1
|
Yong GY, Kamkaew A, Kue CS. Synergistic approach of PEGylated photothermal agent and immunomodulator in cancer immunotherapy. Nanomedicine (Lond) 2025; 20:967-983. [PMID: 40214079 PMCID: PMC12051527 DOI: 10.1080/17435889.2025.2489342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Photothermal therapy (PTT) utilizes photothermal agents (PTAs) to generate heat at the local tumor site that leads to ablation upon photoirradiation at a specific wavelength of light. Currently, most of the available PTAs have weak tumor selectivity and depositing ability, which leads to poor therapeutic outcomes. PEGylation of PTAs improves therapeutic outcomes, prolongs systemic circulation time, enhances tumor accumulation, and reduces the risk of clearance by the immune system. This paper reviews the recent developments of PEGylated PTAs in photothermal cancer therapy from 2019 to 2023, highlighting their antitumour efficacy and immune response post-therapy with immune agents, current challenges and strategies. This review aims to foster knowledge dissemination on the application of nanomedicine in photothermal cancer therapy from an immunological perspective and to encourage the clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Gong Yi Yong
- School of Graduate Studies, Management and Science University, Shah Alam, Malaysia
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
2
|
Lv Y, Pu L, Ran B, Xiang B. Targeting tumor angiogenesis and metabolism with photodynamic nanomedicine. Front Cell Dev Biol 2025; 13:1558393. [PMID: 40235732 PMCID: PMC11996804 DOI: 10.3389/fcell.2025.1558393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
Photodynamic therapy (PDT) holds considerable promise as a tumor treatment modality, characterized by its targeted action, compatibility with other therapeutic approaches, and non - invasive features. PDT can achieve remarkable spatiotemporal precision in tumor ablation through the generation of reactive oxygen species (ROS). Nevertheless, despite its potential in tumor treatment, PDT encounters multiple challenges in practical applications. PDT is highly oxygen - dependent, and thus the effectiveness of PDT can be markedly influenced by tumor hypoxia. The co-existence of abnormal vasculature and metabolic deregulation gives rise to a hypoxic microenvironment, which not only sustains tumor survival but also undermines the therapeutic efficacy of PDT. Consequently, targeting tumor angiogenesis and metabolism is essential for revitalizing PDT. This review emphasizes the mechanisms and strategies for revitalizing PDT in tumor treatment, predominantly concentrating on interfering with tumor angiogenesis and reprogramming tumor cell metabolism. Lastly, the outlining future perspectives and current limitations of PDT are also summarized. This could provide new insights and methodologies for overcoming the challenges associated with PDT in tumor treatment, ultimately advancing the field of PDT.
Collapse
Affiliation(s)
- Yong Lv
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lihui Pu
- Department of Critical Care, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Ran
- School of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Bo Xiang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zhao C, Ma M, Yang J, Sun J, Sun Y, Ma P, Jiao S, Song D. Advancing Tumor Microenvironment Analysis: A Fluorescence Nanosystem for Caspase-1 Monitoring and Synergistic Therapy. Anal Chem 2025; 97:6240-6248. [PMID: 40066679 DOI: 10.1021/acs.analchem.5c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The lack of precise, real-time analytical tools for monitoring tumor microenvironment changes during treatment hinders advancements in integrated diagnostic and therapeutic platforms. Traditional caspase-3 monitoring strategies are limited by their inability to address drug resistance and newly discovered apoptotic pathways, leading to reduced accuracy and practicality. To overcome these limitations, we developed a fluorescence-based "Trojan horse" nanosystem, PFpR@CM, featuring high-sensitivity Caspase-1 detection, tumor-targeted delivery, and photothermal therapy. Caspase-1 was selected as a biomarker due to its ability to provide accurate feedback on reactive oxygen species (ROS) generation. The system employs Fe-doped polydopamine nanoparticles and red fluorescent carbon quantum dots (RCQDs) as the analytical core, achieving a detection limit of 0.024 U/mL for Caspase-1 with a linear range of 0.05-1.0 U/mL. By integrating MG-63 cell membrane camouflage, PFpR@CM ensures tumor specificity and immune evasion, allowing precise in situ monitoring of ROS production during ferroptosis. Experimental results demonstrate that the system enables simultaneous real-time fluorescence tracking and localized therapeutic interventions, achieving over 80% tumor volume reduction in vivo with minimal systemic toxicity. This work establishes a novel analytical chemistry approach for multifunctional tumor monitoring and treatment, providing an innovative solution to challenges in precision oncology.
Collapse
Affiliation(s)
- Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jukun Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jingdan Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ying Sun
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Shan Jiao
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
4
|
Wang Y, Yu B, Cai M, Li Z, Yang L, Zhang H, Liu W, Wang M. Multifunctional long afterglow nanoparticles with enhanced photothermal effects for in vivo imaging and tumor-targeting therapy. Talanta 2024; 279:126629. [PMID: 39106649 DOI: 10.1016/j.talanta.2024.126629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Considering the excellent properties such as deep tissue penetration, high signal-to-noise ratio, and in-situ recharge and reactivation, near-infrared luminescence long afterglow nanoparticles show considerable promise for biological application, especially in multifunctional imaging, targeting, and synergistic therapeutic. In this paper, Zn3Ga4GeO11: 0.1 % Cr3+, 1 % Yb3+, 0.1 % Tm3+@Ag-FA (ZGGO@Ag-FA, ZGA-FA) nanoparticles were synthesized by in-situ growth of Ag nanoparticles on the surface of long afterglow nanoparticles, and further modified with folic acid. Through precise adjustments, the luminescent properties of ZnGa2O4 were enhanced and notably boosted the photothermal effect of Ag by leveraging the upconversion emission of ZGGO, with a photothermal conversion efficiency reaching about 59.9 %. The ZGA-FA nanoparticles are ultra-small, measuring less than 50 nm. The modification with folic acid provides the ZGA-FA nanoparticles with excellent tumor-targeting capabilities, demonstrating effective enrichment and retention in tumor tissues, thus enabling long-term imaging and therapy through in vivo re-excitation. Due to its stable photothermal effect, outstanding near-infrared (NIR) afterglow imaging, and red-light charged characteristics, combined with effective tumor-targeting abilities, the therapeutic strategy proposed by this study has significant potential for clinical applications.
Collapse
Affiliation(s)
- Yunjian Wang
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Yu
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China; College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China
| | - Mingqin Cai
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhihui Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Lu Yang
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, PR China
| | - Hongbi Zhang
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Weisheng Liu
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Min Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Gao Y, Huo S, Chen C, Du S, Xia R, Liu J, Chen D, Diao Z, Han X, Yin Z. Gold nanorods as biocompatible nano-agents for the enhanced photothermal therapy in skin disorders. J Biomed Res 2024; 39:1-17. [PMID: 39375931 PMCID: PMC11873593 DOI: 10.7555/jbr.38.20240119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Rod-shaped gold nanomaterials, known as gold nanorods (GNRs), may undergo specific surface modification, because of their straightforward surface chemistry. This feature makes them appropriate for use as functional and biocompatible nano-formulations. By optimizing the absorption of longitudinally localized surface plasmon resonance in the near-infrared region, which corresponds to the near-infrared bio-tissue window, GNRs with appropriate modifications may improve the results of photothermal treatment (PTT). In dermatology, potential noninvasive uses of GNRs to enhance wound healing, manage infections, combat cutaneous malignancies, and remodel skin tissues via PTT have attracted research attention in recent years. The review discussed the basic properties of GNRs, such as their shape, size, optical performance, photothermal efficiency, and metabolism. Then, the disadvantages of using these particles in photodynamic therapy are highlighted. Next, biological applications of GNRs-based PTT are explored in detail. Finally, the limitations and future perspectives of this research are addressed, providing a comprehensive perspective on the potential GNRs with PTT.
Collapse
Affiliation(s)
- Yamei Gao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaohu Huo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Chao Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Shiyu Du
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ruiyuan Xia
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dandan Chen
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ziyue Diao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Han
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Zhiqiang Yin
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
6
|
Kim M, Hwang JE, Lee JS, Park J, Oh C, Lee S, Yu J, Zhang W, Im HJ. Development of Indocyanine Green/Methyl-β-cyclodextrin Complex-Loaded Liposomes for Enhanced Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32945-32956. [PMID: 38912948 DOI: 10.1021/acsami.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Photothermal therapy (PTT) is a promising cancer therapeutic approach due to its spatial selectivity and high potency. Indocyanine green (ICG) has been considered a biocompatible PTT agent. However, ICG has several challenges to hinder its clinical use including rapid blood clearance and instability to heat, light, and solvent, leading to a loss of photoactivation property and PTT efficacy. Herein, we leveraged stabilizing components, methyl-β-cyclodextrin and liposomes, in one nanoplatform (ICD lipo) to enhance ICG stability and the photothermal therapeutic effect against cancer. Compared to ICG, ICD lipo displayed a 4.8-fold reduction in degradation in PBS solvent after 30 days and a 3.4-fold reduction in photobleaching after near-infrared laser irradiation. Moreover, in tumor-bearing mice, ICD lipo presented a 2.7-fold increase in tumor targetability and inhibited tumor growth 9.6 times more effectively than did ICG without any serious toxicity. We believe that ICD lipo could be a potential PTT agent for cancer therapeutics.
Collapse
Affiliation(s)
- MinKyu Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee-Eun Hwang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Seob Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwoo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Subin Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyeon Yu
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Wang Zhang
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
7
|
Nirmal GR, Lin ZC, Chiu TS, Alalaiwe A, Liao CC, Fang JY. Chemo-photothermal therapy of chitosan/gold nanorod clusters for antibacterial treatment against the infection of planktonic and biofilm MRSA. Int J Biol Macromol 2024; 268:131673. [PMID: 38642681 DOI: 10.1016/j.ijbiomac.2024.131673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Bacterial infections trigger inflammation and impede the closure of skin wounds. The misuse of antibiotics exacerbates skin infections by generating multidrug-resistant bacteria. In this study, we developed chemo-photothermal therapy (chemo-PTT) based on near-infrared (NIR)-irradiated chitosan/gold nanorod (GNR) clusters as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. The nanocomposites exhibited an average size of 223 nm with a surface charge of 36 mV. These plasmonic nanocomposites demonstrated on-demand and rapid hyperthermal action under NIR. The combined effect of positive charge and PTT by NIR-irradiated nanocomposites resulted in a remarkable inhibition rate of 96 % against planktonic MRSA, indicating a synergistic activity compared to chitosan nanoparticles or GNR alone. The nanocomposites easily penetrated the biofilm matrix. The combination of chemical and photothermal treatments by NIR-stimulated clusters significantly damaged the biofilm structure, eradicating MRSA inside the biomass. NIR-irradiated chitosan/GNR clusters increased the skin temperature of mice by 13 °C. The plasmonic nanocomposites induced negligible skin irritation in vivo. In summary, this novel nanosystem demonstrated potent antibacterial effects against planktonic and biofilm MRSA, showcasing the possible efficacy in treating skin infections.
Collapse
Affiliation(s)
- G R Nirmal
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Tai-Sheng Chiu
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Recent Advances in Reprogramming Strategy of Tumor Microenvironment for Rejuvenating Photosensitizers-Mediated Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305708. [PMID: 38018311 DOI: 10.1002/smll.202305708] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Indexed: 11/30/2023]
Abstract
Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
Szwed M, Marczak A. Application of Nanoparticles for Magnetic Hyperthermia for Cancer Treatment-The Current State of Knowledge. Cancers (Basel) 2024; 16:1156. [PMID: 38539491 PMCID: PMC10969623 DOI: 10.3390/cancers16061156] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 01/03/2025] Open
Abstract
Hyperthermia (HT) is an anti-cancer therapy commonly used with radio and chemotherapies based on applying heat (39-45 °C) to inhibit tumor growth. However, controlling heat towards tumors and not normal tissues is challenging. Therefore, nanoparticles (NPs) are used in HT to apply heat only to tumor tissues to induce DNA damage and the expression of heat shock proteins, which eventually result in apoptosis. The aim of this review article is to summarize recent advancements in HT with the use of magnetic NPs to locally increase temperature and promote cell death. In addition, the recent development of nanocarriers as NP-based drug delivery systems is discussed. Finally, the efficacy of HT combined with chemotherapy, radiotherapy, gene therapy, photothermal therapy, and immunotherapy is explored.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St, 90-236 Lodz, Poland;
| | | |
Collapse
|
10
|
Shen M, Cao Q, Zhang M, Jing H, Zhao Z. Research progress of inorganic metal nanomaterials in biological imaging and photothermal therapy. SCIENTIA SINICA CHIMICA 2024; 54:160-181. [DOI: 10.1360/ssc-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Park HS, Yokomizo S, Wang H, Manganiello S, Monaco H, McDonnell R, Kim HJ, Rho J, Gladstone J, Ahn S, Jung H, Kang H, Bao K, Kashiwagi S, Choi HS. Bifunctional Tumor-Targeted Bioprobe for Phototheranosis. Biomater Res 2024; 28:0002. [PMID: 38327616 PMCID: PMC10845606 DOI: 10.34133/bmr.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/17/2023] [Indexed: 02/09/2024] Open
Abstract
Background: Near-infrared (NIR) phototheranostics provide promising noninvasive imaging and treatment for head and neck squamous cell carcinoma (HNSCC), capitalizing on its adjacency to skin or mucosal surfaces. Activated by laser irradiation, targeted NIR fluorophores can selectively eradicate cancer cells, harnessing the power of synergistic photodynamic therapy and photothermal therapy. However, there is a paucity of NIR bioprobes showing tumor-specific targeting and effective phototheranosis without hurting surrounding healthy tissues. Methods: We engineered a tumor-specific bifunctional NIR bioprobe designed to precisely target HNSCC and induce phototheranosis using bioconjugation of a cyclic arginine-glycine-aspartic acid (cRGD) motif and zwitterionic polymethine NIR fluorophore. The cytotoxic effects of cRGD-ZW800-PEG were measured by assessing heat and reactive oxygen species (ROS) generation upon an 808-nm laser irradiation. We then determined the in vivo efficacy of cRGD-ZW800-PEG in the FaDu xenograft mouse model of HNSCC, as well as its biodistribution and clearance, using a customized portable NIR imaging system. Results: Real-time NIR imaging revealed that intravenously administered cRGD-ZW800-PEG targeted tumors rapidly within 4 h postintravenous injection in tumor-bearing mice. Upon laser irradiation, cRGD-ZW800-PEG produced ROS and heat simultaneously and exhibited synergistic photothermal and photodynamic effects on the tumoral tissue without affecting the neighboring healthy tissues. Importantly, all unbound bioprobes were cleared through renal excretion. Conclusions: By harnessing phototheranosis in combination with tailored tumor selectivity, our targeted bioprobe ushers in a promising paradigm in cancer treatment. It promises safer and more efficacious therapeutic avenues against cancer, marking a substantial advancement in the field.
Collapse
Affiliation(s)
- Hae Sang Park
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine,
Hallym University, Chuncheon 24253, South Korea
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Haoran Wang
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sophia Manganiello
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hailey Monaco
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rose McDonnell
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hajin Joanne Kim
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jiyun Rho
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jason Gladstone
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sung Ahn
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Harry Jung
- Institute of New Frontier Research Team, Hallym Clinical and Translation Science Institute,
Hallym University, Chuncheon 24252, South Korea
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
12
|
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S, Khori V. Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol 2023; 957:175991. [PMID: 37619785 DOI: 10.1016/j.ejphar.2023.175991] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The use of repurposing drugs that may have neoplastic and anticancer effects increases the efficiency and decrease resistance to chemotherapy drugs through a biochemical and mechanical transduction mechanisms through modulation of fibroblast/fibrosis remodeling in tumor microenvironment (TME). Interestingly, fibroblast/fibrosis remodeling plays a vital role in mediating cancer metastasis and drug resistance after immune chemotherapy. The most essential hypothesis for induction of chemo-immunotherapy resistance is via activation of fibroblast/fibrosis remodeling and preventing the infiltration of T cells after is mainly due to the interference between cytoskeleton, mechanical, biochemical, metabolic, vascular, and remodeling signaling pathways in TME. The structural components of the tumor that can be targeted in the fibroblast/fibrosis remodeling include the depletion of the TME components, targeting the cancer-associated fibroblasts and tumor associated macrophages, alleviating the mechanical stress within the ECM, and normalizing the blood vessels. It has also been found that during immune-chemotherapy, TME injury and fibroblast/fibrosis remodeling causes the up-regulation of inhibitory signals and down-regulation of activated signals, which results in immune escape or chemo-resistance of the tumor. In this regard, repurposing or neo-adjuvant drugs with various transduction signaling mechanisms, including anti-fibrotic effects, are used to target the TME and fibroblast/fibrosis signaling pathway such as angiotensin 2, transforming growth factor-beta, physical barriers of the TME, cytokines and metabolic factors which finally led to the reverse of the chemo-resistance. Consistent to many repurposing drugs such as pirfenidone, metformin, losartan, tranilast, dexamethasone and pentoxifylline are used to decrease immune-suppression by abrogation of TME inhibitory signal that stimulates the immune system and increases efficiency and reduces resistance to chemotherapy drugs. To overcome immunosuppression based on fibroblast/fibrosis remodeling, in this review, we focus on inhibitory signal transduction, which is the physical barrier, alleviates mechanical stress and prevents mechano-metabolic activation.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciencess, Catastega Institue of Medical Sciences, Mashhad, Iran
| | - Parham Aref
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farahnazsadat Ahmadi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
13
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
14
|
Kovalenko VL, Kolesnikova OA, Nikitin MP, Shipunova VO, Komedchikova EN. Surface Characteristics Affect the Properties of PLGA Nanoparticles as Photothermal Agents. MICROMACHINES 2023; 14:1647. [PMID: 37630183 PMCID: PMC10458446 DOI: 10.3390/mi14081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Photothermal therapy is one of the most promising and rapidly developing fields in modern oncology due to its high efficiency, localized action, and minimal invasiveness. Polymeric nanoparticles (NPs) incorporating low molecular-weight photothermal dyes are capable of delivering therapeutic agents to the tumor site, releasing them in a controlled manner, and providing tumor treatment under external light irradiation. The nanoparticle synthesis components are critically important factors that influence the therapeutically significant characteristics of polymeric NPs. Here, we show the impact of stabilizers and solvents used for synthesis on the properties of PLGA NPs for photothermal therapy. We synthesized PLGA nanocarriers using the microemulsion method and varied the nature of the solvent and the concentration of the stabilizer-namely, chitosan oligosaccharide lactate. A phthalocyanine-based photosensitizer, which absorbs light in the NIR window, was encapsulated in the PLGA NPs. When mQ water was used as a solvent and chitosan oligosaccharide lactate was used at a concentration of 1 g/L, the PLGA NPs exhibited highly promising photothermal properties. The final composite of the nanocarriers demonstrated photoinduced cytotoxicity against EMT6/P cells under NIR laser irradiation in vitro and was suitable for bioimaging.
Collapse
Affiliation(s)
- Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| | - Olga A. Kolesnikova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia; (V.L.K.); (O.A.K.); (M.P.N.); (E.N.K.)
| |
Collapse
|
15
|
Wu Q, Ma Q, Ma J, Chen J, Zhuang B, Yang S, Liu J, Wen S. Cascade Amplification of Pyroptosis and Apoptosis for Cancer Therapy through a Black Phosphorous-Doped Thermosensitive Hydrogel. Pharmaceutics 2023; 15:1830. [PMID: 37514017 PMCID: PMC10383820 DOI: 10.3390/pharmaceutics15071830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cell pyroptosis has a reciprocal relationship with various cancer treatment modalities such as chemotherapy. However, the tumor microenvironment, characterized by hypoxia, substantially restricts the development and application of tumor therapies that integrate cell pyroptosis. Therefore, the cascade amplification of oxidative stress by interfering with redox homeostasis in tumors may be a promising approach. In this study, black phosphorus (BP) nanosheets and a glutathione peroxidase 4 inhibitor (RSL3) were coloaded into a thermosensitive PDLLA-PEG-PDLLA (PLEL) hydrogel (RSL3/BP@PLEL). Owing to the photothermal property of BP nanosheets, the RSL3/BP@PLEL hydrogel may trigger the release of loaded drugs in a more controllable and on-demand manner. Investigation of the antitumor effect in a mouse liver tumor model demonstrated that local injection of the hydrogel formulation in combination with near infrared laser irradiation could efficiently suppress tumor growth by interfering with the redox balance in tumors. Mechanistic study indicated that the combined treatment of photothermal therapy and glutathione depletion based on this hydrogel efficiently induced cell pyroptosis through both caspase-1/GSDMD and caspase-3/GSDME pathways, thereby triggering the repolarization of tumor-associated macrophages from M2 to M1. Overall, we developed a biocompatible and biodegradable hydrogel formulation for application in combination cancer treatment, providing a new platform for enhancing the efficacy of cancer therapy by amplifying cell pyroptosis and apoptosis.
Collapse
Affiliation(s)
- Qing Wu
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Qinghui Ma
- Department of Oncology, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Jun Ma
- Department of Gastroenterology, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Junpeng Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Baoding Zhuang
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Shanglin Yang
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Jinji Liu
- Department of Oncology, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Shunqian Wen
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| |
Collapse
|
16
|
Li XY, Li YM, Kong RJ, Yan N, Zhou X, Huang JQ, Wang T, Li SY, Cheng H. Feedback-Elevated Antitumor Amplifier of Self-Delivery Nanomedicine by Suppressing Photodynamic Therapy-Caused Inflammation. ACS APPLIED BIO MATERIALS 2023. [PMID: 37326439 DOI: 10.1021/acsabm.3c00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inflammation activation is accompanied by tumor growth, migration, and differentiation. Photodynamic therapy (PDT) can trigger an inflammatory response to cause negative feedback of tumor inhibition. In this paper, a feedback-elevated antitumor amplifier is developed by constructing self-delivery nanomedicine for PDT and cascade anti-inflammation therapy. Based on the photosensitizer chlorin e6 (Ce6) and COX-2 inhibitor indomethacin (Indo), the nanomedicine is prepared via molecular self-assembly technology without additional drug carriers. It is exciting that the optimized nanomedicine (designated as CeIndo) possesses favorable stability and dispersibility in the aqueous phase. Moreover, the drug delivery efficiency of CeIndo is significantly improved, which could be effectively accumulated at the tumor site and internalized by tumor cells. Importantly, CeIndo not only exhibits a robust PDT efficacy on tumor cells but also drastically decreases the PDT-induced inflammatory response in vivo, resulting in feedback-elevated tumor inhibition. By virtue of the synergistic effect of PDT and cascade inflammation suppression, CeIndo tremendously reduces tumor growth and leads to a low side effect. This study presents a paradigm for the development of codelivery nanomedicine for enhanced tumor therapy through inflammation suppression.
Collapse
Affiliation(s)
- Xin-Yu Li
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yan-Mei Li
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Ren-Jiang Kong
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Ni Yan
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiang Zhou
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Jia-Qi Huang
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Wang X, Sun Y, Wangpraseurt D. Engineered photoresponsive biohybrids for tumor therapy. SMART MEDICINE 2023; 2:e20220041. [PMID: 39188274 PMCID: PMC11235730 DOI: 10.1002/smmd.20220041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 08/28/2024]
Abstract
Engineered biohybrids have recently emerged as innovative biomimetic platforms for cancer therapeutic applications. Particularly, engineered photoresponsive biohybrids hold tremendous potential against tumors due to their intriguing biomimetic properties, photoresponsive ability, and enhanced biotherapeutic functions. In this review, the design principles of engineered photoresponsive biohybrids and their latest progresses for tumor therapy are summarized. Representative engineered photoresponsive biohybrids are highlighted including biomolecules-associated, cell membrane-based, eukaryotic cell-based, bacteria-based, and algae-based photoresponsive biohybrids. Representative tumor therapeutic modalities of the engineered photoresponsive biohybrids are presented, including photothermal therapy, photodynamic therapy, synergistic therapy, and tumor therapy combined with tissue regeneration. Moreover, the challenges and future perspectives of these photoresponsive biohybrids for clinical practice are discussed.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Yazhi Sun
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Daniel Wangpraseurt
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
- Scripps Institution of OceanographyUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
18
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
19
|
Guo Z, Zhu AT, Fang RH, Zhang L. Recent Developments in Nanoparticle-Based Photo-Immunotherapy for Cancer Treatment. SMALL METHODS 2023; 7:e2300252. [PMID: 36960932 PMCID: PMC10192221 DOI: 10.1002/smtd.202300252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Phototherapy is an emerging approach for cancer treatment that is effective at controlling the growth of primary tumors. In the presence of light irradiation, photothermal and photodynamic agents that are delivered to tumor sites can induce local hyperthermia and the production of reactive oxygen species, respectively, that directly eradicate cancer cells. Nanoparticles, characterized by their small size and tunable physiochemical properties, have been widely utilized as carriers for phototherapeutic agents to improve their biocompatibility and tumor-targeted delivery. Nanocarriers can also be used to implement various codelivery strategies for further enhancing phototherapeutic efficiency. More recently, there has been considerable interest in augmenting the immunological effects of nanoparticle-based phototherapies, which can yield durable and systemic antitumor responses. This review provides an overview of recent developments in using nanoparticle technology to achieve photo-immunotherapy.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Audrey T Zhu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
20
|
Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS NANO 2023; 17:7979-8003. [PMID: 37129253 PMCID: PMC10173698 DOI: 10.1021/acsnano.3c00891] [Citation(s) in RCA: 388] [Impact Index Per Article: 194.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumoricidal photodynamic (PDT) and photothermal (PTT) therapies harness light to eliminate cancer cells with spatiotemporal precision by either generating reactive oxygen species or increasing temperature. Great strides have been made in understanding biological effects of PDT and PTT at the cellular, vascular and tumor microenvironmental levels, as well as translating both modalities in the clinic. Emerging evidence suggests that PDT and PTT may synergize due to their different mechanisms of action, and their nonoverlapping toxicity profiles make such combination potentially efficacious. Moreover, PDT/PTT combinations have gained momentum in recent years due to the development of multimodal nanoplatforms that simultaneously incorporate photodynamically- and photothermally active agents. In this review, we discuss how combining PDT and PTT can address the limitations of each modality alone and enhance treatment safety and efficacy. We provide an overview of recent literature featuring dual PDT/PTT nanoparticles and analyze the strengths and limitations of various nanoparticle design strategies. We also detail how treatment sequence and dose may affect cellular states, tumor pathophysiology and drug delivery, ultimately shaping the treatment response. Lastly, we analyze common experimental design pitfalls that complicate preclinical assessment of PDT/PTT combinations and propose rational guidelines to elucidate the mechanisms underlying PDT/PTT interactions.
Collapse
Affiliation(s)
- Marta Overchuk
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Robert A Weersink
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
21
|
Zhang F, Li Q, Zhu J, Liu X, Ding J, Sun J, Liu Y, Jiang T. Surface-charge-switch triggered self assembly of vancomycin modified carbon nanodots for enhanced photothermal eradication of vancomycin-resistant Enterococci biofilms. Colloids Surf B Biointerfaces 2023; 224:113207. [PMID: 36801745 DOI: 10.1016/j.colsurfb.2023.113207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Abstract
A new type of vancomycin (Van)-modified carbon nanodots (CNDs@Van) with pH-responsive surface charge switchable activity was successfully developed by covalently cross-linking Van on the surface of carbon nanodots (CNDs). Polymeric Van was formed on the surface of CNDs by covalent modification, which enhanced the targeted binding of CNDs@Van to vancomycin-resistant enterococci (VRE) biofilms and effectively reduced the carboxyl groups on the surface of CNDs to achieve pH-responsive surface charge switching. Most importantly, CNDs@Van was free at pH 7.4, but assembled at pH 5.5 owing to surface charge switching from negative to zero, resulting in remarkably enhanced near-infrared (NIR) absorption and photothermal properties. CNDs@Van exhibited good biocompatibility, low cytotoxicity, and weak hemolytic effects under physiological conditions (pH 7.4). Regarding targeted binding to VRE bacteria, CNDs@Van self-assembled in a weakly acidic environment (pH 5.5) generated by VRE biofilms, giving enhanced photokilling effects in in vitro and in vivo assays. Therefore, potentially, CNDs@Van can be used as a novel antimicrobial agent against VRE bacterial infections and their biofilms.
Collapse
Affiliation(s)
- Fang Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Qixian Li
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jingru Zhu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xinyue Liu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Juan Ding
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jie Sun
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yang Liu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
22
|
Polydopamine-Coated Cu-BTC Nanowires for Effective Magnetic Resonance Imaging and Photothermal Therapy. Pharmaceutics 2023; 15:pharmaceutics15030822. [PMID: 36986682 PMCID: PMC10058397 DOI: 10.3390/pharmaceutics15030822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Herein, we present a one-pot hydrothermal approach for synthesizing metal–organic framework-derived copper (II) benzene-1,3,5-tricarboxylate (Cu-BTC) nanowires (NWs) using dopamine as the reducing agent and precursor for a polydopamine (PDA) surface coating formation. In addition, PDA can act as a PTT agent and enhance NIR absorption, producing photothermal effects on cancer cells. These NWs displayed a photothermal conversion efficiency of 13.32% after PDA coating and exhibited good photothermal stability. Moreover, NWs with a suitable T1 relaxivity coefficient (r1 = 3.01 mg−1 s−1) can be effectively used as magnetic resonance imaging (MRI) contrast agents. By increasing concentrations, cellular uptake studies showed a greater uptake of Cu-BTC@PDA NWs into cancer cells. Further, in vitro studies showed PDA-coated Cu-BTC NWs possess exceptional therapeutic performance by 808 nm laser irradiation, destroying 58% of cancer cells compared with the absence of laser irradiation. This promising performance is anticipated to advance the research and implementation of copper-based NWs as theranostic agents for cancer treatment.
Collapse
|
23
|
Singh N, Kim J, Kim J, Lee K, Zunbul Z, Lee I, Kim E, Chi SG, Kim JS. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact Mater 2023; 21:358-380. [PMID: 36185736 PMCID: PMC9483748 DOI: 10.1016/j.bioactmat.2022.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Nanomedicines for drug delivery and imaging-guided cancer therapy is a rapidly growing research area. The unique properties of nanomedicines have a massive potential in solving longstanding challenges of existing cancer drugs, such as poor localization at the tumor site, high drug doses and toxicity, recurrence, and poor immune response. However, inadequate biocompatibility restricts their potential in clinical translation. Therefore, advanced nanomaterials with high biocompatibility and enhanced therapeutic efficiency are highly desired to fast-track the clinical translation of nanomedicines. Intrinsic properties of nanoscale covalent organic frameworks (nCOFs), such as suitable size, modular pore geometry and porosity, and straightforward post-synthetic modification via simple organic transformations, make them incredibly attractive for future nanomedicines. The ability of COFs to disintegrate in a slightly acidic tumor microenvironment also gives them a competitive advantage in targeted delivery. This review summarizes recently published applications of COFs in drug delivery, photo-immuno therapy, sonodynamic therapy, photothermal therapy, chemotherapy, pyroptosis, and combination therapy. Herein we mainly focused on modifications of COFs to enhance their biocompatibility, efficacy and potential clinical translation. This review will provide the fundamental knowledge in designing biocompatible nCOFs-based nanomedicines and will help in the rapid development of cancer drug carriers and theranostics.
Collapse
Affiliation(s)
- Nem Singh
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Kyungwoo Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Zehra Zunbul
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Injun Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Sung-Gil Chi
- Department of Life Science, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
24
|
Wang Q, Chen N, Li M, Yao S, Sun X, Feng X, Chen Y. Light-related activities of metal-based nanoparticles and their implications on dermatological treatment. Drug Deliv Transl Res 2023; 13:386-399. [PMID: 35908132 DOI: 10.1007/s13346-022-01216-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Metal-based nanoparticles (MNPs) represent an emerging class of materials that have attracted enormous attention in many fields. By comparison with other biomaterials, MNPs own unique optical properties which make them a potential alternative to conventional therapeutic agents in medical applications. Especially, owing to the easy access to the skin, the use of MNPs based on their optical properties has gained importance for the treatment of a variety of skin diseases. This review provides an insight into the different optical properties of MNPs, including photoprotection, photocatalysis, and photothermal, and highlights their implications in treating skin disorders, with a special emphasis on their use in infection control. Finally, a perspective on the safety concern of MNPs for dermatological use is discussed and analyzed. The information gathered and presented in this review will help the readers have a comprehensive understanding of utilizing the photo-triggered activity of MNPs for the treatment of skin diseases.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China.
| |
Collapse
|
25
|
Lee SS, Paliouras M, Trifiro MA. Functionalized Carbon Nanoparticles as Theranostic Agents and Their Future Clinical Utility in Oncology. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010108. [PMID: 36671680 PMCID: PMC9854994 DOI: 10.3390/bioengineering10010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Over the years, research of nanoparticle applications in pre-clinical and clinical applications has greatly advanced our therapeutic and imaging approaches to many diseases, most notably neoplastic disorders. In particular, the innate properties of inorganic nanomaterials, such as gold and iron oxide, as well as carbon-based nanoparticles, have provided the greatest opportunities in cancer theranostics. Carbon nanoparticles can be used as carriers of biological agents to enhance the therapeutic index at a tumor site. Alternatively, they can also be combined with external stimuli, such as light, to induce irreversible physical damaging effects on cells. In this review, the recent advances in carbon nanoparticles and their use in cancer theranostics will be discussed. In addition, the set of evaluations that will be required during their transition from laboratory investigations toward clinical trials will be addressed.
Collapse
Affiliation(s)
- Seung S. Lee
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
| | - Miltiadis Paliouras
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence:
| | - Mark A. Trifiro
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
26
|
Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Acta Pharm Sin B 2022; 12:4327-4347. [PMID: 36561994 PMCID: PMC9764075 DOI: 10.1016/j.apsb.2022.11.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer immunotherapy has significantly flourished and revolutionized the limited conventional tumor therapies, on account of its good safety and long-term memory ability. Discouragingly, low patient response rates and potential immune-related side effects make it rather challenging to literally bring immunotherapy from bench to bedside. However, it has become evident that, although the immunosuppressive tumor microenvironment (TME) plays a pivotal role in facilitating tumor progression and metastasis, it also provides various potential targets for remodeling the immunosuppressive TME, which can consequently bolster the effectiveness of antitumor response and tumor suppression. Additionally, the particular characteristics of TME, in turn, can be exploited as avenues for designing diverse precise targeting nanomedicines. In general, it is of urgent necessity to deliver nanomedicines for remodeling the immunosuppressive TME, thus improving the therapeutic outcomes and clinical translation prospects of immunotherapy. Herein, we will illustrate several formation mechanisms of immunosuppressive TME. More importantly, a variety of strategies concerning remodeling immunosuppressive TME and strengthening patients' immune systems, will be reviewed. Ultimately, we will discuss the existing obstacles and future perspectives in the development of antitumor immunotherapy. Hopefully, the thriving bloom of immunotherapy will bring vibrancy to further exploration of comprehensive cancer treatment.
Collapse
|
27
|
Hu Q, Xu M, Feng J, Xie H, Li J, He Y, Tang G, Guo B. Hyperthermia-induced stellate cell deactivation to enhance dual chemo and pH-responsive photothermal therapy for pancreatic cancers. NANOSCALE 2022; 14:15735-15748. [PMID: 36205175 DOI: 10.1039/d2nr04235e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For pancreatic ductal adenocarcinoma (PDAC) treatment, the deactivation of pancreatic stellate cells (PSCs) by blocking the transforming growth factor β (TGF-β) pathway is a promising strategy to inhibit stroma, enhance drug penetration, and greatly amplify chemotherapeutic efficacy. It is known that photothermal therapy (PTT) locally depletes stroma and enhances permeability but whether and how PTT reacts in the molecular pathway to induce PSC deactivation in PDAC has rarely been investigated so far. Herein, C-G NPs are synthesized by loading both acid-responsive photothermal molecules and gemcitabine for investigating both the combinatory chemophotothermal therapy and the interaction between the PTT and TGF-β pathway in PDAC. Notably, C-G NPs exhibit tumoral acidic pH-activated PTT and succeeded in deactivating PSCs and suppressing the expression level for both TGF-β and collagen fiber. Furthermore, hyperthermia remodels the tumoral extracellular matrix, significantly improves NP penetration, and boosts the ultimate synergistic chemophotothermal therapeutic efficacy. Importantly, the molecular biology study reveals that hyperthermia leads to the decrease in the mRNA expression of TGF-β1, SMAD2, SMAD3, α-SMA, and Collagen I in the tumor tissue, which is the key to suppress tumor progression. This research demonstrates that combinatory chemophotothermal therapy holds great promise for PDAC treatment.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Minjie Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiayu Feng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jingyu Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ying He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:14-30. [PMID: 36029849 DOI: 10.1016/j.pbiomolbio.2022.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Radiation therapy (RT) is a method commonly used for cancer treatment worldwide. Commonly, RT utilizes two routes for combating cancers: 1) high-energy radiation to generate toxic reactive oxygen species (ROS) (through the dissociation of water molecules) for damaging the deoxyribonucleic acid (DNA) inside the nucleus 2) direct degradation of the DNA. However, cancer cells have mechanisms to survive under intense RT, which can considerably decrease its therapeutic efficacy. Excessive radiation energy damages healthy tissues, and hence, low doses are applied for cancer treatment. Additionally, different radiosensitizers were used to sensitize cancer cells towards RT through individual mechanisms. Following this route, nanoparticle-based radiosensitizers (herein called nanoradiosensitizers) have recently gained attention owing to their ability to produce massive electrons which leads to the production of a huge amount of ROS. The success of the nanoradiosensitizer effect is closely correlated to its interaction with cells and its localization within the cells. In other words, tumor treatment is affected from the chain of events which is started from cell-nanoparticle interaction followed by the nanoparticles direction and homing inside the cell. Therefore, passive or active targeting of the nanoradiosensitizers in the subcellular level and the cell-nano interaction would determine the efficacy of the radiation therapy. The importance of the nanoradiosensitizer's targeting is increased while the organelles beyond nucleus are recently recognized as the mediators of the cancer cell death or resistance under RT. In this review, the principals of cell-nanomaterial interactions and which dominate nanoradiosensitizer efficiency in cancer therapy, are thoroughly discussed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons, Belgium.
| |
Collapse
|
29
|
Li X, Gao Y, Liu X, Hu X, Li Y, Sun J, Wang P, Wu H, Kim H, Ramalingam M, Xie S, Wang R. Ultrasound and laser-promoted dual-gas nano-generator for combined photothermal and immune tumor therapy. Front Bioeng Biotechnol 2022; 10:1005520. [PMID: 36177188 PMCID: PMC9513372 DOI: 10.3389/fbioe.2022.1005520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
The combination of photothermal therapy (PTT) and immune tumor therapy has emerged as a promising avenue for cancer treatment. However, the insufficient immune response caused by inefficient immunogenic cell death (ICD) inducers and thermal resistance, immunosuppression, and immune escape resulting from the hypoxic microenvironment of solid tumors severely limit its efficacy. Herein, we report an ultrasound and laser-promoted dual-gas nano-generator (calcium carbonate-polydopamine-manganese oxide nanoparticles, CPM NPs) for enhanced photothermal/immune tumor therapy through reprogramming tumor hypoxic microenvironment. In this system, CPM NPs undergo reactive decomposition in a moderately acidic tumor, resulting in the generation of calcium, manganese ions, carbon dioxide (CO2), and oxygen (O2). Calcium and manganese ions act as adjuvants that trigger an immune response. The cancer cell membrane rupture caused by sudden burst of bubbles (CO2 and O2) under ultrasound stimulation and the photothermal properties of PDA also contributed to the ICD effect. The generation of O2 alleviates tumor hypoxia and thus reduces hypoxia-induced heat resistance and immunosuppressive effects, thereby improving the therapeutic efficacy of combination PTT and immune therapy. The present study provides a novel approach for the fabrication of a safe and effective tumor treatment platform for future clinical applications.
Collapse
Affiliation(s)
- XinYu Li
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
| | - Yong Gao
- Binzhou Medical University Hospital, Binzhou, China
| | - XinZheng Liu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
| | - XiaoQian Hu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - YunMeng Li
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - JunXi Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - PingYu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - HaeWon Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Korea
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Korea
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| | - ShuYang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| | - RanRan Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| |
Collapse
|
30
|
Sun X, Li T, Wang P, Shang L, Niu M, Meng X, Shao H. Nanomaterials and Advances in Tumor Immune-Related Therapy: A Bibliometric Analysis. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With the rapid growth of the research content of nanomaterials and tumor immunity, the hot spots and urgent problems in the field become blurred. In this review, noticing the great development potential of this research field, we collected and sorted out the research articles from The
Clarivate Analytics Web of Science (WOS) Core Collection database in the field over the past 20 years. Next, we use Excel 2019 from Microsoft (Microsoft Corp, Redmond,WA, USA), VOSviewer (version 1.6.18, Leiden University, Leiden, Netherlands), CiteSpace (Chaomei Chen, Drexel University, USA)
and other softwares to conduct bibliometric analysis on the screened literatures. This paper not only analyzes the countries, institutions and authors with outstanding contributions in the current research field, but also comes up with the hot spots of current research. We hope that by analyzing
and sorting out the past data, we can provide help for the current clinical work and future scientific research.
Collapse
Affiliation(s)
- Xiaohan Sun
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Tian Li
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Peng Wang
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Liqi Shang
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Meng Niu
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, China
| | - Haibo Shao
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
31
|
Peltek OO, Ageev EI, Talianov PM, Mikushina AD, Epifanovskaya OS, Dubavik A, Veiko VP, Lepik K, Zuev DA, Timin AS, Zyuzin MV. Fluorescence-based thermometry for precise estimation of nanoparticle laser-induced heating in cancerous cells at nanoscale. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4323-4335. [PMID: 39634540 PMCID: PMC11501863 DOI: 10.1515/nanoph-2022-0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 12/07/2024]
Abstract
Photothermal therapy (PTT) has attracted increasing interest as a complementary method to be used alongside conventional therapies. Despite a great number of studies in this field, only a few have explored how temperatures affect the outcome of the PTT at nanoscale. In this work, we study the necrosis/apoptosis process of cancerous cells that occurs during PTT, using a combination of local laser heating and nanoscale fluorescence thermometry techniques. The temperature distribution within a whole cell was evaluated using fluorescence lifetime imaging microscopy during laser-induced hyperthermia. For this, gold nanorods were utilized as nanoheaters. The local near-infrared laser illumination produces a temperature gradient across the cells, which is precisely measured by nanoscale thermometry. This allows one to optimize the PTT conditions by varying concentration of gold nanorods associated with cells and laser power density. During the PTT procedure, such an approach enables an accurate determination of the percentages of apoptotic and necrotic cells using 2D and 3D models. According to the performed cell experiments, the influence of temperature increase during the PTT on cell death mechanisms has been verified and determined. Our investigations can improve the understanding of the PTT mechanisms and increase its therapeutic efficiency while avoiding any side effects.
Collapse
Affiliation(s)
- Oleksii O. Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002, St. Petersburg, Russian Federation
| | - Eduard I. Ageev
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002, St. Petersburg, Russian Federation
| | - Pavel M. Talianov
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002, St. Petersburg, Russian Federation
| | - Anna D. Mikushina
- Laboratory of Renewable Energy Sources, Alferov University, Khlopina 8/3, 194021, St. Petersburg, Russian Federation
| | - Olga S. Epifanovskaya
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Lva Tolstogo 6/8, 191144, St. Petersburg, Russian Federation
| | - Aliaksei Dubavik
- Faculty of Photonics, Center of Optical Information Technologies, ITMO University, Birzhevaya liniya 4, 199034, St. Petersburg, Russian Federation
| | - Vadim P. Veiko
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002, St. Petersburg, Russian Federation
| | - Kirill Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Lva Tolstogo 6/8, 191144, St. Petersburg, Russian Federation
| | - Dmitry A. Zuev
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002, St. Petersburg, Russian Federation
| | - Alexander S. Timin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002, St. Petersburg, Russian Federation
| | - Mikhail V. Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002, St. Petersburg, Russian Federation
| |
Collapse
|
32
|
Hexa-BODIPY-cyclotriphosphazene based nanoparticle for NIR fluorescence/photoacoustic dual-modal imaging and photothermal cancer therapy. Biosens Bioelectron 2022; 216:114612. [DOI: 10.1016/j.bios.2022.114612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022]
|
33
|
Mo C, Wang Z, Yang J, Ouyang Y, Mo Q, Li S, He P, Chen L, Li X. Rational assembly of RGD/MoS 2/Doxorubicin nanodrug for targeted drug delivery, GSH-stimulus release and chemo-photothermal synergistic antitumor activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112487. [PMID: 35679748 DOI: 10.1016/j.jphotobiol.2022.112487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Herein, we present the facile design and construction of a nanodrug system integrating targeted drug delivery and synergistic chemo-photothermal antitumor activity. MoS2 nanosheets were synthesized and modified by ανβ3 integrin binding peptide (Arg-Gly-Asp, RGD) using lipoic acid functionalized polyethylene glycol (LA-PEG-COOH), forming a well dispersed and targeted delivery nanocarrier. Further, covalent coupling of antitumor drug, thiolated doxorubicin (DOX) via disulfide linkage resulted in a novel nanodrug, RGD/MoS2/DOX. The prepared nanocarrier showed favorable stability, biocompatibility and photothermal conversion efficiency. Fluorescence imaging revealed that Hela cells could endocytose far more nanodrug than H9c2 normal myocardial cells due to the targeted delivery characteristic. Particularly, GSH-induced disulfide bond cleavage facilitated the effective release of DOX from the nanodrug in the tumor microenvironment. The survival rate of Hela cells incubated with the nanodrug for 48 h was 22.2 ± 1.2%, which dramatically reduced to 8.9 ± 1.4% in combination with 808 nm NIR irradiation, demonstrating powerful photothermal induced tumor-killing efficacy. In contrast, the survival rates of H9c2 cells treated by the nanodrug and free DOX were 68.5 ± 2.6% and 6.7 ± 2.6%, respectively, an indication of the notably alleviated cardiotoxicity of the designed nanodrug. The cell apoptosis experiment further verified the synergistic chemo-photothermal effect, thus paving a way toward design of high-efficiency and low-toxicity antitumor nanodrug.
Collapse
Affiliation(s)
- Chunhong Mo
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Zhao Wang
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; School of Medicine, Xiamen University, Xiang-an South Road, Xiamen 361102, China
| | - Jianying Yang
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Yiqiang Ouyang
- Life Sciences Institute, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| | - Qian Mo
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Shuting Li
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Ping He
- Pharmacology Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| | - Limin Chen
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Xinchun Li
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| |
Collapse
|
34
|
Epithelial-Mesenchymal Transition-Mediated Tumor Therapeutic Resistance. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154750. [PMID: 35897925 PMCID: PMC9331826 DOI: 10.3390/molecules27154750] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022]
Abstract
Cancer is one of the world’s most burdensome diseases, with increasing prevalence and a high mortality rate threat. Tumor recurrence and metastasis due to treatment resistance are two of the primary reasons that cancers have been so difficult to treat. The epithelial–mesenchymal transition (EMT) is essential for tumor drug resistance. EMT causes tumor cells to produce mesenchymal stem cells and quickly adapt to various injuries, showing a treatment-resistant phenotype. In addition, multiple signaling pathways and regulatory mechanisms are involved in the EMT, resulting in resistance to treatment and hard eradication of the tumors. The purpose of this study is to review the link between EMT, therapeutic resistance, and the molecular process, and to offer a theoretical framework for EMT-based tumor-sensitization therapy.
Collapse
|
35
|
Sun L, Bai H, Jiang H, Zhang P, Li J, Qiao W, Wang D, Liu G, Wang X. MoS 2/LaF 3 for enhanced photothermal therapy performance of poorly-differentiated hepatoma. Colloids Surf B Biointerfaces 2022; 214:112462. [PMID: 35349941 DOI: 10.1016/j.colsurfb.2022.112462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
Photothermal therapy (PTT) based on nanoparticle had been widely used to antitumor treatment. However, low photothermal conversion efficiency (PCE) is the main hurdle for antitumor treatment. To improve the PCE and gain ideal clinical the nanoparticle with higher photothermal conversion efficiency, we have developed a highly efficient solar absorber with MoS2/LaF3/ polydimethylsiloxane(PDMS) which can enhance the absorption of solar irradiation engergy, however, its photothermal effect irradiated by near-infrared light has not yet been investigated. The knowledge absence in photothermal effect will impede MoS2/LaF3/PDMS to be used for cancer therapy in clinic. In this study, we applied LaF3-loaded, MoS2-based photothermal conversion agents (PTAs) for improved photothermal cancer therapy. The study showed that the MoS2/LaF3 nanoflowers showed higher photothermal conversion efficiency (PCE, 42.5%) and could more effectively inhibit cancer cell proliferation compared to MoS2-based PTT agents in vitro. In vivo, the results further revealed that photothermal therapy using MoS2/LaF3 nanoflowers could significantly inhibit solid tumor growth. The study clearly demonstrated that MoS2/LaF3 could work at under low power NIR Laser in vitro and in vivo, resulting in a very impressive therapeutic effect in tumor-bearing mice. The MoS2/LaF3 nanoflowers will be prominent candidate nanoparticle for effective inhibiting tumor growth by photothermal therapy.
Collapse
Affiliation(s)
- Lin Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Huifang Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Hanjin Jiang
- College of Chemical Engineering, Northeast Electric Power University, Jilin City 132012, PR China
| | - Peng Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China; Electron microscope center, Jilin University, Changchun 130012, PR China
| | - Jian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Weidong Qiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Dong Wang
- College of Chemical Engineering, Northeast Electric Power University, Jilin City 132012, PR China
| | - Guosong Liu
- Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
36
|
Liu Y, Xu D, Liu Y, Zheng X, Zang J, Ye W, Zhao Y, He R, Ruan S, Zhang T, Dong H, Li Y, Li Y. Remotely boosting hyaluronidase activity to normalize the hypoxic immunosuppressive tumor microenvironment for photothermal immunotherapy. Biomaterials 2022; 284:121516. [DOI: 10.1016/j.biomaterials.2022.121516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/20/2022]
|
37
|
Liu Y, Zhang L, Chang R, Yan X. Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chem Commun (Camb) 2022; 58:2247-2258. [PMID: 35083992 DOI: 10.1039/d1cc06355c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combinational photoimmunotherapy (PIT) is considered to be an ideal strategy for the treatment of highly recurrent and metastatic cancer, because it can ablate the primary tumor and provide in situ an autologous tumor vaccine to induce the host immune response, ultimately achieving the goal of controlling tumor growth and distal metastasis. Significant efforts have been devoted to enhancing the immune response caused by phototherapy-eliminated tumors. Recently, supramolecular PIT nanoagents based on precise peptide self-assembly design have been employed to improve the efficacy of photoimmunotherapy by utilizing the stability, targeting capability and flexibility of drugs, increasing tumor immunogenicity and realizing the synergistic amplification of immune effects through multiple pathways and collaborative strategy. This review summarizes peptide-based supramolecular PIT nanoagents for phototherapy-synergized cancer immunotherapy and its progress in enhancing the effect of photoimmunotherapy, especially focusing on the design of peptide-based PIT nanoagents, the progress of bioactive peptides combined photoimmunotherapy, and the synergistic immune-response mechanism.
Collapse
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics & Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China.,Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.
| |
Collapse
|
38
|
Han N, Shi Q, Wang X, Huang X, Ruan M, Ren L, Lang X, Wu K, Du S. Liposome co-loaded with β-elemene and IR780 for combined chemo-phototherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Hybrid Nanoparticles as Theranostics Platforms for Glioblastoma Treatment: Phototherapeutic and X-ray Phase Contrast Tomography Investigations. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest and most aggressive cancers, remarkably resilient to current therapeutic treatments. Here, we report preliminary in vivo studies of GBM treatments based on photo-nanotherapeutics to activate synergistic killing mechanisms. Core-shell nanoparticles have been weaponized by combining photophysical properties of a new generation PDT agent (Ir(III) complex) with the thermoplasmonic effects of resonant gold nanospheres. In order to investigate the damages induced in GBM treated with these photoactivable nanosystems, we employed X-ray phase-contrast tomography (XPCT). This high-resolution three-dimensional imaging technique highlighted a vast devascularization process by micro-vessels disruption, which is indicative of tumor elimination without relapse.
Collapse
|
40
|
Wang H, Xue KF, Yang Y, Hu H, Xu JF, Zhang X. In Situ Hypoxia-Induced Supramolecular Perylene Diimide Radical Anions in Tumors for Photothermal Therapy with Improved Specificity. J Am Chem Soc 2022; 144:2360-2367. [DOI: 10.1021/jacs.1c13067] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ke-Fei Xue
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Liu W, Yin SY, Hu Y, Deng T, Li J. Microemulsion-Confined Assembly of Magnetic Nanoclusters for pH/H 2O 2 Dual-Responsive T 2-T 1 Switchable MRI. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2629-2637. [PMID: 35000378 DOI: 10.1021/acsami.1c22747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a T2-T1 switchable superparamagnetic iron oxide nanoprobe with a pH/H2O2 dual response was obtained using a microemulsion method. This novel method for the controllable assembly of small iron clusters followed by their independent modification was reported, which could not be prepared by common synthetic methods. The size of the assembled nanoprobe was uniform and controllable, with a stable T2 magnetic resonance imaging (MRI) signal under a single condition. When the nanoprobe was exposed to the tumor environment, the higher H+ and H2O2 concentrations at the tumor site could dissociate the nanoprobe and redisperse into small iron clusters. When this occurred, the T2 MRI signal was converted into a T1 MRI signal, achieving specific detection of tumors by a pH/H2O2 dual-response T2-T1 MRI.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng-Yan Yin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
42
|
Wang L, Cao Z, Zhang M, Lin S, Liu J. Spatiotemporally Controllable Distribution of Combination Therapeutics in Solid Tumors by Dually Modified Bacteria. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106669. [PMID: 34687102 DOI: 10.1002/adma.202106669] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Methods capable of distributing antitumor therapeutics uniformly and durably throughout an entire tumor would be of great significance in maximizing their treatment efficacy, but they have proven to be extremely challenging. Here, bacteria-mediated spatiotemporally controllable distribution of combination therapeutics in solid tumors is reported to reprogram the immune microenvironment for optimizing antitumor efficacy. By combining synthetic biology and interfacial chemistry, bacteria are inside and outside concurrently modified to express photothermal melanin and to attach immune checkpoint inhibitors on their surface. Due to the nature of bacteria to colonize the hypoxia intratumoral environment, both therapeutic agents can be distributed homogenously and lastingly in tumors during ex vivo human and in vivo mouse studies. Spatiotemporally controllable localization of melanin can repeatedly generate a moderate yet uniform heating of the tumor upon light exposure in a broad treatment window. Combination with similarly localized inhibitors elicits a dual photothermally stimulated and checkpoint-blockade-mediated immune activation effect, synergistically reprogramming the immunosuppressive tumor microenvironment. Therapeutic values are demonstrated by significantly inhibited tumor growth and prolonged survival of mice in both subcutaneous and orthotopic murine models. Colonization of dually modified bacteria paves an avenue for spatiotemporally controllable distribution of therapeutic drugs in solid tumors.
Collapse
Affiliation(s)
- Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
43
|
Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021; 57:13662-13677. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small molecule drugs, including most chemotherapies, are rapidly degraded and/or eliminated from the body, which is why high doses of these drugs are necessary, potentially producing toxic effects. Several types of nanoparticles loaded with anti-cancer drugs have been designed to overcome the disadvantages of conventional therapies. Modified nanoparticles can circulate for a long time, thus improving the solubility and biodistribution of drugs. Furthermore, they also allow the controlled release of the payload once its target tissue has been reached. These mechanisms can reduce the exposure of healthy tissues to chemotherapeutics, since the drugs are only released in the presence of specific tumour stimuli. Overall, these properties can improve the effectiveness of treatments while reducing undesirable side effects. In this article, we review the recent advances in stimuli-responsive albumin, gold and magnetic nanostructures for controlled anti-cancer drug delivery. These nanostructures were designed to release drugs in response to different internal and external stimuli of the cellular environment, including pH, redox, light and magnetic fields. We also describe various examples of applications of these nanomaterials. Overall, we shed light on the properties, potential clinical translation and limitations of stimuli-responsive nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Nuria Lafuente-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Ana Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Paula Milán-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Ciro Rodriguez Diaz
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain. .,Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
44
|
Numerical Simulation of Enhancement of Superficial Tumor Laser Hyperthermia with Silicon Nanoparticles. PHOTONICS 2021. [DOI: 10.3390/photonics8120580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biodegradable and low-toxic silicon nanoparticles (SiNPs) have potential in different biomedical applications. Previous experimental studies revealed the efficiency of some types of SiNPs in tumor hyperthermia. To analyse the feasibility of employing SiNPs produced by the laser ablation of silicon nanowire arrays in water and ethanol as agents for laser tumor hyperthermia, we numerically simulated effects of heating a millimeter-size nodal basal-cell carcinoma with embedded nanoparticles by continuous-wave laser radiation at 633 nm. Based on scanning electron microscopy data for the synthesized SiNPs size distributions, we used Mie theory to calculate their optical properties and carried out Monte Carlo simulations of light absorption inside the tumor, with and without the embedded nanoparticles, followed by an evaluation of local temperature increase based on the bioheat transfer equation. Given the same mass concentration, SiNPs obtained by the laser ablation of silicon nanowires in ethanol (eSiNPs) are characterized by smaller absorption and scattering coefficients compared to those synthesized in water (wSiNPs). In contrast, wSiNPs embedded in the tumor provide a lower overall temperature increase than eSiNPs due to the effect of shielding the laser irradiation by the highly absorbing wSiNPs-containing region at the top of the tumor. Effective tumor hyperthermia (temperature increase above 42 °C) can be performed with eSiNPs at nanoparticle mass concentrations of 3 mg/mL and higher, provided that the neighboring healthy tissues remain underheated at the applied irradiation power. The use of a laser beam with the diameter fitting the size of the tumor allows to obtain a higher temperature contrast between the tumor and surrounding normal tissues compared to the case when the beam diameter exceeds the tumor size at the comparable power.
Collapse
|
45
|
Boykoff N, Freage L, Lenn J, Mallikaratchy P. Bispecific Aptamer Sensor toward T-Cell Leukemia Detection in the Tumor Microenvironment. ACS OMEGA 2021; 6:32563-32570. [PMID: 34901605 PMCID: PMC8655784 DOI: 10.1021/acsomega.1c04125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/06/2021] [Indexed: 06/14/2023]
Abstract
The current detection methods of malignant cells are mainly based on the high expression levels of certain surface proteins on these cells. However, many of the same surface marker proteins are also expressed in normal cells. Growing evidence suggests that the molecular signatures of the tumor microenvironment (TME) are related to the biological state of a diseased cell. Exploiting the unique molecular signature of the TME, we have designed a molecular sensing agent consisting of a molecular switch that can sense the elevated concentration of a small molecule in the TME and promote precise recognition of a malignant cell. We accomplished this by designing and developing a bispecific aptamer that takes advantage of a high concentration of adenosine 5'-triphosphate in the TME. Thus, we report a prototype of a bispecific aptamer molecule, which serves as a dual detection platform and recognizes tumor cells only when a given metabolite concentration is elevated in the TME. This system overcomes hurdles in detecting tumor cells solely based on the elevated expression of cell surface markers, providing a universal platform for tumor targeting and sensing.
Collapse
Affiliation(s)
- Natalie Boykoff
- Ph.D.
Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| | - Lina Freage
- Department
of Chemistry, Lehman College, The City University
of New York, 250 Bedford
Park Blvd., West, Bronx, New York 10468, United
States
| | - Jared Lenn
- The
Bronx High School of Science, 75 W 205th Street, Bronx, New York 10468, United States
| | - Prabodhika Mallikaratchy
- Department
of Chemistry, Lehman College, The City University
of New York, 250 Bedford
Park Blvd., West, Bronx, New York 10468, United
States
- Ph.D.
Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
- Ph.D.
Program in Molecular, Cellular and Developmental Biology, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|
46
|
Guan J, Wu Y, Wang H, Zeng H, Li Z, Yang X. A DiR loaded tumor targeting theranostic cisplatin-icodextrin prodrug nanoparticle for imaging guided chemo-photothermal cancer therapy. NANOSCALE 2021; 13:19399-19411. [PMID: 34755744 DOI: 10.1039/d1nr05824j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Imaging-guided diagnosis and chemo-photothermal combination therapy have promising applications for the treatment of cancer. Nevertheless, the accurate diagnosis and efficient treatment of tumors are not yet satisfactory. Herein, a tumor targeting DiR loaded cisplatin-icodextrin prodrug nanoparticle, with selective drug release, was fabricated as a multifunctional theranostic nanoplatform for chemo-photothermal combination therapy. By loading DiR into the hydrophobic domain of folic acid-icodextrin-polycaprolactone (FA-ICO-PCL, FIP) and cisplatin-icodextrin-polycaprolactone (Pt-ICO-PCL, PtIP) co-assembly, the resultant DiR@(PtIP + FIP) (DPtFIP) NPs had a diameter of around 70 nm and showed excellent tumor targeting ability and negligible side effects. Moreover, the DPtFIP NPs achieved real-time NIR fluorescence imaging of solid tumors with high contrast. By the accurate tumor imaging, local laser irradiation dramatically enhanced the chemotherapy for triple-negative breast cancer. Such a biocompatible nanotherapeutic holds great potential for tumor diagnosis and imaging-guided combinational cancer therapy.
Collapse
Affiliation(s)
- Jiankun Guan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Yuxin Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Huimin Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Haowen Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
| |
Collapse
|
47
|
Choe HS, Shin MJ, Kwon SG, Lee H, Kim DK, Choi KU, Kim JH, Kim JH. Yolk-Shell-Type Gold Nanoaggregates for Chemo- and Photothermal Combination Therapy for Drug-Resistant Cancers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53519-53529. [PMID: 34730926 DOI: 10.1021/acsami.1c10036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Epithelial ovarian cancer is a gynecological cancer with the highest mortality rate, and it exhibits resistance to conventional drugs. Gold nanospheres have gained increasing attention over the years as photothermal therapeutic nanoparticles, owing to their excellent biocompatibility, chemical stability, and ease of synthesis; however, their practical application has been hampered by their low colloidal stability and photothermal effects. In the present study, we developed a yolk-shell-structured silica nanocapsule encapsulating aggregated gold nanospheres (aAuYSs) and examined the photothermal effects of aAuYSs on cell death in drug-resistant ovarian cancers both in vitro and in vivo. The aAuYSs were synthesized using stepwise silica seed synthesis, surface amino functionalization, gold nanosphere decoration, mesoporous organosilica coating, and selective etching of the silica template. Gold nanospheres were agglomerated in the confined silica interior of aAuYSs, resulting in the red-shifting of absorbance and enhancement of the photothermal effect under 808 nm laser irradiation. The efficiency of photothermal therapy was first evaluated by inducing aAuYS-mediated cell death in A2780 ovarian cancer cells, which were cultured in a two-dimensional culture and a three-dimensional spheroid culture. We observed that photothermal therapy using aAuYSs together with doxorubicin treatment synergistically induced the cell death of doxorubicin-resistant A2780 cancer cells in vitro. Furthermore, this type of combinatorial treatment with photothermal therapy and doxorubicin synergistically inhibited the in vivo tumor growth of doxorubicin-resistant A2780 cancer cells in a xenograft transplantation model. These results suggest that photothermal therapy using aAuYSs is highly effective in the treatment of drug-resistant cancers.
Collapse
Affiliation(s)
- Hyun-Seok Choe
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seong Gyu Kwon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Haklae Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dae Kyoung Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Kyung Un Choi
- Department of Pathology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
48
|
Hu Y, Wang K, Ye C. "Four-in-One" Nanozyme and Natural Enzyme Symbiotic System of Cu 2-x Se-GOx for Cervical Cancer Therapy. Chemistry 2021; 28:e202102885. [PMID: 34773414 DOI: 10.1002/chem.202102885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 12/19/2022]
Abstract
Cervical cancer, as a common malignant tumor of the reproductive system, seriously threatens women's life and health, and is difficult to be cured by traditional treatments, such as surgery, chemotherapy and radiotherapy. Fortunately, tumor microenvironment (TME)-activated catalytic therapy with high efficiency and reduced off-target toxicity has emerged as a novel treatment model. Herein, we designed a "four-in-one" nanozyme and natural enzyme symbiotic system of Cu2-x Se-GOx for TME-triggered cascaded catalytic enhanced cancer treatment. In response to unique TME, Cu2-x Se with catalase activity could effectively catalyze over-expressed H2 O2 in cancer cells into O2 . Subsequently, the glucose oxidase (GOx) could deplete intracellular glucose with the assistance of O2 ; this not only achieves starvation therapy, but also regenerates H2 O2 to boost the generation of highly cytotoxic . OH due to the peroxidase activity of Cu2-x Se. Moreover, although the free-radical scavenger glutathione (GSH) is overexpressed in tumor cells, Cu2-x Se with glutathione oxidase activity could effectively consume GSH for enhanced ROS production. Thus, the "four-in-one" nanozyme@natural enzyme symbiotic system of Cu2-x Se-GOx could induce significant ROS accumulation at the tumor regions, thus providing a potential approach for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yubo Hu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University Changchun, Jilin, 130000, P. R. China
| | - Ke Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University Changchun, Jilin, 130000, P. R. China
| | - Cong Ye
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University Changchun, Jilin, 130000, P. R. China
| |
Collapse
|
49
|
Heshmati Aghda N, Torres Hurtado S, Abdulsahib SM, Lara EJ, Tunnell JW, Betancourt T. Dual Photothermal/Chemotherapy of Melanoma Cells with Albumin Nanoparticles Carrying Indocyanine Green and Doxorubicin Leads to Immunogenic Cell Death. Macromol Biosci 2021; 22:e2100353. [PMID: 34762334 DOI: 10.1002/mabi.202100353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Recent focus on cancer immunotherapies has led to significant interest in the development of therapeutic strategies that can lead to immunogenic cell death (ICD), which can cause activation of an immune response against tumor cells and improve immunotherapy outcomes by enhancing the immunogenicity of the tumor microenvironment. In this work, a nanomedicine-mediated combination therapy is used to deliver the ICD inducers doxorubicin (Dox), a chemotherapeutic agent, and indocyanine green (ICG), a photothermal agent. These agents are loaded into nanoparticles (NPs) of bovine serum albumin (BSA) that are prepared through a desolvation process. The formulation of BSA NPs is optimized to achieve NPs of 102.6 nm in size and loadings of 8.55 % and 5.69 % (w/w) for ICG and Dox, respectively. The controlled release of these agents from the BSA NPs is confirmed. Upon laser irradiation for 2.5 min, NPs at a dose of 62.5 μg mL-1 are able to increase the temperature of the cells by 7 °C and thereby inhibit the growth of B16F10 melanoma cells in vitro. Surface presentation of heat shock proteins and calreticulin from the cells after treatment confirmed the ability of the Dox/ICG loaded BSA NPs to induce ICD in the melanoma cells.
Collapse
Affiliation(s)
- Niloofar Heshmati Aghda
- Materials Science, Engineering and Commercialization Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Susana Torres Hurtado
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA
| | - Shahad M Abdulsahib
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Emilio J Lara
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - James W Tunnell
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA
| | - Tania Betancourt
- Materials Science, Engineering and Commercialization Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.,Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
50
|
Shu Q, Liu J, Chang Q, Liu C, Wang H, Xie Y, Deng X. Enhanced Photothermal Performance by Carbon Dot-Chelated Polydopamine Nanoparticles. ACS Biomater Sci Eng 2021; 7:5497-5505. [PMID: 34739201 DOI: 10.1021/acsbiomaterials.1c01045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polydopamine (PDA) has been widely used in biomedical applications including imaging contrast agents, antioxidants, UV protection, and photothermal therapy due to its biocompatibility, metal-ion chelation, free-radical scavenging, and wideband absorption, but its low photothermal efficiency still needs to be improved. In this study, we chelated near-infrared (NIR) sensitive carbon quantum dots on the surface of polydopamine (PDA-PEI@N,S-CQDs) to increase its near-infrared absorption. Surprisingly, although only 4% (w/w) of carbon quantum dots was conjugated on the PDA surface, it still increased the photothermal efficiency by 30%. Moreover, PDA-PEI@N,S-CQDs could also be used as the drug carrier for loading 60% (w/w) of the DOX and achieved stimuli-responsive drug release under lysosomal pH (pH 5.0) and 808 nm laser illumination. For in vitro therapeutic experiment, PDA-PEI@N,S-CQDs showed the remarkable therapeutic performance under 808 nm laser irradiation for killing 90% of cancer cells compared with 50% by pure PDA nanoparticles, and the efficacy was even higher after loading DOX owing to the synergistic effect by photothermal therapy and chemotherapy. This intelligent and effective therapeutic nanosystem based on PDA-PEI@N,S-CQDs showed enhanced photothermal behavior after chelating carbon dots and promoted the future development of a nanoplatform for stimuli-responsive photothermal/chemo therapy.
Collapse
Affiliation(s)
- Qingfeng Shu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenghao Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|