1
|
Macturk EL, Hayes K, O'Sullivan G, Perrault Uptmor KA. Are We Ready for It? A Review of Forensic Applications and Readiness for Comprehensive Two-Dimensional Gas Chromatography in Routine Forensic Analysis. J Sep Sci 2025; 48:e70138. [PMID: 40259530 PMCID: PMC12012292 DOI: 10.1002/jssc.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 04/23/2025]
Abstract
Comprehensive two-dimensional gas chromatography (GC×GC) has been explored in forensic research to provide advanced chromatographic separation for forensic evidence, including illicit drugs, fingerprint residue, chemical, biological, nuclear, and radioactive (CBNR) substances, toxicological evidence, odor decomposition, and petroleum analysis for arson investigations and oil spill tracing. In GC×GC, the separation and analysis of analytes is similar to one-dimensional GC, but the primary column is connected to a secondary column via a modulator to provide two independent separation mechanisms, thus increasing the peak capacity of the analysis. The goal of implementing GC×GC in forensic studies is often to increase the separation and detectability of analytes and has most often been applied in nontargeted forensic applications where a wide range of analytes must be analyzed simultaneously. To date, there has been no summary of the current state of forensic research that evaluates both analytical and legal readiness for routine use. For these analytical methods to be adopted into forensic laboratories and be used in evidence analysis, they must meet rigorous analytical standards. In addition, new analytical methods for evidence analysis must adhere to standards laid out by the legal system, including the Frye Standard, Daubert Standard, and Federal Rule of Evidence 702 in the United States and the Mohan Criteria in Canada. Current research on GC×GC use for forensic applications was summarized and reviewed for analytical advances and technology readiness to provide a comprehensive view of GC×GC use for future routine implementation. A technology readiness scale, with levels from 1 to 4, was used to characterize the advancement of research in each individual application area. Seven forensic chemistry applications are discussed related to courtroom criteria and categorized into technology readiness levels based on current literature as of 2024. Future directions for all applications should place a focus on increased intra- and inter-laboratory validation, error rate analysis, and standardization.
Collapse
Affiliation(s)
- Emma L. Macturk
- Chemistry Department, William & MaryNontargeted Separations LaboratoryWilliamsburgVirginiaUSA
| | - Kevin Hayes
- Environmental Forensics and Arson LaboratoryDepartment of Earth and Environmental ScienceMount Royal UniversityCalgaryCanada
| | - Gwen O'Sullivan
- Environmental Forensics and Arson LaboratoryDepartment of Earth and Environmental ScienceMount Royal UniversityCalgaryCanada
| | | |
Collapse
|
2
|
Lang G, Henao C, Almstetter M, Arndt D, Goujon C, Maeder S. Non-targeted analytical comparison of a heated tobacco product aerosol against mainstream cigarette smoke: does heating tobacco produce an inherently different set of aerosol constituents? Anal Bioanal Chem 2024; 416:1349-1361. [PMID: 38217698 PMCID: PMC10861380 DOI: 10.1007/s00216-024-05126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Smoking-related diseases remain a significant public health concern, and heated tobacco products (HTPs) have emerged as a potential alternative to cigarettes. While several studies have confirmed that HTP aerosols contain lower levels of harmful and potentially harmful constituents (HPHCs) than cigarette smoke, less is known about constituents that are intrinsically higher in HTP aerosols. This study provides a comprehensive comparative assessment of an HTP aerosol produced with Tobacco Heating System 2.2 (THS) and comparator cigarette (CC) smoke aiming at identifying all unique or increased compounds in THS aerosol by applying a broad set of LC-MS and GC × GC-MS methods. To focus on differences due to heating versus burning tobacco, confounding factors were minimized by using the same tobacco in both test items and not adding flavorants. Of all analytical features, only 3.5%-corresponding to 31 distinctive compounds-were significantly more abundant in THS aerosol than in CC smoke. A notable subset of these compounds was identified as reaction products of glycerol. The only compound unique to THS aerosol was traced back to its presence in a non-tobacco material in the test item and not a direct product of heating tobacco. Our results demonstrate that heating a glycerol-containing tobacco substrate to the temperatures applied in THS does not introduce new compounds in the resulting aerosol compared to CC smoke which are detectable with the method portfolio applied in this study. Overall, this study contributes to a better understanding of the chemical composition of HTP aerosols and their potential impact on human health.
Collapse
Affiliation(s)
- Gerhard Lang
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Carlos Henao
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Martin Almstetter
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Daniel Arndt
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Catherine Goujon
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Serge Maeder
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
3
|
Adeniji A, El-Hage R, Brinkman MC, El-Hellani A. Nontargeted Analysis in Tobacco Research: Challenges and Opportunities. Chem Res Toxicol 2023; 36:1656-1665. [PMID: 37903095 DOI: 10.1021/acs.chemrestox.3c00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Tobacco products are evolving at a pace that has outstripped tobacco control, leading to a high prevalence of tobacco use in the population. Researchers have been tirelessly developing suitable techniques to assess these products' emissions, toxicity, and public health impact. The nonclinical testing of tobacco products to assess the chemical profile of emissions is needed for evidence-based regulations. This testing has largely relied on targeted analytical methods that focus on constituent lists that may fall short in determining the toxicity of newly designed tobacco products. Nontargeted analysis (NTA), or the process of identifying and quantifying compounds within a complex matrix without prior knowledge of its chemical composition, is a promising technique for tobacco regulation, but it is not without challenges. The lack of standardized methods for sample generation, sample preparation, chromatographic separation, compound identification, and data analysis and reporting must be addressed so that the quality and reproducibility of the data generated by NTA can be benchmarked. This review discusses the challenges and highlights the opportunities of NTA in studying tobacco product constituents and emissions.
Collapse
Affiliation(s)
- Ayomipo Adeniji
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| | - Rachel El-Hage
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Marielle C Brinkman
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| | - Ahmad El-Hellani
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| |
Collapse
|
4
|
Cui D, Cox J, Mejias E, Ng B, Gardinali P, Bagner DM, Quinete N. Evaluating non-targeted analysis methods for chemical characterization of organic contaminants in different matrices to estimate children's exposure. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023:10.1038/s41370-023-00547-9. [PMID: 37120701 PMCID: PMC10148696 DOI: 10.1038/s41370-023-00547-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Children are vulnerable to environmental exposure of contaminants due to their small size, lack of judgement skills, as well as their proximity to dust, soil, and other environmental sources. A better understanding about the types of contaminants that children are exposed to or how their bodies retain or process these compounds is needed. OBJECTIVE In this study, we have implemented and optimized a methodology based on non-targeted analysis (NTA) to characterize chemicals in dust, soil, urine, and in the diet (food and drinking water) of infant populations. METHODS To evaluate potential toxicological concerns associated with chemical exposure, families with children between 6 months and 6 years of age from underrepresented groups were recruited in the greater Miami area. Samples of soil, indoor dust, food, water, and urine were provided by the caregivers, prepared by different techniques (involving online SPE, ASE, USE, QuEChERs), and analyzed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Data post-processing was performed using the small molecule structure identification software, Compound Discoverer (CD) 3.3, and identified features were plotted using Kendrick mass defect plot and Van Krevelen diagrams to show unique patterns in different samples and regions of anthropogenic compound classifications. RESULTS The performance of the NTA workflow was evaluated using quality control standards in terms of accuracy, precision, selectivity, and sensitivity, with an average of 98.2%, 20.3%, 98.4% and 71.1%, respectively. Sample preparation was successfully optimized for soil, dust, water, food, and urine. A total of 30, 78, 103, 20 and 265 annotated features were frequently identified (detection frequency >80%) in the food, dust, soil, water, and urine samples, respectively. Common features detected in each matrix were prioritized and classified, providing insight on children's exposure to organic contaminants of concern and their potential toxicities. IMPACT STATEMENT Current methods to assess the ingestion of chemicals by children have limitations and are generally restricted by specific classes of targeted organic contaminants of interest. This study offers an innovative approach using non-targeted analysis for the comprehensive screening of organic contaminants that children are exposed to through dust, soil, and diet (drinking water and food).
Collapse
Affiliation(s)
- Danni Cui
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Joseph Cox
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Emily Mejias
- Institute of Environment, Florida International University, Miami, FL, USA
- Department of Psychology, Center for Children and Families, Florida International University, Miami, FL, USA
| | - Brian Ng
- Institute of Environment, Florida International University, Miami, FL, USA
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL, USA
| | - Piero Gardinali
- Institute of Environment, Florida International University, Miami, FL, USA
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL, USA
| | - Daniel M Bagner
- Department of Psychology, Center for Children and Families, Florida International University, Miami, FL, USA
| | - Natalia Quinete
- Institute of Environment, Florida International University, Miami, FL, USA.
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL, USA.
| |
Collapse
|
5
|
Chang D, Richardot WH, Miller EL, Dodder NG, Sedlak MD, Hoh E, Sutton R. Framework for nontargeted investigation of contaminants released by wildfires into stormwater runoff: Case study in the northern San Francisco Bay area. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1179-1193. [PMID: 34009690 DOI: 10.1002/ieam.4461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/29/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Wildfires can be extremely destructive to communities and ecosystems. However, the full scope of the ecological damage is often hard to assess, in part due to limited information on the types of chemicals introduced to affected landscapes and waterways. The objective of this study was to establish a sampling, analytical, and interpretive framework to effectively identify and monitor contaminants of emerging concern in environmental water samples impacted by wildfire runoff. A nontargeted analysis consisting of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS) was conducted on stormwater samples from watersheds in the City of Santa Rosa and Sonoma and Napa Counties, USA, after the three most destructive fires during the October 2017 Northern California firestorm. Chemicals potentially related to wildfires were selected from the thousands of chromatographic features detected through a screening method that compared samples from fire-impacted sites versus unburned reference sites. This screening led to high confidence identifications of 76 potentially fire-related compounds. Authentic standards were available for 48 of these analytes, and 46 were confirmed by matching mass spectra and GC × GC retention times. Of these 46 compounds, 37 had known commercial and industrial uses as intermediates or ingredients in plastics, personal care products, pesticides, and as food additives. Nine compounds had no known uses or sources and may be oxidation products resulting from burning of natural or anthropogenic materials. Preliminary examination of potential toxicity associated with the 46 compounds, conducted via online databases and literature review, indicated limited data availability. Regional comparison suggested that more structural damage may yield a greater number of unique, potentially wildfire-related compounds. We recommend further study of post-wildfire runoff using the framework described here, which includes hypothesis-driven site selection and nontargeted analysis, to uncover potentially significant stormwater contaminants not routinely monitored after wildfires and inform risk assessment. Integr Environ Assess Manag 2021;17:1179-1193. © 2021 SETAC.
Collapse
Affiliation(s)
- Daniel Chang
- San Diego State University Research Foundation, San Diego, California, USA
| | | | - Ezra L Miller
- San Francisco Estuary Institute, Richmond, California, USA
| | - Nathan G Dodder
- San Diego State University Research Foundation, San Diego, California, USA
- School of Public Health, San Diego State University, San Diego, California, USA
| | | | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, Richmond, California, USA
| |
Collapse
|
6
|
Shah NH, Noe MR, Agnew-Heard KA, Pithawalla YB, Gardner WP, Chakraborty S, McCutcheon N, Grisevich H, Hurst TJ, Morton MJ, Melvin MS, Miller IV JH. Non-Targeted Analysis Using Gas Chromatography-Mass Spectrometry for Evaluation of Chemical Composition of E-Vapor Products. Front Chem 2021; 9:742854. [PMID: 34660534 PMCID: PMC8511636 DOI: 10.3389/fchem.2021.742854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The Premarket Tobacco Product Applications (PMTA) guidance issued by the Food and Drug Administration for electronic nicotine delivery systems (ENDSs) recommends that in addition to reporting harmful and potentially harmful constituents (HPHCs), manufacturers should evaluate these products for other chemicals that could form during use and over time. Although e-vapor product aerosols are considerably less complex than mainstream smoke from cigarettes and heated tobacco product (HTP) aerosols, there are challenges with performing a comprehensive chemical characterization. Some of these challenges include the complexity of the e-liquid chemical compositions, the variety of flavors used, and the aerosol collection efficiency of volatile and semi-volatile compounds generated from aerosols. In this study, a non-targeted analysis method was developed using gas chromatography-mass spectrometry (GC-MS) that allows evaluation of volatile and semi-volatile compounds in e-liquids and aerosols of e-vapor products. The method employed an automated data analysis workflow using Agilent MassHunter Unknowns Analysis software for mass spectral deconvolution, peak detection, and library searching and reporting. The automated process ensured data integrity and consistency of compound identification with >99% of known compounds being identified using an in-house custom mass spectral library. The custom library was created to aid in compound identifications and includes over 1,100 unique mass spectral entries, of which 600 have been confirmed from reference standard comparisons. The method validation included accuracy, precision, repeatability, limit of detection (LOD), and selectivity. The validation also demonstrated that this semi-quantitative method provides estimated concentrations with an accuracy ranging between 0.5- and 2.0-fold as compared to the actual values. The LOD threshold of 0.7 ppm was established based on instrument sensitivity and accuracy of the compounds identified. To demonstrate the application of this method, we share results from the comprehensive chemical profile of e-liquids and aerosols collected from a marketed e-vapor product. Applying the data processing workflow developed here, 46 compounds were detected in the e-liquid formulation and 55 compounds in the aerosol sample. More than 50% of compounds reported have been confirmed with reference standards. The profiling approach described in this publication is applicable to evaluating volatile and semi-volatile compounds in e-vapor products.
Collapse
Affiliation(s)
- Niti H. Shah
- Center for Research and Technology, Altria Client Services LLC, Richmond, VA, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Smart DJ, Phillips G. Collecting e-cigarette aerosols for in vitro applications: A survey of the biomedical literature and opportunities to increase the value of submerged cell culture-based assessments. J Appl Toxicol 2020; 41:161-174. [PMID: 33015847 PMCID: PMC7756347 DOI: 10.1002/jat.4064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Electronic nicotine delivery systems (ENDS) are being developed as potentially reduced‐risk alternatives to the continued use of combustible tobacco products. Because of the widespread uptake of ENDS—in particular, e‐cigarettes—the biological effects, including the toxic potential, of their aerosols are under investigation. Preclinically, collection of such aerosols is a prerequisite for testing in submerged cell culture‐based in vitro assays; however, despite the growth in this research area, there is no apparent standardized collection method for this application. To this end, through an Institute for in vitro Sciences, Inc. workshop initiative, we surveyed the biomedical literature catalogued in PubMed® to map the types of methods hitherto used and reported publicly. From the 47 relevant publications retrieved, we identified seven distinct collection methods. Bubble‐through (with aqueous solvents) and Cambridge filter pad (CFP) (with polar solvents) collection were the most frequently cited methods (57% and 18%, respectively), while the five others (CFP + bubble‐through; condensation; cotton filters; settle‐upon; settle‐upon + dry) were cited less often (2–10%). Critically, the collected aerosol fractions were generally found to be only minimally characterized chemically, if at all. Furthermore, there was large heterogeneity among other experimental parameters (e.g., vaping regimen). Consequently, we recommend that more comprehensive research be conducted to identify the method(s) that produce the fraction(s) most representative of the native aerosol. We also endorse standardization of the aerosol generation process. These should be regarded as opportunities for increasing the value of in vitro assessments in relation to predicting effects on human health. Collection of e‐cigarette aerosols is a prerequisite to enable testing in submerged culture‐based in vitro assays; however, there is no standardized method for this. Thus, we surveyed the biomedical literature to map the types of published methods. Bubble‐through and Cambridge filter pad methods were most common, although there was heterogeneity among other parameters, and moreover, the resulting fractions were only minimally characterized. Comprehensive research is required to identify the method(s) that produce the fraction(s) most representative of the native aerosol.
Collapse
Affiliation(s)
- Daniel J Smart
- PMI R&D, Philip Morris Products SA, Neuchâtel, Switzerland
| | | |
Collapse
|
8
|
Bentley MC, Almstetter M, Arndt D, Knorr A, Martin E, Pospisil P, Maeder S. Comprehensive chemical characterization of the aerosol generated by a heated tobacco product by untargeted screening. Anal Bioanal Chem 2020; 412:2675-2685. [PMID: 32072212 PMCID: PMC7136312 DOI: 10.1007/s00216-020-02502-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 11/30/2022]
Abstract
A suite of untargeted methods has been applied for the characterization of aerosol from the Tobacco Heating System 2.2 (THS2.2), a heated tobacco product developed by Philip Morris Products S.A. and commercialized under the brand name IQOS®. A total of 529 chemical constituents, excluding water, glycerin, and nicotine, were present in the mainstream aerosol of THS2.2, generated by following the Health Canada intense smoking regimen, at concentrations ≥ 100 ng/item. The majority were present in the particulate phase (n = 402), representing more than 80% of the total mass determined by untargeted screening; a proportion were present in both particulate and gas-vapor phases (39 compounds). The identities for 80% of all chemical constituents (representing > 96% of the total determined mass) were confirmed by the use of authentic analytical reference materials. Despite the uncertainties that are recognized to be associated with aerosol-based untargeted approaches, the reported data remain indicative that the uncharacterized fraction of TPM generated by THS2.2 has been evaluated to the fullest practicable extent. To the best of our knowledge, this work represents the most comprehensive chemical characterization of a heated tobacco aerosol to date. Graphical abstract.
Collapse
Affiliation(s)
- Mark C Bentley
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland.
| | - Martin Almstetter
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| | - Daniel Arndt
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| | - Arno Knorr
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| | - Elyette Martin
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| | - Pavel Pospisil
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| | - Serge Maeder
- Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
| |
Collapse
|
9
|
Arndt D, Wachsmuth C, Buchholz C, Bentley M. A complex matrix characterization approach, applied to cigarette smoke, that integrates multiple analytical methods and compound identification strategies for non-targeted liquid chromatography with high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8571. [PMID: 31479554 PMCID: PMC7050541 DOI: 10.1002/rcm.8571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE For the characterization of the chemical composition of complex matrices such as tobacco smoke, containing more than 6000 constituents, several analytical approaches have to be combined to increase compound coverage across the chemical space. Furthermore, the identification of unknown molecules requiring the implementation of additional confirmatory tools in the absence of reference standards, such as tandem mass spectrometry spectra comparisons and in silico prediction of mass spectra, is a major bottleneck. METHODS We applied a combination of four chromatographic/ionization techniques (reversed-phase (RP) - heated electrospray ionization (HESI) in both positive (+) and negative (-) modes, RP - atmospheric pressure chemical ionization (APCI) in positive mode, and hydrophilic interaction liquid chromatography (HILIC) - HESI positive) using a Thermo Q Exactive™ liquid chromatography/high-resolution accurate mass spectrometry (LC/HRAM-MS) platform for the analysis of 3R4F-derived smoke. Compound identification was performed by using mass spectral libraries and in silico predicted fragments from multiple integrated databases. RESULTS A total of 331 compounds with semi-quantitative estimates ≥100 ng per cigarette were identified, which were distributed within the known chemical space of tobacco smoke. The integration of multiple LC/HRAM-MS-based chromatographic/ionization approaches combined with complementary compound identification strategies was key for maximizing the number of amenable compounds and for strengthening the level of identification confidence. A total of 50 novel compounds were identified as being present in tobacco smoke. In the absence of reference MS2 spectra, in silico MS2 spectra prediction gave a good indication for compound class and was used as an additional confirmatory tool for our integrated non-targeted screening (NTS) approach. CONCLUSIONS This study presents a powerful chemical characterization approach that has been successfully applied for the identification of novel compounds in cigarette smoke. We believe that this innovative approach has general applicability and a huge potential benefit for the analysis of any complex matrices.
Collapse
Affiliation(s)
- Daniel Arndt
- PMI R&DPhilip Morris Products S.A.Quai Jeanrenaud 5, CH‐2000NeuchâtelSwitzerland
| | - Christian Wachsmuth
- PMI R&DPhilip Morris Products S.A.Quai Jeanrenaud 5, CH‐2000NeuchâtelSwitzerland
| | - Christoph Buchholz
- PMI R&DPhilip Morris Products S.A.Quai Jeanrenaud 5, CH‐2000NeuchâtelSwitzerland
| | - Mark Bentley
- PMI R&DPhilip Morris Products S.A.Quai Jeanrenaud 5, CH‐2000NeuchâtelSwitzerland
| |
Collapse
|
10
|
Takanami Y, Kitamura N, Ito S. LC/MS analysis of three-dimensional model cells exposed to cigarette smoke or aerosol from a novel tobacco vapor product. J Toxicol Sci 2020; 45:769-782. [PMID: 33268677 DOI: 10.2131/jts.45.769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A novel tobacco vapor product (NTV) contains tobacco leaves and generates nicotine-containing aerosols using heating elements. Subchronic biological effects have been evaluated previously using three-dimensional bronchial epithelial model cells by repeated exposure to cigarette smoke (CS) and the NTV aerosols; however, the intracellular exposure characteristics have not been studied in detail. In this study, cells were initially exposed to an aqueous extract (AqE) of cigarette smoke (CS) at two concentration levels, and the cell lysate underwent untargeted analysis by LC-high resolution mass spectrometry to determine the exogenous compounds present in the cells. Among the thousands of peaks detected, four peaks showed a CS-dependency, which were reproducibly detected. Two of the peaks were nicotine and nicotine N-oxide, and the other two putative compounds were myosmine and norharman. The cells were then exposed to an AqE of CS in various combinations of exposure and post-exposure culture durations. Post-exposure culturing of cells with fresh medium markedly decreased the peak areas of the four compounds. The in-vitro switching study of CS to NTV aerosols was investigated by intermittently exposing cells to an AqE of CS four times, followed by exposure to either an AqE of CS, NTV aerosol or medium another four times. Switching to NTV reduced myosmine and norharman levels, which are known CS constituents. The results indicate that extracellular compounds inside cells reflect the exposure state outside cells. Thus, monitoring functional changes to cells in these exposure experiments is feasible.
Collapse
Affiliation(s)
| | | | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc
| |
Collapse
|
11
|
Amaral MSS, Nolvachai Y, Marriott PJ. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal Chem 2019; 92:85-104. [DOI: 10.1021/acs.analchem.9b05412] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michelle S. S. Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Yada Nolvachai
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|