1
|
Gerbelli BB, Sodré PT, Filho PLO, Coutinho-Neto MD, Hamley IW, Seitsonen J, Alves WA. Enhancing pesticide detection: The role of serine in lipopeptide nanostructures and their self-assembly dynamics. J Colloid Interface Sci 2025; 690:137271. [PMID: 40121840 DOI: 10.1016/j.jcis.2025.137271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/07/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
In this research, we studied two novel lipopeptide sequences containing the amino acid serine (SPRWG) with one (compound 1) or two aliphatic tails (compound 2) to optimize the detection capabilities for organophosphate pesticides, specifically glyphosate. The study comprehensively explored how the incorporation of serine influences the physicochemical properties and supramolecular assembly of the lipopeptides, leading to enhanced interactions with glyphosate. Advanced analytical methods were employed to investigate these modifications, including fluorescence spectroscopy, circular dichroism, and small-angle X-ray scattering (SAXS). The results showed that serine significantly reduces the critical aggregation concentration, increases the hydrophilicity of the lipopeptides, and promotes the formation of distinct secondary structures-β-turns in compound 1 and β-sheets in compound 2. Moreover, isothermal titration calorimetry (ITC) and molecular dynamics confirmed the improved binding affinity with glyphosate strongly modulated by pH and pesticide load. Compound 1, with one alkyl chain, demonstrated notably higher catalytic activity and sensitivity linked to its pH equilibrium and structural features, marking it as particularly effective for acetylcholinesterase mimicry in pesticide detection. Density functional theory and molecular dynamics calculations showed that, when compared to the PRWG sequence, SPRWG has more unprotonated N-terminal sites due to a lower pKa, more beta-turn-like structures that improve stabilization. Besides promotes more hydrogen bonds between N-(phosphonomethyl)glycine (PNG, commonly known as glyphosate) and aggregates across a wide pH range and P/L; which explains its enhanced reactivity in Ellman's test and better inhibitory effects under the influence of PNG. Our results suggest that serine-functionalized lipopeptides have great potential as biomimetic sensors in environmental monitoring.
Collapse
Affiliation(s)
- Barbara B Gerbelli
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil; Department of Chemistry, University of Reading, Reading, United Kingdom
| | - Pedro T Sodré
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| | - Pedro L O Filho
- Materials Innovation Factory, University of Liverpool, Liverpool, United Kingdom; Nanomicroscopy Center, Aalto University, Espoo, Finland
| | | | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading, United Kingdom
| | | | - Wendel A Alves
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil.
| |
Collapse
|
2
|
Hasbullah SF, Hidayat AT, Tarwadi, Fajri AN, Nurlelasari, Harneti D, Farabi K, Supratman U, Maharani R. In-vitro evaluation of cationic Lipopeptides as adjuvant candidate for DNA plasmid vaccine. Bioorg Med Chem Lett 2025; 122:130183. [PMID: 40090497 DOI: 10.1016/j.bmcl.2025.130183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Lipopeptides with different fatty acids (palmitic, palmitoleic, stearic, oleic, and linoleic acids) conjugated to CHSPKKKRKV were synthesised by a solid-phase peptide method using the Fmoc strategy (Fmoc-SPPS) on 2-CTC (2-chlorotritylchloride) resin. The lipopeptides were purified by RP-HPLC and characterised by ToF-ESI-MS and 1D-NMR. The capability of the lipopeptide to interact with the plasmid was evaluated by DNA agarose gel electrophoresis. The particle size of the lipopeptide/DNA complexes was determined by dynamic light scattering assay and TEM analysis. The biological activities including cytotoxicity, nitrite oxide (NO) release, and IL-6 and TNF-α production were evaluated in RAW 264.7 cells. ToF-ESI-MS revealed [M + 2H]2+ and [M + 3H]3+ ion peaks which were validated by 1H NMR and 13C NMR, confirming the lipopeptide molecular structure. All lipopeptides condensed and protected the DNA plasmid from enzymatic degradation at the lipopeptide/DNA mass ratio of 2:1. In addition, the size of the cationic lipopeptide/DNA complexes ranged from ∼250 to 700 nm. The lipopeptides showed moderate cytotoxicity with IC50 values ranging from 120 to 190 ppm, induced NO release (275-1060 ppm) and IL-6 (40-497 pg) and TNF-α (150-270 pg) production with the highest level achieved by C(18,0)-CHSPKKKRKV. In conclusion, CHSPKKKRKV-based lipopeptides with different fatty acids are potential adjuvant candidates but further evaluation in animal models is required.
Collapse
Affiliation(s)
- Syahrul Febrian Hasbullah
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Ace Tatang Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Tarwadi
- Research Centre for Vaccine and Drug Development, National Research and Innovation Agency (BRIN), Gedung 611 KST Serpong, Tangerang Selatan, 15314, Indonesia.
| | - Adinda Nurhidayatul Fajri
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Pondok Cina, Depok, West Java 16424, Indonesia
| | - Nurlelasari
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia.
| |
Collapse
|
3
|
Aljohani S, Edmonds A, Castelletto V, Seitsonen J, Hamley I, Symonds P, Brentville V, Durrant L, Mitchell N. In Vivo Evaluation of Pam 2Cys-Modified Cancer-Testis Antigens as Potential Self-Adjuvanting Cancer Vaccines. J Pept Sci 2025; 31:e70022. [PMID: 40326329 PMCID: PMC12053792 DOI: 10.1002/psc.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Peptide-based vaccines, formulated with an appropriate adjuvant, offer a versatile platform for targeted cancer immunotherapy. While adjuvants are usually coadministered for nucleic acid and protein vaccines, synthetic peptide antigens afford a more effective opportunity to covalently and regioselectively graft immunostimulatory motifs directly onto the antigen scaffold to yield self-adjuvanting vaccines. Herein, we explore the synthesis of two tissue-restricted cancer-testis antigens (CTAs); New York oesophageal cell carcinoma 1 (NY-ESO-1) and B melanoma antigen 4 (BAGE4), both carrying the toll-like receptor (TLR) agonist, Pam2Cys. These constructs were evaluated in vivo along with a lipid nanoparticle (LNP) preparation of the underexplored BAGE4 melanoma antigen.
Collapse
Affiliation(s)
- Salwa Aljohani
- School of Chemistry, University of NottinghamUniversity ParkNottinghamUK
| | - Alex G. Edmonds
- School of Chemistry, University of NottinghamUniversity ParkNottinghamUK
| | - Valeria Castelletto
- School of Chemistry, Pharmacy and Food BiosciencesUniversity of ReadingReadingUK
| | | | - Ian W. Hamley
- School of Chemistry, Pharmacy and Food BiosciencesUniversity of ReadingReadingUK
| | - Peter Symonds
- Scancell, Biodiscovery Institute, University of NottinghamUniversity ParkNottinghamUK
| | | | - Lindy G. Durrant
- Scancell, Biodiscovery Institute, University of NottinghamUniversity ParkNottinghamUK
| | | |
Collapse
|
4
|
Swinand G, Rowe M, Bowen K, Olatunji S, Caffrey M, Scanlan EM. Late-stage lipidation of peptides via aqueous thiol-michael addition to dehydroalanine (Dha). Chem Commun (Camb) 2025; 61:8083-8086. [PMID: 40331307 DOI: 10.1039/d5cc01085c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
This work presents a late-stage aqueous peptide lipidation strategy via the thiol-Michael addition of thiolated lipids at dehydroalanine (Dha). This strategy was used to synthesise lipopeptides containing diacylglycerol (DAG), saturated, unsaturated and cholesterol lipid motifs. The DAG lipopeptide product was found to be a substrate for the lipoprotein processing enzyme, LspA.
Collapse
Affiliation(s)
- Glenna Swinand
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Pearse St, Dublin 2, Ireland.
| | - Matthew Rowe
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Pearse St, Dublin 2, Ireland.
| | - Katherine Bowen
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Pearse St, Dublin 2, Ireland.
| | - Samir Olatunji
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Pearse St, Dublin 2, Ireland
| | - Martin Caffrey
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Pearse St, Dublin 2, Ireland
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Pearse St, Dublin 2, Ireland.
| |
Collapse
|
5
|
Castelletto V, de Mello LR, Pelin J, Hamley IW. Self-Assembly of Toll-Like Receptor (TLR2/6) Agonist Lipidated Amino Acid or Peptide Conjugates: Distinct Morphologies and Bioactivities. Bioconjug Chem 2025; 36:792-802. [PMID: 40171856 PMCID: PMC12006960 DOI: 10.1021/acs.bioconjchem.5c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Toll-like receptor (TLR) agonists are of interest in immunotherapy and cancer vaccines. The most common agonists of TLR2 are based on Pam2Cys or Pam3Cys. In the former, two palmitoyl (Pam) fatty acids are linked to a glycerylcysteine motif by ester linkages. Pam3Cys is analogous but contains an extra Pam group on the α-amine. Here, we compare the self-assembly in aqueous solution of the parent Pam2CysOH and Pam3Cys amino acid conjugates to that of Pam2CysSK4 and Pam3CysSK4 which are potent TLR2 agonists bearing the CysSK4 peptide sequence. All four conjugates exhibit a critical aggregation concentration above which self-assembled structures are formed. We find through a combination of small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and confocal fluorescence microscopy remarkable differences in self-assembled nanostructures. Pam2CysOH and Pam3CysOH both form unilamellar vesicles, although these are larger for the latter compound, an effect ascribed to enhanced membrane rigidity. This is in contrast to previously reported morphologies for Pam2CysSK4 and Pam3CysSK4, which are spherical micelles or predominantly wormlike micelles, respectively [Hamley, I. W.; et al. Toll-like Receptor Agonist Lipopeptides Self-Assemble into Distinct Nanostructures. Chem. Comm. 2014, 50, 15948-15951]. We also examine the effect of introduction in the bulky N-terminal Fmoc [fluorenylmethoxycarbonyl] group on the self-assembly of Fmoc-Pam2CysOH. This compound also forms vesicles (above a critical aggregation concentration, determined from dye probe fluorescence experiments) in aqueous solution, larger than those for Pam2CysOH and with a population of perforated/compound vesicles. The carboxyl-coated (and amino-coated for Pam2CysOH) vesicles demonstrated here represent a promising system for future development toward bionanotechnology applications such as immune therapies. Conjugates Pam2CysOH, Pam2CysSK4, and Pam3CysSK4 show good cytocompatibility at low concentrations, and in fact, the cell compatibility extends over a wider concentration range for Pam2CysOH. The TLR2/6 agonist activity was assessed using an assay that probes secreted alkaline phosphatase (SEAP) in NF-κB-SEAP reporter HEK293 cells expressing human TLR2 and TLR6, and Pam2CySOH shows significant activity, although not to the extent of Pam2CysSK4 or Pam3CysSK4. Thus, Pam2CysOH in particular is of interest as a vesicle-forming TLR2/6 agonist and stimulator of immune response.
Collapse
Affiliation(s)
- Valeria Castelletto
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Lucas R. de Mello
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Juliane Pelin
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
- Currently
at Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo 09913-030, Brazil
| | - Ian W Hamley
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
6
|
Patel RS, Duque D, Bavananthasivam J, Hewitt M, Sandhu JK, Kumar R, Tran A, Agrawal B. Mixed lipopeptide-based mucosal vaccine candidate induces cross-variant immunity and protects against SARS-CoV-2 infection in hamsters. Immunohorizons 2025; 9:vlae011. [PMID: 39849995 PMCID: PMC11841972 DOI: 10.1093/immhor/vlae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 01/25/2025] Open
Abstract
The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent. However, the current vaccines are suboptimal; they elicit incomplete and short-lived protection and are ineffective against evolving virus variants. Updating the spike antigen according to the prevailing variant and repeated boosters is not the long-term solution. We have designed a lipopeptide-based, mucosal, pan-coronavirus vaccine candidate, derived from highly conserved and/or functional regions of the SARS-CoV-2 spike, nucleocapsid, and membrane proteins. Our studies demonstrate that the designed lipopeptides (LPMix) induced both cellular and humoral (mucosal and systemic) immune responses upon intranasal immunization in mice. Furthermore, the antibodies bound to the wild-type and mutated S proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Delta and Omicron, and also led to efficient neutralization in a surrogate viral neutralization assay. Our sequence alignment and 3-dimensional molecular modeling studies demonstrated that spike-derived epitopes, P1 and P2, are sequentially and/or structurally conserved among the SARS-CoV-2 variants. The addition of a novel mucosal adjuvant, heat-killed Caulobacter crescentus, to the lipopeptide vaccine significantly bolstered mucosal antibody responses. Finally, the lipopeptide-based intranasal vaccine demonstrated significant improvement in lung pathologies in a hamster model of SARS-CoV-2 infection. These studies are fundamentally important and open new avenues in the investigation of an innovative, broadly protective intranasal vaccine platform for SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Raj S Patel
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Diana Duque
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jegarubee Bavananthasivam
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Preclinical Imaging, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Preclinical Imaging, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | | | - Anh Tran
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Chen S, Chen S, Yu X, Wan C, Wang Y, Peng L, Li Q. Sources of Lipopeptides and Their Applications in Food and Human Health: A Review. Foods 2025; 14:207. [PMID: 39856874 PMCID: PMC11765196 DOI: 10.3390/foods14020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/29/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Lipopeptides (LPs) are widely sourced surface-active natural products with a wide range of functions and low toxicity, high potency, and good biodegradability. In this paper, we summarize, for the first time, the plant, animal, microbial, and synthetic sources of LPs. We also introduce the applications of LPs in food and human health, including (1) LPs can inhibit the growth of food microorganisms during production and preservation. They can also be added to food packaging materials for preservation and freshness during transportation, and can be used as additives to improve the taste of food. (2) LPs can provide amino acids and promote protein synthesis and cellular repair. Due to their broad-spectrum antimicrobial properties, they exhibit good anticancer effects and biological activities. This review summarizes, for the first time, the sources of LPs and their applications in food and human health, laying the foundation for the development and application of LPs.
Collapse
Affiliation(s)
| | | | | | | | | | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.C.); (S.C.); (X.Y.); (C.W.); (Y.W.); (L.P.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.C.); (S.C.); (X.Y.); (C.W.); (Y.W.); (L.P.)
| |
Collapse
|
8
|
Castelletto V, de Mello LR, Seitsonen J, Hamley IW. Micellization of Lipopeptides Containing Toll-like Receptor Agonist and Integrin Binding Sequences. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68713-68723. [PMID: 39651938 DOI: 10.1021/acsami.4c18165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Short bioactive peptide sequences are of great interest in biomaterials development. We investigate the self-assembly of a lipopeptide containing both the highly cationic CSK4 toll-like receptor agonist hexapeptide sequence and RGDS integrin-binding motif, i.e., C16-CSK4RGDS, as well as the control containing a scrambled terminal sequence C16-CSK4GRDS. Both lipopeptides are found to form micelles, as revealed by small-angle X-ray scattering and cryogenic transmission electron microscopy, and modeled using atomistic molecular dynamics simulations. We carefully examined methods to probe the aggregation of the molecules, i.e. to obtain the critical micelle concentration (CMC). Fluorescent probe assays using 1-anilino-8-naphthalenesulfonate (ANS) reveal low CMC values, 1-2 μM, which contrast with consistent values more than 2 orders of magnitude larger obtained from surface tension and electrical conductivity as well as unexpected UV/vis absorption spectra discontinuities and fluoresccence probe assays using Nile red. The anomalous results obtained from an ANS fluorescence probe are ascribed to the effect of ANS binding to the cationic (lysine and arginine) residues in the lipopeptide, which leads to a conformational change, as shown by circular dichroism, even at low concentrations below the actual CMC. Despite the small change in the peptide sequence (swapping of G and R residues), there is surprisingly a significant difference in the aggregation propensity and association number, both of which are greater for C16-CSK4GRDS. Both lipopeptides are cytocompatible (with fibroblasts and myoblasts) at low concentration, although cytotoxicity is noted at higher concentration.
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Lucas R de Mello
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
9
|
Ábrahám Á, Gyulai G, Mihály J, Horváth A, Dobay O, Varga Z, Kiss É, Horváti K. Optimizing lipopeptide bioactivity: The impact of non-ionic surfactant dressing. J Pharm Anal 2024; 14:101020. [PMID: 39881961 PMCID: PMC11774939 DOI: 10.1016/j.jpha.2024.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 01/31/2025] Open
Abstract
The aim of the research is to increase the applicability of lipopeptides as drugs. To this end, non-ionic triblock copolymers, namely poloxamers, were applied. The physico-chemical properties of poloxamers vary depending on the length of the blocks. In our study, we experimented with different types and systematically investigated the variation of the critical micelle concentration (CMC) of poloxamers at 25 and 37 °C in different media. In addition, the cytotoxicity of the different poloxamer micelles on three different cell lines was evaluated, and based on the results, Plur104, Plur123, and Plur127 were selected. Fatty acid elongated derivatives of a short antibacterial peptide (pL1), a medium-sized anticancer peptide (pCM15), and a branched-chain vaccine antigen (pATIPC) were used as lipopeptide models, and their formulations with the selected poloxamers were investigated. The solubility and homogeneity of the lipopeptides were significantly increased, and dynamic light scattering (DLS) measurements showed the formation of small particles of around 20 nm, which were well reproducible and storable. Similar homogenous micelle formation was observed after freeze-drying and reconstitution with water. The pL1 lipopeptide, formulated with the selected poloxamers, exhibited enhanced antibacterial activity with significantly reduced haemolytic side effects. The pCM15 peptide, when incorporated into poloxamer micelles, showed significantly enhanced cytotoxicity against tumor cells. Additionally, the internalization rate of poloxamer-formulated pATIPC peptide by antigen-presenting model cells exceeded that of the unformulated peptide. Our results demonstrate the potential of poloxamers as promising tools for the formulation of lipopeptides and for the optimization of their selectivity.
Collapse
Affiliation(s)
- Ágnes Ábrahám
- MTA-HUN-REN TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Gergő Gyulai
- MTA-HUN-REN TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Judith Mihály
- HUN-REN TTK Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Andrea Horváth
- Institute of Medical Microbiology, Semmelweis University, Budapest, H-1085, Hungary
| | - Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, Budapest, H-1085, Hungary
| | - Zoltán Varga
- HUN-REN TTK Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Kata Horváti
- MTA-HUN-REN TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| |
Collapse
|
10
|
Adak A, Castelletto V, Hamley IW, Seitsonen J, Jana A, Ghosh S, Mukherjee N, Ghosh S. Self-Assembly and Wound Healing Activity of Biomimetic Cycloalkane-Based Lipopeptides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58417-58426. [PMID: 39422705 PMCID: PMC11533170 DOI: 10.1021/acsami.4c14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The self-assembly of lipopeptide (peptide amphiphile) molecules bearing single linear lipid chains has been widely studied, as has their diverse range of bioactivities. Here, we introduce lipopeptides bearing one or two cycloalkane chains (cycloheptadecyl or cyclododecyl) conjugated to the collagen-stimulating pentapeptide KTTKS used in Matrixyl formulations. The self-assembly of all four molecules is probed using fluorescence probe measurements to detect the critical aggregation concentration (CAC), and cryogenic-TEM and small-angle X-ray scattering (SAXS) to image the nanostructure. The peptide conformation is studied using circular dichroism (CD) and FTIR spectroscopies. All the cycloalkane lipopeptides show excellent compatibility with dermal fibroblasts. The compounds bearing one or two cyclododecyl chains (denoted as DKT and DDKT, respectively) show wound healing in diabetic rats, the improvement being markedly enhanced for DDKT. Interestingly, the revival of hair follicles and blood vessels in the dermis were observed, which are the critical markers of effective wound repair. Analysis of H&E-stained tissue images (from a rat model) shows that the rat groups treated with DDKT and DKT displayed a significantly increased amount of regenerated hair follicles, indicating a faster healing process for DDKT compared to the control group. Collagen deposition was also enhanced, especially for DDKT, and by day 20, the DDKT-treated groups had developed a dense collagen network accompanied by a regenerated epidermis. At the same time, the number of blood vessels in DDKT-treated diabetic wounds was significantly higher than in control groups and neovascularization was substantially enhanced, as assayed using α-SMA (a marker for vascular smooth muscle cells) and CD31 (a marker specific to vascular endothelial cells). These results suggest that the lead lipopeptide DDKT exhibits a remarkable pro-vascularization capability and shows great promise for future application as a wound-healing biomaterial.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Aniket Jana
- Smart
Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Smart
Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart
Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Smart
Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
11
|
Wang P, Wang S, Wang D, Li Y, Yip RCS, Chen H. Postbiotics-peptidoglycan, lipoteichoic acid, exopolysaccharides, surface layer protein and pili proteins-Structure, activity in wounds and their delivery systems. Int J Biol Macromol 2024; 274:133195. [PMID: 38885869 DOI: 10.1016/j.ijbiomac.2024.133195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Chronic wound healing is a pressing global public health concern. Abuse and drug resistance of antibiotics are the key problems in the treatment of chronic wounds at present. Postbiotics are a novel promising strategy. Previous studies have reported that postbiotics have a wide range of biological activities including antimicrobial, immunomodulatory, antioxidant and anti-inflammatory abilities. However, several aspects related to these postbiotic activities remain unexplored or poorly known. Therefore, this work aims to outline general aspects and emerging trends in the use of postbiotics for wound healing, such as the production, characterization, biological activities and delivery strategies of postbiotics. In this review, a comprehensive overview of the physiological activities and structures of postbiotic biomolecules that contribute to wound healing is provided, such as peptidoglycan, lipoteichoic acid, bacteriocins, exopolysaccharides, surface layer proteins, pili proteins, and secretory proteins (p40 and p75 proteins). Considering the presence of readily degradable components in postbiotics, potential natural polymer delivery materials and delivery systems are emphasized, followed by the potential applications and commercialization prospects of postbiotics. These findings suggest that the treatment of chronic wounds with postbiotic ingredients will help provide new insights into wound healing and better guidance for the development of postbiotic products.
Collapse
Affiliation(s)
- Pu Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Shuxin Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Donghui Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Yuanyuan Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Stocking Hall, 411 Tower Road, Ithaca, NY 14853, USA.
| | - Ryan Chak Sang Yip
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| |
Collapse
|
12
|
Dini S, Bekhit AEDA, Roohinejad S, Vale JM, Agyei D. The Physicochemical and Functional Properties of Biosurfactants: A Review. Molecules 2024; 29:2544. [PMID: 38893420 PMCID: PMC11173842 DOI: 10.3390/molecules29112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Surfactants, also known as surface-active agents, have emerged as an important class of compounds with a wide range of applications. However, the use of chemical-derived surfactants must be restricted due to their potential adverse impact on the ecosystem and the health of human and other living organisms. In the past few years, there has been a growing inclination towards natural-derived alternatives, particularly microbial surfactants, as substitutes for synthetic or chemical-based counterparts. Microbial biosurfactants are abundantly found in bacterial species, predominantly Bacillus spp. and Pseudomonas spp. The chemical structures of biosurfactants involve the complexation of lipids with carbohydrates (glycolipoproteins and glycolipids), peptides (lipopeptides), and phosphates (phospholipids). Lipopeptides, in particular, have been the subject of extensive research due to their versatile properties, including emulsifying, antimicrobial, anticancer, and anti-inflammatory properties. This review provides an update on research progress in the classification of surfactants. Furthermore, it explores various bacterial biosurfactants and their functionalities, along with their advantages over synthetic surfactants. Finally, the potential applications of these biosurfactants in many industries and insights into future research directions are discussed.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Shahin Roohinejad
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Jim M. Vale
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| |
Collapse
|
13
|
Sreelakshmi KP, Madhuri M, Swetha R, Rangarajan V, Roy U. Microbial lipopeptides: their pharmaceutical and biotechnological potential, applications, and way forward. World J Microbiol Biotechnol 2024; 40:135. [PMID: 38489053 DOI: 10.1007/s11274-024-03908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.
Collapse
Affiliation(s)
- K P Sreelakshmi
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - M Madhuri
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - R Swetha
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India.
| |
Collapse
|
14
|
Wang G, Wang Y, Ma F. Exploiting bacterial-origin immunostimulants for improved vaccination and immunotherapy: current insights and future directions. Cell Biosci 2024; 14:24. [PMID: 38368397 PMCID: PMC10874560 DOI: 10.1186/s13578-024-01207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Vaccination is a valid strategy to prevent and control newly emerging and reemerging infectious diseases in humans and animals. However, synthetic and recombinant antigens are poor immunogenic to stimulate efficient and protective host immune response. Immunostimulants are indispensable factors of vaccines, which can promote to trigger fast, robust, and long-lasting immune responses. Importantly, immunotherapy with immunostimulants is increasing proved to be an effective and promising treatment of cancer, which could enhance the function of the immune system against tumor cells. Pattern recognition receptors (PRRs) play vital roles in inflammation and are central to innate and adaptive immune responses. Toll-like receptors (TLRs)-targeting immunostimulants have become one of the hotspots in adjuvant research and cancer therapy. Bacterial-origin immunoreactive molecules are usually the ligands of PRRs, which could be fast recognized by PRRs and activate immune response to eliminate pathogens. Varieties of bacterial immunoreactive molecules and bacterial component-mimicking molecules have been successfully used in vaccines and clinical therapy so far. This work provides a comprehensive review of the development, current state, mechanisms, and applications of bacterial-origin immunostimulants. The exploration of bacterial immunoreactive molecules, along with their corresponding mechanisms, holds immense significance in deepening our understanding of bacterial pathogenicity and in the development of promising immunostimulants.
Collapse
Affiliation(s)
- Guangyu Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Yongkang Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| |
Collapse
|
15
|
Ghafelehbashi R, Salehi M, Kouhi M, AlizadehNaini A, Sajadi-Javan ZS, Nejatidanesh F. Recent progress in cancer immunotherapy: Application of nano-therapeutic systems. J Drug Deliv Sci Technol 2024; 91:105184. [DOI: 10.1016/j.jddst.2023.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Zhang T, Luo X, Xu K, Zhong W. Peptide-containing nanoformulations: Skin barrier penetration and activity contribution. Adv Drug Deliv Rev 2023; 203:115139. [PMID: 37951358 DOI: 10.1016/j.addr.2023.115139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Transdermal drug delivery presents a less invasive pathway, circumventing the need to pass through the gastrointestinal tract and liver, thereby reducing drug breakdown, initial metabolism, and gastrointestinal discomfort. Nevertheless, the unique composition and dense structure of the stratum corneum present a significant barrier to transdermal delivery. This article presents an overview of the current developments in peptides and nanotechnology to address this challenge. Initially, we sum up peptide-containing nanoformulations for transdermal drug delivery, examining them through the lenses of both inorganic and organic materials. Particular emphasis is placed on the diverse roles that peptides play within these nanoformulations, including conferring functionality upon nanocarriers and enhancing the biological efficacy of drugs. Subsequently, we summarize innovative strategies for enhancing skin penetration, categorizing them into passive and active approaches. Lastly, we discuss the therapeutic potential of peptide-containing nanoformulations in addressing a range of diseases, drawing insights from the biological activities and functions of peptides. Furthermore, the challenges hindering clinical translation are also discussed, providing valuable insights for future advancements in transdermal drug delivery.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
17
|
Bellini C, Vergara E, Bencs F, Fodor K, Bősze S, Krivić D, Bacsa B, Surguta SE, Tóvári J, Reljic R, Horváti K. Design and Characterization of a Multistage Peptide-Based Vaccine Platform to Target Mycobacterium tuberculosis Infection. Bioconjug Chem 2023; 34:1738-1753. [PMID: 37606258 PMCID: PMC10587871 DOI: 10.1021/acs.bioconjchem.3c00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Indexed: 08/23/2023]
Abstract
The complex immunopathology ofMycobacterium tuberculosis(Mtb) is one of the main challenges in developing a novel vaccine against this pathogen, particularly regarding eliciting protection against both active and latent stages. Multistage vaccines, which contain antigens expressed in both phases, represent a promising strategy for addressing this issue, as testified by the tuberculosis vaccine clinical pipeline. Given this approach, we designed and characterized a multistage peptide-based vaccine platform containing CD4+ and CD8+ T cell epitopes previously validated for inducing a relevant T cell response against Mtb. After preliminary screening, CFP10 (32-39), GlfT2 (4-12), HBHA (185-194), and PPE15 (1-15) were selected as promising candidates, and we proved that the PM1 pool of these peptides triggered a T cell response in Mtb-sensitized human peripheral blood mononuclear cells (PBMCs). Taking advantage of the use of thiol-maleimide chemoselective ligation, we synthesized a multiepitope conjugate (Ac-CGHP). Our results showed a structure-activity relationship between the conjugation and a higher tendency to fold and assume an ordered secondary structure. Moreover, the palmitoylated conjugate (Pal-CGHP) comprising the same peptide antigens was associated with an enhanced cellular uptake in human and murine antigen-presenting cells and a better immunogenicity profile. Immunization study, conducted in BALB/c mice, showed that Pal-CGHP induced a significantly higher T cell proliferation and production of IFNγ and TNFα over PM1 formulated in the Sigma Adjuvant System.
Collapse
Affiliation(s)
- Chiara Bellini
- MTA-TTK
Lendület “Momentum” Peptide-Based Vaccines Research
Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest 1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Budapest 1117, Hungary
| | - Emil Vergara
- Institute
for Infection and Immunity, St. George’s,
University of London, London SW17 0RE, U.K.
| | - Fruzsina Bencs
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Budapest 1117, Hungary
- Laboratory
of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Kinga Fodor
- Department
of Laboratory Animal Science and Animal Protection, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network (ELKH), Eötvös
Loránd University, Budapest 1117, Hungary
| | - Denis Krivić
- Division
of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Bernadett Bacsa
- Division
of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Sára Eszter Surguta
- Department
of Experimental Pharmacology and National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - József Tóvári
- Department
of Experimental Pharmacology and National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - Rajko Reljic
- Institute
for Infection and Immunity, St. George’s,
University of London, London SW17 0RE, U.K.
| | - Kata Horváti
- MTA-TTK
Lendület “Momentum” Peptide-Based Vaccines Research
Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
18
|
Siddoway AC, White BM, Narasimhan B, Mallapragada SK. Synthesis and Optimization of Next-Generation Low-Molecular-Weight Pentablock Copolymer Nanoadjuvants. Vaccines (Basel) 2023; 11:1572. [PMID: 37896975 PMCID: PMC10611236 DOI: 10.3390/vaccines11101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Polymeric nanomaterials such as Pluronic®-based pentablock copolymers offer important advantages over traditional vaccine adjuvants and have been increasingly investigated in an effort to develop more efficacious vaccines. Previous work with Pluronic® F127-based pentablock copolymers, functionalized with poly(diethyl aminoethyl methacrylate) (PDEAEM) blocks, demonstrated adjuvant capabilities through the antigen presentation and crosslinking of B cell receptors. In this work, we describe the synthesis and optimization of a new family of low-molecular-weight Pluronic®-based pentablock copolymer nanoadjuvants with high biocompatibility and improved adjuvanticity at low doses. We synthesized low-molecular-weight Pluronic® P123-based pentablock copolymers with PDEAEM blocks and investigated the relationship between polymer concentration, micellar size, and zeta potential, and measured the release kinetics of a model antigen, ovalbumin, from these nanomaterials. The Pluronic® P123-based pentablock copolymer nanoadjuvants showed higher biocompatibility than the first-generation Pluronic® F127-based pentablock copolymer nanoadjuvants. We assessed the adjuvant capabilities of the ovalbumin-containing Pluronic® P123-based pentablock copolymer-based nanovaccines in mice, and showed that animals immunized with these nanovaccines elicited high antibody titers, even when used at significantly reduced doses compared to Pluronic® F127-based pentablock copolymers. Collectively, these studies demonstrate the synthesis, self-assembly, biocompatibility, and adjuvant properties of a new family of low-molecular-weight Pluronic® P123-based pentablock copolymer nanomaterials, with the added benefits of more efficient renal clearance, high biocompatibility, and enhanced adjuvanticity at low polymer concentrations.
Collapse
Affiliation(s)
- Alaric C. Siddoway
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
| | - Brianna M. White
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
| | - Balaji Narasimhan
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
- Nanovaccine Institute, Ames, IA 50011, USA
| | - Surya K. Mallapragada
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
- Nanovaccine Institute, Ames, IA 50011, USA
| |
Collapse
|
19
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
20
|
Vicente-Garcia C, Colomer I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 2023; 7:710-731. [PMID: 37726383 DOI: 10.1038/s41570-023-00532-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly - into micelles, vesicles, nanotubes, fibres or nanobelts - leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA-Nanociencia, Madrid, Spain.
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain.
| |
Collapse
|
21
|
Masud Alam M, Huang Y, Oppenheim JJ, Yang D. Development of a novel modified vaccine (TheraVac M) for curative treatment of mouse solid tumors. Cytokine 2023; 169:156270. [PMID: 37302280 DOI: 10.1016/j.cyto.2023.156270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Monotherapy with immune checkpoint blockade (ICB) antibodies (anti-CTLA4 and anti-PD1/PDL-1) is only effective for 20% to 30% of patients with certain cancers. Patients with cancers harboring few effector T cells (Teffs) are insensitive to ICB therapy. The lack of tumor-specific Teffs is predominantly caused by the paralysis of tumor-infiltrating dendritic cells (TiDCs) resulting from immunosuppression in the tumor microenvironment. We have identified a potent combination of high mobility group nucleosome binding domain 1 (HMGN1, N1) and fibroblast stimulating lipopeptide-1 (FSL-1) that can synergistically trigger maturation of both mouse and human DCs. Accordingly, we designed a combinational anti-cancer immunotherapy with two arms: an immune-activating arm consisting of N1 and FSL-1 to stimulate the generation of Teffs by triggering full maturation of TiDCs, and an ICB arm using anti-PDL-1 or anti-CTLA4 to prevent Teffs from being silenced in the tumor tissue. This combinational immunotherapeutic vaccination regimen dubbed modified TheraVac (TheraVacM) has proved particularly effective as it cured 100% of mice bearing established ectopic CT26 colon and RENCA kidney tumors. The resultant tumor-free mice were resistant to subsequent re-challenge with the same tumors, indicating the generation of long-term tumor specific protective immunity. Since the immune-activating arm also induces full maturation of human DCs, and anti-PDL-1 or anti-CTLA4 have been FDA-approved, this combinational immunotherapy has the potential to be an effective clinical therapy for patients with solid tumors.
Collapse
Affiliation(s)
- Md Masud Alam
- Cellular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Yue Huang
- Cellular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Joost J Oppenheim
- Cellular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - De Yang
- Cellular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
22
|
Xue RY, Liu C, Wang JQ, Deng Y, Feng R, Li GC, Liu JY, Cheng H, Shan Zhang S, Duan H, Jin Z, Zou QM, Li HB. Synthetic Self-Adjuvanted Lipopeptide Vaccines Conferred Protection against Helicobacter pylori Infection. Adv Healthc Mater 2023; 12:e2300085. [PMID: 37171889 DOI: 10.1002/adhm.202300085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Indexed: 05/14/2023]
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach epithelium of half the world's population and is responsible for various digestive diseases and even stomach cancer. Vaccine-mediated protection against H. pylori infection depends primarily on the specific mucosal and T-cell responses. In this study, the synthetic lipopeptide vaccines, Hp4 (Pam2 Cys modified UreB T-cell epitope) and Hp10 (Pam2 Cys modified CagA T/B cell combined epitope), not only induce the bone marrow derived dendritic cells (BMDCs) maturation by activating a variety of pattern-recognition receptors (PRRs) such as Toll-like receptor (TLR), Nod-like receptor (NLR), and retinoic acid-inducing gene (RIG) I-like receptor (RLR), and but also stimulate BMDCs to secret cytokines that have the potential to modulate T-cell activation and differentiation. Although intranasal immunization with Hp4 or Hp10 elicits robust epitope-specific T-cell responses in mice, only Hp10 confers protection against H. pylori infection, possibly due to the fact that Hp10 also induces substantial specific sIgA response at mucosal sites. Interestingly, Hp4 elevates the protective response against H. pylori infection of Hp10 when administrated in combination, characterized by better protective effect and enhanced specific T-cell and mucosal antibody responses. The results suggest that synthetic lipopeptide vaccines based on the epitopes derived from the protective antigens are promising candidates for protection against H. pylori infection.
Collapse
Affiliation(s)
- Ruo-Yi Xue
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Chang Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Jia-Qi Wang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yan Deng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Rang Feng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Guo-Cheng Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Jing-Yi Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hao Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Shan- Shan Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hao Duan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Zhe Jin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hai-Bo Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
23
|
Patel RS, Agrawal B. Mucosal immunization with lipopeptides derived from conserved regions of SARS-CoV-2 antigens induce robust cellular and cross-variant humoral immune responses in mice. Front Immunol 2023; 14:1178523. [PMID: 37334376 PMCID: PMC10272440 DOI: 10.3389/fimmu.2023.1178523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has infected >600 million people in the ongoing global pandemic. Several variants of the SARS-CoV-2 have emerged in the last >2 years, challenging the continued efficacy of current COVID vaccines. Therefore, there is a crucial need to investigate a highly cross-protective vaccine effective against variants of SARS-CoV-2. In this study, we examined seven lipopeptides derived from highly conserved, immunodominant epitopes from the S, N, and M proteins of SARS-CoV-2, that are predicted to contain epitopes for clinically protective B cells, helper T cells (TH) and cytotoxic T cells (CTL). Intranasal immunization of mice with most of the lipopeptides led to significantly higher splenocyte proliferation and cytokine production, mucosal and systemic antibody responses, and induction of effector B and T lymphocytes in both lungs and spleen, compared to immunizations with the corresponding peptides without lipid. Immunizations with Spike-derived lipopeptides led to cross-reactive IgG, IgM and IgA responses against Alpha, Beta, Delta, and Omicron Spike proteins as well as neutralizing antibodies. These studies support their potential for development as components of a cross-protective SARS-CoV-2 vaccine.
Collapse
|
24
|
Bhange V, Kale M, Dudhal A, Putta N, Abhyankar M, Jagtap S, Nikam VS. Natural Sources of Immunomodulators. NATURAL IMMUNOMODULATORS: PROMISING THERAPY FOR DISEASE MANAGEMENT 2023:75-107. [DOI: 10.2174/9789815123258123010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Nature is replete with an arsenal of compounds that can be investigated for
their therapeutic potential. The immune system involvement in severe chronic illnesses
or emerging infectious diseases has provided clinical evidence. The prevention and
treatment of these diseases targeted at the immune system with natural
immunomodulators are gaining momentum, owing to their diverse array of activities.
Treating acute illnesses with modern medicines has been successful; however, treating
chronic illness treatment remains elusive and disappointing. Notably, this chapter
reviews the natural resources of immunomodulators. Natural immunomodulators from
plants, marine, and animals are of prime importance, and they possess many
pharmacological activities. Similarly, microbiota modifiers - prebiotics, probiotics, and
micronutrients- are imperative in restoring immune homeostasis. This chapter
summarizes these natural immunomodulators and their power to boost immunity and
human well-being. <br>
Collapse
Affiliation(s)
- Vishal Bhange
- S. P. Pune University,Department of Pharmacology,Pune,India,411048,
| | - Monika Kale
- S. P. Pune University,Department of Pharmacology,Pune,India,411048,
| | - Ankita Dudhal
- S. P. Pune University,Department of Pharmacology,Pune,India,411048,
| | - Nikhil Putta
- S. P. Pune University,Department of Pharmacognosy,Pune,India,411048,
| | - Mukta Abhyankar
- S. P. Pune University,Department of Pharmacognosy,Pune,India,411048,
| | - Supriya Jagtap
- S. P. Pune University,Department of Pharmacognosy,Pune,India,411048,
| | - Vandana S. Nikam
- S. P. Pune University,Department of Pharmacology,Pune,India,411048,
| |
Collapse
|
25
|
Rodríguez JA, Barredo-Vacchelli GR, Iglesias-García LC, Birocco AM, Blachman A, Calabrese GC, Acosta G, Albericio F, Camperi SA. Design and Synthesis of Peptides from Phoneutria nigriventer δ-Ctenitoxin-Pn2a for Antivenom Production. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
26
|
Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed Pharmacother 2023; 158:114117. [PMID: 36528914 DOI: 10.1016/j.biopha.2022.114117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Peptide-based vaccines, which form one of the most potent vaccine platforms, offer exclusive advantages over classical vaccines that use whole organisms or proteins. However, peptides alone are still poor stability and weak immunogenicity, thus need a delivery system that can overcome these shortcomings. Currently, nanotechnology has been extensively utilized to address this issue. Nanovaccines, as new formulations of vaccines using nanoparticles (NPs) as carriers or adjuvants, are undergoing development instead of conventional vaccines. Indeed, peptide-based nanovaccine is a rapidly developing field of research that is emerging out of the confluence of antigenic peptides with the nano-delivery system. In this review, we shed light on the rational design and preparation strategies based on various nanomaterials of peptide-based nanovaccines, and we spotlight progress in the development of peptide-based nanovaccines against cancer and infectious diseases. Finally, the future prospects for development of peptide-based nanovaccines are presented.
Collapse
|
27
|
Pedroza-Escobar D, Castillo-Maldonado I, González-Cortés T, Delgadillo-Guzmán D, Ruíz-Flores P, Cruz JHS, Espino-Silva PK, Flores-Loyola E, Ramirez-Moreno A, Avalos-Soto J, Téllez-López MÁ, Velázquez-Gauna SE, García-Garza R, Vertti RDAP, Torres-León C. Molecular Bases of Protein Antigenicity and Determinants of Immunogenicity, Anergy, and Mitogenicity. Protein Pept Lett 2023; 30:719-733. [PMID: 37691216 DOI: 10.2174/0929866530666230907093339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The immune system is able to recognize substances that originate from inside or outside the body and are potentially harmful. Foreign substances that bind to immune system components exhibit antigenicity and are defined as antigens. The antigens exhibiting immunogenicity can induce innate or adaptive immune responses and give rise to humoral or cell-mediated immunity. The antigens exhibiting mitogenicity can cross-link cell membrane receptors on B and T lymphocytes leading to cell proliferation. All antigens vary greatly in physicochemical features such as biochemical nature, structural complexity, molecular size, foreignness, solubility, and so on. OBJECTIVE Thus, this review aims to describe the molecular bases of protein-antigenicity and those molecular bases that lead to an immune response, lymphocyte proliferation, or unresponsiveness. CONCLUSION The epitopes of an antigen are located in surface areas; they are about 880-3,300 Da in size. They are protein, carbohydrate, or lipid in nature. Soluble antigens are smaller than 1 nm and are endocytosed less efficiently than particulate antigens. The more the structural complexity of an antigen increases, the more the antigenicity increases due to the number and variety of epitopes. The smallest immunogens are about 4,000-10,000 Da in size. The more phylogenetically distant immunogens are from the immunogen-recipient, the more immunogenicity increases. Antigens that are immunogens can trigger an innate or adaptive immune response. The innate response is induced by antigens that are pathogen-associated molecular patterns. Exogenous antigens, T Dependent or T Independent, induce humoral immunogenicity. TD protein-antigens require two epitopes, one sequential and one conformational to induce antibodies, whereas, TI non-protein-antigens require only one conformational epitope to induce low-affinity antibodies. Endogenous protein antigens require only one sequential epitope to induce cell-mediated immunogenicity.
Collapse
Affiliation(s)
- David Pedroza-Escobar
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Irais Castillo-Maldonado
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Tania González-Cortés
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Dealmy Delgadillo-Guzmán
- Facultad de Medicina, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Pablo Ruíz-Flores
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Jorge Haro Santa Cruz
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Perla-Karina Espino-Silva
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Erika Flores-Loyola
- Facultad de Ciencias Biologicas, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27276, Mexico
| | - Agustina Ramirez-Moreno
- Facultad de Ciencias Biologicas, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27276, Mexico
| | - Joaquín Avalos-Soto
- Cuerpo Academico Farmacia y Productos Naturales, Facultad de Ciencias Quimicas, Universidad Juarez del Estado de Durango, Gomez Palacio, Mexico
| | - Miguel-Ángel Téllez-López
- Cuerpo Academico Farmacia y Productos Naturales, Facultad de Ciencias Quimicas, Universidad Juarez del Estado de Durango, Gomez Palacio, Mexico
| | | | - Rubén García-Garza
- Facultad de Medicina, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | | | - Cristian Torres-León
- Centro de Investigacion y Jardin Etnobiologico, Universidad Autonoma de Coahuila, Viesca, Coahuila, 27480, Mexico
| |
Collapse
|
28
|
Luo WR, Wu XM, Wang W, Yu JL, Chen QQ, Zhou X, Huang X, Pan HF, Liu ZR, Gao Y, He J. Novel coronavirus mutations: Vaccine development and challenges. Microb Pathog 2022; 173:105828. [PMID: 36243381 PMCID: PMC9561474 DOI: 10.1016/j.micpath.2022.105828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The ongoing global pandemic of novel coronavirus pneumonia (COVID-19) caused by the SARS-CoV-2 has a significant impact on global health and economy system. In this context, there have been some landmark advances in vaccine development. Over 100 new coronavirus vaccine candidates have been approved for clinical trials, with ten WHO-approved vaccines including four inactivated virus vaccines, two mRNA vaccines, three recombinant viral vectored vaccines and one protein subunit vaccine on the "Emergency Use Listing". Although the SARS-CoV-2 has an internal proofreading mechanism, there have been a number of mutations emerged in the pandemic affecting its transmissibility, pathogenicity and immunogenicity. Of these, mutations in the spike (S) protein and the resultant mutant variants have posed new challenges for vaccine development and application. In this review article, we present an overview of vaccine development, the prevalence of new coronavirus variants and their impact on protective efficacy of existing vaccines and possible immunization strategies coping with the viral mutation and diversity.
Collapse
Affiliation(s)
- Wan-Rong Luo
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Xiao-Min Wu
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Wei Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 17 Lujiang Road, Hefei, Anhui, China
| | - Jun-Ling Yu
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Qing-Qing Chen
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Xue Zhou
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Xin'er Huang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Zhi-Rong Liu
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China; Department of Microbiology Laboratory, Public Health Research Institute of Anhui Province, 12560, Fanhua Avenue, Hefei, Anhui, China.
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 17 Lujiang Road, Hefei, Anhui, China.
| | - Jun He
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China; Department of Microbiology Laboratory, Public Health Research Institute of Anhui Province, 12560, Fanhua Avenue, Hefei, Anhui, China; Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
29
|
Kiong J, Nahar UJ, Jin S, Shalash AO, Zhang J, Koirala P, Khalil ZG, Capon RJ, Skwarczynski M, Toth I, Hussein WM. Development of Multilayer Nanoparticles for the Delivery of Peptide-Based Subunit Vaccine against Group A Streptococcus. Pharmaceutics 2022; 14:pharmaceutics14102151. [PMID: 36297584 PMCID: PMC9610843 DOI: 10.3390/pharmaceutics14102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide-based subunit vaccines include only minimal antigenic determinants, and, therefore, are less likely to induce allergic immune responses and adverse effects compared to traditional vaccines. However, peptides are weakly immunogenic and susceptible to enzymatic degradation when administered on their own. Hence, we designed polyelectrolyte complex (PEC)-based delivery systems to protect peptide antigens from degradation and improve immunogenicity. Lipopeptide (LCP-1) bearing J8 B-cell epitope derived from Group A Streptococcus (GAS) M-protein was selected as the model peptide antigen. In the pilot study, LCP-1 incorporated in alginate/cross-linked polyarginine-J8-based PEC induced high J8-specific IgG antibody titres. The PEC system was then further modified to improve its immune stimulating capability. Of the formulations tested, PEC-4, bearing LCP-1, alginate and cross-linked polylysine, induced the highest antibody titres in BALB/c mice following subcutaneous immunisation. The antibodies produced were more opsonic than those induced by mice immunised with other PECs, and as opsonic as those induced by antigen adjuvanted with powerful complete Freund’s adjuvant.
Collapse
Affiliation(s)
- Jolynn Kiong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Ummey Jannatun Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Brisbane, QLD 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
30
|
Alharbi N, Skwarczynski M, Toth I. The influence of component structural arrangement on peptide vaccine immunogenicity. Biotechnol Adv 2022; 60:108029. [PMID: 36028180 DOI: 10.1016/j.biotechadv.2022.108029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Peptide-based subunit vaccines utilise minimal immunogenic components (i.e. peptides) to generate highly specific immune responses, without triggering adverse reactions. However, strong adjuvants and/or effective delivery systems must be incorporated into such vaccines, as peptide antigens cannot induce substantial immune responses on their own. Unfortunately, many adjuvants are too weak or too toxic to be used in combination with peptide antigens. These shortcomings have been addressed by the conjugation of peptide antigens with lipidic/ hydrophobic adjuvanting moieties. The conjugates have shown promising safety profiles and improved immunogenicity without the help of traditional adjuvants and have been efficient in inducing desired immune responses following various routes of administration, including subcutaneous, oral and intranasal. However, not only conjugation per se, but also component arrangement influences vaccine efficacy. This review highlights the importance of influence of the vaccine chemical structure modification on the immune responses generated. It discusses a variety of factors that affect the immunogenicity of peptide conjugates, including: i) self-adjuvanting moiety length and number; ii) the orientation of epitopes and self-adjuvanting moieties in the conjugate; iii) the presence of spacers between conjugated components; iv) multiepitopic arrangement; and v) the effect of chirality on vaccine efficacy.
Collapse
Affiliation(s)
- Nedaa Alharbi
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; University of Jeddah, College of Science and Arts, Department of Chemistry, Jeddah, Saudi Arabia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
31
|
Apostolopoulos V, Bojarska J, Feehan J, Matsoukas J, Wolf W. Smart therapies against global pandemics: A potential of short peptides. Front Pharmacol 2022; 13:914467. [PMID: 36046832 PMCID: PMC9420997 DOI: 10.3389/fphar.2022.914467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Joanna Bojarska
- Technical University of Lodz, Department of Chemistry, Institute of General and Ecological Chemistry, Lodz, Poland
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- NewDrug, Patras Science Park, Patras, Greece
| | - Wojciech Wolf
- Technical University of Lodz, Department of Chemistry, Institute of General and Ecological Chemistry, Lodz, Poland
| |
Collapse
|
32
|
Egorova EA, Lamers GEM, Monikh FA, Boyle AL, Slütter B, Kros A. Gold nanoparticles decorated with ovalbumin-derived epitopes: effect of shape and size on T-cell immune responses. RSC Adv 2022; 12:19703-19716. [PMID: 35865201 PMCID: PMC9260517 DOI: 10.1039/d2ra03027f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles (GNPs) can be manufactured in various shapes, and their size is programmable, which permits the study of the effects imposed by these parameters on biological processes. However, there is currently no clear evidence that a certain shape or size is beneficial. To address this issue, we have utilised GNPs and gold nanorods (GNRs) functionalised with model epitopes derived from chicken ovalbumin (OVA257-264 and OVA323-339). By using two distinct epitopes, it was possible to draw conclusions regarding the impact of nanoparticle shape and size on different aspects of the immune response. Our findings indicate that the peptide amphiphile-coated GNPs and GNRs are a safe and versatile epitope-presenting system. Smaller GNPs (∼15 nm in diameter) induce significantly less intense T-cell responses. Furthermore, effective antigen presentation via MHC-I was observed for larger spherical particles (∼40 nm in diameter), and to a lesser extent for rod-like particles (40 by 15 nm). At the same time, antigen presentation via MHC-II strongly correlated with the cellular uptake, with smaller GNPs being the least efficient. We believe these findings will have implications for vaccine development, and lead to a better understanding of cellular uptake and antigen egress from lysosomes into the cytosol.
Collapse
Affiliation(s)
- Elena A Egorova
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| | - Gerda E M Lamers
- Core Facility Microscopy, Institute of Biology, Leiden University The Netherlands
| | - Fazel Abdolahpur Monikh
- Environmental Biology, Institute of Environmental Sciences, Leiden University The Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Biotherapeutics, Leiden University The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| |
Collapse
|
33
|
Facciolà A, Visalli G, Laganà A, Di Pietro A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel) 2022; 10:vaccines10050819. [PMID: 35632575 PMCID: PMC9147349 DOI: 10.3390/vaccines10050819] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccinations are one of the most important preventive tools against infectious diseases. Over time, many different types of vaccines have been developed concerning the antigen component. Adjuvants are essential elements that increase the efficacy of vaccination practises through many different actions, especially acting as carriers, depots, and stimulators of immune responses. For many years, few adjuvants have been included in vaccines, with aluminium salts being the most commonly used adjuvant. However, recent research has focused its attention on many different new compounds with effective adjuvant properties and improved safety. Modern technologies such as nanotechnologies and molecular biology have forcefully entered the production processes of both antigen and adjuvant components, thereby improving vaccine efficacy. Microparticles, emulsions, and immune stimulators are currently in the spotlight for their huge potential in vaccine production. Although studies have reported some potential side effects of vaccine adjuvants such as the recently recognised ASIA syndrome, the huge worth of vaccines remains unquestionable. Indeed, the recent COVID-19 pandemic has highlighted the importance of vaccines, especially in regard to managing future potential pandemics. In this field, research into adjuvants could play a leading role in the production of increasingly effective vaccines.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Multi-Specialist Clinical Institute for Orthopaedic Trauma Care (COT), 98124 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| |
Collapse
|
34
|
Different Methods and Formulations of Drugs and Vaccines for Nasal Administration. Pharmaceutics 2022; 14:pharmaceutics14051073. [PMID: 35631663 PMCID: PMC9144811 DOI: 10.3390/pharmaceutics14051073] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Nasal drug delivery is advantageous when compared with other routes of drug delivery as it avoids the hepatic first-pass effect, blood–brain barrier penetration, and compliance issues with parenteral administration. However, nasal administration also has some limitations, such as its low bioavailability due to metabolism on the mucosal surface, and irreversible damage to the nasal mucosa due to the ingredients added into the formula. Moreover, the method of nasal administration is not applicable to all drugs. The current review presents the nasal anatomy and mucosal environment for the nasal delivery of vaccines and drugs, as well as presents various methods for enhancing nasal absorption, and different drug carriers and delivery devices to improve nasal drug delivery. It also presents future prospects on the nasal drug delivery of vaccines and drugs.
Collapse
|
35
|
Abstract
This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|