1
|
Wang J, Guo S, Park E, Lee S, Park Y, Han XX, Zhao B, Jung YM. SERS-Based Aptamer Sensing Strategy for Diabetes Biomarker Detection. Anal Chem 2024; 96:20082-20089. [PMID: 39602324 DOI: 10.1021/acs.analchem.4c05036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Accurate detection of glucose and insulin is crucial for early diagnosis, classification, and timely prevention of diabetes. In this study, we present a novel surface-enhanced Raman scattering (SERS) aptasensor for glucose and insulin detection. The SERS aptasensor is composed of gold bipyramidal nanoparticles (Au BPs), SH-aptamer-methylene blue (MB), and thiolated polyethylene glycol (SH-PEG). As a SERS substrate, the Au BPs provide abundant "hot spots" for the aptasensor to detect target molecules with reasonable sensitivity. One end of the aptamer is modified with a thiol group to facilitate chemical immobilization of SH-aptamer-MB via the Au-S bond, while the other end is functionalized with MB as a probe molecule. SH-PEG is used to block nonspecific adsorption. Glucose and insulin are specifically trapped by SH-aptamer-MB and cause conformational changes in SH-aptamer-MB, which in turn induce changes in the SERS signal of the modified MB, allowing detection of glucose and insulin. Finally, we validated the usefulness of this method on saliva samples and obtained satisfactory results. The proposed aptasensor exhibits strong selectivity and reliable sensitivity and provides an effective strategy for using SERS in disease biomarkers detection.
Collapse
Affiliation(s)
- Jihong Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Eungyeong Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Sujin Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
2
|
Liu F, Liu J, Luo Y, Wu S, Liu X, Chen H, Luo Z, Yuan H, Shen F, Zhu F, Ye J. A Single-Cell Metabolic Profiling Characterizes Human Aging via SlipChip-SERS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406668. [PMID: 39231358 PMCID: PMC11538647 DOI: 10.1002/advs.202406668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Metabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface-enhanced Raman spectroscopy (SERS), termed SlipChip-SERS, is developed for single-cell metabolism analysis. This SlipChip-SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip-SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence-associated β-glactosidase activity, elevated expression of senescence-related genes and reduced LMNB1 levels. Additionally, the senescence-inducing capacity of spermine in HUVECs and WRL-68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip-SERS system is developed for single-cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Fugang Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jiaqing Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yang Luo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Siyi Wu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xu Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Haoran Chen
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Zhewen Luo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Haitao Yuan
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Feng Shen
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Fangfang Zhu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jian Ye
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghai200240China
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
3
|
Suleimenova A, Frasco MF, Sales MGF. An ultrasensitive paper-based SERS sensor for detection of nucleolin using silver-nanostars, plastic antibodies and natural antibodies. Talanta 2024; 279:126543. [PMID: 39018947 DOI: 10.1016/j.talanta.2024.126543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
A state-of-the-art, ultrasensitive, paper-based SERS sensor has been developed using silver nanostars (AgNSs) in combination with synthetic and natural antibodies. A key component of this innovative sensor is the plastic antibody, which was synthesized using molecularly imprinted polymer (MIP) technology. This ground-breaking combination of paper substrates/MIPs with AgNSs, which is similar to a sandwich immunoassay, is used for the first time with the aim of SERS detection and specifically targets nucleolin (NCL), a cancer biomarker. The sensor device was carefully fabricated by synthesizing a polyacrylamide-based MIP on cellulose paper (Whatman Grade 1 filter) by photopolymerization. The binding of NCL to the MIP was then confirmed by natural antibody binding using a sandwich assay for quantitative SERS analysis. To facilitate the detection of NCL, antibodies were pre-bound to AgNSs with a Raman tag so that the SERS signal could indicate the presence of NCL. The composition of the sensory layers/materials was meticulously optimized. The intensity of the Raman signal at ∼1078 cm-1 showed a linear trend that correlated with increasing concentrations of NCL, ranging from 0.1 to 1000 nmol L-1, with a limit of detection down to 0.068 nmol L-1 in human serum. The selectivity of the sensor was confirmed by testing its analytical response in the presence of cystatin C and lysozyme. The paper-based SERS detection system for NCL is characterized by its simplicity, sustainability, high sensitivity and stability and thus embodies essential properties for point-of-care applications. This approach is promising for expansion to other biomarkers in various fields, depending on the availability of synthetic and natural antibodies.
Collapse
Affiliation(s)
- Akmaral Suleimenova
- BioMark, CEMMPRE, ARISE, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; CENIMAT, i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Caparica, Portugal
| | - Manuela F Frasco
- BioMark, CEMMPRE, ARISE, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
| | - M Goreti F Sales
- BioMark, CEMMPRE, ARISE, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Tang C, He Y, Yuan B, Li L, Luo L, You T. Simultaneous detection of multiple mycotoxins in agricultural products: Recent advances in optical and electrochemical sensing methods. Compr Rev Food Sci Food Saf 2024; 23:e70062. [PMID: 39530609 DOI: 10.1111/1541-4337.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Mycotoxin contamination poses serious threats to human and animal health. Food and environmental systems are often simultaneously contaminated with multiple mycotoxins, a problem that is further exacerbated by the synergistic toxicological effects of these co-occurring mycotoxins. Consequently, the development of rapid detection methods capable of simultaneously identifying multiple mycotoxins in agricultural products is essential to prevent their entry into the food chain. Compared to standard detection methods, optical and electrochemical (EC) sensing methods have distinct advantages for the rapid detection of mycotoxins. This review comprehensively summarizes the latest advancements in the field of simultaneous detection of multiple mycotoxins using optical and EC sensing methods over the last 6 years (2018-2024). First, the review introduces the classification and relevant principles of optical and EC sensing methods. Thereafter, it emphasizes innovative simultaneous detection strategies within these approaches. Finally, it discusses current challenges and offers a reference for further research. Currently, the main challenge lies in the mutual interference among targets, making the development of an interference-free detection platform essential. Furthermore, the ongoing development of integrated technology is expected to aid regulatory authorities in improving the quality of agricultural products for field applications.
Collapse
Affiliation(s)
- Chunyuan Tang
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Yi He
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Bingzheng Yuan
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Libo Li
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Lijun Luo
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Tianyan You
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Ding J, Zhang M, Kong L, Song P, Yang Y. Fabrication of core-shell-like bimetallic SERS substrates with inter-coordination effect for catalysis of p-mercaptoaniline. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6563-6569. [PMID: 39253963 DOI: 10.1039/d4ay01321b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The present study discusses the core-shell structures of Au@Ag prepared by a seed-growth method. The morphology and composition of Au@Ag nanoparticles were analyzed, indicating that they were successfully prepared. By studying the surface-enhanced Raman scattering spectra (SERS) of p-mercaptoaniline (PATP) molecules adsorbed on Au@Ag substrates, it was found that PATP molecules could be oxidized to form p-mercaptoazobenzene (DMAB) on Au@Ag substrates, indicating that the gold-silver bimetallic nanomaterials could catalyze the PATP molecules with excellent enhancement effect and stability. In order to further study the enhancement effect of the Au@Ag substrate, the electric field strength of Au nanoparticles and Au@Ag nanoparticles was simulated by using the finite difference time domain (FDTD) method, which showed that the SERS enhancement effect of Au@Ag nanoparticles was more significant as well as consistent with the experimental results. This work provides a reference for further preparation of efficient and stable bimetallic SERS substrates.
Collapse
Affiliation(s)
- Jiacheng Ding
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China.
| | - Meixia Zhang
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China.
| | - Lingru Kong
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China.
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China.
| | - Yanqiu Yang
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China.
| |
Collapse
|
6
|
Li Y, Jiang G, Wan Y, Dauda SAA, Pi F. Tailoring strategies of SERS tags-based sensors for cellular molecules detection and imaging. Talanta 2024; 276:126283. [PMID: 38776777 DOI: 10.1016/j.talanta.2024.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
As an emerging nanoprobe, surface enhanced Raman scattering (SERS) tags hold significant promise in sensing and bioimaging applications due to their attractive merits of anti-photobleaching ability, high sensitivity and specificity, multiplex, and low background capabilities. Recently, several reviews have proposed the application of SERS tags in different fields, however, the specific sensing strategies of SERS tags-based sensors for cellular molecules have not yet been systematically summarized. To provide beneficial and comprehensive insights into the advanced SERS tags technique at the cellular level, this review systematically elaborated on the latest advances in SERS tags-based sensors for cellular molecules detection and imaging. The general SERS tags-based sensing strategies for biomolecules and ions were first introduced according to molecular classes. Then, aiming at such molecules located in the extracellular, cellular membrane and intracellular regions, the tailored strategies by designing and manipulating SERS tags were summarized and explored through several key examples. Finally, the challenges and perspectives of developing high performance of advanced SERS tags were briefly discussed to provide effective guidance for further development and extended applications.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sa-Adu Abiola Dauda
- School of Allied Health Sciences, University for Development Studies, P.O. Box 1883, Tamale, Ghana
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
7
|
Chisanga M, Masson JF. Machine Learning-Driven SERS Nanoendoscopy and Optophysiology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:313-338. [PMID: 38701442 DOI: 10.1146/annurev-anchem-061622-012448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A frontier of analytical sciences is centered on the continuous measurement of molecules in or near cells, tissues, or organs, within the biological context in situ, where the molecular-level information is indicative of health status, therapeutic efficacy, and fundamental biochemical function of the host. Following the completion of the Human Genome Project, current research aims to link genes to functions of an organism and investigate how the environment modulates functional properties of organisms. New analytical methods have been developed to detect chemical changes with high spatial and temporal resolution, including minimally invasive surface-enhanced Raman scattering (SERS) nanofibers using the principles of endoscopy (SERS nanoendoscopy) or optical physiology (SERS optophysiology). Given the large spectral data sets generated from these experiments, SERS nanoendoscopy and optophysiology benefit from advances in data science and machine learning to extract chemical information from complex vibrational spectra measured by SERS. This review highlights new opportunities for intracellular, extracellular, and in vivo chemical measurements arising from the combination of SERS nanosensing and machine learning.
Collapse
Affiliation(s)
- Malama Chisanga
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| | - Jean-Francois Masson
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| |
Collapse
|
8
|
Zhang W, Zhang D, Wang P, Li X, Wang Z, Chen Q, Huang J, Yu Z, Guo F, Liang P. Development of a SERS aptasensor for the determination of L-theanine using a noble metal nanoparticle-magnetic nanospheres composite. Mikrochim Acta 2024; 191:158. [PMID: 38409501 DOI: 10.1007/s00604-024-06245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
An ultrasensitive surface-enhanced Raman spectroscopy (SERS) aptamer sensor (aptasensor) using a noble metal nanoparticle-magnetic nanospheres composite was developed for L-theanine detection. It makes use of Fe3O4@Au MNPs and Au@Ag NPs embedded with the Raman reporter 4-mercaptobenzoic acid (4MBA). Au@4MBA@Ag NPs modified by aptamer and Fe3O4@Au MNPs modified by cDNA created the aptasensor with the strongest Raman signal of 4MBA through the specific binding of the aptamer. With the preferred binding of L-theanine aptamer to L-theanine, Au@4MBA@Ag NPs were released from Fe3O4@Au MNPs, causing a linear decrease in SERS intensity to achieve the SERS detection of the L-theanine. The SERS peak of 4MBA at 1078 cm-1 was used for quantitative determination. SERS intensity showed a good log-linear relationship within the range 10-10 to 10-6 M of L-theanine. The aptasensor has a high selectivity for L-theanine compared with other twelve tested analytes. Hence, this aptasensor is a promising analytical tool for L-theanine detection. The developed method was applied to the analysis of real samples, demonstrating excellent performance. The comparison with the standard liquid chromatography mass spectrometry method showed an error within 20%.
Collapse
Affiliation(s)
- Wei Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - De Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoming Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Zhetao Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Jie Huang
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Zhi Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Kong J, Ju X, Qi G, Wang J, Diao X, Wang B, Zhang C, Li J, Jin Y. "Light-On" Fluorescent Nanoprobes for Monitoring Dynamic Distribution of Cellular Nucleolin During Pyroptosis. Anal Chem 2024; 96:926-933. [PMID: 38158373 DOI: 10.1021/acs.analchem.3c05122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nucleolin (NCL) is a multifunctional nuclear protein that plays significant roles in regulating physiological activities of the cells. However, it remains a challenge to monitor the dynamic distribution and expression of nucleolin within living cells during cell stress processes directly. Here, we designed "turn-on" fluorescent nanoprobes composed of specific AS1411 aptamer and nucleus-targeting peptide on gold nanoparticles (AuNPs) to effectively capture and track the NCL distribution and expression during pyroptosis triggered by electrical stimulation (ES). The distribution of nucleolin in the cell membrane and nucleus can be easily observed by simply changing the particle size of the nanoprobes. The present strategy exhibits obvious advantages such as simple operation, low cost, time saving, and suitability for living cell imaging. The ES can induce cancer cell pyroptosis controllably and selectively, with less harm to the viability of normal cells. The palpable cell nuclear stress responses of cancerous cells, including nucleus wrinkling and nucleolus fusion after ES at 1.0 V were obviously observed. Compared with normal cells (MCF-10A), NCL is overexpressed within cancerous cells (MCF-7 cells) using the as-designed nanoprobes, and the ES can effectively inhibit NCL expression within cancerous cells. The developed NCL sensing platform and ES-based methods hold great potential for cellular studies of cancer-related diseases.
Collapse
Affiliation(s)
- Jiao Kong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingkai Ju
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
| | - Jiafeng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin,P. R. China
| | - Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
| | - Chenyu Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
10
|
Redolfi-Bristol D, Mangiameli A, Yamamoto K, Marin E, Zhu W, Mazda O, Riello P, Pezzotti G. Ammonia Toxicity and Associated Protein Oxidation: A Single-Cell Surface Enhanced Raman Spectroscopy Study. Chem Res Toxicol 2024; 37:117-125. [PMID: 38146714 PMCID: PMC10792663 DOI: 10.1021/acs.chemrestox.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Ammonia (NH3) is a commonly used industrial chemical to which exposure at high concentrations can result in severe skin damage. Moreover, high levels of ammonia in the human body can lead to hyperammonemia conditions and enhanced cancer metabolism. In this work, the toxicity mechanism of NH3 has been studied against human dermal fibroblast (HDF) cells using surface-enhanced Raman spectroscopy (SERS). For this purpose, gold nanoparticles of size 50 nm have been prepared and used as probes for Raman signal enhancement, after being internalized inside HDF cells. Following the exposure to ammonia, HDF cells showed a significant variation in the protein ternary structure's signals, demonstrating their denaturation and oxidation process, together with early signs of apoptosis. Meaningful changes were observed especially in the Raman vibrations of sulfur-containing amino acids (cysteine and methionine) together with aromatic residues. Fluorescence microscopy revealed the formation of reactive oxygen and nitrogen species in cells, which confirmed their stressed condition and to whom the causes of protein degradation can be attributed. These findings can provide new insights into the mechanism of ammonia toxicity and protein oxidation at a single-cell level, demonstrating the high potential of the SERS technique in investigating the cellular response to toxic compounds.
Collapse
Affiliation(s)
- Davide Redolfi-Bristol
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, Venezia 30172, Italia
| | - Alessandro Mangiameli
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, Venezia 30172, Italia
| | - Kenta Yamamoto
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Wenliang Zhu
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Osam Mazda
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Pietro Riello
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, Venezia 30172, Italia
| | - Giuseppe Pezzotti
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hiraka-ta, Osaka 573-1010, Japan
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department
of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca
degli Abruzzi 24, Torino 10129, Italy
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, Venezia 30172, Italia
| |
Collapse
|
11
|
Stuber A, Schlotter T, Hengsteler J, Nakatsuka N. Solid-State Nanopores for Biomolecular Analysis and Detection. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:283-316. [PMID: 38273209 DOI: 10.1007/10_2023_240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Advances in nanopore technology and data processing have rendered DNA sequencing highly accessible, unlocking a new realm of biotechnological opportunities. Commercially available nanopores for DNA sequencing are of biological origin and have certain disadvantages such as having specific environmental requirements to retain functionality. Solid-state nanopores have received increased attention as modular systems with controllable characteristics that enable deployment in non-physiological milieu. Thus, we focus our review on summarizing recent innovations in the field of solid-state nanopores to envision the future of this technology for biomolecular analysis and detection. We begin by introducing the physical aspects of nanopore measurements ranging from interfacial interactions at pore and electrode surfaces to mass transport of analytes and data analysis of recorded signals. Then, developments in nanopore fabrication and post-processing techniques with the pros and cons of different methodologies are examined. Subsequently, progress to facilitate DNA sequencing using solid-state nanopores is described to assess how this platform is evolving to tackle the more complex challenge of protein sequencing. Beyond sequencing, we highlight the recent developments in biosensing of nucleic acids, proteins, and sugars and conclude with an outlook on the frontiers of nanopore technologies.
Collapse
Affiliation(s)
- Annina Stuber
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Tilman Schlotter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Zhao T, Chen YP, Xie YL, Luo Y, Tang H, Jiang JH. In situ monitoring of ROS secretion from single cells with a dual-nanopore biosensor. Chem Commun (Camb) 2023; 59:14463-14466. [PMID: 37982751 DOI: 10.1039/d3cc04657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
We report here a dual-nanopore biosensor based on modulation of surface charge density coupled with a microwell array chip for in situ monitoring of ROS secretion from single MCF-7 cells.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Yi-Ping Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ya-Li Xie
- Hunan Changsha Ecological Environment Monitoring Center, Changsha 410000, P. R. China
| | - Yang Luo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
13
|
Tang X, Kishimoto N, Kitahama Y, You TT, Adachi M, Shigeta Y, Tanaka S, Xiao TH, Goda K. Deciphering the Potential of Multidimensional Carbon Materials for Surface-Enhanced Raman Spectroscopy through Density Functional Theory. J Phys Chem Lett 2023; 14:10208-10218. [PMID: 37930960 DOI: 10.1021/acs.jpclett.3c02962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a potent analytical tool, particularly for molecular identification and structural analysis. Conventional metallic SERS substrates, however, suffer from low reproducibility and compatibility with biological molecules. Recently, metal-free SERS substrates based on chemical enhancement have emerged as a promising alternative with carbon-based materials offering excellent reproducibility and compatibility. Nevertheless, our understanding of carbon materials in SERS remains limited, which hinders their rational design. Here we systematically explore multidimensional carbon materials, including zero-dimensional fullerenes (C60), one-dimensional carbon nanotubes, two-dimensional graphene, and their B-, N-, and O-doped derivatives, for SERS applications. Using density functional theory, we elucidate the nonresonant polarizability-enhanced and resonant charge-transfer-based chemical enhancement mechanisms of these materials by evaluating their static/dynamic polarizability and electron excitation properties. This work provides a critical reference for the future design of carbon-based SERS substrates, opening a new avenue in this field.
Collapse
Affiliation(s)
- Xuke Tang
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoki Kishimoto
- Department of Chemistry, Tohoku University, Sendai 9800-8578, Japan
| | - Yasutaka Kitahama
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- LucasLand, Tokyo 101-0052, Japan
| | - Ting-Ting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Motoyasu Adachi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
| | - Ting-Hui Xiao
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Keisuke Goda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- LucasLand, Tokyo 101-0052, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Huang Y, Lv J, Zhang Y, Shao Y, Yang D, Cong Y, Huang J, Bian R. Atomic layer deposition (ALD)-constructed TaS 2nanoflakes for cancer-related nucleolin detection. NANOTECHNOLOGY 2023; 34:175701. [PMID: 36645911 DOI: 10.1088/1361-6528/acb35c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Sensitive detection of nucleolin (NCL) is of great significance for the early diagnosis of cancer. In this work, as a new type of two-dimensional (2D) transition metal dichalcogenides (TMDCs), TaS2nanoflakes (NFs) were precisely constructed by atomic layer deposition (ALD) on carbon fiber paper (CFP) with high specific surface area.In situobservation showed that the nucleation and growth of TaS2nanoflakes were precisely controlled by the number of ALD cycles, thereby regulating their electrochemical properties. The electrochemical performance of TaS2NFs was observed in depth, and compared with that of traditional 2D TMDCs. Due to the high surface area and conductivity, anodic/cathodic current of ∼1570μA of TaS2NFs/CFP can be obtained. Subsequently, an electrochemical biosensor based on ALD-constructed TaS2NFs/CFP for cancer-related NCL detection was fabricated. Due to the excellent electrochemical performance of TaS2NFs/CFP, ultrasensitive detection of NCL in the linear range of 0.1 pM-10 nM with a detection limit of 0.034 pM was achieved.
Collapse
Affiliation(s)
- Yazhou Huang
- Industrial Center, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Junyan Lv
- Industrial Center, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Yunfei Zhang
- Industrial Center, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Yinfeng Shao
- Industrial Center, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Dongfang Yang
- School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Yuan Cong
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Jiacai Huang
- Industrial Center, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Rong Bian
- Industrial Center, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| |
Collapse
|
15
|
Xu J, Yao L, Zhong X, Hu K, Zhao S, Huang Y. A biodegradable and cofactor self-sufficient aptazyme nanoprobe for amplified imaging of low-abundance protein in living cells. Talanta 2023; 253:123983. [PMID: 36201958 DOI: 10.1016/j.talanta.2022.123983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Despite the progress on the analysis of proteins either in vitro or in vivo, detection and imaging of low-abundance proteins in living cells still remains challenging. Herein, a novel biodegradable and cofactor self-sufficient DNAzyme nanoprobe has been deve-loped for catalytic imaging of protein in living cells with signal amplification capacity. This DNAzyme nanoprobe is constructed by assembling a DNAzyme subunit-containing aptamer hairpin (HP), another DNAzyme subunit strand (DS), and the molecular beacon (MB) substrate strand onto pH-sensitive ZnO@polydopamine nanorods (ZnO@PDA NRs) that work as DNAzyme cofactor suppliers. Such a nanoprobe can facilitate cellular uptake of DNA molecules and protection of them from nuclease degradation as well as release of them in cells by lysosomal acid-triggered dissolution of ZnO@PDA NRs into Zn2+ as DNAzyme cofactor. Upon recognition and binding with the intracellular protein target, the stem of HP is opened, after which the opened HP hybridizes with DS and generates activated DNAzymes. Each activated DNAzyme can catalyze the cleavage of many MB substrates through true enzymatic multiple turnovers, resulting in the separation of the quenched fluorophore/quencher pair labeled in MB and the generation of significantly amplified fluorescence. Using nucleolin (NCL) as a model protein, this nanoprobe enables the analysis of NCL with a detection limit of 1.8 pM, which are at least two orders of magnitude lower than that of non-catalytic imaging probe. Moreover, it could accurately distinguish tumor cells and normal cells by live cell NCL imaging. And the experimental results are also further verified by flow cytometry assays. The developed nanoprobe can be easily extended to detect other biomolecules by the change of their corresponding aptamer sequences, thus providing a promising tool for highly sensitive imaging of low-abundance biomolecules in living cells.
Collapse
Affiliation(s)
- Jiayao Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Lifang Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xiaohong Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Kun Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
16
|
Liu HL, Zhan K, Wang K, Xia XH. Recent advances in nanotechnologies combining surface-enhanced Raman scattering and nanopore. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
A Background-Free SERS Strategy for Sensitive Detection of Hydrogen Peroxide. Molecules 2022; 27:molecules27227918. [PMID: 36432018 PMCID: PMC9695938 DOI: 10.3390/molecules27227918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The accurate and sensitive detection of biomolecules by surface-enhanced Raman spectroscopy (SERS) is possible, but remains challenging due to the interference from biomolecules in complex samples. Herein, a new SERS sensor is developed for background-free detection of hydrogen peroxide (H2O2) with an ultralow detection limit (1 × 10-10 mol/L), using a Raman-silent strategy. The Au microparticles (Au-RSMPs) resembling rose-stones are devised as SERS substrates with a high enhancement effect, and 4-mercaptophenylboronic acid (4-MPBA) is selected as an H2O2-responsive Raman reporter. Upon the reaction with H2O2, the phenylboronic group of 4-MPBA was converted to a phenol group, which subsequently reacted with 4-diazonium-phenylalkyne (4-DP), an alkyne-carrying molecule via the azo reaction. The formed product exhibits an intense and sharp SERS signal in the Raman-silent region, avoiding interference of impurities and biomolecules. As a proof-of-concept demonstration, we show that this SERS sensor possesses significant merits towards the determination of H2O2 in terms of broad linear range, low limit of detection, and high selectivity, showing promise for the quantitative analysis of H2O2 in complicated biological samples.
Collapse
|
18
|
Brasiliense V, Park JE, Berns EJ, Van Duyne RP, Mrksich M. Surface potential modulation as a tool for mitigating challenges in SERS-based microneedle sensors. Sci Rep 2022; 12:15929. [PMID: 36151248 PMCID: PMC9508330 DOI: 10.1038/s41598-022-19942-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Raman spectroscopic-based biosensing strategies are often complicated by low signal and the presence of multiple chemical species. While surface-enhanced Raman spectroscopy (SERS) nanostructured platforms are able to deliver high quality signals by focusing the electromagnetic field into a tight plasmonic hot-spot, it is not a generally applicable strategy as it often depends on the specific adsorption of the analyte of interest onto the SERS platform. This paper describes a strategy to address this challenge by using surface potential as a physical binding agent in the context of microneedle sensors. We show that the potential-dependent adsorption of different chemical species allows scrutinization of the contributions of different chemical species to the final spectrum, and that the ability to cyclically adsorb and desorb molecules from the surface enables efficient application of multivariate analysis methods. We demonstrate how the strategy can be used to mitigate potentially confounding phenomena, such as surface reactions, competitive adsorption and the presence of molecules with similar structures. In addition, this decomposition helps evaluate criteria to maximize the signal of one molecule with respect to others, offering new opportunities to enhance the measurement of analytes in the presence of interferants.
Collapse
Affiliation(s)
- Vitor Brasiliense
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA
- PPSM, ENS Paris-Saclay, CNRS (UMR 5831), Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Ji Eun Park
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA
| | - Eric J Berns
- Department of Biomedical Engineering, Northwestern University, Evanston, IL-60208, USA
| | - Richard P Van Duyne
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL-60208, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL-60208, USA.
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL-60611, USA.
| |
Collapse
|
19
|
Plou J, Valera PS, García I, de Albuquerque CDL, Carracedo A, Liz-Marzán LM. Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS PHOTONICS 2022; 9:333-350. [PMID: 35211644 PMCID: PMC8855429 DOI: 10.1021/acsphotonics.1c01934] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Future precision medicine will be undoubtedly sustained by the detection of validated biomarkers that enable a precise classification of patients based on their predicted disease risk, prognosis, and response to a specific treatment. Up to now, genomics, transcriptomics, and immunohistochemistry have been the main clinically amenable tools at hand for identifying key diagnostic, prognostic, and predictive biomarkers. However, other molecular strategies, including metabolomics, are still in their infancy and require the development of new biomarker detection technologies, toward routine implementation into clinical diagnosis. In this context, surface-enhanced Raman scattering (SERS) spectroscopy has been recognized as a promising technology for clinical monitoring thanks to its high sensitivity and label-free operation, which should help accelerate the discovery of biomarkers and their corresponding screening in a simpler, faster, and less-expensive manner. Many studies have demonstrated the excellent performance of SERS in biomedical applications. However, such studies have also revealed several variables that should be considered for accurate SERS monitoring, in particular, when the signal is collected from biological sources (tissues, cells or biofluids). This Perspective is aimed at piecing together the puzzle of SERS in biomarker monitoring, with a view on future challenges and implications. We address the most relevant requirements of plasmonic substrates for biomedical applications, as well as the implementation of tools from artificial intelligence or biotechnology to guide the development of highly versatile sensors.
Collapse
Affiliation(s)
- Javier Plou
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Pablo S. Valera
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Isabel García
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | | | - Arkaitz Carracedo
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
- Biomedical
Research Networking Center in Cancer (CIBERONC), 48160, Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
- Translational
Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, 48160 Derio, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
20
|
Zhang BY, Yin P, Hu Y, Szydzik C, Khan MW, Xu K, Thurgood P, Mahmood N, Dekiwadia C, Afrin S, Yang Y, Ma Q, McConville CF, Khoshmanesh K, Mitchell A, Hu B, Baratchi S, Ou JZ. Highly accurate and label-free discrimination of single cancer cell using a plasmonic oxide-based nanoprobe. Biosens Bioelectron 2022; 198:113814. [PMID: 34823964 DOI: 10.1016/j.bios.2021.113814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022]
Abstract
The detection of cancer cells at the single-cell level enables many novel functionalities such as next-generation cancer prognosis and accurate cellular analysis. While surface-enhanced Raman spectroscopy (SERS) has been widely considered as an effective tool in a low-cost and label-free manner, however, it is challenging to discriminate single cancer cells with an accuracy above 90% mainly due to the poor biocompatibility of the noble-metal-based SERS agents. Here, we report a dual-functional nanoprobe based on dopant-driven plasmonic oxides, demonstrating a maximum accuracy above 90% in distinguishing single THP-1 cell from peripheral blood mononuclear cell (PBMC) and human embryonic kidney (HEK) 293 from human macrophage cell line U937 based on their SERS patterns. Furthermore, this nanoprobe can be triggered by the bio-redox response from individual cells towards stimuli, empowering another complementary colorimetric cell detection, approximately achieving the unity discrimination accuracy at a single-cell level. Our strategy could potentially enable the future accurate and low-cost detection of cancer cells from mixed cell samples.
Collapse
Affiliation(s)
- Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Pengju Yin
- School of Mathematics and Physics, Hebei University of Engineering, Handan, 056038, China; School of Life Science and Technology, Xidian University, Xi'an, 710126, China
| | - Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Crispin Szydzik
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, 3004, Australia
| | - Muhammad Waqas Khan
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; Manufacturing, CSIRO, Clayton, Victoria, 3168, Australia
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nasir Mahmood
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, 3001, Australia
| | - Sanjida Afrin
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Yunyi Yang
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122 Australia
| | - Qijie Ma
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chris F McConville
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC, 3216, Australia
| | | | - Arnan Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Bo Hu
- School of Life Science and Technology, Xidian University, Xi'an, 710126, China
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083 Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
21
|
|
22
|
Pan R, Li G, Liu S, Zhang X, Liu J, Su Z, Wu Y. Emerging nanolabels-based immunoassays: Principle and applications in food safety. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Lu T, Wang L, Xia Y, Jin Y, Zhang L, Du S. A multimer-based SERS aptasensor for highly sensitive and homogeneous assay of carcinoembryonic antigens. Analyst 2021; 146:3016-3024. [PMID: 33949429 DOI: 10.1039/d1an00121c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carcinoembryonic antigens (CEAs) are known as one of the most common tumor markers. Their facile and affordable detection is critical for early diagnosis of malignant tumors, especially in resource-constrained settings. Here, we report a novel multimer-based surface-enhanced Raman scattering (SERS) aptasensor for a specific CEA assay. The aptasensor is fabricated through aptamer-assisted self-assembly of silver-coated gold nanoparticles (Au@Ag NPs), and the self-assembled multimeric structure possesses abundant hot-spots to provide high SERS response. When CEA is introduced, the specific recognition of CEA by aptamers will lead to the disassembly of Au@Ag multimers due to the lack of a bridging aptamer between Au@Ag NPs. As a result, the number of hot-spots in the multimeric system is decreased, and the intensity at 1585 cm-1 of the SERS reporter (4-mercaptobenzoic acid, 4-MBA) on the surface of NPs will also be decreased. The Raman intensity is proportional to the logarithm of the concentration of CEA. The detection sensitivity can be down to the pg mL-1 level. The analytical method only needs a droplet of 2 μL of sample, and the detection time is less than 20 min. The multimer-based SERS aptasensor can be applied in sensitive and inexpensive detection of CEA in serum samples.
Collapse
Affiliation(s)
- Tian Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Liping Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Yuhong Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Liying Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Shuhu Du
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
24
|
Chen J, Wang J, Geng Y, Yue J, Shi W, Liang C, Xu W, Xu S. Single-Cell Oxidative Stress Events Revealed by a Renewable SERS Nanotip. ACS Sens 2021; 6:1663-1670. [PMID: 33784081 DOI: 10.1021/acssensors.1c00395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A nanotip sensitive to reactive oxygen species (ROS) and NAD+/NADH (oxidized/reduced forms of nicotinamide adenine dinucleotide) was designed and prepared to identify the redox events in a single living cell by surface-enhanced Raman scattering (SERS) spectroscopy. The nanotips were prepared by the one-step laser-induced Ag growth and deposition. A redox-reversible Raman reporter, 4-mercaptophenol (4-MP), was employed for the nanotip decoration along with the Ag deposition. 4-MP can be converted to SERS-inactive 4-mercaptocyclohexa-2,5-dienone (4-MC) by Fe3+ ions to complete signal rezeroing for multiple oxidative stress event loops. The SERS signal conversion from 4-MC to 4-MP provides a cue for the reduction process that is NADH-dependent. In contrast, by the conversion from 4-MP to 4-MC, the oxidative stress events and the signal transduction mechanism of cells stimulated by drugs (phorbol 12-myristate 13-acetate and H2O2) can be explored by SERS. This sensor is easy to fabricate and can be recycled. This tip-typed SERS nanosensor can be extendedly available for tracing other key markers in other NAD+/NADH-mediated respiratory chain and glycolysis, e.g., lactic acid, pyruvic acid, adenosine triphosphate, and antioxidants. It will be useful for investigating the diseases of abnormal oxidative stress and mitochondrial metabolism at the single-cell level.
Collapse
Affiliation(s)
- Jiamin Chen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Jiaqi Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Yijia Geng
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People’s Republic of China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun 130021, People’s Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
25
|
Competitive immunosensor for sensitive and optical anti-interference detection of imidacloprid by surface-enhanced Raman scattering. Food Chem 2021; 358:129898. [PMID: 33933961 DOI: 10.1016/j.foodchem.2021.129898] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
The sensitive detection of pesticides in complex environment is important but still challenging in presence of organic-rich water sample and food matrix. Herein, we reported a nitrile-mediated SERS immunosensor for sensitive and optical anti-interference determination of imidacloprid. Raman tag contained CN bond could provide a sharp characteristic peak in the Raman-silent spectral window (1800 ~ 2800 cm-1), which could resist the optical noises from the fingerprint region (<1800 cm-1). Aucore-Agshell bimetallic nanocuboid (AuNR@Ag) connected with antigen and Raman tag was used as Raman probe, while Fe3O4 magnetic nanoparticle functionalized with anti-imidacloprid antibody was applied as signal enhancer. Owing to the specific recognition ability between antigen and antibody, the competitive system with imidacloprid was formed. Under the optimal condition, the linear relationship was developed in the range of 10-400 nM. Finally, the SERS immunosensor was successfully applied to determine imidacloprid in real samples with recoveries from 96.8% to 100.5%.
Collapse
|
26
|
Shi CF, Li ZQ, Wang C, Li J, Xia XH. Ultrasensitive plasmon enhanced Raman scattering detection of nucleolin using nanochannels of 3D hybrid plasmonic metamaterial. Biosens Bioelectron 2021; 178:113040. [PMID: 33548655 DOI: 10.1016/j.bios.2021.113040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
Detection of cancer biomarker is of great significance in cancer diagnostics. In this work, we propose an ultrasensitive and in situ method for plasmon enhanced Raman scattering (PERS) detection of nucleolin (NCL) using a 3D hybrid plasmonic metamaterial (PM). In this aptasensor, thiolated complementary DNA (cDNA) immobilized on PM can hybridize with Rox-labeled NCL-binding aptamer (AS1411-Rox) to form a rigid double-stranded DNA (dsDNA). When NCL passes through the PM nanochannels under a transmembrane voltage bias, it interacts with AS1411-Rox to form G-quadruplexes (G4-AS1411-Rox), resulting in the release of AS1411-Rox from the nanochannels surface and the decrease in PERS signal of the reporter Rox. This change in PERS signals can be recorded in situ without the interference of external environment. With the help of the enrichment function of nanochannel, the present method is able to achieve fast NCL detection within 10 min with a detection limit as low as 71 pM. Furthermore, our method shows excellent specificity, reversibility, uniformity (relative standard deviation of ~6.86%) and reproducibility (~6.65%), providing a new platform for reliable cancer auxiliary diagnosis and drug screening.
Collapse
Affiliation(s)
- Cai-Feng Shi
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Zhong-Qiu Li
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chen Wang
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Jian Li
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Xing-Hua Xia
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
27
|
Ryu HJ, Lee WK, Kim YH, Lee JS. Interfacial interactions of SERS-active noble metal nanostructures with functional ligands for diagnostic analysis of protein cancer markers. Mikrochim Acta 2021; 188:164. [PMID: 33844071 DOI: 10.1007/s00604-021-04807-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
Noble metal nanostructures with designed hot spots have been widely investigated as surface-enhanced Raman spectroscopy (SERS)-active substrates, particularly for selective and sensitive detection of protein cancer markers. For specific target recognition and efficient signal amplification, SERS probe design requires a choice of SERS-active nanostructures as well as their controlled functionalization with Raman dyes and target recognition entities such as antibodies. However, the chemical conjugation of antibodies and Raman dyes to SERS substrates has rarely been discussed to date, despite their substantial roles in detection schemes. The interfacial interactions of metal nanostructures with functional ligands during conjugation are known to be strongly influenced by the various chemical and physical properties of the ligands, such as size, molecular weight, surface charge, 3-dimensional structures, and hydrophilicity/hydrophobicity. In this review, we discuss recent developments in the design of SERS probes over the last 4 years, focusing on their conjugation chemistry for functionalization. A strong preference for covalent bonding is observed with Raman dyes having simpler molecular structures, whereas more complicated ones are non-covalently adsorbed. Antibodies are both covalently and non-covalently bonded to nanostructures, depending on their activity in the SERS probes. Considering that ligand conjugation is highly important for chemical stability, biocompatibility, and functionality of SERS probes, this review is expected to expand the understanding of their interfacial design, leading to SERS as one of the most promising spectroscopic analytical tools for the early detection of protein cancer markers.
Collapse
Affiliation(s)
- Han-Jung Ryu
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Kyu Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yoon Hyuck Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
28
|
Zhou J, Yang D, Liu G, Li S, Feng W, Yang G, He J, Shan Y. Highly sensitive detection of DNA damage in living cells by SERS and electrochemical measurements using a flexible gold nanoelectrode. Analyst 2021; 146:2321-2329. [PMID: 33623934 DOI: 10.1039/d1an00220a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Guanine (G) oxidation products, such as 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-oxo-guanine (8-OXOG), have been widely studied as promising biomarkers for DNA oxidative damage. In this work, we develop a new method to detect G oxidative products released from live cells after chromium (vi) ion or hydrogen peroxide treatments by using a glass nanopipette-based flexible gold nanoelectrode (fGNE). Specific response to G oxidative products with high sensitivity can be detected from the fGNE tip through integrated electrochemical measurements and surface-enhanced Raman spectroscopy. The fGNE apex can be positioned very close to the cell membrane noninvasively because of its high flexibility and nanoscale tip size. With the assistance of the electrophoretic force, the fGNEs can effectively collect and detect the G-derived DNA damage products released from individual cells in the cell culture medium with high sensitivity.
Collapse
Affiliation(s)
- Jing Zhou
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shen Y, Yue J, Xu W, Xu S. Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis. Theranostics 2021; 11:4872-4893. [PMID: 33754033 PMCID: PMC7978302 DOI: 10.7150/thno.56409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Organelles are involved in many cell life activities, and their metabolic or functional disorders are closely related to apoptosis, neurodegenerative diseases, cardiovascular diseases, and the development and metastasis of cancers. The explorations of subcellular structures, microenvironments, and their abnormal conditions are conducive to a deeper understanding of many pathological mechanisms, which are expected to achieve the early diagnosis and the effective therapy of diseases. Organelles are also the targeted locations of drugs, and they play significant roles in many targeting therapeutic strategies. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool that can provide the molecular fingerprint information of subcellular compartments and the real-time cellular dynamics in a non-invasive and non-destructive way. This review aims to summarize the recent advances of SERS studies on subcellular compartments, including five parts. The introductions of SERS and subcellular compartments are given. SERS is promising in subcellular compartment studies due to its molecular specificity and high sensitivity, and both of which highly match the high demands of cellular/subcellular investigations. Intracellular SERS is mainly cataloged as the labeling and label-free methods. For subcellular targeted detections and therapies, how to internalize plasmonic nanoparticles or nanostructure in the target locations is a key point. The subcellular compartment SERS detections, SERS measurements of isolated organelles, investigations of therapeutic mechanisms from subcellular compartments and microenvironments, and integration of SERS diagnosis and treatment are sequentially presented. A perspective view of the subcellular SERS studies is discussed from six aspects. This review provides a comprehensive overview of SERS applications in subcellular compartment researches, which will be a useful reference for designing the SERS-involved therapeutic systems.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
30
|
Liao Y, You R, Fan M, Feng S, Lu D, Lu Y. Determination of NADH by Surface Enhanced Raman Scattering Using Au@MB@Ag NPs. Aust J Chem 2021. [DOI: 10.1071/ch21178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nicotinamide adenine dinucleotide (NADH) is an important coenzyme involved in various metabolic processes of living cells. As an important biomarker, NADH is associated with breast cancer and Alzheimer’s disease. In this paper, silver plated gold core–shell nanoparticles containing Raman signal molecules were synthesised on the basis of bare gold. Using the Raman peak corresponding to the 4-mercaptobenzonitrile (MB) silent region C≡N vibration for quantification, while avoiding competition with the precious metal surface binding site to be measured, it can also be free from the interference of endogenous biomolecules. On the one hand, it can correct the working curve, on the other hand, it can avoid competing with the binding site. Compared with the core–shell structure prepared here, the limit of detection (LOD) for NADH was only 10−5 M for bare gold and the LOD for the core–shell structure prepared on the basis of bare gold was 3.3 × 10−7 M. In terms of correction, with Rhodamine 6G (R6G) as a Raman signalling molecule, the R2 value before SERS detection and correction is only 0.9405, and the R2 value after correction increases to 0.9853. The unique fingerprint peak of SERS was used to realise the quantitative detection of NADH, which realizes the detection of NADH in complex biological samples of serum and provides the possibility for expanding the early diagnosis of breast cancer.
Collapse
|
31
|
Wallace GQ, Delignat-Lavaud B, Zhao X, Trudeau LÉ, Masson JF. A blueprint for performing SERS measurements in tissue with plasmonic nanofibers. J Chem Phys 2020; 153:124702. [PMID: 33003723 DOI: 10.1063/5.0024467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Plasmonic nanostructures have found increasing utility due to the increased popularity that surface-enhanced Raman scattering (SERS) has achieved in recent years. SERS has been incorporated into an ever-growing list of applications, with bioanalytical and physiological analyses having emerged as two of the most popular. Thus far, the transition from SERS studies of cultured cells to SERS studies involving tissue has been gradual and limited. In most cases, SERS measurements in more intact tissue have involved nanoparticles distributed throughout the tissue or localized to specific regions via external functionalization. Performing highly localized measurements without the need for global nanoparticle uptake or specialized surface modifications would be advantageous to the expansion of SERS measurements in tissue. To this end, this work provides critical insight with supporting experimental evidence into performing SERS measurements with nanosensors inserted in tissues. We address two critical steps that are otherwise underappreciated when other approaches to performing SERS measurements in tissue are used. Specifically, we demonstrate two mechanical routes for controlled positioning and inserting the nanosensors into the tissue, and we discuss two means of focusing on the nanosensors both before and after they are inserted into the tissue. By examining the various combinations of these steps, we provide a blueprint for performing SERS measurements with nanosensors inserted in tissue. This blueprint could prove useful for the general development of SERS as a tool for bioanalytical and physiological studies and for more specialized techniques such as SERS-optophysiology.
Collapse
Affiliation(s)
- Gregory Q Wallace
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Benoît Delignat-Lavaud
- Neuroscience Research Group (GRSNC), Département de Pharmacologie et Physiologie, Département de Neurosciences, Faculté de Médecine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Xingjuan Zhao
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Neuroscience Research Group (GRSNC), Département de Pharmacologie et Physiologie, Département de Neurosciences, Faculté de Médecine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-François Masson
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
32
|
He H, Sun DW, Pu H, Huang L. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chem 2020; 324:126832. [DOI: 10.1016/j.foodchem.2020.126832] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/28/2023]
|
33
|
Reynaud L, Bouchet-Spinelli A, Raillon C, Buhot A. Sensing with Nanopores and Aptamers: A Way Forward. SENSORS 2020; 20:s20164495. [PMID: 32796729 PMCID: PMC7472324 DOI: 10.3390/s20164495] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
In the 90s, the development of a novel single molecule technique based on nanopore sensing emerged. Preliminary improvements were based on the molecular or biological engineering of protein nanopores along with the use of nanotechnologies developed in the context of microelectronics. Since the last decade, the convergence between those two worlds has allowed for biomimetic approaches. In this respect, the combination of nanopores with aptamers, single-stranded oligonucleotides specifically selected towards molecular or cellular targets from an in vitro method, gained a lot of interest with potential applications for the single molecule detection and recognition in various domains like health, environment or security. The recent developments performed by combining nanopores and aptamers are highlighted in this review and some perspectives are drawn.
Collapse
|
34
|
Guo J, Sesena Rubfiaro A, Lai Y, Moscoso J, Chen F, Liu Y, Wang X, He J. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette. Analyst 2020; 145:4852-4859. [PMID: 32542257 PMCID: PMC7425357 DOI: 10.1039/d0an00838a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pHi) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pHi change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pHe) change. The HeLa cancer cells can better resist pHe change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers.
Collapse
Affiliation(s)
- Jing Guo
- Department of Physics, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li J, Xu L, Shen Y, Guo L, Yin H, Fang X, Yang Z, Xu Q, Li H. Superparamagnetic Nanostructures for Split-Type and Competitive-Mode Photoelectrochemical Aptasensing. Anal Chem 2020; 92:8607-8613. [PMID: 32393021 DOI: 10.1021/acs.analchem.0c01831] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoelectrochemical sensing has developed rapidly in the past decade because of its inherent advantages of economic devices and low background noise. However, traditional assembly of photoelectric beacons, probes, and targets on the ITO electrode solid-liquid interface inevitably leads to time-consuming, limited selectivity, poor stability, and nonreproducibility. To overcome these drawbacks, in this work, a unique split-type PEC aptasensor for carcinoembryonic antigen (CEA) was developed in virtue of the sandwich-like structure comprised of magnetic-optical Fe3O4@SiO2@CdS-DNA1, CEA aptamer, and signal element SiO2-Au-DNA2. The sandwich-like structure is easily formed in the liquid phase and can be triggered by competition from low-abundance CEA, resulting in dissociation. By further photocurrent measurement in pure phosphate buffer saline (PBS), coexisting species can be effectively removed from the modified electrode, improving selectivity, stability, and repeatability. These advantages benefit from the preparation of uniform and monodispersed Fe3O4@SiO2@CdS and SiO2-Au particles, DNAs assembly, and an elegant design. Additionally, the as-designed signal-on PEC aptasensor is highly sensitive, short time-consuming, and economical, enabling the detection of CEA in serum specimens. It not only provides an alternative to CEA immunosensors, but also paves the way for high-performance PEC aptasensors.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lingqiu Xu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yujuan Shen
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lei Guo
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Hui Yin
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaohu Fang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhanjun Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|
36
|
Gu H, Guo Y, Xiao X, Li C, Shi G, He J. Double molecular recognition strategy based on boronic acid–diol and NHS ester–amine for selective electrochemical detection of cerebral dopamine. Anal Bioanal Chem 2020; 412:3727-3736. [DOI: 10.1007/s00216-020-02624-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
|
37
|
Guo X, Li J, Arabi M, Wang X, Wang Y, Chen L. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors. ACS Sens 2020; 5:601-619. [PMID: 32072805 DOI: 10.1021/acssensors.9b02039] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecularly imprinted polymers (MIPs) receive extensive interest, owing to their structure predictability, recognition specificity, and application universality as well as robustness, simplicity, and inexpensiveness. Surface-enhanced Raman scattering (SERS) is regarded as an ideal optical detection candidate for its unique features of fingerprint recognition, nondestructive property, high sensitivity, and rapidity. Accordingly, MIP based SERS (MIP-SERS) sensors have attracted significant research interest for versatile applications especially in the field of chemo- and bioanalysis, showing excellent identification and detection performances. Herein, we comprehensively review the recent advances in MIP-SERS sensors construction and applications, including sensing principles and signal enhancement mechanisms, focusing on novel construction strategies and representative applications. First, the basic structure of the MIP-SERS sensors is briefly outlined. Second, novel imprinting strategies are highlighted, mainly including multifunctional monomer imprinting, dummy template imprinting, living/controlled radical polymerization, and stimuli-responsive imprinting. Third, typical application of MIP-SERS sensors in chemo/bioanalysis is summarized from both small and macromolecular aspects. Lastly, the challenges and perspectives of the MIP-SERS sensors are proposed, orienting sensitivity improvement and application expanding.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
38
|
He XN, Wang YN, Wang Y, Xu ZR. Accurate quantitative detection of cell surface sialic acids with a background-free SERS probe. Talanta 2020; 209:120579. [DOI: 10.1016/j.talanta.2019.120579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/21/2023]
|
39
|
Liu X, Liu X, Rong P, Liu D. Recent advances in background-free Raman scattering for bioanalysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115765] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
One-pot synthesized AuNPs/MoS2/rGO nanocomposite as sensitive electrochemical aptasensing platform for nucleolin detection. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Muhammad P, Hanif S, Yan J, Rehman FU, Wang J, Khan M, Chung R, Lee A, Zheng M, Wang Y, Shi B. SERS-based nanostrategy for rapid anemia diagnosis. NANOSCALE 2020; 12:1948-1957. [PMID: 31907500 DOI: 10.1039/c9nr09152a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Iron detection is one of the critical markers to diagnose multiple blood-related disorders that correspond to various biological dysfunctions. The currently available anemia detection approach can be used only for pre-treated blood samples that interfere with the actual iron level in blood. Real-time detection approaches with higher sensitivity and specificity are certainly needed to cope with the commercial level clinical analyses. Herein, we presented a novel strategy to determine the blood iron that can be easily practiced at commercial levels. The blend of well-known iron-cyanide chemistry with nanotechnology is advantageous with ultrahigh sensitivity in whole blood analysis without any pre-treatments. This approach is a combined detection system of the conventional assay (UV-visible spectroscopy) with surface-enhanced Raman scattering (SERS). Organic cyanide modified silver nanoparticles (cAgNPs) can selectively respond to Fe3+ ions and Hb protein with a detection limit of 10 fM and 0.46 μg mL-1, respectively, without being affected by matrix interfering species in the complex biological fluid. We confirmed the clinical potential of our new cAgNPs by assessing iron-status in multiple anemia patients and normal controls. Our SERS-based iron quantitation approach is highly affordable for bulk-samples, cheap, quick, flexible, and useful for real-time clinical assays. Such a method for metal-chelation has extendable features of therapeutics molecular tracking within more complex living systems at cellular levels.
Collapse
Affiliation(s)
- Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences Henan University Kaifeng, Henan 475004, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wallace GQ, Masson JF. From single cells to complex tissues in applications of surface-enhanced Raman scattering. Analyst 2020; 145:7162-7185. [DOI: 10.1039/d0an01274b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This tutorial review explores how three of the most common methods for introducing nanoparticles to single cells for surface-enhanced Raman scattering measurements can be adapted for experiments with complex tissues.
Collapse
Affiliation(s)
- Gregory Q. Wallace
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| | - Jean-François Masson
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| |
Collapse
|
43
|
Liao PH, Tseng CY, Ke ZY, Hsieh CL, Kong KV. Operando characterization of chemical reactions in single living cells using SERS. Chem Commun (Camb) 2020; 56:4852-4855. [DOI: 10.1039/d0cc01297a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Operando probing of chemical reactions for the delivery of gaseous signaling molecules in living cells that is critical for understanding the physiological metabolic processes.
Collapse
Affiliation(s)
- Pei-Hsuan Liao
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Ching-Yu Tseng
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Zi-Yu Ke
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chang-Lin Hsieh
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Kien Voon Kong
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|
44
|
Yu R, Ying Y, Gao R, Long Y. Confined Nanopipette Sensing: From Single Molecules, Single Nanoparticles, to Single Cells. Angew Chem Int Ed Engl 2019; 58:3706-3714. [DOI: 10.1002/anie.201803229] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Ru‐Jia Yu
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi‐Lun Ying
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Rui Gao
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
45
|
De Silva IW, Kretsch AR, Lewis HM, Bailey M, Verbeck GF. True one cell chemical analysis: a review. Analyst 2019; 144:4733-4749. [DOI: 10.1039/c9an00558g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The constantly growing field of True One Cell (TOC) analysis has provided important information on the direct chemical composition of various cells and cellular components.
Collapse
|
46
|
Zhang Q, Mao S, Khan M, Feng S, Zhang W, Li W, Lin JM. In Situ Partial Treatment of Single Cells by Laminar Flow in the “Open Space”. Anal Chem 2018; 91:1644-1650. [DOI: 10.1021/acs.analchem.8b05313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shuo Feng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wanling Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Yu R, Ying Y, Gao R, Long Y. Detektieren mit Nanopipetten im eingeschränkten Raum: von einzelnen Molekülen über Nanopartikel hin zu der Zelle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ru‐Jia Yu
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Yi‐Lun Ying
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Rui Gao
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| |
Collapse
|
48
|
Single-Cell Patterning Based on Immunocapture and a Surface Modified Substrate. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Micropatterning technology offers powerful methods for biological analyses at the molecular level, enabling the investigation of cell heterogeneities, as well as high throughput detection. We herein propose an approach for single-cell patterning. The substrate was prepared using micro fabrication and surface modification processes, and the patterning template was prepared using bovine serum albumin and streptavidin, which can be employed for the patterning of any biological molecules containing biotin. Subsequent to photolithography, etching, chemical vapor deposition (CVD), and polyethylene glycol (PEG) treatment, the optimized patterns were obtained with high accuracy, strong contrast, and good repeatability, thus providing good foundations for the subsequent single-cell patterning. The surface passivation method was proven effective, preventing unwanted binding of the antibodies and cells. Based on this streptavidin template, the specific binding between the biotinylated antibodies and the antigens expressed on the surface of the cells was enabled, and we successfully achieved single-cell patterning with a single-cell capture rate of 92%. This single-cell array offers an effective method in the investigation of cell heterogeneity and drug screening. Further, these methods can be used in the final step for the screening and enrichment of certain cells, such as circulating tumor cells.
Collapse
|
49
|
Huang F, Lin M, Duan R, Lou X, Xia F, Willner I. Photoactivated Specific mRNA Detection in Single Living Cells by Coupling "Signal-on" Fluorescence and "Signal-off" Electrochemical Signals. NANO LETTERS 2018; 18:5116-5123. [PMID: 29998736 DOI: 10.1021/acs.nanolett.8b02004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The spatiotemporal detection of a target mRNA in a single living cell is a major challenge in nanoscience and nanomedicine. We introduce a versatile method to detect mRNA at a single living cell level that uses photocleavable hairpin probes as functional units for the optical (fluorescent) and electrochemical (voltammetric) detection of MnSOD mRNA in single MCF-7 cancer cells. The fluorescent probe is composed of an ortho-nitrophenylphosphate ester functionalized hairpin that includes the FAM fluorophore in a caged configuration quenched by Dabcyl. The fluorescent probe is further modified with the AS1411 aptamer to facilitate the targeting and internalization of the probe into the MCF-7 cells. Under UV irradiation, the hairpin is cleaved, leading to the intracellular mRNA toehold-stimulated displacement of the FAM-functionalized strand resulting in a switched-on fluorescence signal upon the detection of the mRNA in a single cell. In addition, a nanoelectrode functionalized with a methylene blue (MB) redox-active photocleavable hairpin is inserted into the cytoplasm of a single MCF-7 cell. Photocleavage of the hairpin leads to the mRNA-mediated toehold displacement of the redox-active strand associated with the probe, leading to the depletion of the voltammetric response of the probe. The parallel optical and electrochemical detection of the mRNA at a single cell level is demonstrated.
Collapse
Affiliation(s)
- Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ruilin Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
50
|
Guo R, Yin F, Sun Y, Mi L, Shi L, Tian Z, Li T. Ultrasensitive Simultaneous Detection of Multiplex Disease-Related Nucleic Acids Using Double-Enhanced Surface-Enhanced Raman Scattering Nanosensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25770-25778. [PMID: 29979030 DOI: 10.1021/acsami.8b06757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing ultrasensitive probes holds great significance for simultaneous detection of multiplexed cancer-associated nucleic acids. Bimetallic nanoparticles containing silver may be exploited as nanoprobes for disease detection, which can produce stable and strong surface-enhanced Raman scattering (SERS) signals. However, it remains extremely challenging that such SERS nanoprobes are directly synthesized. Herein gold-silver nanosnowmen, grown via a DNA-mediated approach and attached to thiol-containing Raman dyes, are successfully synthesized. Stable SERS-enhanced gold substrates are also prepared and used as the enriching containers, where the capture DNAs are tethered to sense the target genes jointly enhanced by the SERS nanoprobes in a sandwich hybridization assay. This means detection of the target gene can obtain a limit of detection close to 0.839 fM. Such double-enhanced SERS nanosensors are further employed to simultaneously detect the three types of prostate carcinoma-related genes with high sensitivity and specificity, which meanwhile exhibit robust capacity of resisting disturbance in practical samples. Simultaneous and multiplexed detection of cancer-related genes may provide further biomedical applications with new opportunity.
Collapse
Affiliation(s)
- Ruiyan Guo
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Fangfei Yin
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yudie Sun
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Lan Mi
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Lin Shi
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Zhijin Tian
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Tao Li
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|