, and recycle masks. Despite that, from the perspective of the life cycle (from production, usage, and discard to disposal), comprehensive solutions are urgently needed to solve the environmental dilemma of disposable masks in both technologies (e.g., efficient use of raw materials, prolonging the service life, and enabling biodegradation) and policies (e.g., stricter industry criteria and garbage sorting).
Collapse
Affiliation(s)
- Zigu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weican Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
38
|
Yu LD, Li N, Tong YJ, Han J, Qiu J, Ye YX, Chen G, Ouyang G, Zhu F. From exogenous to endogenous: Advances in vivo sampling in living systems. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
39
|
Costa Queiroz ME, Donizeti de Souza I, Gustavo de Oliveira I, Grecco CF. In vivo solid phase microextraction for bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
|
41
|
Effect of household air pollutants on the composition of exhaled breath characterized by solid-phase microextraction and needle-trap devices. Anal Bioanal Chem 2022; 414:5573-5583. [PMID: 35274153 DOI: 10.1007/s00216-022-03997-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 01/07/2023]
Abstract
Exposure to household air pollutants is becoming a serious environmental health risk. Various methods can be applied to assess humans' exposure status to indoor pollutants, with breath monitoring being among the best options. Breath sampling is fast and non-invasive, and contains compounds that can be used as markers for evaluating exposure length and estimating internal concentrations of pollutants. However, the distribution of compounds between gas and droplets in breath samples represents one of the key challenges associated with this analytical method. In this work, a needle-trap device (NTD) was prepared by packing the needle with a porous filter, divinyl benzene, and Carboxen to enable the exhaustive capture of both droplet-bound and gaseous components. Furthermore, fiber-based solid-phase microextraction (SPME) was also applied to extract compounds from only the gas phase to distinguish this portion of analytes from the total concentration in the sample. Dynamic, real-time breath sampling was enabled via a new sampling tube equipped with 2 one-way valves, which was specially designed for this work. Both methods provided satisfactory reproducibility, repeatability, and sensitivity, with detection limits as low as 0.05 ng mL-1. To investigate the real-world applicability of the proposed devices, breath samples were obtained from volunteers who had been exposed to candle and incense smoke and aerosol sprays, or had smoked cannabis. The results revealed the high concentration of organic air pollutants in inhaled air (maximum of 215 ng mL-1) and exhaled breath (maximum of 14.4 ng mL-1) and a correlation between the components in inhaled air and exhaled breath. Significantly, the findings further revealed that the developed NTD has enhanced breath-sample determinations, especially for polar compounds, which tend to remain trapped in breath droplets.
Collapse
|
42
|
Hu B. Recent Advances in Facemask Devices for In Vivo Sampling of Human Exhaled Breath Aerosols and Inhalable Environmental Exposures. Trends Analyt Chem 2022; 151:116600. [PMID: 35310778 PMCID: PMC8917876 DOI: 10.1016/j.trac.2022.116600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the COVID-19 pandemic, the unprecedented use of facemasks has been requiring for wearing in daily life. By wearing facemask, human exhaled breath aerosols and inhaled environmental exposures can be efficiently filtered and thus various filtration residues can be deposited in facemask. Therefore, facemask could be a simple, wearable, in vivo, onsite and noninvasive sampler for collecting exhaled and inhalable compositions, and gain new insights into human health and environmental exposure. In this review, the recent advances in developments and applications of in vivo facemask sampling of human exhaled bacteria, viruses, proteins, and metabolites, and inhalable facemask contaminants and air pollutants, are reviewed. New features of facemask sampling are highlighted. The perspectives and challenges on further development and potential applications of facemask devices are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| |
Collapse
|
43
|
Schorer V, Haas J, Stach R, Kokoric V, Groß R, Muench J, Hummel T, Sobek H, Mennig J, Mizaikoff B. Towards the direct detection of viral materials at the surface of protective face masks via infrared spectroscopy. Sci Rep 2022; 12:2309. [PMID: 35145194 PMCID: PMC8831636 DOI: 10.1038/s41598-022-06335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
The ongoing COVID-19 pandemic represents a considerable risk for the general public and especially for health care workers. To avoid an overloading of the health care system and to control transmission chains, the development of rapid and cost-effective techniques allowing for the reliable diagnosis of individuals with acute respiratory infections are crucial. Uniquely, the present study focuses on the development of a direct face mask sampling approach, as worn (i.e., used) disposable face masks contain exogenous environmental constituents, as well as endogenously exhaled breath aerosols. Optical techniques-and specifically infrared (IR) molecular spectroscopic techniques-are promising tools for direct virus detection at the surface of such masks. In the present study, a rapid and non-destructive approach for monitoring exposure scenarios via medical face masks using attenuated total reflection infrared spectroscopy is presented. Complementarily, IR external reflection spectroscopy was evaluated in comparison for rapid mask analysis. The utility of a face mask-based sampling approach was demonstrated by differentiating water, proteins, and virus-like particles sampled onto the mask. Data analysis using multivariate statistical algorithms enabled unambiguously classifying spectral signatures of individual components and biospecies. This approach has the potential to be extended towards the rapid detection of SARS-CoV-2-as shown herein for the example of virus-like particles which are morphologically equivalent to authentic virus-without any additional sample preparation or elaborate testing equipment at laboratory facilities. Therefore, this strategy may be implemented as a routine large-scale monitoring routine, e.g., at health care institutions, nursing homes, etc. ensuring the health and safety of medical personnel.
Collapse
Affiliation(s)
- Vanessa Schorer
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Julian Haas
- Hahn-Schickard, Sedanstraße 14, 89077, Ulm, Germany
| | - Robert Stach
- Hahn-Schickard, Sedanstraße 14, 89077, Ulm, Germany
| | | | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081, Ulm, Germany
| | - Jan Muench
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081, Ulm, Germany
| | - Tim Hummel
- Labor Dr. Merk & Kollegen GmbH, Beim Braunland 1, 88416, Ochsenhausen, Germany
- Boehringer Ingelheim Therapeutics GmbH, Beim Braunland 1, 88416, Ochsenhausen, Germany
| | - Harald Sobek
- Labor Dr. Merk & Kollegen GmbH, Beim Braunland 1, 88416, Ochsenhausen, Germany
| | - Jan Mennig
- Labor Dr. Merk & Kollegen GmbH, Beim Braunland 1, 88416, Ochsenhausen, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Hahn-Schickard, Sedanstraße 14, 89077, Ulm, Germany.
| |
Collapse
|
44
|
López-Lorente ÁI, Pena-Pereira F, Pedersen-Bjergaard S, Zuin VG, Ozkan SA, Psillakis E. The Ten Principles of Green Sample Preparation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116530] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Abstract
Background COVID-19 is a highly contagious respiratory disease that can be transmitted through human exhaled breath. It has caused immense loss and has challenged the healthcare sector. It has affected the economy of countries and thereby affected numerous sectors. Analysis of human breath samples is an attractive strategy for rapid diagnosis of COVID-19 by monitoring breath biomarkers. Content Breath collection is a noninvasive process. Various technologies are employed for detection of breath biomarkers like mass spectrometry, biosensors, artificial learning, and machine learning. These tools have low turnaround time, robustness, and provide onsite results. Also, MS-based approaches are promising tools with high speed, specificity, sensitivity, reproducibility, and broader coverage, as well as its coupling with various chromatographic separation techniques providing better clinical and biochemical understanding of COVID-19 using breath samples. Summary Herein, we have tried to review the MS-based approaches as well as other techniques used for the analysis of breath samples for COVID-19 diagnosis. We have also highlighted the different breath analyzers being developed for COVID-19 detection.
Collapse
Affiliation(s)
- Jyoti Kanwar Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur-342005, Rajasthan, India
| | - Mithu Banerjee
- Address correspondence to this author at: AIIMS, Road, MI Phase-2, Basni, Jodhpur, Rajasthan, India—342005. E-mail:
| |
Collapse
|
46
|
Oliveira LFD, Mallafré-Muro C, Giner J, Perea L, Sibila O, Pardo A, Marco S. Breath analysis using electronic nose and gas chromatography-mass spectrometry: A pilot study on bronchial infections in bronchiectasis. Clin Chim Acta 2021; 526:6-13. [PMID: 34953821 DOI: 10.1016/j.cca.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS In this work, breath samples from clinically stable bronchiectasis patients with and without bronchial infections by Pseudomonas Aeruginosa- PA) were collected and chemically analysed to determine if they have clinical value in the monitoring of these patients. MATERIALS AND METHODS A cohort was recruited inviting bronchiectasis patients (25) and controls (9). Among the former group, 12 members were suffering PA infection. Breath samples were collected in Tedlar bags and analyzed by e-nose and Gas Chromatography-Mass Spectrometry (GC-MS). The obtained data were analyzed by chemometric methods to determine their discriminant power in regards to their health condition. Results were evaluated with blind samples. RESULTS Breath analysis by electronic nose successfully separated the three groups with an overall classification rate of 84% for the three-class classification problem. The best discrimination was obtained between control and bronchiectasis with PA infection samples 100% (CI95%: 84-100%) on external validation and the results were confirmed by permutation tests. The discrimination analysis by GC-MS provided good results but did not reach proper statistical significance after a permutation test. CONCLUSIONS Breath sample analysis by electronic nose followed by proper predictive models successfully differentiated between control, Bronchiectasis and Bronchiectasis PA samples.
Collapse
Affiliation(s)
- Luciana Fontes de Oliveira
- Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Celia Mallafré-Muro
- Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona, Marti I Franqués 1, 08028 Barcelona, Spain
| | - Jordi Giner
- Department of Pneumology and Allergy. Hospital de la Sta. Creu I Sant Pau. Barcelona, Spain
| | - Lidia Perea
- Respiratory Department, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Antonio Pardo
- Department of Electronics and Biomedical Engineering, University of Barcelona, Marti I Franqués 1, 08028 Barcelona, Spain
| | - Santiago Marco
- Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona, Marti I Franqués 1, 08028 Barcelona, Spain.
| |
Collapse
|
47
|
Chan W, Guo W, Yu JZ. Polyurethane-Based Face Mask as a Sampling Device for Environmental Tobacco Smoke. Anal Chem 2021; 93:13912-13918. [PMID: 34609143 DOI: 10.1021/acs.analchem.1c02906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Environmental tobacco smoke (ETS), also known as secondhand smoking, contains human carcinogens associated with the development of many human diseases, including stroke, heart disease, leukemia, and lung cancer. Due to these adverse health effects, a sensitive and selective method is crucial for assessing the health impacts of ETS. While current methods to evaluate ETS exposure are either invasive or nonspecific and insensitive, in this study, we assessed the use of polyurethane foam face masks as a sampling medium to collect tobacco smoke-specific nicotine and nitrosamines for estimating personal exposure to ETS. This method was used in conjunction with tandem mass spectrometry coupled with isotope-dilution detection. After validation by comparison with the National Institute for Occupational Safety and Health standard method (NIOSH 2551) for nicotine, we quantitated ETS exposure in indoor and outdoor environments. The analysis shows the applicability of the method for monitoring nicotine down to ∼0.20 mg/m3 near an outdoor smoking hotspot and up to ∼5.2 mg/m3 in a room with burning cigarettes, all with a time resolution as short as 5 min. In comparison with the NIOSH method, the newly developed method is convenient, inexpensive, and does not require a personal sampling pump, thus can facilitate large-scale ETS exposure monitoring.
Collapse
Affiliation(s)
- Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wanlin Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jian Zhen Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
48
|
Cai SH, Di D, Yuan ZC, Chen W, Hu B. Paper-in-Facemask Device for Direct Mass Spectrometry Analysis of Human Respiratory Aerosols and Environmental Exposures via Wearable Continuous-Flow Adsorptive Sampling: A Proof-of-Concept Study. Anal Chem 2021; 93:13743-13748. [PMID: 34609849 DOI: 10.1021/acs.analchem.1c03406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Facemasks are considered safe and wearable devices that cover the human mouth and nose for filtering exhaled aerosols and inhaled environmental exposures; various chemical and environmental residues thus can remain in facemasks. Therefore, direct analysis of residues in facemasks can be used to investigate the wearer's health and behavior. Here, we developed a simple paper-in-facemask sampling method for adsorbing a wearer's respiratory aerosol and environmental exposures by fixing paper strips at the outside and inside surfaces of facemasks, and the paper strips were then analyzed by paper spray mass spectrometry (PSMS) for directly detecting adsorbed analytes without any sample pretreatment. The applicability of this device was demonstrated by directly analyzing exhaled aerosolized saliva, breath metabolites, and inhalable environmental exposures. The technical aspects, including sampling time, sampling position, paper property, and spray solvent, were investigated. The sampling process was revealed to involve a continuous-flow adsorptive mechanism. These findings motivated us to extend this work and build a wearable sampling device that is capable of simultaneously monitoring both exhaled and inhaled biomarkers in situ to investigate human health and environmental exposure. This work highlights that facemasks are promising platforms for aerosol collection and direct MS analysis, which is expected to be a promising method for monitoring human health, diseases, and behaviors.
Collapse
Affiliation(s)
- Shen-Hui Cai
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Zi-Cheng Yuan
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Weini Chen
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| |
Collapse
|
49
|
Hu B, Ouyang G. In situ solid phase microextraction sampling of analytes from living human objects for mass spectrometry analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Godage NH, Olomukoro AA, Emmons RV, Gionfriddo E. In vivo analytical techniques facilitated by contemporary materials. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|