1
|
Zhou J, Xie L, Zhang J, Deng X, Chen H, Zhu S, Jiang N. Early collagen degeneration in the temporomandibular intradiscal junction portends the onset of discal pathogenesis. Acta Biomater 2025; 197:283-293. [PMID: 40122361 DOI: 10.1016/j.actbio.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
The temporomandibular intradiscal junction is a structural transition region connecting anteroposterior and circumferential aligned collagens fibers in the temporomandibular joint disc. Despite inherent stiffness, this region is incredibly susceptible to perforation under pathological conditions. This study aimed to determine whether the intradiscal junction was the initiation destructive site for discal degeneration. Utilizing high-resolution microscopy and nanoindentation, we characterized the structural and mechanical properties of the intradiscal junction. In rabbit models of anterior disc displacement-mediated temporomandibular osteoarthritis, we observed a significant reduction in collagen fibril diameter and an increase in denatured procollagen within the intradiscal junction as early as one week post-surgery, further spreading across the whole disc. Mass spectrometry proteomics showed that the alteration of the intradiscal junction was the consequence of mechanical stimuli mediated by tenascin-C and metalloproteinase-3. Notably, these degenerative changes were blocked by early reduction of the discal position. In vitro monotonic loading confirmed the dominant contribution of the intradiscal junction to the overall mechanical function of the disc. The present findings underscore the pivotal role of the intradiscal junction in the pathogenesis of discal degeneration, providing early detection indicators and therapeutics. STATEMENT OF SIGNIFICANCE: Temporomandibular joint osteoarthritis (TMJOA) is a prevalent disorder affecting the structure and mechanics of the TMJ disc, with no effective early detection or treatment strategies. This study identifies the temporomandibular intradiscal junction (IJ) as the site where discal pathogenesis begins. Degeneration at the IJ involves reduced collagen fibril diameter and denatured procollagens, compromising the mechanical properties of the entire disc. Rescuing the IJ's position through TMJ anchorage surgery may restore mechanosensitive homeostasis and prevent further discal degeneration. These findings highlight the importance of the IJ in the discal progression, payving the way for early detection methods and treatment strategies that target aberrant remodeling in this critical region to slow or reverse disease.
Collapse
Affiliation(s)
- Jiahao Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Liang Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Haozhe Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
2
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
3
|
Bone Molecular Modifications Induced by Diagenesis Followed-Up for 12 Months. BIOLOGY 2022; 11:biology11101542. [PMID: 36290445 PMCID: PMC9598178 DOI: 10.3390/biology11101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
Abstract
After death, diagenesis takes place. Numerous processes occur concomitantly, which makes it difficult to identify the diagenetic processes. The diagenetic processes refer to all processes (chemical or physical) that modify the skeletal remains. These processes are highly variable depending on the environmental factors (weather, temperature, age, sex, etc.), especially in the early stages. Numerous studies have evaluated bone diagenetic processes over long timescales (~millions of years), but fewer have been done over short timescales (between days and thousands of years). The objective of the study is to assess the early stages of diagenetic processes by Raman microspectroscopy over 12 months. The mineral and organic matrix modifications are monitored through physicochemical parameters. Ribs from six humans were buried in soil. The modifications of bone composition were followed by Raman spectroscopy each month. The decrease in the mineral/organic ratio and carbonate type-B content and the increase in crystallinity reveal that minerals undergo dissolution-recrystallization. The decrease in collagen cross-linking indicates that collagen hydrolysis induces the fragmentation of collagen fibres over 12 months.
Collapse
|
4
|
Pascart T, Falgayrac G, Cortet B, Paccou J, Bleuse M, Coursier R, Putman S, Quinchon JF, Bertheaume N, Delattre J, Marchandise P, Cultot A, Norberciak L, Kerckhofs G, Budzik JF. Subchondral involvement in osteonecrosis of the femoral head: insight on local composition, microstructure and vascularization. Osteoarthritis Cartilage 2022; 30:1103-1115. [PMID: 35568111 DOI: 10.1016/j.joca.2022.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine changes of subchondral bone composition, micro-structure, bone marrow adiposity and micro-vascular perfusion in end-stage osteonecrosis of the femoral head (ONFH) compared to osteoarthritis (OA) using a combined in vivo and ex vivo approach. DESIGN Male patients up to 70 years old referred for total hip replacement surgery for end-stage ONFH were included (n = 14). Fifteen patients with OA were controls. Pre-operative MRI was used to assess bone perfusion (dynamic contrast-enhanced (DCE) sequences) and marrow fat content (chemical shift imaging). Three distinct zones of femoral head subchondral bone - necrotic, sclerotic, distant - were compared between groups. After surgery, plugs were sampled in these zones and Raman spectroscopy was applied to characterize bone mineral and organic components (old and newly-formed), and contrast-enhanced micro-computed tomography (CE-μCT) to determine bone micro-structural parameters and volume of bone marrow adipocytes, using conventional 2D histology as a reference. RESULTS In the necrotic zone of ONFH patients compared to OA patients: 1) the subchondral plate did not exhibit significant changes in composition nor structure; 2) the volume fraction of subchondral trabecular bone was significantly lower; 3) type-B carbonate substitution was less pronounced, 4) collagen maturity was more pronounced; and 5) bone marrow adipocytes were significantly depleted. The sclerotic zone from the ONFH group showed greater trabecular thickness, and higher DCE-MRI AUC and Ktrans. Volume fraction of subchondral bone, trabecular number, and Kep were significantly lower in the distant zone of the ONFH group. CONCLUSIONS This study demonstrated alterations of subchondral bone microstructure, composition, perfusion and/or adipose content in all zones of the femoral head.
Collapse
Affiliation(s)
- T Pascart
- Department of Rheumatology, Lille Catholic Hospitals and Lille Catholic University, Lille, France; Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France.
| | - G Falgayrac
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - B Cortet
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France; Univ. Lille, CHU Lille, ULR 4490, Department of Rheumatology, 59000 Lille, France
| | - J Paccou
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France; Univ. Lille, CHU Lille, ULR 4490, Department of Rheumatology, 59000 Lille, France
| | - M Bleuse
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - R Coursier
- Department of Orthopaedic Surgery, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - S Putman
- Department of Orthopaedic Surgery, CHU Lille, Lille University, Lille, France
| | - J-F Quinchon
- Department of Anatomopathology, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - N Bertheaume
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - J Delattre
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - P Marchandise
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - A Cultot
- Department of Diagnostic and Interventional Radiology, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - L Norberciak
- Department of Research, Biostatistics, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - G Kerckhofs
- Biomechanics Lab - Institute of Mechanics, Materials, and Civil Engineering, Louvain-la-Neuve, UCLouvain, Belgium; IREC - Institute of Experimental and Clinical Research, UCLouvain, Woluwe, Belgium; Department Materials Engineering, Leuven, KU Leuven, Belgium; Prometheus, Division for Skeletal Tissue Engineering, Leuven, KU Leuven, Belgium
| | - J-F Budzik
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France; Department of Diagnostic and Interventional Radiology, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| |
Collapse
|
5
|
Falgayrac G, Vitale R, Delannoy Y, Behal H, Penel G, Duponchel L, Colard T. Critical aspects of Raman spectroscopy as a tool for postmortem interval estimation. Talanta 2022; 249:123589. [PMID: 35691126 DOI: 10.1016/j.talanta.2022.123589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/28/2023]
Abstract
The estimation of the postmortem interval (PMI) from skeletal remains represents a challenging task in forensic science. PMI is often influenced by extrinsic factors (humidity, dryness, scavengers, etc.) and intrinsic factors (age, sex, pathology, way of life, medical treatments, etc.). Raman spectroscopy combined with multivariate data analysis represents a promising tool for forensic anthropologists. Despite all the advantages of the technique, Raman spectra of skeletal remains are influenced by these extrinsic and intrinsic factors, which impairs precision and reproducibility. Both parameters have to reach a high level of confidence when such spectroscopy is used as a way to predict PMI. As a consequence, advanced multivariate data analysis is necessary to quantify the effect of all factors to improve the estimation of the PMI. The objective of this work is to evaluate the effect of intrinsic and extrinsic factors on the Raman spectra of skeletal remains. We designed a protocol close to a real-world scenario. We used ANOVA-simultaneous component analysis (ASCA) to unmix and quantify the effect of 1 intrinsic (source body) and 1 extrinsic (burial time) factors on the Raman spectra. In our model, the burial time was found to generate the highest variability after the source body. ASCA showed that the variability due to the burial time has 2 mixed contributions. Seasonal variations are the first contribution. The second contribution is attributed to diagenesis. A decrease in the mineral bands and an increase in the organic bands are observed. The source body was also found to contribute to the variability in Raman spectra. ASCA showed that the source body induces variability related to the composition of bones. This quantification cannot be assessed by basic chemometrics methods such as PCA. The results of this study highlighted the need to use an advanced chemometric data analysis tool (like ASCA) combined with Raman spectroscopy to estimate the postmortem interval.
Collapse
Affiliation(s)
- Guillaume Falgayrac
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490, MABLab- Adiposité Médullaire et Os, F-59000, Lille, France.
| | - Raffaele Vitale
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59000, Lille, France
| | - Yann Delannoy
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490, MABLab- Adiposité Médullaire et Os, F-59000, Lille, France; Univ. Lille, CHU Lille, ULR 7367 - UTML&A - Unité de Taphonomie Médico-Légale & d'Anatomie, F-59000, Lille, France
| | - Hélène Behal
- Univ. Lille, CHU Lille, ULR 2694, METRICS: Évaluation des technologies de santé et des pratiques médicales, F-59000, Lille, France
| | - Guillaume Penel
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490, MABLab- Adiposité Médullaire et Os, F-59000, Lille, France
| | - Ludovic Duponchel
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59000, Lille, France
| | - Thomas Colard
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600, Pessac, France; Department of Oral Radiology, University of Lille, Lille University Hospital, F-59000, Lille, France
| |
Collapse
|
6
|
PCA-Assisted Raman Analysis of Osteonecrotic Human Femoral Heads. Methods Protoc 2022; 5:mps5010010. [PMID: 35076564 PMCID: PMC8788499 DOI: 10.3390/mps5010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) occurs frequently in adolescents and young adults and causes progressive deformation and destruction of the hip joint and impairs standing and walking, resulting in a significant decrease in the quality of life of patients. In addition, studies have shown that a history of corticosteroid administration and heavy alcohol consumption are closely related to the occurrence of ONFH. However, the detailed mechanism by which steroid administration and alcohol consumption are associated with the development of the disease is still unknown. With many researches still ongoing and without a clear biological pathway for osteonecrosis, effective preventive measures cannot be taken. Therefore, the current focus of ONFH treatment is to establish an early diagnosis and treatment strategy. We obtained the femoral heads of four patients with steroidal ONFH and three patients with alcoholic ONFH. We then compared the femoral heads of steroidal and alcoholic osteonecrosis by analyzing them at the molecular level by Raman spectroscopy. Crystallographic changes (deformations) in the mineral phase and fraction of organic material respect to the total mass were then plotted as a function. We found that changes in bone composition in ONFH were different in steroidal and alcoholic ONFH. We conclude that this suggests that the developmental mechanisms of steroidal and alcoholic ONFH may follow different paths. We also noticed that while steroid seem to lead to a more marked degradation of the tissue, alcohol seem to affect also the quality of the healthy tissue.
Collapse
|
7
|
Chiou AE, Hinckley JA, Khaitan R, Varsano N, Wang J, Malarkey HF, Hernandez CJ, Williams RM, Estroff LA, Weiner S, Addadi L, Wiesner UB, Fischbach C. Fluorescent Silica Nanoparticles to Label Metastatic Tumor Cells in Mineralized Bone Microenvironments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2001432. [PMID: 32462807 PMCID: PMC7704907 DOI: 10.1002/smll.202001432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/05/2023]
Abstract
During breast cancer bone metastasis, tumor cells interact with bone microenvironment components including inorganic minerals. Bone mineralization is a dynamic process and varies spatiotemporally as a function of cancer-promoting conditions such as age and diet. The functional relationship between skeletal dissemination of tumor cells and bone mineralization, however, is unclear. Standard histological analysis of bone metastasis frequently relies on prior demineralization of bone, while methods that maintain mineral are often harsh and damage fluorophores commonly used to label tumor cells. Here, fluorescent silica nanoparticles (SNPs) are introduced as a robust and versatile labeling strategy to analyze tumor cells within mineralized bone. SNP uptake and labeling efficiency of MDA-MB-231 breast cancer cells is characterized with cryo-scanning electron microscopy and different tissue processing methods. Using a 3D in vitro model of marrow-containing, mineralized bone as well as an in vivo model of bone metastasis, SNPs are demonstrated to allow visualization of labeled tumor cells in mineralized bone using various imaging modalities including widefield, confocal, and light sheet microscopy. This work suggests that SNPs are valuable tools to analyze tumor cells within mineralized bone using a broad range of bone processing and imaging techniques with the potential to increase the understanding of bone metastasis.
Collapse
Affiliation(s)
- Aaron E Chiou
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua A Hinckley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Rupal Khaitan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Neta Varsano
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jonathan Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Henry F Malarkey
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher J Hernandez
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Rebecca M Williams
- Biotechnology Resource Center Imaging Facility, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Malkovskiy AV, Van Wassenhove LD, Goltsev Y, Osei-Sarfo K, Chen CH, Efron B, Gudas LJ, Mochly-Rosen D, Rajadas J. The Effect of Ethanol Consumption on Composition and Morphology of Femur Cortical Bone in Wild-Type and ALDH2*2-Homozygous Mice. Calcif Tissue Int 2021; 108:265-276. [PMID: 33068139 PMCID: PMC8092984 DOI: 10.1007/s00223-020-00769-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/05/2020] [Indexed: 11/28/2022]
Abstract
ALDH2 inactivating mutation (ALDH2*2) is the most abundant mutation leading to bone morphological aberration. Osteoporosis has long been associated with changes in bone biomaterial in elderly populations. Such changes can be exacerbated with elevated ethanol consumption and in subjects with impaired ethanol metabolism, such as carriers of aldehyde dehydrogenase 2 (ALDH2)-deficient gene, ALDH2*2. So far, little is known about bone compositional changes besides a decrease in mineralization. Raman spectroscopic imaging has been utilized to study the changes in overall composition of C57BL/6 female femur bone sections, as well as in compound spatial distribution. Raman maps of bone sections were analyzed using multilinear regression with these four isolated components, resulting in maps of their relative distribution. A 15-week treatment of both wild-type (WT) and ALDH2*2/*2 mice with 20% ethanol in the drinking water resulted in a significantly lower mineral content (p < 0.05) in the bones. There was no significant change in mineral and collagen content due to the mutation alone (p > 0.4). Highly localized islets of elongated adipose tissue were observed on most maps. Elevated fat content was found in ALDH2*2 knock-in mice consuming ethanol (p < 0.0001) and this effect appeared cumulative. This work conclusively demonstrates that that osteocytes in femurs of older female mice accumulate fat, as has been previously theorized, and that fat accumulation is likely modulated by levels of acetaldehyde, the ethanol metabolite.
Collapse
Affiliation(s)
- Andrey V Malkovskiy
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford Medical School, Stanford, CA, 94305, USA.
- Department of Chemical and Systems Biology, Stanford Medical School, Stanford, CA, 94305, USA.
| | - Lauren D Van Wassenhove
- Department of Chemical and Systems Biology, Stanford Medical School, Stanford, CA, 94305, USA
| | - Yury Goltsev
- Department of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford Medical School, Stanford, CA, 94305, USA
| | - Kwame Osei-Sarfo
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford Medical School, Stanford, CA, 94305, USA
| | - Bradley Efron
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, 94305, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford Medical School, Stanford, CA, 94305, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford Medical School, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Gao H, Zhou Z. Effect of Xylo-Oligosaccharides Supplementation by Drinking Water on the Bone Properties and Related Calcium Transporters in Growing Mice. Nutrients 2020; 12:nu12113542. [PMID: 33228037 PMCID: PMC7699350 DOI: 10.3390/nu12113542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Xylo-oligosaccharides (XOS), non-digestible oligosaccharides, have the potential to regulate intestinal microorganisms, and thus, improve host health, but little evidence exists for the prebiotic effects on bone health. This study evaluates the dose-response effect of XOS supplementation on bone properties, the morphology of the intestine, cecum pH, and cecum wall weight, as well as the related calcium transporters. Ninety-six 28-day-old male mice were randomized into one of four groups, fed the same commercial diet, and given different types of deionized water containing 0, 1, 2, or 4% XOS by concentration for 30 days. Eight mice were randomly selected to accomplish particular tasks every 10 days. No significant differences in serum Ca and P levels and growth performance were observed among the four studied groups. XOS intervention significantly decreased cecum pH and increased cecum wall weight in a dose-dependent manner. At the late growth stage, compared with 0% XOS, the bone mineral density (BMD) and bone-breaking strength in 4% XOS were significantly higher. The bone crystallinity with 4% XOS, measured by Raman spectrum, was significantly enhanced compared to that with 0% XOS during later growth. The villus height and villus height to crypt depth (VH:CD) were enhanced with an increase of XOS concentration during the later stage of growth. The expression of transient receptor potential vanillin receptor 6 (TRPV6) and Na+/Ca2+ exchanger 1 (NCX1) in the duodenum were enhanced by XOS supplementation. XOS exerted a positive influence on bone properties by decreasing the cecum pH, increasing the cecum wall and villus structure, and upregulating the expression of related calcium transporters.
Collapse
|
10
|
Shah FA. Towards refining Raman spectroscopy-based assessment of bone composition. Sci Rep 2020; 10:16662. [PMID: 33028904 PMCID: PMC7541616 DOI: 10.1038/s41598-020-73559-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Various compositional parameters are derived using intensity ratios and integral area ratios of different spectral peaks and bands in the Raman spectrum of bone. The [Formula: see text]1-, [Formula: see text]2-,[Formula: see text]3-, [Formula: see text]4 PO43-, and [Formula: see text] CO32- bands represent the inorganic phase while amide I, amide III, Proline, Hydroxyproline, Phenylalanine, δ(CH3), δ(CH2), and [Formula: see text](C-H) represent the organic phase. Here, using high-resolution Raman spectroscopy, it is demonstrated that all PO43- bands of bone either partially overlap with or are positioned close to spectral contributions from the organic component. Assigned to the organic component, a shoulder at 393 cm-1 compromises accurate estimation of [Formula: see text]2 PO43- integral area, i.e., phosphate/apatite content, with implications for apatite-to-collagen and carbonate-to-phosphate ratios. Another feature at 621 cm-1 may be inaccurately interpreted as [Formula: see text]4 PO43- band broadening. In the 1020-1080 cm-1 range, the ~ 1047 cm-1 [Formula: see text]3 PO43- sub-component is obscured by the 1033 cm-1 Phenylalanine peak, while the ~ 1076 cm-1 [Formula: see text]3 PO43- sub-component is masked by the [Formula: see text]1 CO32- band. With [Formula: see text]1 PO43- peak broadening, [Formula: see text]2 PO43- integral area increases exponentially and individual peaks comprising the [Formula: see text]4 PO43- band merge together. Therefore, [Formula: see text]2 PO43- and [Formula: see text]4 PO43- band profiles are sensitive to changes in mineral crystallinity.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
11
|
Guss JD, Taylor E, Rouse Z, Roubert S, Higgins CH, Thomas CJ, Baker SP, Vashishth D, Donnelly E, Shea MK, Booth SL, Bicalho RC, Hernandez CJ. The microbial metagenome and bone tissue composition in mice with microbiome-induced reductions in bone strength. Bone 2019; 127:146-154. [PMID: 31207357 PMCID: PMC6708759 DOI: 10.1016/j.bone.2019.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 01/10/2023]
Abstract
The genetic components of microbial species that inhabit the body are known collectively as the microbiome. Modifications to the microbiome have been implicated in disease processes throughout the body and have recently been shown to influence bone. Prior work has associated changes in the microbial taxonomy (phyla, class, species, etc.) in the gut with bone phenotypes but has provided limited information regarding mechanisms. With the goal of achieving a more mechanistic understanding of the effects of the microbiome on bone, we perform a metagenomic analysis of the gut microbiome that provides information on the functional capacity of the microbes (all microbial genes present) rather than only characterizing the microbial taxa. Male C57Bl/6 mice were subjected to disruption of the gut microbiota (ΔMicrobiome) using oral antibiotics (from 4 to 16 weeks of age) or remained untreated (n = 6-7/group). Disruption of the gut microbiome in this manner has been shown to lead to reductions in tissue mechanical properties and whole bone strength in adulthood with only minor changes in bone geometry and density. ΔMicrobiome led to modifications in the abundance of microbial genes responsible for the synthesis of the bacterial cell wall and capsule; bacterially synthesized carbohydrates; and bacterially synthesized vitamins (B and K) (p < 0.01). Follow up analysis focused on vitamin K, a factor that has previously been associated with bone health. The vitamin K content of the cecum, liver and kidneys was primarily microbe-derived forms of vitamin K (menaquinones) and was decreased by 32-66% in ∆Microbiome mice compared to untreated animals (p < 0.01). Bone mineral crystallinity determined using Raman spectroscopy was decreased in ∆Microbiome mice (p = 0.01). This study illustrates the use of metagenomic analysis to link the microbiome to bone phenotypes and provides preliminary findings implicating microbially synthesized vitamin-K as a regulator of bone matrix quality.
Collapse
Affiliation(s)
- Jason D Guss
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Erik Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Zach Rouse
- Material Science and Engineering, Cornell University, New York, NY, USA
| | - Sebastian Roubert
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Corinne J Thomas
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Shefford P Baker
- Material Science and Engineering, Cornell University, New York, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Eve Donnelly
- Material Science and Engineering, Cornell University, New York, NY, USA; Hospital for Special Surgery, New York, NY, USA
| | - M Kyla Shea
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | | | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
12
|
Paolillo FR, Romano RA, de Matos L, Martin AA, Guimarães FEG, de Castro Neto JC, Bagnato VS. Short-term and long-term effects of osteoporosis on incisor teeth and femoral bones evaluated by Raman spectroscopy and energy dispersive X-ray analysis in ovariectomized rats. J Bone Miner Metab 2019; 37:18-27. [PMID: 29344812 DOI: 10.1007/s00774-018-0903-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/04/2018] [Indexed: 01/05/2023]
Abstract
There are few published data on the relationship between loss of bone mass due to osteoporosis and poor tooth quality. This study analyzed the effects of osteoporosis on incisor teeth and femoral bones using optical techniques in rats. Twenty female Wistar rats aged 6 months (n = 20) were randomized into two groups: control group, non-ovariectomized rats (n = 10); ovariectomy group, ovariectomized rats to induce osteoporosis (n = 10). Each group was subdivided randomly into two groups containing five rats each as follows. Control group 1: non-ovariectomized rats euthanized at the age of 9 or 3 months post-ovariectomy (n = 5); Control group 2: non-ovariectomized rats euthanized at the age of 1 year or 6 months post-ovariectomy (n = 5); ovariectomy group 1: ovariectomized rats euthanized at the age of 9 months or 3 months post-ovariectomy (n = 5); ovariectomy group 2: ovariectomized rats euthanized at the age of 1 year or 6 months post-ovariectomy (n = 5). The incisor teeth and femoral bones of Wistar rats were removed to perform Raman spectroscopy using an excitation laser at 785 nm. In addition, an energy-dispersive X-ray spectrometer system was used to evaluate calcium (Ca) and phosphorus (P). The main findings included significant changes (p < 0.05) for phosphate and carbonate band areas for both incisor teeth and femur bones. In addition, there was significant negative correlation between the P concentration and phosphate/carbonate ratio (lower P content-larger ratio, p < 0.05) for incisor teeth and femoral bones. The proline and CH2 wag band areas were significantly reduced only for the incisor teeth (p < 0.05). Therefore, Raman spectroscopy assessed the compositional, physicochemical and structural changes in hard tissue. The current study also pointed out the possible action mechanisms of these changes, bone fracture risk and dental fragility. It is important to emphasize that poor dental quality may also occur due to osteoporosis.
Collapse
Affiliation(s)
- Fernanda Rossi Paolillo
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400, Centro, São Carlos, SP, CEP 13560-970, Brazil.
| | - Renan Arnon Romano
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400, Centro, São Carlos, SP, CEP 13560-970, Brazil
| | - Luciana de Matos
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400, Centro, São Carlos, SP, CEP 13560-970, Brazil
| | - Airton Abrahão Martin
- Department of Physics from Federal University of Piauí (UFPI), Campus Universitário Ministro Petrônio Portella, Bairro Ininga, Teresina, Bairro Ininga, Teresina, PI 64049-550, Brazil
- Department of Biomedical Engineering from Brazil University (UnBr), Rua Carolina Fonseca, 584, Itaquera, SP, Brazil
| | - Francisco Eduardo Gontijo Guimarães
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400, Centro, São Carlos, SP, CEP 13560-970, Brazil
| | - Jarbas Caiado de Castro Neto
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400, Centro, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanderlei Salvador Bagnato
- Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400, Centro, São Carlos, SP, CEP 13560-970, Brazil
| |
Collapse
|
13
|
Wright B, Ragan L, Niratisairak S, Høiseth A, Strømsøe K, Steen H, Brattgjerd JE. High correlation between mechanical properties and bone mineral parameters in embalmed femurs after long-term storage. Clin Biomech (Bristol, Avon) 2018; 59:136-142. [PMID: 30232057 DOI: 10.1016/j.clinbiomech.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fresh frozen human femurs are considered "the gold standard" in biomechanical studies of hip fractures, resembling the in vivo situation mostly. A more readily available alternative is formalin embalmed femurs. However, to which extent formalin affects key features of bone; its mechanical properties, bone mineral content and their mutual relationship over time, remains unknown. Accordingly, we measured the mineral parameters and related them to the mechanical properties of formalin fixed femurs after long-term storage. METHODS 36 paired femurs from human donors, fixed in formalin and stored for a mean period of 4.6 (3.5-6) years. Quantitative CT was performed to measure the bone mineral density and mass at the mainly cortical mid shaft and the center of the mainly cancellous condyles. Each pair was subjected to local tests by three-point bending and screw pullout of the shaft and lateral punch and metaphyseal cube compression of the condyles. FINDINGS Neither mechanical nor bone mineral data were significantly correlated to storage time. Well-known associations for bone parameters with age and gender were retrieved. Maximum force of the cortical bone tests was highly correlated to the diaphyseal bone mass; (r = 0.80-0.87, p = 0.01), while maximum force of the cancellous bone tests correlated well to the density of the condylar bone; (r = 0.70, p = 0.01). INTERPRETATION Our results indicate that mechanical and bone mineral data and their mutual relationship are conserved in formalin fixed femurs even after long-term storage. Formalin fixed femurs may serve as an alternative to fresh frozen femurs in biomechanical testing.
Collapse
Affiliation(s)
- Bryan Wright
- Biomechanics Laboratory, Orthopaedic Division, Oslo University Hospital, Norway; Ringerike Hospital, Hønefoss, Norway.
| | - Lydia Ragan
- Division of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway; Department of Physiotherapy, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Norway
| | - Sanyalak Niratisairak
- Biomechanics Laboratory, Orthopaedic Division, Oslo University Hospital, Norway; Institute for Clinical Medicine, University of Oslo, Norway
| | - Arne Høiseth
- Biomechanics Laboratory, Orthopaedic Division, Oslo University Hospital, Norway
| | - Knut Strømsøe
- Biomechanics Laboratory, Orthopaedic Division, Oslo University Hospital, Norway
| | - Harald Steen
- Biomechanics Laboratory, Orthopaedic Division, Oslo University Hospital, Norway
| | - Jan Egil Brattgjerd
- Biomechanics Laboratory, Orthopaedic Division, Oslo University Hospital, Norway; Institute for Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
14
|
Unraveling the compromised biomechanical performance of type 2 diabetes- and Roux-en-Y gastric bypass bone by linking mechanical-structural and physico-chemical properties. Sci Rep 2018; 8:5881. [PMID: 29651097 PMCID: PMC5897570 DOI: 10.1038/s41598-018-24229-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/06/2018] [Indexed: 02/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder associated with obesity and hyperglycemia. Roux-en-Y gastric bypass (RYGB) surgery is a common treatment for severely obese patients and T2DM. Both RYGB and T2DM are linked to increased skeletal fragility, though the exact mechanisms are poorly understood. Our aim was to characterize the structural, mechanical and compositional properties of bones from diet-induced obese and RYGB-treated obese (bypass) mice to elucidate which the exact factors are contributing to the increased skeletal fragility. To achieve this, a combinatory approach including microfocus X-ray computed tomography, 3-point bending, finite element modeling and Raman spectroscopy, was used. Compared to aged-matched lean controls, the obese mice displayed decreased cortical thickness, trabecular bone loss, decreased stiffness and increased Young’s modulus. For the bypass mice, these alterations were even more pronounced, and additionally they showed low mineral-to-matrix ratio in the cortical endosteal area. Accumulation of the advanced glycation end-product (AGE) pentosidine was found in the cortex of obese and bypass groups and this accumulation was correlated with an increased Young’s modulus. In conclusion, we found that the increased fracture risk in T2DM- and post-RYGB bones is mainly driven by accumulation of AGEs and macro-structural alterations, generating biomechanical dysfunctionality.
Collapse
|
15
|
Tong L, Hao Z, Wan C, Wen S. Detection of depth-depend changes in porcine cartilage after wear test using Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700217. [PMID: 29227045 DOI: 10.1002/jbio.201700217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/05/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Cartilage damage and wear can lead to severe diseases, such as osteoarthritis, thus, many studies on the cartilage wear process have already been performed to better understand the cartilage wear mechanism. However, most characterization methods focus on the cartilage surface or the total wear extent. With the advantages of high spatial resolution and easy characterization, Raman microspectroscopy was employed for the first time to characterize full-depth changes in the cartilage extracellular matrix (ECM) after wear test. Sections from the cartilage samples after wear were compared with sections from the control group. Univariate and multivariate analyses both indicated that collagen content loss at certain depths (20%-30% relative to the cartilage surface) is possibly the dominating alteration during wear rather than changes in collagen fiber orientation or proteoglycan content. These findings are consistent with the observations obtained by scanning electron microscopy and histological staining. This study successfully used Raman microspectroscopy efficiently assess full-depth changes in cartilage ECM after wear test, thus providing new insight into cartilage damage and wear.
Collapse
Affiliation(s)
- Lingying Tong
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Zhixiu Hao
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Chao Wan
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Shizhu Wen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Wang S, Zhang P, Kong X, Xie S, Li Q, Li Z, Zhou Z. Delicate changes of bioapatite mineral in pig femur with addition of dietary xylooligosaccharide: Evidences from Raman spectroscopy and ICP. Anim Sci J 2017; 88:1820-1826. [PMID: 28557169 DOI: 10.1111/asj.12837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Bone mineral is strongly correlated with performance and health of animal bodies. The mineral bioapatite (BAp) is the dominant component in bone tissue. This study investigated mineralogical changes of BAp in pig femur by Raman spectroscopy and inductively coupled plasma optical emission spectrometry (ICP-OES). The pigs had been raised with various xylooligosaccharide (XOS) additions at two stages of growth (growing and fattening periods). The results show that XOS can decrease the degree of carbonate substitution for PO4 in BAp mineral and improve the mineral's crystallinity. ICP data is consistent with the Raman results, that is the low solubility of bone BAp for pigs fed with XOS. Additionally, the effect of XOS is much better in the growing period (before 65 kg) than in the fattening period (after 65 kg). Moreover, the high addition of XOS (within the range of 0.1-0.5 g/kg) would be appropriate to improve the crystallinity of bone BAp. This study sheds light on applying Raman and ICP techniques to investigate the delicate changes of mineral in pig bones undergoing different managements.
Collapse
Affiliation(s)
- Shujie Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Penghao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangfeng Kong
- Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shengda Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Pascart T, Falgayrac G, Migaud H, Quinchon JF, Norberciak L, Budzik JF, Paccou J, Cotten A, Penel G, Cortet B. Region specific Raman spectroscopy analysis of the femoral head reveals that trabecular bone is unlikely to contribute to non-traumatic osteonecrosis. Sci Rep 2017; 7:97. [PMID: 28273910 PMCID: PMC5427816 DOI: 10.1038/s41598-017-00162-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/13/2017] [Indexed: 01/26/2023] Open
Abstract
Non-traumatic osteonecrosis (ON) of the femoral head is a common disease affecting a young population as the peak age of diagnosis is in the 40 s. The natural history of non-traumatic ON leads to a collapse of the femoral head requiring prosthetic replacement in a 60% of cases. Although trabecular bone involvement in the collapse is suspected, the underlying modifications induced at a molecular level have not been explored in humans. Here, we examine changes in the molecular composition and structure of bone as evaluated by Raman spectroscopy in human end-stage ON. Comparing samples from femoral heads harvested from 11 patients and 11 cadaveric controls, we show that the mineral and organic chemical composition of trabecular bone in ON is not modified apart from age-related differences. We also show that the molecular composition in the necrotic part of the femoral head is not different from the composition of the remaining ‘healthy’ trabecular bone of the femoral head. These findings support that quality of trabecular bone is not modified during ON despite extensive bone marrow necrosis and osteocyte death observed even in the ‘healthy’ zones on histological examination.
Collapse
Affiliation(s)
- Tristan Pascart
- Lille University, Littoral Côte d'Opale University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France. .,Department of Rheumatology, Saint-Philibert Hospital, Lille University, F-59160, Lomme, France.
| | - Guillaume Falgayrac
- Lille University, Littoral Côte d'Opale University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France
| | - Henri Migaud
- Lille University, Littoral Côte d'Opale University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France.,Department of Orthopaedic Surgery, Lille University Hospital, Lille University, F-59000, Lille, France
| | - Jean-François Quinchon
- Department of Anatomopathology, Saint-Philibert Hospital, Lille University, F-59160, Lomme, France
| | - Laurène Norberciak
- Department of biostatistics, Saint-Philibert Hospital, Lille University, F-59160, Lomme, France
| | - Jean-François Budzik
- Lille University, Littoral Côte d'Opale University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France.,Department of Radiology,Saint-Philibert Hospital, Lille University, F-59160, Lomme, France
| | - Julien Paccou
- Lille University, Littoral Côte d'Opale University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France.,Department of Rheumatology, Lille University Hospital, Lille University, F-59000, Lille, France
| | - Anne Cotten
- Lille University, Littoral Côte d'Opale University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France.,Department of Radiology, Lille University Hospital, Lille University, F-59000, Lille, France
| | - Guillaume Penel
- Lille University, Littoral Côte d'Opale University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France
| | - Bernard Cortet
- Lille University, Littoral Côte d'Opale University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France.,Department of Rheumatology, Lille University Hospital, Lille University, F-59000, Lille, France
| |
Collapse
|