1
|
Kumaeum W, Jaiyong P. Design and Computational Study of Sulfonamide-Modified Cannabinoids as Selective COX-2 Inhibitors Using Semiempirical Quantum Mechanical Methods: Drug-like Properties and Binding Affinity Insights. ACS OMEGA 2025; 10:13605-13620. [PMID: 40224452 PMCID: PMC11983223 DOI: 10.1021/acsomega.5c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025]
Abstract
Cyclooxygenase (COX) is one of the concerned targets in the development of anti-inflammatory therapies. Using semiempirical quantum mechanical (SQM) methods with implicit solvation, we investigated the binding free energies and selectivity of natural cannabinoids and their sulfonamide-modified derivatives with the COX and cannabinoid (CB) receptors. Validation against benchmark data sets demonstrated the accuracy of these methods in predicting binding affinities while minimizing false positives and false negatives often associated with conventional docking tools. Our findings indicate that Δ9-THC and its carboxylic acid derivative exhibit strong binding affinities for COX-2 and CB2, suggesting their potential as anti-inflammatory agents, though their significant CB1 affinity suggests psychoactive risks. In contrast, carboxylic acid derivatives such as CBCA, CBNA, CBEA, CBTA, and CBLA demonstrated selective binding to COX-2 and CB2, with low CB1 affinity, supporting their potential as promising anti-inflammatory leads with reduced psychoactive side effects. Sulfonamide-modified analogs further enhanced COX-2 binding affinities and selectivity, displaying favorable drug-like properties, including compliance with Lipinski's rules, noninhibition of cytochromes P450, and oral bioavailability. These results highlight the utility of GFN2-xTB in identifying and optimizing cannabinoid-based therapeutic candidates for anti-inflammatory applications.
Collapse
Affiliation(s)
- Watcharin Kumaeum
- Department of Chemistry,
Faculty of Science and Technology, Thammasat
University, Pathum
Thani 12120, Thailand
| | - Panichakorn Jaiyong
- Department of Chemistry,
Faculty of Science and Technology, Thammasat
University, Pathum
Thani 12120, Thailand
| |
Collapse
|
2
|
Puga TB, Box MW, Dieu VM, Marchese CR, Riehl JT. Heterotopic ossification (HO) prophylaxis in total hip arthroplasty (THA): A systematic review of level I and level II evidence since 2000. Bone Rep 2025; 24:101828. [PMID: 39935784 PMCID: PMC11810696 DOI: 10.1016/j.bonr.2025.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction Heterotopic ossification (HO) is a somewhat common occurrence after total hip arthroplasty (THA), particularly with certain approaches. This complication can be detrimental to the success of the surgical outcome. Indomethacin and radiotherapy remain common treatment modalities; however, no true gold-standard treatment is universally agreed upon. This study aims to evaluate Level I and Level II evidence for treatment practices of HO prophylaxis since 2000. Methods To evaluate HO prophylaxis in total hip arthroplasty, a search was conducted across MEDLINE/Pubmed, Cochrane, and Embase databases using keywords and Medical Subject Heading (MeSH) terms. Titles and abstracts were screened for eligibility for inclusion criteria. Full texts were screened and included if they met eligibility criteria. Results HO chemical prophylaxis was more effective than no HO prophylaxis, except for aspirin. Multiple NSAIDs showed equivalence and better side effect profiles than indomethacin. No one superior NSAID was found, and numerous modalities showed efficacy. The most effective dosages of radiation therapy and combination therapy remain unclear. Additionally, both etidronate and salmon calcitonin showed benefit in preventing HO in one study each. Conclusion Radiation, NSAIDs, and combination therapy all showed efficacy as HO prophylaxis modalities. HO prophylaxis treatment and modalities should be guided upon patient and surgical factors such as surgical approach, side effects and tolerability of modalities, comorbidities, and available facility resources to optimize the prevention of HO.Level of evidence: Level IV Therapeutic.
Collapse
Affiliation(s)
- Troy B. Puga
- Department of Orthopaedics, Medical City Denton, Denton, TX, United States of America
| | - McKenna W. Box
- Department of Orthopaedics, Medical City Denton, Denton, TX, United States of America
| | - Vincent M. Dieu
- College of Medicine, University of Oklahoma, Oklahoma City, OK, United States of America
| | - Charles R. Marchese
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO, United States of America
| | - John T. Riehl
- Department of Orthopaedics, Medical City Denton, Denton, TX, United States of America
| |
Collapse
|
3
|
Talaei F, Farzad F. Interpreting the function of cell penetrating peptide (RGD) in drug transport to the cell membrane: a computational approach. Sci Rep 2024; 14:29668. [PMID: 39613819 DOI: 10.1038/s41598-024-80060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Carbon nanotubes (CNT) have unique properties that make them an excellent option for use as drug carriers. However, to make them safe for the human body, their walls are typically coated with a layer of peptide, which also helps to neutralize their toxicity. Additionally, a specific peptide sequence can be used to deliver therapeutic agents exclusively to cancer cells. In recent years, considerable progress has been made in the development of drug delivery systems (DDS) for drug delivery by computer-assisted. The present study inquires about the loading of ketoprofen (Ket) and naproxen (Nap) conjugated with RGD peptide sequence on CNT and its interaction with the double-layer membrane using the molecular dynamics (MD) simulation method. The obtained results show that the investigated complexes often interact through van der Waals and π-π interactions. Energy values for ketoprofen and naproxen with CNT were evaluated - 270.63 and - 195.8 kJ/mol, respectively. The results of the physical adsorption of the complexes on the membrane surface show that the CNT-KRG and CNT-NRG complexes spontaneously diffuse into the biological membrane. In addition, the study of the interaction energy values of these two complexes with the membrane shows that the van der Waals energy plays a significant role in the stability of the systems. On the other hand, the study of the interaction between the drug-CNT complex and the membrane surface shows that the drug can easily penetrate the membrane in the presence of the peptide sequence and the carrier.
Collapse
Affiliation(s)
- Fatemeh Talaei
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand, Birjand, Iran.
| |
Collapse
|
4
|
Liu K, Xia Y, Zhang L, Lu W, Deng S, Li S, Yu J, Yan J. Indomethacin Combined with Ciprofloxacin Improves the Prognosis of Mice under Severe Traumatic Infection via the PI3K/Akt Pathway in Macrophages. Inflammation 2024; 47:1776-1792. [PMID: 38865055 DOI: 10.1007/s10753-024-02008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 06/13/2024]
Abstract
The prevention and treatment strategies for traumatic infection often focus on the use of antibiotics, while eschew the combined treatment of the bacteria, their toxins, and inflammatory mediators. This might be a main reason the prognosis of wound victims has not improved. Although our previous work found that the combination of indomethacin (IND) and ciprofloxacin (CIP) could promote skin wound repair and enhance the immune function, the efficacy and safety of this strategy for severe traumatic infection-mediated complications remain unknown. Additionally, there is no study on the relevant target cells and molecular mechanisms. In this study, C57BL/6 adult male mice were modeled for severe traumatic infection, and the optimal doses of IND and CIP alone were determined. After that, the efficacy and safety of IND plus CIP in traumatic infection mice were explored. Then the differentially expressed genes of activated macrophages in this process were analysed and verified by transcriptomic methods and conventional experimental techniques. The role of a candidate signalling pathway (PI3K/Akt) in regulating macrophage function and drug combination therapy was evaluated. The results showed that IND plus CIP increased the survival rate, reduced the degree of inflammatory response, and enhanced the bacteriostatic effect in mice under traumatic infection. This combined therapy did not cause significant damage to the functions of important organs (liver, kidney, heart). In addition, IND combined with CIP induced macrophages to significantly change their expression levels of several cytokines, including interleukin (IL) -1β, IL-6, IL-10, IL-22, IL-23A, IL-17A, IL-17F, cluster of differentiation (CD) 11b and other genes/encode proteins. Further study showed that intervention with the PI3K inhibitor LY294002 modulated the secretion function of the above-mentioned macrophages and Akt activation (phosphorylation at serine 473). IND plus CIP can regulate macrophage function through the PI3K/Akt signalling pathway and improve the prognosis of severe traumatic infected mice. This may be a new therapeutic strategy for the prevention and treatment of severe traumatic infection.
Collapse
Affiliation(s)
- Ke Liu
- Department of Special War Wound, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yu Xia
- Department of Special War Wound, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China
| | - Leiting Zhang
- Department of Special War Wound, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Weiping Lu
- Clinical Laboratory, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China
| | - Shaoli Deng
- Clinical Laboratory, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Jing Yu
- Department of Special War Wound, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China.
| | - Jun Yan
- Department of Special War Wound, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, 400042, China.
| |
Collapse
|
5
|
Dai X, Nie W, Duan C, Shen Y. Preparation of microspheres with sustained ketoprofen release by electrospray for the treatment of aseptic inflammation. Front Bioeng Biotechnol 2024; 12:1416659. [PMID: 39100621 PMCID: PMC11294161 DOI: 10.3389/fbioe.2024.1416659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The treatment of aseptic inflammation has always been a clinical challenge. At present, non-steroidal drug-loaded microspheres have been widely used in the treatment of aseptic inflammation due to their excellent injectable and sustained release capabilities. In this study, ketoprofen-loaded shellac microspheres (Keto-SLAC) were prepared by electrospray. Alterations of Keto-SLAC morphology was observed in response to changed shellac concentration in ethanol solution through electrospray. Further examination revealed that ketoprofen presented as amorphous solid dispersion in the shellac microspheres. Most importantly, it was also shown that ketoprofen can be slowly released from the shellac matrix for up to 3 weeks. In vitro cell experiments verified that the microspheres had favorable cell compatibility. We therefore proposed that the prepared microspheres, being readily available in use in a variety of clinical settings through topical application, have promising therapeutic potential for the treatment of aseptic inflammation.
Collapse
Affiliation(s)
- Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Nie
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | | | - Yi Shen
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Burman J, Manchanda K, Bhakhar KA, Boharupi AN, Gohlke H, Bharatam PV. A comparative electronic structure analysis of reactive metabolites of oxicams. COMPUT THEOR CHEM 2024; 1237:114648. [DOI: 10.1016/j.comptc.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Elkharsawy H, Eldomany RA, Mira A, Soliman AF, Amir M, El-Sharkawy S. New neuroprotective derivatives of cinnamic acid by biotransformation. Food Funct 2024; 15:4323-4337. [PMID: 38530276 DOI: 10.1039/d3fo04802k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Microbial transformation is extensively utilized to generate new metabolites in bulk amounts with more specificity and improved activity. As cinnamic acid was reported to exhibit several important pharmacological properties, microbial transformation was used to obtain its new derivatives with enhanced biological activities. By manipulating the 2-stage fermentation protocol of biotransformation, five metabolites were produced from cinnamic acid. Two of them were new derivatives; N-propyl cinnamamide 2̲ and 2-methyl heptyl benzoate 3̲ produced by Alternaria alternata. The other 3 metabolites, p-hydroxy benzoic acid 4̲, cinnamyl alcohol 5̲ and methyl cinnamate 6̲, were produced by Rhodotorula rubra, Rhizopus species and Penicillium chrysogeneum, respectively. Cinnamic acid and its metabolites were evaluated for their cyclooxygenase (COX) and acetylcholinesterase (AChE) inhibitory activities. Protection against H2O2 and Aβ1-42 induced-neurotoxicity in human neuroblastoma (SH-SY5Y) cells was also monitored. Metabolite 4̲ was more potent as a COX-2 inhibitor than the parent compound with an IC50 value of 1.85 ± 0.07 μM. Out of the tested compounds, only metabolite 2̲ showed AChE inhibitory activity with an IC50 value of 8.27 μM. These results were further correlated with an in silico study of the binding interactions of the active metabolites with the active sites of the studied enzymes. Metabolite 3̲ was more potent as a neuroprotective agent against H2O2 and Aβ1-42 induced-neurotoxicity than catechin and epigallocatechin-3-gallate as positive controls. This study suggested the two new metabolites 2̲ and 3̲ along with metabolite 4̲ as potential leads for neurodegenerative diseases associated with cholinergic deficiency, neurotoxicity or neuroinflammation.
Collapse
Affiliation(s)
- Hadeer Elkharsawy
- Department of Pharmacognosy, Faculty of Pharmacy, Kafr El-Sheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ramadan A Eldomany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafr El-Sheikh University, Kafr El-Sheikh 33156, Egypt
| | - Amira Mira
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy. Buraydah Private Colleges, Buraydah 51418, Kingdom of Saudi Arabia.
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amal F Soliman
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt
| | - Mohamed Amir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Saleh El-Sharkawy
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Bettadj FZY, Benchouk W. Computer-aided analysis for identification of novel analogues of ketoprofen based on molecular docking, ADMET, drug-likeness and DFT studies for the treatment of inflammation. J Biomol Struct Dyn 2023; 41:9915-9930. [PMID: 36444967 DOI: 10.1080/07391102.2022.2148750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022]
Abstract
Computer-based drug design is increasingly used in strategies for discovering new molecules for therapeutic purposes. The targeted drug is ketoprofen (KTP), which belongs to the family of non-steroidal anti-inflammatory drugs, which are widely used for the treatment of pain, fever, inflammation and certain types of cancers. In an attempt to rationalize the search for 72 new potential anti-inflammatory compounds on the COX-2 enzyme, we carried out an in silico protocol that successfully combines molecular docking towards COX-2 receptor (5F1A), ADMET pharmacokinetic parameters, drug-likeness rules and molecular electrostatic potential (MEP). It was found that six of the compounds analyzed satisfy with the associated values to physico-chemical properties as key evaluation parameters for the drug-likeness and demonstrate a hydrophobic character which makes their solubility in aqueous media difficult and easy in lipids. All the compounds presented good ADMET profile and they showed an interaction with the amino acids responsible for anti-inflammatory activity of the COX-2 isoenzyme. The calculation of the MEP of the six analogues reveals new preferential sites involving the formation of new bonds. Consequently, this result allowed us to understand the origin of the potential increase in the anti-inflammatory activity of the candidates. Finally, it was obtained that six compounds have a binding mode, binding energy, and stability in the active site of COX-2 like the reference drug ketoprofen, suggesting that these compounds could become a powerful candidate in the inhibition of the COX-2 enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Zohra Yasmine Bettadj
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| | - Wafaa Benchouk
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
9
|
Silva CNS, Cruz MV, Fernandes KF, Batista KA. Production of anti-inflammatory films based on cashew gum polysaccharide and polyvinyl alcohol for wound dressing applications. 3 Biotech 2023; 13:299. [PMID: 37575597 PMCID: PMC10421841 DOI: 10.1007/s13205-023-03686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/25/2023] [Indexed: 08/15/2023] Open
Abstract
In the present study, we aimed to produce CGP/PVA films containing entrapped anti-inflammatory drugs for wound dressing applications. Using a 33-1 fractional factorial design, the effect of each component was evaluated on the physicochemical and morphological properties of the produced materials. The best formulation for entrapment of diclofenac sodium and ketoprofen was also determined. The produced films presented high swelling capacity, with some formulations showing o porous structure. CGP/PVA films showed a maximum retention of 75.6% for diclofenac sodium and 32.2% for ketoprofen, and both drugs were released in a controlled manner for up to 7 h. The drug release kinetic was studied, and the data were fitted using a Korsmeyer-Peppas model, which suggested that the release mechanism is controlled by diffusion. These results indicate that CGP/PVA-based matrices have great potential to be used as drug-delivery systems for wound dressing applications, contributing to prolonging the drug's action time and then improving their anti-inflammatory efficacy.
Collapse
Affiliation(s)
- Cassio N. S. Silva
- Laboratório de Química de Polímeros, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas 2, Campus Samambaia, Universidade Federal de Goiás, Goiânia, GO 74690-900 Brazil
| | - Maurício V. Cruz
- Laboratório de Química de Polímeros, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas 2, Campus Samambaia, Universidade Federal de Goiás, Goiânia, GO 74690-900 Brazil
- Departamento de Áreas Acadêmicas II, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia, Goiânia, GO 74055-120 Brazil
| | - Kátia F. Fernandes
- Laboratório de Química de Polímeros, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas 2, Campus Samambaia, Universidade Federal de Goiás, Goiânia, GO 74690-900 Brazil
| | - Karla A. Batista
- Laboratório de Química de Polímeros, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas 2, Campus Samambaia, Universidade Federal de Goiás, Goiânia, GO 74690-900 Brazil
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO 74395-160 Brazil
| |
Collapse
|
10
|
Panchal NK, Prince Sabina E. Non-steroidal anti-inflammatory drugs (NSAIDs): A current insight into its molecular mechanism eliciting organ toxicities. Food Chem Toxicol 2023; 172:113598. [PMID: 36608735 DOI: 10.1016/j.fct.2022.113598] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of medications that are routinely been used across the world. Their analgesic, anti-inflammatory, and antipyretic effects have all been well-documented. Moreover, they are been deliberated to have a protective role against various critical diseases such as cancer and cardiovascular diseases. However, the data presented by numerous studies in past have signified the adverse effects of NSAIDs due to overdosing on various systems such as cardiovascular, gastrointestinal, hepatic, renal, neural, etc. Despite substantial studies representing the mechanism behind the clinical risk of NSAIDs, there are very few reviews that have collated comprehensive records of various toxicities caused by overdosing on NSAIDs. As a result, we have presented a comprehensive overview of existing information on NSAIDs in this review. In addition to that, we have concentrated on presenting our understanding of various organ-based toxicities caused due to NSAID's prolonged use/overdosage.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biotechnology, School of Biosciences and Technology Vellore Institute of Technology, Vellore, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
11
|
Liu K, Yu J, Xia Y, Zhang LT, Li SY, Yan J. The combination of ciprofloxacin and indomethacin suppresses the level of inflammatory cytokines secreted by macrophages in vitro. Chin J Traumatol 2022; 25:379-388. [PMID: 35697590 PMCID: PMC9751534 DOI: 10.1016/j.cjtee.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE The combined use of antibiotics and anti-inflammatory medicine to manage bacterial endotoxin-induced inflammation following injuries or diseases is increasing. The cytokine level produced by macrophages plays an important role in this treatment course. Ciprofloxacin and indomethacin, two typical representatives of antibiotics and anti-inflammatory medicine, are cost-effective and has been reported to show satisfactory effect. The current study aims to investigate the effect of ciprofloxacin along with indomethacin on the secretion of inflammatory cytokines by macrophages in vitro. METHODS Primary murine peritoneal macrophages and RAW 264.7 cells were administrated with lipopolysaccharide (LPS) for 24 h. The related optimal dose and time point of ciprofloxacin or indomethacin in response to macrophage inflammatory response inflammation were determined via macrophage secretion induced by LPS. Then, the effects of ciprofloxacin and indomethacin on the secretory functions and viability of various macrophages were determined by enzyme-linked immunosorbent assay and flow cytometry analysis, especially for the levels of interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor (TNF)-α. The optimal dose and time course of ciprofloxacin affecting macrophage inflammatory response were determined by testing the maximum inhibitory effect of the drugs on pro-inflammatory factors at each concentration or time point. RESULTS According to the levels of cytokines secreted by various macrophages (1.2 × 106 cells/well) after administration of 1 μg/mL LPS, the optimal dose and usage timing for ciprofloxacin alone were 80 μg/mL and 24 h, respectively, and the optimal dose for indomethacin alone was 10 μg/mL. Compared with the LPS-stimulated group, the combination of ciprofloxacin and indomethacin reduced the levels of IL-1β (p < 0.05), IL-6 (p < 0.05), IL-10 (p < 0.01)), and TNF-α (p < 0.01). Furthermore, there was greater stability in the reduction of inflammatory factor levels in the combination group compared with those in which only ciprofloxacin or indomethacin was used. CONCLUSION The combination of ciprofloxacin and indomethacin suppressed the levels of inflammatory cytokines secreted by macrophages in vitro. This study illustrates the regulatory mechanism of drug combinations on innate immune cells that cause inflammatory reactions. In addition, it provides a new potential antibacterial and anti-inflammatory treatment pattern to prevent and cure various complications in the future.
Collapse
Affiliation(s)
- Ke Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China,State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Yu Xia
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Lei-Ting Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China,State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Sui-Yan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China,Corresponding author.
| | - Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China,Corresponding author.
| |
Collapse
|
12
|
The effects of biologically important divalent and trivalent metal cations on the cyclization step of dopamine autooxidation reaction: a quantum chemical study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Md Idris MH, Mohd Amin SN, Mohd Amin SN, Wibowo A, Zakaria ZA, Shaameri Z, Hamzah AS, Selvaraj M, Teh LK, Salleh MZ. Discovery of polymethoxyflavones as potential cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) and phosphodiesterase 4B (PDE4B) inhibitors. J Recept Signal Transduct Res 2021; 42:325-337. [PMID: 34323638 DOI: 10.1080/10799893.2021.1951756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed to treat inflammatory-related diseases, pain and fever. However, the prolong use of traditional NSAIDs leads to undesirable side effects such as gastric, ulceration, and renal toxicity due to lack of selectivity toward respective targets for COX-2, 5-LOX, and PDE4B. Thus, targeting multiple sites can reduce these adverse effects of the drugs and increase its potency. A series of methoxyflavones (F1-F5) were synthesized and investigated for their anti-inflammatory properties through molecular docking and inhibition assays. Among these flavones, only F2 exhibited selectivity toward COX-2 (Selectivity Index, SI: 3.90, COX-2 inhibition: 98.96 ± 1.47%) in comparison with celecoxib (SI: 7.54, COX-2 inhibition: 98.20 ± 2.55%). For PDEs, F3 possessed better selectivity to PDE4B (SI: 4.67) than rolipram (SI: 0.78). F5 had the best 5-LOX inhibitory activity among the flavones (33.65 ± 4.74%) but less than zileuton (90.81 ± 0.19%). Docking analysis indicated that the position of methoxy group and the substitution of halogen play role in determining the bioactivities of flavones. Interestingly, F1-F5 displayed favorable pharmacokinetic profiles and acceptable range of toxicity (IC50>70 µM) in cell lines with the exception for F1 (IC50: 16.02 ± 1.165 µM). This study generated valuable insight in designing new anti-inflammatory drug based on flavone scaffold. The newly synthesized flavones can be further developed as future therapeutic agents against inflammation.
Collapse
Affiliation(s)
- Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Siti Norhidayah Mohd Amin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Siti Norhidayu Mohd Amin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang Branch, Jengka Campus, Pahang, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Zurina Shaameri
- Organic Synthesis Laboratory, Institute of Science (IOS), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Ahmad Sazali Hamzah
- Organic Synthesis Laboratory, Institute of Science (IOS), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Manikandan Selvaraj
- School of Engineering, Monash University (Malaysia Campus), Bandar Sunway, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| |
Collapse
|
14
|
Grande F, Giordano F, Occhiuzzi MA, Rocca C, Ioele G, De Luca M, Ragno G, Panno ML, Rizzuti B, Garofalo A. Toward Multitasking Pharmacological COX-Targeting Agents: Non-Steroidal Anti-Inflammatory Prodrugs with Antiproliferative Effects. Molecules 2021; 26:molecules26133940. [PMID: 34203324 PMCID: PMC8271725 DOI: 10.3390/molecules26133940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The antitumor activity of certain anti-inflammatory drugs is often attributed to an indirect effect based on the inhibition of COX enzymes. In the case of anti-inflammatory prodrugs, this property could be attributed to the parent molecules with mechanism other than COX inhibition, particularly through formulations capable of slowing down their metabolic conversion. In this work, a pilot docking study aimed at comparing the interaction of two prodrugs, nabumetone (NB) and its tricyclic analog 7-methoxy-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-one (MC), and their common active metabolite 6-methoxy-2-naphthylacetic acid (MNA) with the COX binding site, was carried out. Cytotoxicity, cytofluorimetry, and protein expression assays on prodrugs were also performed to assess their potential as antiproliferative agents that could help hypothesize an effective use as anticancer therapeutics. Encouraging results suggest that the studied compounds could act not only as precursors of the anti-inflammatory metabolite, but also as direct antiproliferative agents.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende, Italy; (F.G.); (M.A.O.); (G.I.); (M.D.L.); (G.R.); (M.L.P.)
- Correspondence: (F.G.); (A.G.); Tel.: +39-0984-493019 (F.G.); +39-0984-493118 (A.G.)
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende, Italy; (F.G.); (M.A.O.); (G.I.); (M.D.L.); (G.R.); (M.L.P.)
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende, Italy; (F.G.); (M.A.O.); (G.I.); (M.D.L.); (G.R.); (M.L.P.)
| | - Carmine Rocca
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy;
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende, Italy; (F.G.); (M.A.O.); (G.I.); (M.D.L.); (G.R.); (M.L.P.)
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende, Italy; (F.G.); (M.A.O.); (G.I.); (M.D.L.); (G.R.); (M.L.P.)
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende, Italy; (F.G.); (M.A.O.); (G.I.); (M.D.L.); (G.R.); (M.L.P.)
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende, Italy; (F.G.); (M.A.O.); (G.I.); (M.D.L.); (G.R.); (M.L.P.)
| | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Via P. Bucci, 87036 Rende, Italy;
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende, Italy; (F.G.); (M.A.O.); (G.I.); (M.D.L.); (G.R.); (M.L.P.)
- Correspondence: (F.G.); (A.G.); Tel.: +39-0984-493019 (F.G.); +39-0984-493118 (A.G.)
| |
Collapse
|
15
|
da Silva CNS, Di-Medeiros MCB, Lião LM, Fernandes KF, Batista KDA. Cashew Gum Polysaccharide Nanoparticles Grafted with Polypropylene Glycol as Carriers for Diclofenac Sodium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2115. [PMID: 33922015 PMCID: PMC8122507 DOI: 10.3390/ma14092115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
This investigation focuses on the development and optimization of cashew gum polysaccharide (CGP) nanoparticles grafted with polypropylene glycol (PPG) as carriers for diclofenac sodium. The optimization of parameters affecting nanoparticles formulation was performed using a central composite rotatable design (CCRD). It was demonstrated that the best formulation was achieved when 10 mg of CGP was mixed with 10 μL of PPG and homogenized at 22,000 rpm for 15 min. The physicochemical characterization evidenced that diclofenac was efficiently entrapped, as increases in the thermal stability of the drug were observed. The CGP-PPG@diclofenac nanoparticles showed a globular shape, with smooth surfaces, a hydrodynamic diameter around 275 nm, a polydispersity index (PDI) of 0.342, and a zeta potential of -5.98 mV. The kinetic studies evidenced that diclofenac release followed an anomalous transport mechanism, with a sustained release up to 68 h. These results indicated that CGP-PPG nanoparticles are an effective material for the loading/release of drugs with similar structures to diclofenac sodium.
Collapse
Affiliation(s)
- Cassio Nazareno Silva da Silva
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (C.N.S.d.S.); (K.F.F.)
| | | | - Luciano Morais Lião
- Laboratório de Ressonância Nuclear Magnética, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil;
| | - Kátia Flávia Fernandes
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (C.N.S.d.S.); (K.F.F.)
| | - Karla de Aleluia Batista
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (C.N.S.d.S.); (K.F.F.)
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia 74270-040, GO, Brazil
| |
Collapse
|
16
|
Mitchell JA, Kirkby NS, Ahmetaj-Shala B, Armstrong PC, Crescente M, Ferreira P, Lopes Pires ME, Vaja R, Warner TD. Cyclooxygenases and the cardiovascular system. Pharmacol Ther 2021; 217:107624. [DOI: 10.1016/j.pharmthera.2020.107624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
|
17
|
Rouzer CA, Marnett LJ. Structural and Chemical Biology of the Interaction of Cyclooxygenase with Substrates and Non-Steroidal Anti-Inflammatory Drugs. Chem Rev 2020; 120:7592-7641. [PMID: 32609495 PMCID: PMC8253488 DOI: 10.1021/acs.chemrev.0c00215] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclooxgenases are key enzymes of lipid signaling. They carry out the first step in the production of prostaglandins, important mediators of inflammation, pain, cardiovascular disease, and cancer, and they are the molecular targets for nonsteroidal anti-inflammatory drugs, which are among the oldest and most chemically diverse set of drugs known. Homodimeric proteins that behave as allosterically modulated, functional heterodimers, the cyclooxygenases exhibit complex kinetic behavior, requiring peroxide-dependent activation and undergoing suicide inactivation. Due to their important physiological and pathophysiological roles and keen interest on the part of the pharmaceutical industry, the cyclooxygenases have been the focus of a vast array of structural studies, leading to the publication of over 80 crystal structures of the enzymes in complex with substrates or inhibitors supported by a wealth of functional data generated by site-directed mutation experiments. In this review, we explore the chemical biology of the cyclooxygenases through the lens of this wealth of structural and functional information. We identify key structural features of the cyclooxygenases, break down their active site into regional binding pockets to facilitate comparisons between structures, and explore similarities and differences in the binding modes of the wide variety of ligands (both substrates and inhibitors) that have been characterized in complex with the enzymes. Throughout, we correlate structure with function whenever possible. Finally, we summarize what can and cannot be learned from the currently available structural data and discuss the critical intriguing questions that remain despite the wealth of information that has been amassed in this field.
Collapse
Affiliation(s)
- Carol A Rouzer
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
18
|
Madduluri VK, Sah AK. Synthesis of Mefenamic Acid Containing
N
‐Glycoconjugates and Their Evaluation as Human COX‐2 Enzyme Inhibitor. ChemistrySelect 2020. [DOI: 10.1002/slct.201904655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vimal K. Madduluri
- Department of ChemistryBirla Institute of Technology and Science, Pilani; Pilani Campus Rajasthan 333031 India
| | - Ajay K. Sah
- Department of ChemistryBirla Institute of Technology and Science, Pilani; Pilani Campus Rajasthan 333031 India
| |
Collapse
|
19
|
Hsu YJ, Ho CS, Lee MC, Ho CS, Huang CC, Kan NW. Protective Effects of Resveratrol Supplementation on Contusion Induced Muscle Injury. Int J Med Sci 2020; 17:53-62. [PMID: 31929738 PMCID: PMC6945554 DOI: 10.7150/ijms.35977] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Muscle injuries frequently occur in contact sports events. The current treatment options for soft tissue injuries remain suboptimal and often result in delayed or incomplete recovery of damaged muscles. Resveratrol (RES) is a phenolic phytochemical, well-known for its antioxidant and anti-inflammatory properties. The purpose of this study is to evaluate the potential beneficial effects of RES supplementation on inflammation and regeneration in skeletal muscle after a contusion injury, in comparison to a conventional treatment of nonsteroidal anti-inflammatory drugs (NSAID). After one week of acclimation, forty eight -week-old male ICR mice were randomly divided into the five groups (n=8 per group): 1) normal control (NC), 2) mass-drop injury without any treatment (mass-drop injury, MDI), 3) post-injury NSAID treatment (MDI+ 10mg/kg NSAID), 4) post-injury RES supplementation (MDI+ 25mg/kg/day RES) and 5) post-injury treatment with RES and NSAID (MDI + resveratrol+ NSAID). After muscle contusion injury of the left gastrocnemius muscle, RES or NSAID were orally administered post-injury once a day for 7 days. Results showed that the MDI group had significantly higher serum uric acid (UA), CREA (creatinine), LDH (lactic dehydrogenase) and creatine kinase (CK) than the normal control group. Treatment with resveratrol reduced muscle damage as evidenced by the significantly decreased serum levels of UA, CREA, LDH and CK after contusion-induced muscle injuries in mice. In addition, RES and RES + NSAID groups promoted muscle satellite cell regeneration with increase in desmin protein after injury. Our results suggest that resveratrol combined with NSAID potentially improve muscle recovery and may be a potential candidate for further development as an effective clinical treatment for muscle repair.
Collapse
Affiliation(s)
- Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chun-Shen Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.,Division of Physical Medicine and Rehabilitation, Lo-Hsu Foundation, Inc., Lotung Poh-Ai Hospital, Yilan 26546, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Nai-Wen Kan
- Center for General Education, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
20
|
Ma Y, Yu P, Lin S, Li Q, Fang Z, Huang Z. The association between nonsteroidal anti-inflammatory drugs and skin cancer: Different responses in American and European populations. Pharmacol Res 2019; 152:104499. [PMID: 31689521 DOI: 10.1016/j.phrs.2019.104499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To conduct a comprehensive systematic meta-analysis investigating the association of nonsteroidal anti-inflammatory drugs (NSAIDs) and their subtypes with skin cancer (SC) and its subclasses (basal cell carcinoma BCC; squamous cell carcinoma SCC; melanoma; nonmelanoma skin cancer NMSC) in general, American and European populations. METHODS PubMed, Embase, the Cochrane Library, the China National Knowledge Infrastructure and ClinicalTrials.gov were searched up to 24 February 2019. Pooled effect sizes and 95% confidence intervals were used to estimate associations. RESULTS Results based on 26 original studies including 223,619 cases and 1,398,507 controls showed both NSAIDs and nonselective Cyclooxygenase (COX) inhibitors to be statistically significantly associated with a reduced risk of SC, BCC, SCC and NMSC but not with melanoma. Conversely, no association was observed between selective Cyclooxygenase 2 (COX-2) inhibitors and SC or its subclasses. Further subgroup analysis showed that the results analyzed for American populations were almost the same as those for the general population. For European populations, neither NSAIDs nor its subtypes correlated significantly with susceptibility to SC or its subclasses. CONCLUSIONS The use of NSAIDs might reduce the risk of SC, but many factors including study population, drug subtype, and disease subclass affect the significance of the association.
Collapse
Affiliation(s)
- Yukun Ma
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Piaojian Yu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Shuhuang Lin
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Qiqun Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zijing Fang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, China; Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
21
|
Dong L, Anderson AJ, Malkowski MG. Arg-513 and Leu-531 Are Key Residues Governing Time-Dependent Inhibition of Cyclooxygenase-2 by Aspirin and Celebrex. Biochemistry 2019; 58:3990-4002. [PMID: 31469551 DOI: 10.1021/acs.biochem.9b00659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aspirin and Celebrex are well-known time-dependent inhibitors of the cyclooxygenases (COX). Molecular dynamics simulations suggest that Arg-513 and Leu-531 contribute to the structural mechanisms of COX inhibition. We used mutagenesis and functional analyses to characterize how substitutions at these positions influence time-dependent inhibition by aspirin and Celebrex. We show that substitutions of Leu-531 with asparagine and phenylalanine significantly attenuate time-dependent inhibition of COX-2 by these drugs. The introduction of side chain bulk, rigidity, and charge would disrupt the formation of the initial noncovalent complex, in the case of aspirin, and the "high-affinity" binding state, in the case of Celebrex. Substitution of Arg-513 with histidine (the equivalent residue in COX-1) resulted in a 2-fold potentiation of aspirin inhibition, in support of the hypothesis that the presence of histidine in COX-1 lowers the activation barrier associated with the formation of the initial noncovalent enzyme-inhibitor complex. As a corollary, we previously hypothesized that the flexibility associated with Leu-531 contributes to the binding of arachidonic acid (AA) to acetylated COX-2 to generate 15R-hydroxyeicosatetraenoic acid (15R-HETE). We determined the X-ray crystal structure of AA bound to Co3+-protoporphyrin IX-reconstituted V349I murine COX-2 (muCOX-2). V349I muCOX-2 was utilized as a surrogate to trap AA in a conformation leading to 15R-HETE. AA binds in a C-shaped pose, facilitated by the rotation of the Leu-531 side chain. Ile-349 is positioned to sterically shield antarafacial oxygen addition at carbon-15 in a manner similar to that proposed for the acetylated Ser-530 side chain.
Collapse
Affiliation(s)
- Liang Dong
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences , University of Buffalo, the State University of New York , Buffalo , New York 14203 , United States
| | - Alyssa J Anderson
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences , University of Buffalo, the State University of New York , Buffalo , New York 14203 , United States
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences , University of Buffalo, the State University of New York , Buffalo , New York 14203 , United States
| |
Collapse
|
22
|
|
23
|
Umek N, Geršak B, Vintar N, Šoštarič M, Mavri J. Dopamine Autoxidation Is Controlled by Acidic pH. Front Mol Neurosci 2018; 11:467. [PMID: 30618616 PMCID: PMC6305604 DOI: 10.3389/fnmol.2018.00467] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022] Open
Abstract
We studied the reaction mechanism of dopamine autoxidation using quantum chemical methods. Unlike other biogenic amines important in the central nervous system, dopamine and noradrenaline are capable of undergoing a non-enzymatic autoxidative reaction giving rise to a superoxide anion that further decomposes to reactive oxygen species. The reaction in question, which takes place in an aqueous solution, is as such not limited to the mitochondrial membrane where scavenging enzymes such as catalase and superoxide dismutase are located. With the experimental rate constant of 0.147 s−1, the dopamine autoxidation reaction is comparably as fast as the monoamine oxidase B catalyzed dopamine decomposition with a rate constant of 1 s−1. By using quantum chemical calculations, we demonstrated that the rate-limiting step is the formation of a hydroxide ion from a water molecule, which attacks the amino group that enters intramolecular Michael addition, giving rise to a pharmacologically inert aminochrome. We have shown that for dopamine stability on a time scale of days, it is essential that the pH value of the synaptic vesicle interior is acidic. The pathophysiologic correlates of the results are discussed in the context of Parkinson's disease as well as the pathology caused by long-term amphetamine and cocaine administration.
Collapse
Affiliation(s)
- Nejc Umek
- Department of Anesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Geršak
- Department of Anesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Neli Vintar
- Department of Anesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Šoštarič
- Department of Anesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Mavri
- National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
24
|
Medeiros-Albuquerque AF, Sampaio-Melo CM, Studart-Soares EC, Rodrigues-Ribeiro T, Roriz-Fonteles CS, Alves-Pereira KM, Ferreira-Barbosa DA, de-Barros-Silva PG, Gurgel-Costa FW. Preemptive analgesia-related gene and protein expression in third molar surgeries under non steroidal anti-inflammatory drug protocols: A PROSPERO-registered systematic review of clinical studies. Med Oral Patol Oral Cir Bucal 2018; 23:e723-e732. [PMID: 30341263 PMCID: PMC6260993 DOI: 10.4317/medoral.22576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/22/2018] [Indexed: 11/12/2022] Open
Abstract
Background This study aimed to review translational studies focusing on third molar removal surgeries through a systematic analytical approach. Material and Methods A PROSPERO-registered systematic review (CRD42017060455) was conducted following the PRISMA statement to summarize current knowledge on gene expression in third molar surgeries. A search was performed in PubMed’s Medline and Scopus databases, without date or language restrictions, using the logical expression {[(Third molar) OR (preemptive) OR (cyclooxygenase inhibitors) OR (acute inflammation) AND (gene expression)]}. Results All studies included in the analysis evaluated gene expression in a third molar extraction model, using the preemptive analgesia methodology in seven investigations. The sample analyzed was obtained from gingival tissue biopsy (n=4), blood (n=1), transudate (n=1) and gingival tissue biopsy/transudate (n=1). There were differences with respect to evaluated genes, drug protocol, sample studied, and method for evaluating gene expression. Conclusions Third molar surgeries were found to be associated with different COX-related gene expression patterns. Although inflammatory events following the surgical procedure are associated with COX isoforms, data from preemptive analgesia studies are scarce, especially from studies correlating gene expression and clinical parameters. In the future, from a clinical perspective, identifying the molecular targets of a drug based on individual gene expression may be helpful to delineate specific third molar, surgery-related, preemptive analgesia protocols. Key words:Third molar, gene expression, preemptive analgesia, systematic review.
Collapse
Affiliation(s)
- A-F Medeiros-Albuquerque
- Rua Alexandre Baraúna, 949 Rodolfo Teofilo, 60430-160 Fortaleza, Ceará, Brazil. Post-graduate Program in Dentistry, School of Dentistry, Federal University of Ceará,
| | | | | | | | | | | | | | | | | |
Collapse
|