1
|
Wang X, Xu R, Wang Y, Li M, Wei H, Qin G, Li Y, Wei Y. Self-supplying of hydrogen peroxide nanozyme-based colorimetric sensing array as electronic tongue for biothiol detection and disease discrimination. Talanta 2025; 288:127727. [PMID: 39965379 DOI: 10.1016/j.talanta.2025.127727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Developing a highly reliably and sensitive nanozyme-based colorimetric sensor array for biothiols analysis is critical owing to they play an essential role in diagnosing disease. The required procedure of introducing hydrogen peroxide (H2O2) directly into the colorimetric reaction systems in traditional biothiols array analysis limits its applicability due to its poor stability and inhibition in biomolecular activity by using the high-concentration H2O2. Herein, we carried out a "green" and convenient approach to propose for the biothiol detection and disease discrimination through nanozymes-based colorimetric sensor technique without adding the high-concentration H2O2 for the first time. The copper peroxide nanodots (CPNs) and graphene oxide (GO) modified CPNs (GO@CPNs) are as sensing units to release H2O2 and Cu2+ under acidic conditions, which triggered a Fenton-like reaction, generating hydroxyl radical (•OH) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) accompanied by a change in TMB color from colorless to blue. Due to the synergistic effect of Cu2+ and GO, GO@CPNs showed increased the activity of peroxidase-like compared to CPNs. Therefore, the catalytic abilities of nanozymes-based colorimetric sensing array were inhibited to different degrees by different biothiols (i.e., glutathione (GSH), cysteine (Cys) and homocysteine (Hcy)) with a detection limit of 50 nM, which could be precisely distinguished by using pattern recognition method. Besides, the detection of a single biothiol at different concentrations and mixtures of biothiols has also been achieved. Moreover, the real biological samples (cells and human serum) can be accurately discriminated through array method, which demonstrated its potential application of medical diagnosis.
Collapse
Affiliation(s)
- Xin Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Ruoping Xu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yudan Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Meihong Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Hong Wei
- Chenggong District People's Hospital, Kunming, Yunnan, 650500, People's Republic of China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China.
| | - Yupeng Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China.
| | - Yubo Wei
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
2
|
Wang L, Wang L, Jing L, Yang Y, Miao H, Liu X, Suonanmu D, Ren Q, Wang F, Li C. A ratio fluorescence/colorimetry/smartphone triple-mode sensor based on solvent-dominated signal amplification strategy for precise and rapid detection of melatonin in fruit juice. Mikrochim Acta 2025; 192:380. [PMID: 40434497 DOI: 10.1007/s00604-025-07248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
A ratio fluorescence/colorimetry/smartphone triple-mode sensor based on Ru-C3N4 was established for precise and rapid detection of melatonin (MT). Specifically, Ru-C3N4 with fine luminous characteristic and peroxidase-like activity catalyzes the oxidation of OPD to generate luminescent DAP which in turn suppresses intrinsic fluorescence of Ru-C3N4 because of the fluorescence inner filter effect (IFE). MT can inhibit this catalytic process, leading to partial recovery of the fluorescence of Ru-C3N4 and the decrease in UV-vis signal of the reaction system, as well as the gradual fading of the yellow color of the reaction solution. Hence, this triple-mode sensor can realize precise, reliable, and high-throughput determination of MT with correlative detection limits of 0.32, 0.46, and 0.67 μM. Moreover, this triple-mode sensor has been applied to MT detection in multiple juice samples with recoveries ranging from 86.00 to 99.68%, which indicates the suitability of the novel idea for the research and development of multimode optical sensors for food analysis.
Collapse
Affiliation(s)
| | | | - Lin Jing
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yang Yang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Hui Miao
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Xiaoya Liu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Dongzhi Suonanmu
- Tibetan Medicine Research Institute, University of Tibetan Medicine, Tibet, 850000, People's Republic of China
| | - Qingjia Ren
- Tibetan Medicine Research Institute, University of Tibetan Medicine, Tibet, 850000, People's Republic of China.
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
- Tibetan Medicine Research Institute, University of Tibetan Medicine, Tibet, 850000, People's Republic of China.
| |
Collapse
|
3
|
Deng X, Wu J, Jiang ZW, Liu W, Gong X, Cao Y, Zhang P, Wang Y. Detection of d-Amino Acids in Saliva for Gastric Cancer Diagnosis Using Pt/MXene Plasmonic Nanozymes. Anal Chem 2025; 97:10289-10298. [PMID: 40346020 DOI: 10.1021/acs.analchem.5c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Developing noninvasive strategies for gastric cancer diagnosis is urgent since the current clinical methods usually cause discomfort and risk of infection to patients. Herein, we develop a noninvasive and highly sensitive method for detecting d-amino acids (DAAs) in saliva as a potential biomarker for early gastric cancer diagnosis. By using a novel Pt/Ti3C2Tx nanozyme probe, we demonstrate enhanced peroxidase-like activity and photothermal performance under near-infrared (NIR) light irradiation. This probe effectively catalyzes the conversion of H2O2, produced by the reaction of DAA and DAA oxidase, into reactive oxygen species, significantly accelerating the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine to its oxidized state. The depth of the resulting blue color is directly proportional to the DAA concentration in the saliva. Our method not only ensures high sensitivity and specificity for DAA detection but also establishes a dual-mode detection platform that enhances both colorimetric and thermal signals under NIR light irradiation. This platform has been successfully applied in the analysis of 45 clinical saliva samples, confirming its feasibility and diagnostic accuracy for early gastric cancer screening. This study offers a rapid and noninvasive diagnostic approach for clinical patients with gastric cancer, providing a promising alternative to current invasive methods.
Collapse
Affiliation(s)
- Xiaohui Deng
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Jiangling Wu
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Zhong Wei Jiang
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Wei Liu
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xue Gong
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yuzhi Cao
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Pu Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yi Wang
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
4
|
Yan G, Guo M, Yang R, Li X, Gu C, Wang K, Liu Y, Gao M, Huang C, Zou H. Copper Vacancy-Doped Cu 2-xSe Activating Nanozyme Sensor Arrays for Multiprotein Discrimination and Cancer Screening. Anal Chem 2025; 97:9345-9352. [PMID: 40267032 DOI: 10.1021/acs.analchem.5c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Given the complexity and interrelated nature of biological activities, acquiring multitarget information is crucial for accurate cancer diagnosis. In this study, we developed a cross-reactive sensor array using peroxidase-like nonstoichiometric copper selenide nanoparticles (Cu2-xSe), which featured varying copper vacancies, for multiplex protein detection and cancer screening. The Cu2-xSe nanoparticles demonstrated outstanding peroxidase-like activity that can be modulated to varying degrees in the presence of multiple proteins with varying isoelectric points and compositions, generating fingerprint outputs. By integrating pattern recognition method principal component analysis with linear discriminant analysis (PCA-LDA), the sensor array effectively discriminated among six proteins and was further applied to cells and clinical samples, attaining 100% accuracy in differentiating cancer patients from healthy individuals, as well as in identifying specific cancer types, namely, liver and prostate cancers. Moreover, as a proof-of-concept, the partial least-squares regression (PLSR) approached the accurate detection of AFP and PSA within the range of 0.1-2.0 μg/L in the complex biological matrix. These results highlighted the practical potential of multitarget sensing and clinical diagnosis by the nanozyme-based chemical nose strategies.
Collapse
Affiliation(s)
- Guojuan Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Meihan Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ruiju Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoxiao Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chenlei Gu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ke Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yiming Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mingxuan Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hongyan Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Li G, He W, Yan R, Cen C, Tan X, He Y, Wu D, Huang Y. Ratiometric fluorescent aptasensor for determination of Golgi Protein 73 based on boron, nitrogen co-doped carbon quantum dots and copper metal-organic framework. Talanta 2025; 294:128279. [PMID: 40339338 DOI: 10.1016/j.talanta.2025.128279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/19/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
Hepatocellular carcinoma (HCC), characterized by poor early diagnosis, exhibits the second-highest lethality rate among malignancies. This clinical challenge underscores the significance of Golgi protein 73 (GP73) as a promising serum biomarker for HCC detection. Herein, a ratiometric fluorescent aptasensor was constructed employing a dual-signal modulation strategy. The system integrated boron, nitrogen co-doped carbon quantum dots (BNCQDs) as the first fluorescent signal (I445) with a functional copper-based metalorganic framework conjugated with GP73-specific aptamer (Cu-MOF-Apt). The latter served dual functions: target recognition and peroxidase-mimetic catalyst for converting o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP), another fluorescent signal (I560). The peroxidase-like activity of Cu-MOF increased with the increase of GP73Apt attached. In the presence of GP73, target binding induced structural disintegration of Cu-MOF-Apt through GP73-Apt complex formation, thereby suppressing DAP generation. This target-responsive process led to the reduction of the fluorescence intensity of DAP and the increase of the fluorescence intensity of BNCQDs. Under the optimal conditions, the established ratiometric relationship (I445/I560 = 0.0007X + 0.7021, R2 = 0.997) enables quantitative detection of GP73 in the range of 25.00-600.00 ng/mL with the limit of detection (LOD) of 14.06 ng/mL. Clinical validation using serum specimens demonstrated excellent reproducibility (RSD 0.28 %-0.98 %) and recovery rates (99.75 %-107.49 %). The ratiometric fluorescent aptasensor's linear range effectively covers clinically relevant GP73 concentrations in HCC patients, while the robust serum analysis performance confirms its potential for practical diagnostic applications.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Wei He
- College of Chemistry, School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Ruijie Yan
- College of Chemistry, School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China
| | - Cunhong Cen
- College of Chemistry, School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiaohong Tan
- College of Chemistry, School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China
| | - Yanhong He
- Department of Scientific Research, Maoming People's Hospital, Maoming, 525000, People's Republic of China.
| | - Dang Wu
- College of Chemistry, School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
6
|
Ren Z, Deng Q, Wang Y, Yang Y, Wang H, Liu F, Jing W. Machine learning assisted nanozyme sensor array for accurate identification and discrimination of flavonoids in healthy tea. Food Chem 2025; 486:144612. [PMID: 40339423 DOI: 10.1016/j.foodchem.2025.144612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Identifying flavonoids in herbs is of great significance for elucidating their biological activity and pharmacological effects. However, distinguishing and detecting multiple flavonoids simultaneously remains a challenge. Here, an innovative citric acid-Cu (CA-Cu) nanozyme with peroxidase mimic (POD) and laccase mimic (LAC) activities was successfully synthesized. Due to the varying inhibitory effects of flavonoids on CA-Cu dual-enzyme mimicking activities, and the degree of inhibition increasing with prolonged reaction time, a nanozyme sensor array was constructed based on reaction kinetics and applied to the identification of five flavonoids. This technique further streamlines the building of sensing channels. Moreover, by integrating various machine learning algorithms with the sensor arrays, accurate identification and prediction of five flavonoids in multiple herb samples have been successfully achieved. Finally, the sensor array successfully achieved the differentiation and recognition of multiple healthy tea, demonstrating its feasibility in efficiently distinguishing and detecting flavonoids in complex samples.
Collapse
Affiliation(s)
- Zemin Ren
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Qingxu Deng
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Yu Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Yajun Yang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Hongbin Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Fufeng Liu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Wenjie Jing
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Nakazato M, Hirata T. Elemental and isotopic analyses of individual nanoparticles using single particle inductively coupled plasma mass spectrometry. ANAL SCI 2025:10.1007/s44211-025-00766-0. [PMID: 40251451 DOI: 10.1007/s44211-025-00766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/30/2025] [Indexed: 04/20/2025]
Abstract
Sensitive and rapid technique for elemental analysis of individual nanoparticles is increasingly desired in various research fields such as geochemical, environmental, clinical, and biochemical sciences. Among the techniques, single particle inductively coupled plasma mass spectrometry (spICP-MS) becomes one of the principal choices for the analytical method because of both the simple sample preparation and high analytical throughput, realizing the statistical treatments of the resulting data obtained from large numbers of particles. The analytical capability of the spICP-MS is further improved by the combination of ICP ion source with various types of mass spectrometers including quadrupole-type instrument, multiple collector system setup equipped on magnetic sector, or superfast mass scanning data acquisition utilizing time of flight-type mass spectrometers. In this article, both the principles and applications of size, elemental, and isotopic analysis of nanoparticles using spICP-MS are critically reviewed.
Collapse
Affiliation(s)
- Masaki Nakazato
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8560, Japan.
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Takafumi Hirata
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Xia J, Fu R, Li Z, Ding Y, Zhao H, Ye D. Graphyne-supported manganese single-atom nanozyme sensor array for bisphenol identification. Talanta 2025; 285:127326. [PMID: 39647278 DOI: 10.1016/j.talanta.2024.127326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Bisphenols, as common industrial raw materials, are widely used in food packaging such as plastics. However, their migration and residue may affect the hormone secretion of the human body and then lead to health problems. Therefore, a low-cost, rapid and simple detection method that can simultaneously detect multiple bisphenols is very necessary. In this work, two types of manganese single-atom nanozymes with excellent peroxidase-like activity were synthesized with graphyne as a support. A high-throughput colorimetric sensor array was constructed using three types of nanozymes (Mn-GY, Mn-GY-2N, GY-2N) to distinguish various bisphenols. Due to the absorption of bisphenol molecules on the surface of nanozymes, the activity of nanozymes decreases differently, when different bisphenols are added to the catalytic system. The results proved that the prepared sensor had good linear relationships at both low and high concentrations for determination of five bisphenols. The LODs of BPA, BPS, BPF, BPAF, and Diphenolic Acid were 0.443, 0.280, 0.277, 0.424, and 0.326 μM respectively. Compared with traditional sensors, the sensor array can simultaneously detect multiple analytes with high throughput, showing great advantage in dealing with complex samples. Combined with machine learning algorithms, five bisphenols can be successfully identified by the obtained array data. The sensor array also demonstrated excellent performance in the detection of both mixed samples and real samples. This high-throughput colorimetric sensor array achieves accurate and sensitive detection of bisphenol substances, providing new means and ideas for enhancing food safety. At the same time, the simple and rapid identification of structurally similar compounds demonstrates its potential for more precise analysis, providing possibilities for future development.
Collapse
Affiliation(s)
- Jianing Xia
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Ruixue Fu
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhen Li
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yaping Ding
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
9
|
Tian Q, Li S, Tang Z, Zhang Z, Du D, Zhang X, Niu X, Lin Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv Healthc Mater 2025; 14:e2401630. [PMID: 39139016 DOI: 10.1002/adhm.202401630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
As nanoscale materials with the function of catalyzing substrates through enzymatic kinetics, nanozymes are regarded as potential alternatives to natural enzymes. Compared to protein-based enzymes, nanozymes exhibit attractive characteristics of low preparation cost, robust activity, flexible performance adjustment, and versatile functionalization. These advantages endow them with wide use from biochemical sensing and environmental remediation to medical theranostics. Especially in biomedical diagnosis, the feature of catalytic signal amplification provided by nanozymes makes them function as emerging labels for the detection of biomarkers and diseases, with rapid developments observed in recent years. To provide a comprehensive overview of recent progress made in this dynamic field, here an overview of biomedical diagnosis enabled by nanozymes is provided. This review first summarizes the synthesis of nanozyme materials and then discusses the main strategies applied to enhance their catalytic activity and specificity. Subsequently, representative utilization of nanozymes combined with biological elements in disease diagnosis is reviewed, including the detection of biomarkers related to metabolic, cardiovascular, nervous, and digestive diseases as well as cancers. Finally, some development trends in nanozyme-enabled biomedical diagnosis are highlighted, and corresponding challenges are also pointed out, aiming to inspire future efforts to further advance this promising field.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ziyu Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiao Zhang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
10
|
Wang K, Lin X, Lv X, Xie M, Wu J, Wu JJ, Luo Y. Nanozyme-based aptasensors for the detection of tumor biomarkers. J Biol Eng 2025; 19:13. [PMID: 39920818 PMCID: PMC11806818 DOI: 10.1186/s13036-025-00485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
A nanozyme-based aptasensor combines the unique properties of nanozymes with the specificity of aptamers for the detection of various biomolecules. Nanozymes are nanomaterials that possess enzyme-like properties, demonstrating substantial potential for enhancing the sensing capabilities of biosensors. In recent years, the incorporation of nanozymes into biosensors has opened new avenues for the detection of tumor biomarkers. The unique attributes of nanozymes and aptamers lead to biosensors characterized by high sensitivity, specificity, reproducibility and accuracy in analytical performance. This article reviews the research progress of nanozyme-based aptasensors in tumor biomarker detection over the past decade. We categorize these sensors based on their sensing modes and target types, and examine the properties and applications of the nanozymes employed in these devices, providing a thorough discussion of the strengths and weaknesses associated with each sensor type. Finally, the review highlights the strengths and challenges associated with nanozyme-based biosensors and envisions future developments and applications in this field. The objective is to provide insights for improving biosensor performance in tumor biomarker detection, thereby contributing to advancements in precision cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China.
| | - Xiao Lv
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Mingna Xie
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Jinyu Wu
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Yang Luo
- Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| |
Collapse
|
11
|
Munusamy S, Zheng H, Jahani R, Zhou S, Chen J, Kong J, Guan X. DNA-Assisted CRISPR-Cas12a Enhanced Fluorescent Assay for Protein Detection in Complicated Matrices. ACS APPLIED BIO MATERIALS 2025; 8:754-762. [PMID: 39700063 PMCID: PMC12006969 DOI: 10.1021/acsabm.4c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Proteins are important biological macromolecules that perform a wide variety of functions in the cell and human body, and can serve as important biomarkers for early diagnosis and prognosis of human diseases as well as monitoring the effectiveness of disease treatment. Hence, sensitive and accurate detection of proteins in human biospecimens is imperative. However, at present, there is no ideal method available for the detection of proteins in clinical samples, many of which are present at ultralow (less than 1 pM) concentrations and in complicated matrices. Herein, we report an ultrasensitive and selective DNA-assisted CRISPR-Cas12a enhanced fluorescent assay (DACEA) for protein detection with detection limits reaching as low as attomolar concentrations. The high assay sensitivity was accomplished through the combined DNA barcode amplification (by using dual-functionalized AuNPs) and CRISPR analysis, while the high selectivity and high resistance to the matrix effects of our method were accomplished via the formation of protein-antibody sandwich structure and the specific recognition of Cas12a (under the guidance of crRNA) toward the designed target ssDNA. Given its ability to accurately and sensitively detect trace amounts of proteins in complicated matrices, the DACEA protein assay platform pioneered in this work has a potential application in routine protein biomarker testing.
Collapse
Affiliation(s)
| | - Haiyan Zheng
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rana Jahani
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Shuo Zhou
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Jun Chen
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Juanhua Kong
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Xiyun Guan
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
12
|
Xu Z, Zhan Y, Zhang S, Xun Z, Wang L, Chen X, Liu B, Peng X. An albumin fluorescent sensor array discriminates ochratoxins. Chem Commun (Camb) 2025; 61:564-567. [PMID: 39655994 DOI: 10.1039/d4cc05946h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A sensor array that can distinguish ochratoxins based on the fluorescence of the albumin-ochratoxin complex has been developed. This sensor array enabled the identification of ochratoxins and their mixtures in real food samples.
Collapse
Affiliation(s)
- Zhongyong Xu
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| | - Yilin Zhan
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| | - Shiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518060, China
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Lei Wang
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| | - Xiaoqiang Chen
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| | - Bin Liu
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| | - Xiaojun Peng
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Zhou X, Huang S, Guo W, Liu W, Wen M, Shang L. Multicolor Gold Clusterzyme-Enabled Construction of Ratiometric Fluorescent Sensor Array for Visual Biosensing. Anal Chem 2024; 96:18873-18879. [PMID: 39546635 DOI: 10.1021/acs.analchem.4c04701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The simultaneous detection of multiple bioanalytes with similar structures has been a long-standing challenge for biological research and disease diagnosis. Bioreceptor-inspired sensor arrays provide an attractive and competitive solution for addressing this challenge, but applying this technique to biosensing in practical application scenarios is complicated by many factors such as the lack of robust probes, interference from the biological matrix, and difficulty for on-site analysis. In this work, by taking advantage of the intrinsic fluorescence and enzyme-mimic properties of gold nanoclusters (AuNCs), we report the design of an innovative ratiometric sensor array toward enhanced fluorescent visual biosensing. With biologically important phosphates as an example, we show that the present fluorescent clusterzyme-based ratiometric sensor array could effectively discriminate and detect eight types of phosphates. In particular, AuNCs with three different emission colors (blue, green, and red) and good peroxidase-mimic properties were employed as the sensing units, and the presence of phosphates affected both the intrinsic fluorescence and the enzymatic activity of these AuNCs, yielding distinct optical responses in a ratiometric manner. Moreover, a portable sensor array was established by further integrating these fluorescent clusterzymes into a hydrogel matrix, which could visually identify different phosphates based on their distinct fluorescence color changes. Consequently, the point-of-care diagnosis of urinary tract infections at different levels was achieved by analyzing urinary microbial ATP via the present strategy. This study illustrates the great potential of clusterzyme-based fluorescent sensor arrays as a promising biosensing platform for disease diagnosis.
Collapse
Affiliation(s)
- Xiaomeng Zhou
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Saijin Huang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenfeng Guo
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an 710038, China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mengyao Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
14
|
Feng Z, Guo Y, Zhang Y, Zhang A, Jia M, Yin J, Shen G. Nanozymes: a bibliometrics review. J Nanobiotechnology 2024; 22:704. [PMID: 39538291 PMCID: PMC11562681 DOI: 10.1186/s12951-024-02907-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As novel multifunctional materials that merge enzyme-like capabilities with the distinctive traits of nanomaterials, nanozymes have made significant strides in interdisciplinary research areas spanning materials science, bioscience, and beyond. This article, for the first time, employed bibliometric methods to conduct an in-depth statistical analysis of the global nanozymes research and demonstrate research progress, hotspots and trends. Drawing on data from the Web of Science Core Collection database, we comprehensively retrieved the publications from 2004 to 2024. The burgeoning interest in nanozymes research across various nations indicated a growing and widespread trend. This article further systematically elaborated the enzyme-like activities, matrix, multifunctional properties, catalytic mechanisms and various applications of nanozymes, and the field encounters challenges. Despite notable progress, and requires deeper exploration guide the future research directions. This field harbors broad potential for future developments, promising to impact various aspects of technology and society.
Collapse
Affiliation(s)
- Zihan Feng
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuexin Guo
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yicong Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Aiqin Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Meng Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Gangyi Shen
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
15
|
Dai J, Li J, Jiao Y, Yang X, Yang D, Zhong Z, Li H, Yang Y. Colorimetric-SERS dual-mode aptasensor for Staphylococcus aureus based on MnO 2@AuNPs oxidase-like activity. Food Chem 2024; 456:139955. [PMID: 38852453 DOI: 10.1016/j.foodchem.2024.139955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
The nanozyme-linked aptamer-sorbent assay (NLASA) is a rapid way to screen and characterize aptamer binding to targets. In this paper, a MnO2@AuNPs@aptamer (Apt) based NLASA coupled with colorimetric-SERS dual-mode for Staphylococcus aureus (S. aureus) detection is presented. Cu,Fe-CDs were used as the reducing agent to synthesize MnO2 and gold nanoparticles (AuNPs). Then, they were fabricated to obtain MnO2@AuNPs with oxidase (OXD)-like and SERS activities. The S. aureus aptamer was conjugated to MnO2@AuNPs and enhanced the OXD-like activity, which realized the specific capture of S. aureus in food matrices. In addition, S. aureus improves the oxidation of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid (ABTS) but inhibits 3,3',5,5'-tetramethylbenzidine (TMB) to generate Raman-active oxTMB with MnO2@AuNPs@Apt. This sensor was used for detections of S. aureus in a concentration ranged from 101 to 107 CFU/mL with a detection limit of 0.926 CFU/mL (colorimetric) and 1.561 CFU/mL (SERS), and the recovery is 85%-105% in real samples.
Collapse
Affiliation(s)
- Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, Yunnan, PR China
| | - Jitao Li
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, Yunnan Minzu University, Kunming 650500, Yunnan, PR China
| | - Yang Jiao
- Yunnan Lunyang Technology Co., Ltd., Kunming 650000, China
| | - Xiaolan Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, Yunnan Minzu University, Kunming 650500, Yunnan, PR China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Zitao Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Hong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, Yunnan, PR China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| |
Collapse
|
16
|
Park YS, Park BU, Jeon HJ. Advances in machine learning-enhanced nanozymes. Front Chem 2024; 12:1483986. [PMID: 39483853 PMCID: PMC11524833 DOI: 10.3389/fchem.2024.1483986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Nanozymes, synthetic nanomaterials that mimic the catalytic functions of natural enzymes, have emerged as transformative technologies for biosensing, diagnostics, and environmental monitoring. Since their introduction, nanozymes have rapidly evolved with significant advancements in their design and applications, particularly through the integration of machine learning (ML). Machine learning (ML) has optimized nanozyme efficiency by predicting ideal size, shape, and surface chemistry, reducing experimental time and resources. This review explores the rapid advancements in nanozyme technology, highlighting the role of ML in improving performance across various bioapplications, including real-time monitoring and the development of chemiluminescent, electrochemical and colorimetric sensors. We discuss the evolution of different types of nanozymes, their catalytic mechanisms, and the impact of ML on their property optimization. Furthermore, this review addresses challenges related to data quality, scalability, and standardization, while highlighting future directions for ML-driven nanozyme development. By examining recent innovations, this review highlights the potential of combining nanozymes with ML to drive the development of next-generation diagnostic and detection technologies.
Collapse
Affiliation(s)
- Yeong-Seo Park
- Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Byeong Uk Park
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Hee-Jae Jeon
- Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon, Republic of Korea
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
17
|
Nie C, Shui J, Huang L, Wang J, Shen Y, Wu Y. Programming of a Portable Digital Monitoring System-Integrated DNA Aptamer Reversely Regulated Oxidase-Like Nanozyme for Real-Time Dynamic Analysis of Atmospheric Perfluorooctanoic Acid. Anal Chem 2024; 96:13512-13521. [PMID: 39110961 DOI: 10.1021/acs.analchem.4c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Timely and efficient analysis of the fluorinated per- and polyfluoroalkyl substances (PFAS) in an atmospheric environment is critical to environmental pollution traceability, early warnings, and governance. Here, a portable, reliable, and intelligent digital monitoring device for onsite real-time dynamic analysis of atmospheric perfluorooctanoic acid (PFOA) is proposed. The sensing mechanism is attributed to the oxidase-like activity of PtCoNPs@g-C3N4 that is reversely regulated by the surface modification of a PFOA-recognizable DNA aptamer, engineering a PFOA-activated oxidase-like activity of nanozyme (Apt-PtCoNPs@g-C3N4) to combine the nonfluorescence o-phenylenediamine (OPD) as the dual-modality response system. The present PFOA interacts with its DNA aptamer and dissociates from the surface of Apt-PtCoNPs@g-C3N4, restoring the oxidase-like activity of PtCoNPs@g-C3N4 to oxidize OPD into yellow fluorescence 2,3-diphenylaniline (DAP), thereby observing a PFOA-triggered colorimetric as well as fluorescence dual-modality change. Then, a hydrogel kit-programmed Apt-PtCoNPs@g-C3N4 + OPD system is used as the sensitive element to incorporate into this homemade portable device, automatically gathering and processing the PFOA-triggered hydrogel colorimetric and fluorescence image gray values by our self-weaving software, ultimately realizing the onsite real-time dynamic analysis of atmospheric PFOA surrounding a fluorochemical production plant. This work provides a direction and theoretical foundation for designing portable onsite screening devices that cater to other atmospheric contaminants detection requirements.
Collapse
Affiliation(s)
- Chao Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jiaxu Shui
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yizhong Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| |
Collapse
|
18
|
Yi JY, Ryu J, Jeong Y, Cho Y, Kim M, Jeon M, Park HH, Hwang NS, Jeong HJ, Sung C. One-step detection of procollagen type III N-terminal peptide as a fibrosis biomarker using fluorescent immunosensor (quenchbody). Anal Chim Acta 2024; 1317:342887. [PMID: 39030019 DOI: 10.1016/j.aca.2024.342887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Procollagen type III N-terminal peptide (P-III-NP) is a fibrosis biomarker associated with liver and cardiac fibrosis. Despite the value of P-III-NP as a biomarker, its analysis currently relies on enzyme-linked immunosorbent assays (ELISA) and radioimmunoassays (RIA), which require more than 3 h. To facilitate early diagnosis and treatment through rapid biomarker testing, we developed a one-step immunoassay for P-III-NP using a quenchbody, which is a fluorescence-labeled immunosensor for immediate signal generation. RESULTS To create quenchbodies, the total mRNA of P-III-NP antibodies was extracted from early-developed hybridoma cells, and genes of variable regions were obtained through cDNA synthesis, inverse PCR, and sequencing. A single-chain variable fragment (scFv) with an N-terminal Cys-tag was expressed in E. coli Shuffle T7, resulting in a final yield of 9.8 mg L-1. The fluorescent dye was labeled on the Cys-tag of the anti-P-III-NP scFv using maleimide-thiol click chemistry, and the spacer arm lengths between the maleimide-fluorescent dyes were compared. Consequently, a TAMRA-C6-labeled quenchbody exhibited antigen-dependent fluorescence signals and demonstrated its ability to detect P-III-NP at concentrations as low as 0.46 ng mL-1 for buffer samples, 1.0 ng mL-1 for 2 % human serum samples. SIGNIFICANCE This one-step P-III-NP detection method provides both qualitative and quantitative outcomes within a concise 5-min timeframe. Furthermore, its application can be expanded using a 96-well platform and human serum, making it a high-throughput and sensitive method for testing fibrotic biomarkers.
Collapse
Affiliation(s)
- Joon-Yeop Yi
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yujin Jeong
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Minyoung Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mijin Jeon
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea; Bio-Max/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
19
|
Zhang Y, Sun S, Wu Y, Chen F. Emerging Roles of Graphitic Carbon Nitride-based Materials in Biomedical Applications. ACS Biomater Sci Eng 2024; 10:4645-4661. [PMID: 39086282 DOI: 10.1021/acsbiomaterials.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Graphite carbon nitride (g-C3N4) is a two-dimensional conjugated polymer with a unique energy band structure similar to graphene. Due to its outstanding analytical advantages, such as relatively small band gap (2.7 eV), low-cost synthesis, high thermal stability, excellent photocatalytic ability, and good biocompatibility, g-C3N4 has attracted the interest of researchers and industry, especially in the medical field. This paper summarizes the latest research on g-C3N4-based composites in various biomedical applications, including therapy, diagnostic imaging, biosensors, antibacterial, and wearable devices. In addition, the application prospects and possible challenges of g-C3N4 in nanomedicine are also discussed in detail. This review is expected to inspire emerging biomedical applications based on g-C3N4.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| | - Shuang Sun
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| | - Yuanyu Wu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| |
Collapse
|
20
|
Li H, Chen Y, Gao Q, Wang N, Yang T, Du C, Chen M, Wang J. Modulating Visible-Light Driven NIR Lanthanide Polymer Photocatalysis for Amplification Detection of Exosomal Proteins and Cancer Diagnosis. Anal Chem 2024; 96:12084-12092. [PMID: 39001802 DOI: 10.1021/acs.analchem.4c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Near-infrared (NIR) luminescent lanthanide materials hold great promise for bioanalysis, as they have anti-interference properties. The approach of efficient luminescence is sensitization through a reasonable chromophore to overcome the obstacle of the aqueous phase. The involvement of the surfactant motif is an innovative strategy to arrange the amphiphilic groups to be regularly distributed near the polymer to form a closed sensitized space. Herein, a lanthanide polymer (TCPP-PEI70K-FITC@Yb/SDBS) is designed in which the meso-tetra(4-carboxyphenyl)porphine (TCPP) ligand serves as both a sensitizer and photocatalytic switch. The surfactant sodium dodecyl benzenesulfonate (SDBS) wraps the photosensitive polymers to form a hydrophobic layer, which augments the light-harvesting ability and expedites its photocatalysis. TCPP-PEI70K-FITC@Yb/SDBS is subsequently applied as an amplified photocatalysis toolbox for universally regulating the generation of reactive oxygen species (ROS). Boosting 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to produce blue products, a dual-mode biosensor is fabricated for improving the diagnosis of programmed death ligand-1-positive (PDL1) cancer exosomes. Exosomes were captured by Fe3O4 modified by the PDL1 aptamer, enabling replacement of alkaline phosphatase (ALP)-labeled multiple hybridized chains; then, the isolated ALP triggered a hydrolysis reaction to block the generation of oxTMB. Detection sensitivity improves by 1 order of magnitude through SDBS modulation, down to 104 particles/mL. The sensor performed well clinically in distinguishing cancer patients from healthy individuals, expanding physiological applications of near-infrared lanthanide luminescence.
Collapse
Affiliation(s)
- Haiyan Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yafei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Qing Gao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Nan Wang
- Analytical and Testing Center, Northeastern University, Box 115, Shenyang 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
- Analytical and Testing Center, Northeastern University, Box 115, Shenyang 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
21
|
Zheng L, Li J, Li Y, Sun W, Ma L, Qu F, Tan W. Empowering Exosomes with Aptamers for Precision Theranostics. SMALL METHODS 2024:e2400551. [PMID: 38967170 DOI: 10.1002/smtd.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Indexed: 07/06/2024]
Abstract
As information messengers for cell-to-cell communication, exosomes, typically small membrane vesicles (30-150 nm), play an imperative role in the physiological and pathological processes of living systems. Accumulating studies have demonstrated that exosomes are potential biological candidates for theranostics, including liquid biopsy-based diagnosis and drug delivery. However, their clinical applications are hindered by several issues, especially their unspecific detection and insufficient targeting ability. How to upgrade the accuracy of exosome-based theranostics is being widely explored. Aptamers, benefitting from their admirable characteristics, are used as excellent molecular recognition elements to empower exosomes for precision theranostics. With high affinity against targets and easy site-specific modification, aptamers can be incorporated with platforms for the specific detection of exosomes, thus providing opportunities for advancing disease diagnostics. Furthermore, aptamers can be tailored and functionalized on exosomes to enable targeted therapeutics. Herein, this review emphasizes the empowering of exosomes by aptamers for precision theranostics. A brief introduction of exosomes and aptamers is provided, followed by a discussion of recent progress in aptamer-based exosome detection for disease diagnosis, and the emerging applications of aptamer-functionalized exosomes for targeted therapeutics. Finally, current challenges and opportunities in this research field are presented.
Collapse
Affiliation(s)
- Liyan Zheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Jin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - LeLe Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fengli Qu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Weihong Tan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Li H, Bai J, Chen Y, Du C, Chen M, Wang J. Achieving Cross Time-Domain Multiplexed Signal Cascade and Cancer Exosomes Identification by Bridging Long Lifetime Phosphor to NIR-II Lanthanide Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309955. [PMID: 38415899 DOI: 10.1002/smll.202309955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Designing lanthanide luminescence lifetime sensors in the second near-infrared (NIR-II) window holds great potentials for physiological studies. However, the single lifetime signal is confined to one or two orders of magnitude of signal variation, which limits the sensitivity of lifetime probes. In this study, a lifetime cascade system, i.e., ZGO:Mn, Eu-DNA-1/TCPP-PEI70K@Yb-AptEpCAM, with a variety of signals (τm, τn, τµ, τm/τn and τm/τµ) is constructed for exosome identification using time-domain multiplexing. The sensitized ligand TCPP acts as both target-modulated switch and a bridge for connecting long lifetime ZGO:Mn, Eu-DNA-1 emitter to lanthanide Yb3+. This drives successive dual-path energy transfer and forms two D(donor)-A(acceptor) pairs. The lifetime variation is dominantly modulated by arranging TCPP as energy intermediate relay to covert milliseconds to nanoseconds to microseconds. It enables a broad lifetime range of six orders of magnitude. The presence of exosome specifically recognizes aptamers on TCPP-PEI70K@Yb-AptEpCAM to impede D-A pairs and reverse multiplexed response signals of the lifetime cascade system. The ratio lifetime signals τm/τn and τm/τµ achieve prominent exosome quantification and exosome type differentiation attributed to signal amplification. The cascade system relying on lifetime criteria can realize precise quantization and provide an effective strategy for subsequent physiological study.
Collapse
Affiliation(s)
- Haiyan Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Junjie Bai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yafei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110819, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
- Analytical and Testing Center, Northeastern University, Shenyang, 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
23
|
Zhang Y, Yu W, Zhang W, Lai J, Liu L, Wang W, Wang X. Ratiometric fluorescence and colorimetric strategies for assessing activity of butyrylcholinesterase in human serum using g-C 3N 4 nanosheets, silver ion and o-phenylenediamine. Mikrochim Acta 2024; 191:411. [PMID: 38900245 DOI: 10.1007/s00604-024-06488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Ratiometric fluorescence and colorimetric strategies for detecting activity of butyrylcholinesterase (BChE) in human serum were developed by using g-C3N4 nanosheets, silver ion (Ag+) and o-phenylenediamine (OPD) as chromogenic agents. The oxidation-reduction reaction of OPD and Ag+ generates 2,3-diaminophenazine (oxOPD). Under exciation at 370 nm, g-C3N4 nanosheets and oxOPD emit fluorescence at 440 nm (F440) and 560 nm (F560), respectively. Additionally, oxOPD exhibits quenching ability towards g-C3N4 nanosheets via photoinduced electron transfer (PET) process. Thiocholine (TCh), as a product of BChE-catalyzed hydrolysis reaction of butylthiocholine iodide (BTCh), can coordinate with Ag+ intensively, and consequently diminish the amount of free Ag+ in the testing system. Less amount of free Ag+ leads to less production of oxOPD, resulting in less fluorescence quenching towards g-C3N4 nanosheets as well as less fluorescence emission of oxOPD. Therefore, by using g-C3N4 nanosheets and oxOPD as fluorescence indicators, the intensity ratio of their fluorescence (F440/F560) was calculated and employed to evaluate the activity of BChE. Similarly, the color variation of oxOPD indicated by the absorbance at 420 nm (ΔA420) was monitored for the same purpose. These strategies were validated to be sensitive and selective for detecting BChE activity in human serum, with limits of detection (LODs) of 0.1 U L-1 for ratiometric fluorescence mode and 0.7 U L-1 for colorimetric mode.
Collapse
Affiliation(s)
- Yue Zhang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wei Yu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Wei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jinyu Lai
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wei Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
24
|
Xia J, Li Z, Ding Y, Shah LA, Zhao H, Ye D, Zhang J. Construction and Application of Nanozyme Sensor Arrays. Anal Chem 2024; 96:8221-8233. [PMID: 38740384 DOI: 10.1021/acs.analchem.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Compared with traditional "lock-key mode" biosensors, a sensor array consists of a series of sensing elements based on intermolecular interactions (typically hydrogen bonds, van der Waals forces, and electrostatic interactions). At the same time, sensor arrays also have the advantages of fast response, high sensitivity, low energy consumption, low cost, rich output signals, and imageability, which have attracted widespread attention from researchers. Nanozymes are nanomaterials which own enzyme-like properties. Because of the adjustable activity, high stability, and cost effectiveness of nanozymes, they are potential candidates for construction of sensor arrays to output different signals from analytes through the chemoresponse of colorants, which solves the shortcomings of traditional sensors that they cannot support multiple detection and lack universality. Recently, a sensor array based on nanozymes as nonspecific recognition receptors has attracted much more attention from researchers and has been applied to precise recognition of proteins, bacteria, and heavy metals. In this perspective, attention is given to nanozymes and the regulation of their enzyme-like activity. Particularly, the building principles and methods for sensor arrays based on nanozymes are analyzed, and the applications are summarized. Finally, the approaches to overcome the challenges and perspectives are also presented and analyzed for facilitating further research and development of nanozyme sensor arrays. This perspective should be helpful for gaining insight into research ideas within the field of nanozyme sensor arrays.
Collapse
Affiliation(s)
- Jianing Xia
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhen Li
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yaping Ding
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Luqman Ali Shah
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
25
|
Wu Y, Gao Z, Chai Y, Zhang A, He S, Liu X, Yuan H, Tan L, Ding L, Wu Y. One-step and label-free ratiometric fluorescence assay for the detection of plasma exosome towards cancer diagnosis. Talanta 2024; 271:125700. [PMID: 38277965 DOI: 10.1016/j.talanta.2024.125700] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Exosomes are closely associated with tumor development and are regarded as viable biomarkers for cancer. Here, a ratiometric fluorescence method was proposed for the one-step and label-free detection of plasma exosomes. A bicolor streptavidin magnetic beads were specifically created with an immobilized Cy5-labeled hairpin aptamer for CD63 (Cy5-Apt) on its surface to identify exosome, and a green color SYBR Green I (SGI) embedded in the stem of Cy5-Apt to respond to exosomes. After exosome capture, the Cy5-Apt could undergo a conformational shift and release the encapsulated SGI, allowing exosome measurement based on the fluorescence ratio of Cy5 and SGI. The enrichment, separation and detection of exosomes in proposed method could be completed in one step (30 min), which is a significant improvement over previous method. Furthermore, the use of ratiometric fluorescence and magnetic separation allows for exosome enrichment and interference elimination from complex matrices, improving accuracy and sensitivity. Particularly, the assay could detect exosomes in plasma and has potential to distinguish lung cancer patients from healthy volunteers with an area under the receiver operator characteristic curve of 0.85. Besides, the study provided an efficient method for analyzing the various divisions of exosomes by merely modifying the aptamer, which holds great promise for point-of-care applications.
Collapse
Affiliation(s)
- Yan Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zibo Gao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, 130000, China
| | - Yaru Chai
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Aiai Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xia Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huijie Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Longlong Tan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
26
|
Gao Y, Zhu Z, Chen Z, Guo M, Zhang Y, Wang L, Zhu Z. Machine learning in nanozymes: from design to application. Biomater Sci 2024; 12:2229-2243. [PMID: 38497247 DOI: 10.1039/d4bm00169a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanozymes, a distinctive class of nanomaterials endowed with enzyme-like activity and kinetics akin to enzyme-catalysed reactions, present several advantages over natural enzymes, including cost-effectiveness, heightened stability, and adjustable activity. However, the conventional trial-and-error methodology for developing novel nanozymes encounters growing challenges as research progresses. The advent of artificial intelligence (AI), particularly machine learning (ML), has ushered in innovative design approaches for researchers in this domain. This review delves into the burgeoning role of ML in nanozyme research, elucidating the advancements achieved through ML applications. The review explores successful instances of ML in nanozyme design and implementation, providing a comprehensive overview of the evolving landscape. A roadmap for ML-assisted nanozyme research is outlined, offering a universal guideline for research in this field. In the end, the review concludes with an analysis of challenges encountered and anticipates future directions for ML in nanozyme research. The synthesis of knowledge in this review aims to foster a cross-disciplinary study, propelling the revolutionary field forward.
Collapse
Affiliation(s)
- Yubo Gao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Zhicheng Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Zhen Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Meng Guo
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Yiqing Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
27
|
Lu S, Yang J, Gu Y, He D, Wu H, Sun W, Xu D, Li C, Guo C. Advances in Machine Learning Processing of Big Data from Disease Diagnosis Sensors. ACS Sens 2024; 9:1134-1148. [PMID: 38363978 DOI: 10.1021/acssensors.3c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Exploring accurate, noninvasive, and inexpensive disease diagnostic sensors is a critical task in the fields of chemistry, biology, and medicine. The complexity of biological systems and the explosive growth of biomarker data have driven machine learning to become a powerful tool for mining and processing big data from disease diagnosis sensors. With the development of bioinformatics and artificial intelligence (AI), machine learning models formed by data mining have been able to guide more sensitive and accurate molecular computing. This review presents an overview of big data collection approaches and fundamental machine learning algorithms and discusses recent advances in machine learning and molecular computational disease diagnostic sensors. More specifically, we highlight existing modular workflows and key opportunities and challenges for machine learning to achieve disease diagnosis through big data mining.
Collapse
Affiliation(s)
- Shasha Lu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Jianyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Yu Gu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Dongyuan He
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Haocheng Wu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dong Xu
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Changming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| |
Collapse
|
28
|
Luo Y, Feng Q, Ma D, Wang B, Chi C, Ding CF, Yan Y. Highly sensitive quantitative detection of glycans on exosomes in renal disease serums using fluorescence signal amplification strategies. Talanta 2024; 269:125467. [PMID: 38042140 DOI: 10.1016/j.talanta.2023.125467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Exosomal glycoproteins play a significant role in many physiological and pathological processes. However, the detection of exosome surface glycans is currently challenged by the complexity of biological samples or the sensitivity of the methods. Herein, we prepared a novel fluorescent probe of biotin-functionalized nanocrystals (denoted as CdTe@cys-biotin) and applied it for the first time for the detection of the expression of exosomal surface glycans using a fluorescence amplification strategy. First, the dual affinity of TiO2 and CD63 aptamers of Fe3O4@TiO2-CD63 was utilized to rapidly and efficiently capture exosomes within 25 min. In this design, interference from other vesicles and soluble impurities can be avoided due to the dual recognition strategy. The chemical oxidation of NaIO4 oxidized the hydroxyl sites of exosomal surface glycans to aldehydes, which were then labeled with aniline-catalyzed biotin hydrazide. Using the high affinity between streptavidin and biotin, streptavidin-FITC and probes were successively anchored to the glycans on the exosomes. The fluorescent probe achieved the dual function of specific recognition and fluorescent labeling by modifying biotin on the surface of nanocrystals. This method showed excellent specificity and sensitivity for exosomes at concentrations ranging from 3.30 × 102 to 3.30 × 106 particles/mL, with a detection limit of 121.48 particles/mL. The fluorescent probe not only quantified exosomal surface glycans but also distinguished with high accuracy between serum exosomes from normal individuals and patients with kidney disease. In general, this method provides a powerful platform for sensitive detection of exosomes in cancer diagnosis.
Collapse
Affiliation(s)
- Yiting Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Dumei Ma
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Chaoxian Chi
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
29
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
30
|
Cheng S, Zhang C, Hu X, Zhu Y, Shi H, Tan W, Luo X, Xian Y. Ultrasensitive determination of surface proteins on tumor-derived small extracellular vesicles for breast cancer identification based on lanthanide-activated signal amplification strategy. Talanta 2024; 267:125189. [PMID: 37714039 DOI: 10.1016/j.talanta.2023.125189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Small extracellular vesicles (sEVs) carrying multiple tumor-associated proteins inherited from parental cells play crucial roles in noninvasive breast cancer (BC) diagnosis. However, it is challenging to assess the subtle variations of surface proteins on sEV membranes due to the highly heterogeneous BC. Therefore, a simple and ultrasensitive assay based on lanthanide (Ln3+)-activated luminescence signal amplification was developed to detect multiple surface proteins on BC-derived sEVs. Multiple protein biomarkers on sEVs can be well identified with high sensitivity and specificity through dissolution-amplified luminescence of the NaEuF4 nanoparticle-based nanoprobe. We employ linear discriminant analysis to successfully discriminate triple negative BC cell (MDA-MB-231 cell) derived sEVs from other breast cell lines (MCF-7, SK-BR-3, BT474 and MCF-10A cell). Furthermore, the strategy enables high accuracy for districting the progression stages of BC patients and healthy donors. The simple and sensitive signal amplification strategy exhibits great potential for early clinic diagnosis by precise protein profiling of sEVs.
Collapse
Affiliation(s)
- Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Xinyu Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yingxin Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqiao Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
31
|
Ansari MA, Shoaib S, Chauhan W, Gahtani RM, Hani U, Alomary MN, Alasiri G, Ahmed N, Jahan R, Yusuf N, Islam N. Nanozymes and carbon-dots based nanoplatforms for cancer imaging, diagnosis and therapeutics: Current trends and challenges. ENVIRONMENTAL RESEARCH 2024; 241:117522. [PMID: 37967707 DOI: 10.1016/j.envres.2023.117522] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Cancer patients face a significant clinical and socio-economic burden due to increased incidence, mortality, and poor survival. Factors like late diagnosis, recurrence, drug resistance, severe side effects, and poor bioavailability limit the scope of current therapies. There is a need for novel, cost-effective, and safe diagnostic methods, therapeutics to overcome recurrence and drug resistance, and drug delivery vehicles with enhanced bioavailability and less off-site toxicity. Advanced nanomaterial-based research is aiding cancer biologists by providing solutions for issues like hypoxia, tumor microenvironment, low stability, poor penetration, target non-specificity, and rapid drug clearance. Currently, nanozymes and carbon-dots are attractive due to their low cost, high catalytic activity, biocompatibility, and lower toxicity. Nanozymes and carbon-dots are increasingly used in imaging, biosensing, diagnosis, and targeted cancer therapy. Integrating these materials with advanced diagnostic tools like CT scans and MRIs can aid in clinical decision-making and enhance the effectiveness of chemotherapy, photothermal, photodynamic, and sonodynamic therapies, with minimal invasion and reduced collateral effects.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Waseem Chauhan
- Division of Hematology, Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University School of Medicine, Research Drive, Durham, NC 27710, USA
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, Collage of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia
| | - Nabeel Ahmed
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, Uttar Pradesh, India
| | - Roshan Jahan
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
32
|
Liu X, Cheng H, Zhao Y, Wang Y, Ge L, Huang Y, Li F. Immobilization-free dual-aptamer-based photoelectrochemical platform for ultrasensitive exosome assay. Talanta 2024; 266:125001. [PMID: 37517342 DOI: 10.1016/j.talanta.2023.125001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Exosomes, involved in cancer-specific biological processes, are promising noninvasive biomarkers for early diagnosis of cancer. Herein, an immobilization-free dual-aptamer-based photoelectrochemical (PEC) biosensor was proposed for the enrichment and quantification of cancer exosome based on photoactive bismuch oxyiodide/gold/cadmium sulfide (BiOI/Au/CdS) composites, nucleic acid-based recognition and signal amplification. In this biosensor, the recognition of exosome by two aptamers would trigger the deoxyribonucleotidyl transferase (TdT) enzyme-aided polymerization, leading to the enrichment of alkaline phosphatase (ALP) on Fe3O4 surface. After magnetic separation, ALP could catalyze the generation of ascorbic acid (AA) as electron donor and initiate the following redox cycle reaction for further signal amplification. Furthermore, all the above processes were performed in solution, the recognition and signal amplification efficiency would be superior than the heterogeneous strategy owing to the avoidance of steric hindrance effect. As a result, the proposed PEC biosensor was capable of enriching and detecting of cancer exosomes with high sensitivity and selectivity. The linear range of the biosensor was from 1.0 × 102 particles·μL-1 to 1.0 × 106 particles·μL-1 and the detection limit was estimated to be 21 particles·μL-1. Therefore, the proposed PEC biosensor holds great promise in quantifying tumor exosome for nondestructive early clinical cancer diagnosis and various other bioassay applications.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Hao Cheng
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yuecan Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yiping Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
33
|
Gao F, Zhao Y, Dai X, Xu W, Zhan F, Liu Y, Wang Q. Aptamer tuned nanozyme activity of nickel-metal-organic framework for sensitive electrochemical aptasensing of tetracycline residue. Food Chem 2024; 430:137041. [PMID: 37527574 DOI: 10.1016/j.foodchem.2023.137041] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
It is urgently needed to develop high-performance method for tetracycline (TC) analysis to meet the growing concerns about food safety. Herein, a MOF of Ni2+-2,3,6,7,10,11-hexahydroxytriphenylene (Ni-HHTP) with peroxidase activity has been prepared and coated on a screen printing electrode, followed by non-covalent adsorption of tetracycline aptamer (TC-Apt) through the π-stacking. The spectroscopic and electrochemical assays show that TC-Apt can effectively enhance the nanozyme activity of Ni-HHTP using 3,3',5,5'-tetramethylbenzidine (TMB)/H2O2 as the probe. Upon binding with TC, the configuration of TC-Apt is changed and desorbs from the Ni-HHTP, resulting in the decrease of the nanozyme activity of aptasensor. Based on this principle, the target TC can be analyzed in concentrations ranging from 10 pM to 1.0 μM, with a detection limit of 1.9 pM. The aptsensor is also applicable for TC analysis in fresh Ctenopharyngodon idella meat and milk, which provides a new approach for TC residue monitoring in food.
Collapse
Affiliation(s)
- Feng Gao
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Yanan Zhao
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Xiaohui Dai
- Zhangzhou Products Quality Supervision Institute, Zhangzhou 363000, China
| | - Wenjing Xu
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Fengping Zhan
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Yibin Liu
- Zhangzhou Products Quality Supervision Institute, Zhangzhou 363000, China
| | - Qingxiang Wang
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
34
|
Xu L, Lu S, Wang H, Xu H, Ye BC. Dual-Recognition Triggered Proximity Ligation Combined with a Rolling Circle Amplification Strategy for Analysis of Exosomal Protein-Specific Glycosylation. Anal Chem 2023; 95:15745-15754. [PMID: 37842978 DOI: 10.1021/acs.analchem.3c03239] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Exosomal surface glycan reveals the biological function and molecular information on the protein, especially in indicating the pathogenesis of certain diseases through monitoring of specific protein glycosylation accurately. However, in situ and nondestructive measurement techniques for certain Exosomal glycoproteins are still lacking. In this work, combined with on-chip purification, we designed a proximity ligation assay-induced rolling circle amplification (RCA) strategy for highly sensitive identification of Exosomal protein-specific glycosylation based on a couple of proximity probes to target Exosomal protein and the protein-specific glycosylation site. Benefiting from efficient separation, scalable dual-recognition, and proximity-triggered RCA amplification, the proposed strategy could convert different protein-specific glycan levels to prominent changes in absorbance signals, resulting in accurate quantification of specific glycosylated Exosomal protein. When detecting the glycosylated PD-L1 on MDA-MB-231 exosomes and glycosylated PTK7 on HepG2 exosomes, the detection limits were calculated to be as low as 1.04 × 104 and 2.759 × 103 particles/mL, respectively. In addition, we further expand the dual-recognition site to investigate the potential correlation of Exosomal glycosylation with polarization of THP-1 cells toward the tumor-suppressive M1 phenotype. Overall, this strategy provides a universal tool for multiple analyses of diverse protein-specific glycosylated exosomes, exhibiting enormous potential to explore exosome function and search for new early diagnosis markers.
Collapse
Affiliation(s)
- Lijun Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyu Lu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
35
|
Ma Z, Xu H, Ye BC. Recent progress in quantitative technologies for the analysis of cancer-related exosome proteins. Analyst 2023; 148:4954-4966. [PMID: 37721099 DOI: 10.1039/d3an01228j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Exosomes are a kind of extracellular vesicles, which play a significant role in intercellular communication and molecular exchange. Cancer-derived exosomes are potential and ideal biomarkers for the early diagnosis and treatment monitoring of cancers because of their abundant biological information and contribution to the interaction between cancer cells and the tumor microenvironment. However, there are a number of drawbacks, such as low sensitivity and tedious steps, in conventional detection techniques. Furthermore, exosome quantification is not enough to accurately distinguish cancer patients from healthy individuals. Therefore, developing efficient, accurate, and inexpensive exosome surface protein analysis techniques is necessary and critical. In recent years, a considerable number of researchers have presented novel detection strategies in this field. This review summarizes the recent progress in quantitative technologies for the analysis of cancer-related exosome proteins, mainly including the detection methods based on aptamers, nanomaterials, and antibodies, discusses a roadmap for future developments, and aims to offer an innovative perspective of exosome research.
Collapse
Affiliation(s)
- Zhongwen Ma
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
36
|
Li C, Guo Z, Pu S, Zhou C, Cheng X, Zhao R, Jia N. Molybdenum Disulfide-Integrated Iron Organic Framework Hybrid Nanozyme-Based Aptasensor for Colorimetric Detection of Exosomes. BIOSENSORS 2023; 13:800. [PMID: 37622886 PMCID: PMC10452346 DOI: 10.3390/bios13080800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Tumor-derived exosomes are considered as a potential marker in liquid biopsy for malignant tumor screening. The development of a sensitive, specific, rapid, and cost-effective detection strategy for tumor-derived exosomes is still a challenge. Herein, a visualized and easy detection method for exosomes was established based on a molybdenum disulfide nanoflower decorated iron organic framework (MoS2-MIL-101(Fe)) hybrid nanozyme-based CD63 aptamer sensor. The CD63 aptamer, which can specifically recognize and capture tumor-derived exosomes, enhanced the peroxidase activity of the hybrid nanozyme and helped to catalyze the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 system to generate a stronger colorimetric signal, with its surface modification on the hybrid nanozyme. With the existence of exosomes, CD63 aptamer recognized and adsorbed them on the surface of the nanozyme, which rescued the enhanced peroxidase activity of the aptamer-modified nanozyme, resulting in a deep-to-moderate color change in the TMB-H2O2 system where the change is visible and can be monitored with ultraviolet-visible spectroscopy. In the context of optimal circumstances, the linear range of this exosome detection method is measured to be 1.6 × 104 to 1.6 × 106 particles/μL with a limit of detection as 3.37 × 103 particles/μL. Generally, a simple and accessible approach to exosome detection is constructed, and a nanozyme-based colorimetric aptamer sensor is proposed, which sheds light on novel oncological biomarker measurements in the field of biosensors.
Collapse
Affiliation(s)
- Chao Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Zichao Guo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sisi Pu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Chaohui Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
37
|
Fu R, Ma Z, Zhao H, Jin H, Tang Y, He T, Ding Y, Zhang J, Ye D. Research Progress in Iron-Based Nanozymes: Catalytic Mechanisms, Classification, and Biomedical Applications. Anal Chem 2023. [PMID: 37438259 DOI: 10.1021/acs.analchem.3c01005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Natural enzymes are crucial in biological systems and widely used in biology and medicine, but their disadvantages, such as insufficient stability and high-cost, have limited their wide application. Since Fe3O4 nanoparticles were found to show peroxidase-like activity, researchers have designed and developed a growing number of nanozymes that mimic the activity of natural enzymes. Nanozymes can compensate for the defects of natural enzymes and show higher stability with lower cost. Iron, a nontoxic and low-cost transition metal, has been used to synthesize a variety of iron-based nanozymes with unique structural and physicochemical properties to obtain different enzymes mimicking catalytic properties. In this perspective, catalytic mechanisms, activity modulation, and their recent research progress in sensing, tumor therapy, and antibacterial and anti-inflammatory applications are systematically presented. The challenges and perspectives on the development of iron-based nanozymes are also analyzed and discussed.
Collapse
Affiliation(s)
- Ruixue Fu
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zijian Ma
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Huan Jin
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ya Tang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ting He
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yaping Ding
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
38
|
Li J, Zhang K, Yan F, Lang C. A novel single-particle multiple-signal sensor array combined with multidimensional data mining for the detection of tricarboxylic acid cycle metabolites and discrimination of cells. Anal Bioanal Chem 2023:10.1007/s00216-023-04736-1. [PMID: 37278743 DOI: 10.1007/s00216-023-04736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023]
Abstract
Tricarboxylic acid (TCA) metabolites in cancer cells show a marked difference from those in normal cells. Herein, we report a single-particle multiple-signal lanthanide/europium-based metal-organic framework (Tb/Eu MOF) sensor array for the detection of TCA metabolites and discrimination of cancer cells. In the presence of TCA metabolite, 6 characteristic peaks of Tb/Eu MOF showed dramatic changes due to host-guest interactions, allowing sensor array-based qualitative and quantitative detection to be performed. In the qualitative detection ability test, 18 TCA metabolites at 4 concentrations (50 μM, 100 μM, 200 μM, 300 μM) were accurately discriminated by the sensor array via linear discriminant analysis (LDA). Significantly, these 4 concentrations include the clinical detection criteria for most TCA metabolites. In the quantitative detection ability test, a good linear relationship between Euclidean distances and the concentrations of L-valine (Val) could be obtained in the range of 50 to 500 μM (R2 = 0.9755). On this basis, the provided method was successfully applied for the classification of 2 normal cells and 5 cancer cells via principal components analysis (PCA), LDA and a radial basis function neural network (RBFN). What's more, by verifying the weight coefficient of each point, detection and discrimination results are proved as a trustworthy balanced evaluation of multiple factors. Depending on precise data processing, the experimental operation was simplified on the premise of ensuring accuracy, so our method is a meaningful exploration for array design.
Collapse
Affiliation(s)
- Jiawei Li
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
| | - Kun Zhang
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
| | - Fei Yan
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China.
| | - Chunhui Lang
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China.
- Department of Clinical Nutrition, Chongqing University Three Gorges Hospital, Chongqing, China.
| |
Collapse
|
39
|
Wang H, Wu F, Wu L, Guan J, Niu X. Nanozyme colorimetric sensor array based on monatomic cobalt for the discrimination of sulfur-containing metal salts. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131643. [PMID: 37236116 DOI: 10.1016/j.jhazmat.2023.131643] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
The identification of sulfur-containing metal salts (SCMs) is of great interest because they play an important role in many biological processes and diseases. Here, we constructed a ternary channel colorimetric sensor array to detect multiple SCMs simultaneously, relying on monatomic Co embedded in nitrogen-doped graphene nanozyme (CoN4-G). Due to the unique structure, CoN4-G exhibits activity similar to native oxidases, capable of catalysing directly the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) by O2 molecules independent of H2O2. Density functional theory (DFT) calculations suggest that CoN4-G has no potential barrier in the whole reaction route, thus presenting higher oxidase-like catalytic activity. Based on different degrees of TMB oxidation, different colorimetric response changes are obtained as "fingerprints" on the sensor array. The sensor array can discriminate different concentrations of unitary, binary, ternary, and quaternary SCMs and has been successfully applied to detect six real samples (soil, milk, red wine and egg white). To advance the field detection of the above four types of SCMs, we creatively propose a smartphone-based autonomous detection platform with a linear range of 1.6-320 μM and a limit of detection of 0.0778-0.218 μM, which demonstrates the potential use of sensor arrays in the application of disease diagnosis and food and environment monitoring.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Fengling Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Lifang Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
40
|
Pu S, Shi C, Lv C, Xu K, Hou X, Wu L. Tb 3+-Based Off-On Fluorescent Platform for Multicolor and Dosage-Sensitive Visualization of Bacterial Spore Marker. Anal Chem 2023; 95:8137-8144. [PMID: 37167590 DOI: 10.1021/acs.analchem.3c01542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Developing a novel strategy for the sensitive and rapid detection of pathogenic bacterial spores in field or on-site settings will be helpful in minimizing their potential threats to human health, environmental safety, and food safety. In this study, Tb3+ was combined with glutathione (GSH)-modified copper nanoclusters (CuNCs), and an aggregation-induced emission (AIE) fluorescent probe based on Tb-GSH-CuNCs was fabricated for dipicolinic acid (DPA, a pathogenic bacterial spore marker) sensing. Making use of the competitive binding of Tb3+ between GSH-CuNCs and DPA, a multicolor sensing of DPA was facilely realized without introducing fluorescent materials as the reference. Due to an "off-on" response mechanism of the AIE fluorescent probe, this multicolor response to DPA exhibited a feature of rich color gradients and highly discriminative color change, allowing a dosage-sensitive visual quantification of DPA. The DPA with a concentration even as low as 0.5 μM can still be identified by the naked eye. Moreover, together with a smartphone app, which can extract the R (red), G (green), and B (blue) values from the probe system, a portable platform can be established for sensitive DPA quantification in the range of 0.5-70 μM, showing great potential for the practical monitoring of DPA in field or on-site settings.
Collapse
Affiliation(s)
- Shan Pu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Chaoting Shi
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Caizhi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Kailai Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Lan Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
41
|
Ding Z, Wei Y, Liu X, Han F, Xu Z. Substantial dimerized G-quadruplex signal units engineered by cutting-mediated exponential rolling circle amplification for ultrasensitive and label-free detection of exosomes. Anal Chim Acta 2023; 1253:341098. [PMID: 36965991 DOI: 10.1016/j.aca.2023.341098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Sensitive and accurate determination of tumor-derived exosomes from complicated biofluids is an important prerequisite for early tumor diagnosis through exosome-based liquid biopsy. Herein, a label-free fluorescence immunoassay protocol for ultrasensitive detection of exosomes was developed by engineering substantial dimerized guanine-quadruplex (Dimer-G4) signal units via in situ cutting-mediated exponential rolling circle amplification (CM-ERCA). First, exosomes were captured and enriched via immunomagnetic separation. Then, molecular recognition was built by the formation of antibody-aptamer sandwich immunocomplex through the specific binding of the designed aptamer-primers with the targeted exosomes. The accuracy of exosome detection was significantly improved by the specific recognition of two typical exosomal protein markers simultaneously. Eventually, in situ CM-ERCA was triggered by a perfect match between the multifunctional circular DNA template and the aptamer-primer on exosomal surface. Amplicons of CM-ERCA loaded with Dimer-G4 were exponentially accumulated during continuous cyclic amplification, dramatically lighting up the thioflavin T (ThT) and generating substantial Dimer-G4 signal units. As a result, ultrasensitive detection of exosomes with the detection limit down to 2.4 × 102 particles/mL was achieved due to the fluorescence enhancement of substantial Dimer-G4 signal units, which is ahead of most of available fluorescence-based methods reported currently. In addition, the intense fluorescence emission and favorable anti-interference of the proposed immunoassay supports identification of exosomes direct in human serums, overcoming the limitations of conventional G4/ThT in serum analysis and revealing its potential for exosome-based liquid biopsy.
Collapse
Affiliation(s)
- Ziling Ding
- Research Center for Analytical Sciences, Northeastern University, 110819, Shenyang, China
| | - Yunyun Wei
- Research Center for Analytical Sciences, Northeastern University, 110819, Shenyang, China
| | - Xiaopeng Liu
- Research Center for Analytical Sciences, Northeastern University, 110819, Shenyang, China
| | - Fei Han
- Research Center for Analytical Sciences, Northeastern University, 110819, Shenyang, China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, 110819, Shenyang, China.
| |
Collapse
|
42
|
A novel label-free dual-mode aptasensor based on the mutual regulation of silver nanoclusters and MoSe 2 nanosheets for reliable detection of ampicillin. Anal Chim Acta 2023; 1251:340997. [PMID: 36925307 DOI: 10.1016/j.aca.2023.340997] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Current methods for the rapid detection of trace antibiotics in the environment remains problems of low accuracy and false negative or false positive, making the development of fast, and accurate, and reliable methods for antibiotic testing a major challenge that needs to be addressed. Herein, we developed a novel label-free colorimetric and fluorescent dual-mode aptasensor assembled by the strong interaction of layered MoSe2 nanosheets (MoSe2 NSs) with ampicillin (AMP) aptamer functionalized silver nanoclusters (Apt-AgNCs) that specifically bind AMP to allow the sensitive and selective detection of AMP. Apt-AgNCs could be adsorbed on the surface of MoSe2 NSs via van der Waals force to form a nanocomposite, Apt-AgNCs/MoSe2 NSs. Interestingly, Apt-AgNCs/MoSe2 NSs act together to construct dual mode aptasensor through modulation of the intrinsic peroxidase activity of MoSe2 NSs and the fluorescence of Apt-AgNCs. In the presence of AMP, Apt-AgNCs could specifically bind AMP, triggering desorption from the MoSe2 NSs surface, leading to a decrease in the peroxidase activity of the system with the recovery in Apt-AgNCs fluorescence. The dual-signal aptasensor exhibited good linear colorimetric and fluorescence responses in the AMP concentration ranges of 0.115-2.00 μM and 6-100 nM, respectively. Furthermore, the aptasensor was successfully measured AMP levels in commercially-bought milk and lake water with satisfactory results. Unlike single-signal aptasensors, the constructed dual-signal aptasensor could not only improve the detection precision, but also reduce the false positive or false negative results. These promising results suggest that the dual-readout strategy as demonstrated is general mode for the detection of other antibiotics or compounds using various aptamers functionalized AgNCs in concert with MoSe2 NSs.
Collapse
|
43
|
Kulandaivel S, Lin CH, Yeh YC. A bioinspired copper-based coordination polymer for the detection of pheochromocytoma biomarkers. Talanta 2023; 255:124206. [PMID: 36563506 DOI: 10.1016/j.talanta.2022.124206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Oxidase-mimicking (catechol oxidase/laccase) nanozymes provide outstanding specificity in the detection of epinephrine (Epi) for the assessment of pheochromocytoma; however, epinephrine (Epi) and norepinephrine (NE) co-existing in the same systems will reduce the selectivity of the biosensor. In the current study, we synthesized copper-based coordination polymer (Cu-CP) nanozymes capable of accelerating the oxidation of Epi with high specificity. Furthermore, the Cu-CP is able to detect Epi over a wide linear range of 0.5-100 μM with a low detection limit of 0.36 μM while providing excellent stability and recyclability. Furthermore, we employed colorimetric and fluorescence signals for sequential detection of the coexistence of Epi and NE for use in tracking the treatment outcomes of patients with pheochromocytoma. Experiments using artificial urine further confirmed the efficacy of the proposed system.
Collapse
Affiliation(s)
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 116, Taiwan.
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei, 116, Taiwan.
| |
Collapse
|
44
|
Li T, Zhu X, Hai X, Bi S, Zhang X. Recent Progress in Sensor Arrays: From Construction Principles of Sensing Elements to Applications. ACS Sens 2023; 8:994-1016. [PMID: 36848439 DOI: 10.1021/acssensors.2c02596] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The traditional sensors are designed based on the "lock-and-key" strategy with high selectivity and specificity for detecting specific analytes, which however are not suitable for detecting multiple analytes simultaneously. With the help of pattern recognition technologies, the sensor arrays excel in distinguishing subtle changes caused by multitarget analytes with similar structures in a complex system. To construct a sensor array, the multiple sensing elements are undoubtedly indispensable units that will selectively interact with targets to generate the unique "fingerprints" based on the distinct responses, enabling the identification among various analytes through pattern recognition methods. This comprehensive review mainly focuses on the construction strategies and principles of sensing elements, as well as the applications of sensor array for identification and detection of target analytes in a wide range of fields. Furthermore, the present challenges and further perspectives of sensor arrays are discussed in detail.
Collapse
Affiliation(s)
- Tian Li
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xueying Zhu
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xin Hai
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
45
|
Ding X, Zhao Z, Zhang Y, Duan M, Liu C, Xu Y. Activity Regulating Strategies of Nanozymes for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207142. [PMID: 36651009 DOI: 10.1002/smll.202207142] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
On accounts of the advantages of inherent high stability, ease of preparation and superior catalytic activities, nanozymes have attracted tremendous potential in diverse biomedical applications as alternatives to natural enzymes. Optimizing the activity of nanozymes is significant for widening and boosting the applications into practical level. As the research of the catalytic activity regulation strategies of nanozymes is boosting, it is essential to timely review, summarize, and analyze the advances in structure-activity relationships for further inspiring ingenious research into this prosperous area. Herein, the activity regulation methods of nanozymes in the recent 5 years are systematically summarized, including size and morphology, doping, vacancy, surface modification, and hybridization, followed by a discussion of the latest biomedical applications consisting of biosensing, antibacterial, and tumor therapy. Finally, the challenges and opportunities in this rapidly developing field is presented for inspiring more and more research into this infant yet promising area.
Collapse
Affiliation(s)
- Xiaoteng Ding
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhen Zhao
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yanfang Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Meilin Duan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Chengzhen Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
46
|
Su X, Liu X, Xie Y, Chen M, Zheng C, Zhong H, Li M. Integrated SERS-Vertical Flow Biosensor Enabling Multiplexed Quantitative Profiling of Serological Exosomal Proteins in Patients for Accurate Breast Cancer Subtyping. ACS NANO 2023; 17:4077-4088. [PMID: 36758150 DOI: 10.1021/acsnano.3c00449] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein profiles of exosomes (EXOs) in clinical samples of cancer patients have become a promising diagnostic and therapeutic biomarker. However, simultaneous quantitative analysis of multiple exosomal proteins of interest remains challenging. To address the unmet need, we develop a paper-based surface-enhanced Raman spectroscopy (SERS)-vertical flow biosensor, named iREX (integrated Raman spectroscopic EXO) biosensor, for multiplexed quantitative profiling of exosomal proteins in clinical serum samples of patients. Utilizing this iREX biosensor, we are able to quantitatively profile MUC1, HER2 and CEA in EXO samples derived from various breast cancer cell subtypes. The results show discriminative expression profiles of the three exosomal proteins in these cell subtypes, which allows for accurate diagnosis and molecular subtyping of breast cancer. We further validate the clinical utility of the iREX biosensor for simultaneous quantitative analysis of MUC1, HER2 and CEA in patient's blood serums, thereby aiding in noninvasive breast cancer subtyping and longitudinal treatment monitoring. Our iREX biosensor integrating the SERS detection in a vertical flow diagnostic device offers great advantages of high sensitivity, molecular specificity, powerful multiplexing capability, and high diagnostic accuracy. We believe that the iREX biosensor could be a promising clinical tool for comprehensive analysis of exosomal proteins in clinical samples for personalized diagnosis and precise management of breast cancer.
Collapse
Affiliation(s)
- Xiaoming Su
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xinyu Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingyang Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
47
|
Sun Y, Qi S, Dong X, Qin M, Ding N, Zhang Y, Wang Z. Colorimetric aptasensor for fumonisin B 1 detection based on the DNA tetrahedra-functionalized magnetic beads and DNA hydrogel-coated bimetallic MOFzyme. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130252. [PMID: 36327850 DOI: 10.1016/j.jhazmat.2022.130252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The toxicity and incidence of fumonisin B1 (FB1) pose a major challenge to public health and the environment, prompting the development of alternative quantitative strategies for FB1. Herein, a colorimetric aptasensor was constructed based on DNA tetrahedra-functionalized magnetic beads (MBs) and DNA hydrogel-coated Mn-Zr bimetallic metal-organic frameworks-based nanozyme (MOFzyme). Initially, MBs functionalized by DNA tetrahedra demonstrated excellent capturing capability for FB1. Along with the capture of FB1, catalyst DNA (C) was released into the supernatant. Aided by fuel DNA (F), C can trigger continuous cleavage of the main chains and cross-linking points of the DNA hydrogel through an entropy-driven DNA circuit integrated into the hydrogel coating. Subsequently, the bimetallic MOFzyme encapsulated inside the DNA hydrogel was exposed and exerted its superb peroxidase-like activity, producing a colorimetric signal whose intensity was positively dependent on the amount of FB1. The developed aptasensor exhibited good linearity in the range of 5 × 10-4 to 50 ng mL-1 with a limit of detection (LOD) of 0.38 pg mL-1, and reasonable specificity in different matrices. Furthermore, the aptasensor was successfully applied to quantify FB1 in actual samples with recoveries fell within 92.25 %- 108.00 %, showing its great potential in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Yuhan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ning Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
48
|
Yan P, Zheng X, Liu S, Dong Y, Fu T, Tian Z, Wu Y. Colorimetric Sensor Array for Identification of Proteins and Classification of Metabolic Profiles under Various Osmolyte Conditions. ACS Sens 2023; 8:133-140. [PMID: 36630575 DOI: 10.1021/acssensors.2c01847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rapid and efficient detection and identification of proteins hold great promise in medical diagnostics, treatment of different diseases, and proteomics. Here, we present a simple colorimetric sensor array for the differentiation of proteins in various osmolyte solutions. Osmolytes have different influences on the conformation of proteins, which have differential binding to silver nanoparticles, resulting in color changes. The sensor array shows unique color change patterns for each of the 19 proteins, allowing unambiguous identification. Very interestingly, the differentiation of 19 proteins is related to their molecular weight. Moreover, the sensor array can be used to identify protein mixtures, thermal denaturized proteins, and unknown protein samples. Finally, the sensor array can also analyze the plasma or liver samples of the four groups of salt-sensitive rats fed with different diets, indicating that it has the potential for the classification of metabolic profiles.
Collapse
Affiliation(s)
- Peng Yan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Xuewei Zheng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Shuang Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Yanhua Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Tao Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Zhongmin Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Yayan Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| |
Collapse
|
49
|
Hu L, Cui J, Wang Y, Jia J. An ultrasensitive electrochemical biosensor for bisphenol A based on aptamer-modified MrGO@AuNPs and ssDNA-functionalized AuNP@MBs synergistic amplification. CHEMOSPHERE 2023; 311:137154. [PMID: 36351468 DOI: 10.1016/j.chemosphere.2022.137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is a harmful endocrine disruptor, sensitive and rapid quantification of BPA is highly desirable. In this work, a novel synergistic signal-amplifying electrochemical biosensor was developed for BPA detection by using a recognition probe (RP) constructed by BPA aptamer modified gold nanoparticles-loaded magnetic reduced graphene oxide (Aptamer-MrGO@AuNPs), and a signal probe (SP) constructed by BPA aptamer-complementary single-stranded DNA (ssDNA) functionalized methylene blue (MB)-loaded gold nanoparticle (ssDNA-AuNP@MBs). The RP and SP can self-assemble to form a stable RP-SP complex through complementary base pairing. The current intensity of the biosensor correlates with the number of RP-SP complexes. In the presence of BPA, the BPA aptamer can capture BPA with high selectivity and affinity, form an RP-BPA complex and dissociate the RP-SP complex to release SP, resulting in a decrease in the current signal intensity of the biosensor. A single AuNP could be loaded with multiple BPA aptamers and MBs, which improves the recognition efficiency and enhances the signal intensity. Due to the magnetic properties of MrGO@AuNPs, the magnetic separation and adsorption of RP or RP-SP complex is very convenient, enabling all reaction processes to be carried out in solution, which not only improves the mass transfer efficiency, but also simplifies the operation. Under optimal conditions, the developed biosensor had a detection limit as low as 0.141 pg/mL and had been successfully applied to the detection of real environmental water samples. Therefore, the synergistic signal amplification strategy of RP and SP has potential value in the detection of trace pollutants in the water environment.
Collapse
Affiliation(s)
- Liuyin Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Yalin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China.
| |
Collapse
|
50
|
Zhu J, Xu W, Yang Y, Kong R, Wang J. ssDNA-C3N4 conjugates-based nanozyme sensor array for discriminating mycotoxins. Mikrochim Acta 2022; 190:6. [PMID: 36471087 DOI: 10.1007/s00604-022-05593-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
A nanozyme sensor array based on the ssDNA-distensible C3N4 nanosheet sensor elements for discriminating multiple mycotoxins commonly existing in contaminated cereals has been explored. The sensor array exploited (a) three DNA nonspecific sequences (A40, T40, C40) absorbed on the C3N4 nanosheets as sensor elements catalyzing the oxidation of TMB; (b) the presence of five mycotoxins affected the catalytic activity of three nanozymes with various degrees. The parameter (A0-A) was employed as the signal output to obtain the response patterns for different mycotoxins with the same concentration where A0 and A were the absorption peak values at 650 nm of oxTMB in the absence and presence of target mycotoxins, respectively. After the raw data was subjected to principal component analysis, 3D canonical score plots were obtained. The sensor array was capable of separating five mycotoxins from each other with 100% accuracy even if the concentration of the mycotoxins was as low as 1 nM. Moreover, the array performed well in discriminating the mycotoxin mixtures with different ratios. Importantly, the practicality of this sensor array was demonstrated by discriminating the five mycotoxins spiking in corn-free samples in 3D canonical score plots, validating that the sensor array can act as a flexible detection tool for food safety. A nanozyme sensor array was developed based on the ssDNA-distensible C3N4 NSs sensor elements for discriminating muitiple mycotoxins.
Collapse
Affiliation(s)
- Jing Zhu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, People's Republic of China.
| | - Wenxing Xu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, People's Republic of China
| | - Ye Yang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, People's Republic of China
| | - Rongmei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, People's Republic of China
| | - Junmei Wang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China.
| |
Collapse
|