1
|
Wang J, Xie Y, Zhu G, Qian Y, Sun Q, Li H, Li C. Acidity-unlocked glucose oxidase as drug vector to boost intratumor copper homeostatic imbalance-enhanced cuproptosis for metastasis inhibition and anti-tumor immunity. Biomaterials 2025; 319:123207. [PMID: 40037207 DOI: 10.1016/j.biomaterials.2025.123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
As one of the key tools of biocatalysis, natural enzymes have received extensive attention due to their unique activity. However, the non-selective catalysis and early leakage induced by delivery dependency of natural enzymes can cause side effects on normal tissues. Moreover, although cuproptosis is an emerging tumor-inhibiting programmed cell death, the occurrence of cuproptosis leads to high expression of Cu-dependent lysyl oxidase-like 2 (LOXL2), which promotes tumor metastasis. Herein, in order to intelligently regulate the "OFF-to-ON" catalytic activity of glucose oxidase (a natural enzyme called GOx) and simultaneously inhibit tumor metastasis caused by Cu imbalance, an acidity-unlocked GOx system drug carrier was constructed by co-assembling Cu ions and omeprazole (OPZ) on GOx exposing sulfhydryl and hydrophobic pockets. The GOx activity is significantly inhibited due to the coordination of Cu ions with sulfhydryl groups and the interaction of hydrophobic small molecule OPZ with hydrophobic bags, which results in specificity for tumor cells and ensures the safety of GOx in blood circulation. Meanwhile, dysregulation of intracellular Cu homeostasis that impairs the Cu-dependence of LOXL2 not only inhibits critical signaling during epithelial-mesenchymal transformation (EMT) and extracellular matrix (ECM) remodelling to prevent tumor metastasis, but also exacerbates enhanced cuproptosis induced by tumor metabolic stress, thereby reversing the immunosuppressive microenvironment. This strategy of acidity-unlocked the catalytic function of natural enzymes and LOXL2 activity inhibition provides a novel option for enhancing cuproptosis to inhibit tumor metastasis and anti-tumor immunity.
Collapse
Affiliation(s)
- Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Guoqing Zhu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yanrong Qian
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Qianqian Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, PR China.
| | - Haoze Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Chunxia Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
2
|
Araújo EV, Carneiro SV, Neto DMA, Freire TM, Costa VM, Freire RM, Fechine LMUD, Clemente CS, Denardin JC, Dos Santos JCS, Santos-Oliveira R, Rocha JS, Fechine PBA. Advances in surface design and biomedical applications of magnetic nanoparticles. Adv Colloid Interface Sci 2024; 328:103166. [PMID: 38728773 DOI: 10.1016/j.cis.2024.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Despite significant efforts by scientists in the development of advanced nanotechnology materials for smart diagnosis devices and drug delivery systems, the success of clinical trials remains largely elusive. In order to address this biomedical challenge, magnetic nanoparticles (MNPs) have gained attention as a promising candidate due to their theranostic properties, which allow the simultaneous treatment and diagnosis of a disease. Moreover, MNPs have advantageous characteristics such as a larger surface area, high surface-to-volume ratio, enhanced mobility, mass transference and, more notably, easy manipulation under external magnetic fields. Besides, certain magnetic particle types based on the magnetite (Fe3O4) phase have already been FDA-approved, demonstrating biocompatible and low toxicity. Typically, surface modification and/or functional group conjugation are required to prevent oxidation and particle aggregation. A wide range of inorganic and organic molecules have been utilized to coat the surface of MNPs, including surfactants, antibodies, synthetic and natural polymers, silica, metals, and various other substances. Furthermore, various strategies have been developed for the synthesis and surface functionalization of MNPs to enhance their colloidal stability, biocompatibility, good response to an external magnetic field, etc. Both uncoated MNPs and those coated with inorganic and organic compounds exhibit versatility, making them suitable for a range of applications such as drug delivery systems (DDS), magnetic hyperthermia, fluorescent biological labels, biodetection and magnetic resonance imaging (MRI). Thus, this review provides an update of recently published MNPs works, providing a current discussion regarding their strategies of synthesis and surface modifications, biomedical applications, and perspectives.
Collapse
Affiliation(s)
- E V Araújo
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - S V Carneiro
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - D M A Neto
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - T M Freire
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - V M Costa
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - R M Freire
- Universidad Central de Chile, Santiago 8330601, Chile.
| | - L M U D Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - C S Clemente
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE 60440-900, Brazil.
| | - J C Denardin
- Physics Department and CEDENNA, University of Santiago of Chile (USACH), Santiago 9170124, Chile.
| | - J C S Dos Santos
- Engineering and Sustainable Development Institute, International Afro-Brazilian Lusophone Integration University, Campus das Auroras, Redenção 62790970, CE, Brazil; Chemical Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455760, CE, Brazil.
| | - R Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, R. Helio de Almeida, 75, Rio de Janeiro 21941906, RJ, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy, Av Manuel Caldeira de Alvarenga, 1203, Campo Grande 23070200, RJ, Brazil.
| | - Janaina S Rocha
- Industrial Technology and Quality Center of Ceará, R. Prof. Rômulo Proença, s/n - Pici, 60440-552 Fortaleza, CE, Brazil.
| | - P B A Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Jangra N, Kawatra A, Datten B, Gupta S, Gulati P. Recent trends in targeted delivery of smart nanocarrier-based microbial enzymes for therapeutic applications. Drug Discov Today 2024; 29:103915. [PMID: 38340953 DOI: 10.1016/j.drudis.2024.103915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Smart carrier-based immobilization has widened the use of enzymes for the treatment of several disorders. Large surface areas, tunable morphology, and surface modification ability aid the targeted and controlled release of therapeutic enzymes from such formulations. Smart nanocarriers, such as polymeric carriers, liposomes, and silica have also increased the stability, half-life, and permeability of these enzymes. In this review, summarize recent advances in the smart immobilization of microbial enzymes and their development as precision nanomedicine for the treatment of cancer, thrombosis, phenylketonuria (PKU), and wound healing. We also discuss the challenges and measures to be adopted for the successful clinical translation of these formulations.
Collapse
Affiliation(s)
- Nikita Jangra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Bharti Datten
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shefali Gupta
- Department of Industrial Microbiology, Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad, Uttar Pradesh
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
4
|
Esteban MÁ. A review of soluble factors and receptors involved in fish skin immunity: The tip of the iceberg. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109311. [PMID: 38128682 DOI: 10.1016/j.fsi.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
5
|
Sunil V, Teoh JH, Mohan BC, Mozhi A, Wang CH. Bioengineered immunomodulatory organelle targeted nanozymes for photodynamic immunometabolic therapy. J Control Release 2022; 350:215-227. [PMID: 35987351 DOI: 10.1016/j.jconrel.2022.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Intelligent nanomedicines integrated with stimuli-responsive components enable on-demand customizable treatment options which would improve therapeutic outcome and reduce systemic toxicity. In this work, we explore the synergistic therapeutic potential of photodynamic therapy and immunometabolic modulation to achieve tumour regression and to trigger an adaptive immunity to prevent tumour recurrence. The therapeutic potential of the fabricated Bioengineered Immunomodulatory Organelle targeted Nanozymes (BIONs) was tested on 3D printed mini-brains which could effectively recapitulate the biologically relevant interactions between glioblastoma cells and macrophages. In the presence of glioblastoma organotypic brain slices, activated BIONs upregulated the cell surface expression of CD86, a costimulatory molecule and CD83, maturation marker, on monocyte derived dendritic cells, suggesting its ability to elicit a strong immune response. Furthermore, the antigen pulsed dendritic cells by chemotaxis and transendothelial migration readily relocate into the draining lymph node where they present the antigenic cargo to enable the proliferation of T lymphocytes. The stealth and tunable catalytic activity of BIONs prevent ROS mediated diseases such as acute kidney injury by providing environment dependent protection without compromising on its promising anti-cancer activity.
Collapse
Affiliation(s)
- Vishnu Sunil
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jia Heng Teoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Babu Cadiam Mohan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Anbu Mozhi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
6
|
Wang X, Lewis DA, Wang G, Meng T, Zhou S, Zhu Y, Hu D, Gao S, Zhang G. Covalent Organic Frameworks as a Biomacromolecule Immobilization Platform for Biomedical and Related Applications. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinyue Wang
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Damani A. Lewis
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Anhui Medical University Hefei 230022 China
| | - Tao Meng
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Shengnan Zhou
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Yuheng Zhu
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Danyou Hu
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Shan Gao
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| |
Collapse
|
7
|
Wied P, Carraro F, Bolivar JM, Doonan CJ, Falcaro P, Nidetzky B. Combining a Genetically Engineered Oxidase with Hydrogen-Bonded Organic Frameworks (HOFs) for Highly Efficient Biocomposites. Angew Chem Int Ed Engl 2022; 61:e202117345. [PMID: 35038217 PMCID: PMC9305891 DOI: 10.1002/anie.202117345] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Enzymes incorporated into hydrogen-bonded organic frameworks (HOFs) via bottom-up synthesis are promising biocomposites for applications in catalysis and sensing. Here, we explored synthetic incorporation of d-amino acid oxidase (DAAO) with the metal-free tetraamidine/tetracarboxylate-based BioHOF-1 in water. N-terminal enzyme fusion with the positively charged module Zbasic2 strongly boosted the loading (2.5-fold; ≈500 mg enzyme gmaterial-1 ) and the specific activity (6.5-fold; 23 U mg-1 ). The DAAO@BioHOF-1 composites showed superior activity with respect to every reported carrier for the same enzyme and excellent stability during catalyst recycling. Further, extension to other enzymes, including cytochrome P450 BM3 (used in the production of high-value oxyfunctionalized compounds), points to the versatility of genetic engineering as a strategy for the preparation of biohybrid systems with unprecedented properties.
Collapse
Affiliation(s)
- Peter Wied
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Francesco Carraro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
| | - Christian J. Doonan
- Department of ChemistryThe University of AdelaideAdelaideSouth Australia 5005Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
| |
Collapse
|
8
|
In vitro antitumor activity of nano-pulse stimulation on human anaplastic thyroid cancer cells through nitric oxide-dependent mechanisms. Bioelectrochemistry 2022; 145:108093. [DOI: 10.1016/j.bioelechem.2022.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
|
9
|
Wied P, Carraro F, Bolivar JM, Doonan CJ, Falcaro P, Nidetzky B. Combining Genetically Engineered Oxidase with Hydrogen Bonded Organic Framework (HOF) for Highly Efficient Biocomposites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peter Wied
- Graz University of Technology: Technische Universitat Graz Biotechnology and Biochemical Engineering AUSTRIA
| | - Francesco Carraro
- Graz University of Technology: Technische Universitat Graz Physical Chemistry AUSTRIA
| | - Juan M. Bolivar
- Complutense University of Madrid: Universidad Complutense de Madrid Biochemical Engineering SPAIN
| | - Christian J. Doonan
- University of Adelaide Press: The University of Adelaide Chemistry AUSTRALIA
| | - Paolo Falcaro
- Graz University of Technology: Technische Universitat Graz Physical Chemistry AUSTRIA
| | - Bernd Nidetzky
- Biotechnology and Biochemical Engineering Graz University of Technology Petersgasse 12 8010 Graz AUSTRIA
| |
Collapse
|
10
|
Parveen A, Devika R. Fibrinolytic Enzyme - An Overview. Curr Pharm Biotechnol 2022; 23:1336-1345. [PMID: 34983344 DOI: 10.2174/1389201023666220104143113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases, like coronary heart disease or artery disorders (arteriosclerosis, including artery solidification), heart failure (myocardial infarction), arrhythmias, congestive heart condition, stroke, elevated vital signs (hypertension), rheumatic heart disorder, and other circulatory system dysfunctions are the most common causes of death worldwide. Cardiovascular disorders are treated with stenting, coronary bypass surgery grafting, anticoagulants, antiplatelet agents, and other pharmacological and surgical procedures; however, these have limitations due to their adverse effects. Fibrinolytic agents degrade fibrin through enzymatic and biochemical processes. There are various enzymes that are currently used as a treatment for CVDs, like Streptokinase, Nattokinase, Staphylokinase, Urokinase, etc. These enzymes are derived from various sources like bacteria, fungi, algae, marine organisms, plants, snakes, and other organisms. This review deals with the fibrinolytic enzymes, their mechanisms, sources, and their therapeutic potential.
Collapse
Affiliation(s)
- Parveen A
- Department of Biotechnology, Biotechnology, Aarupadai Institute of Technology, Vinayaka Missions University, Chennai, India
| | - Devika R
- Department of Biotechnology, Biotechnology, Aarupadai Institute of Technology, Vinayaka Missions University, Chennai, India
| |
Collapse
|
11
|
Tong PH, Zhu L, Zang Y, Li J, He XP, James TD. Metal-organic frameworks (MOFs) as host materials for the enhanced delivery of biomacromolecular therapeutics. Chem Commun (Camb) 2021; 57:12098-12110. [PMID: 34714306 DOI: 10.1039/d1cc05157a] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomacromolecular drugs have become an important class of therapeutic agents for the treatment of human diseases. Considering their high propensity for being degraded in the human body, the choice of an appropriate delivery system is key to ensure the therapeutic efficacy of biomacromolecular drugs in vivo. As an emerging class of supramolecular "host" materials, metal-organic frameworks (MOFs) exhibit advantages in terms of the tunability of pore size, encapsulation efficiency, controllable drug release, simplicity in surface functionalization and good biocompatibility. As a result, MOF-based host-guest systems have been extensively developed as a new class of flexible and powerful platform for the delivery of therapeutic biomacromolecules. In this review, we summarize current research progress in the synthesis of MOFs as delivery materials for a variety of biomacromolecules. Firstly, we briefly introduce the advances made in the use of biomacromolecular drugs for disease therapy and the types of commonly used clinical delivery systems. We then describe the advantages of using MOFs as delivery materials. Secondly, the strategies for the construction of MOF-encapsulated biomacromolecules (Biomacromolecules@MOFs) and the release mechanisms of the therapeutics are categorized. Thirdly, the application of MOFs to deliver different types of biomacromolecules (e.g., antigens/antibodies, enzymes, therapeutic proteins, DNA/RNA, polypeptides, and polysaccharides) for the treatment of various human diseases based on immunotherapy, gene therapy, starvation therapy and oxidation therapy is summarized. Finally, the remaining challenges and available opportunities for MOFs as drug delivery systems are outlined, which we anticipate will encourage additional research efforts directed towards developing Biomacromolecules@MOFs systems for biomedical applications.
Collapse
Affiliation(s)
- Pei-Hong Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Ling Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Rathi A, Jadhav SB, Shah N. A Randomized Controlled Trial of the Efficacy of Systemic Enzymes and Probiotics in the Resolution of Post-COVID Fatigue. MEDICINES (BASEL, SWITZERLAND) 2021; 8:47. [PMID: 34564089 PMCID: PMC8472462 DOI: 10.3390/medicines8090047] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Muscle fatigue and cognitive disturbances persist in patients after recovery from acute COVID-19 disease. However, there are no specific treatments for post-COVID fatigue. Objective: To evaluate the efficacy and safety of the health supplements ImmunoSEB (systemic enzyme complex) and ProbioSEB CSC3 (probiotic complex) in patients suffering from COVID-19 induced fatigue. A randomized, multicentric, double blind, placebo-controlled trial was conducted in 200 patients with a complaint of post-COVID fatigue. The test arm (n = 100) received the oral supplements for 14 days and the control arm (n = 100) received a placebo. Treatment efficacy was compared using the Chalder Fatigue scale (CFQ-11), at various time points from days 1 to 14. The supplemental treatment resulted in resolution of fatigue in a greater percentage of subjects in the test vs. the control arm (91% vs. 15%) on day 14. Subjects in the test arm showed a significantly greater reduction in total as well as physical and mental fatigue scores at all time points vs. the control arm. The supplements were well tolerated with no adverse events reported. This study demonstrates that a 14 days supplementation of ImmunoSEB + ProbioSEB CSC3 resolves post-COVID-19 fatigue and can improve patients' functional status and quality of life.
Collapse
Affiliation(s)
- Abhijit Rathi
- Food Application and Development Laboratory, Advanced Enzymes Technologies Ltd., Louiswadi, Thane 400604, India;
| | - Swati B. Jadhav
- Food Application and Development Laboratory, Advanced Enzymes Technologies Ltd., Louiswadi, Thane 400604, India;
| | - Neha Shah
- Pulmonary Fibrosis Now, Chino, CA 91710, USA;
| |
Collapse
|
13
|
Li M, Blum NT, Wu J, Lin J, Huang P. Weaving Enzymes with Polymeric Shells for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008438. [PMID: 34197008 DOI: 10.1002/adma.202008438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Indexed: 06/13/2023]
Abstract
Enzyme therapeutics have received increasing attention due to their high biological specificity, outstanding catalytic efficiency, and impressive therapeutic outcomes. Protecting and delivering enzymes into target cells while retaining enzyme catalytic efficiency is a big challenge. Wrapping of enzymes with rational designed polymer shells, rather than trapping them into large nanoparticles such as liposomes, have been widely explored because they can protect the folded state of the enzyme and make post-functionalization easier. In this review, the methods for wrapping up enzymes with protective polymer shells are mainly focused on. It is aimed to provide a toolbox for the rational design of polymeric enzymes by introducing methods for the preparation of polymeric enzymes including physical adsorption and chemical conjugation with specific examples of these conjugates/hybrid applications. Finally, a conclusion is drawn and key points are emphasized.
Collapse
Affiliation(s)
- Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
14
|
Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021; 170:238-260. [PMID: 33484737 PMCID: PMC8274479 DOI: 10.1016/j.addr.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation. In the second, referred to as "local anchoring", drugs or drug carriers are inserted directly into the tissue site of interest where they persist for a specified duration of time. This review surveys recent advances in harnessing molecular recognition between proteins, peptides, nucleic acids, lipids, and carbohydrates to mediate targeted accumulation and local anchoring of drugs and drug carriers.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
15
|
Zeng Z, Zhang C, Li J, Cui D, Jiang Y, Pu K. Activatable Polymer Nanoenzymes for Photodynamic Immunometabolic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007247. [PMID: 33306220 DOI: 10.1002/adma.202007247] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Indexed: 05/14/2023]
Abstract
Tumor immunometabolism contributes substantially to tumor proliferation and immune cell activity, and thus plays a crucial role in the efficacy of cancer immunotherapy. Modulation of immunometabolism to boost cancer immunotherapy is mostly based on small-molecule inhibitors, which often encounter the issues of off-target adverse effects, drug resistance, and unsustainable response. In contrast, enzymatic therapeutics can potentially bypass these limitations but has been less exploited. Herein, an organic polymer nanoenzyme (SPNK) with near-infrared (NIR) photoactivatable immunotherapeutic effects is reported for photodynamic immunometabolic therapy. SPNK is composed of a semiconducting polymer core conjugated with kynureninase (KYNase) via PEGylated singlet oxygen (1 O2 ) cleavable linker. Upon NIR photoirradiation, SPNK generates 1 O2 not only to exert photodynamic effect to induce the immunogenic cell death of cancer, but also to unleash KYNase and trigger its activity to degrade the immunosuppressive kynurenine (Kyn). Such a combinational effect mediated by SPNK promotes the proliferation and infiltration of effector T cells, enhances systemic antitumor T cell immunity, and ultimately permits inhibition of both primary and distant tumors in living mice. Therefore, this study provides a promising photodynamic approach toward remotely controlled enzymatic immunomodulation for improved anticancer therapy.
Collapse
Affiliation(s)
- Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Chi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
16
|
Jin S, Liu L, Fan M, Jia Y, Zhou P. A Facile Strategy for Immobilizing GOD and HRP onto Pollen Grain and Its Application to Visual Detection of Glucose. Int J Mol Sci 2020; 21:ijms21249529. [PMID: 33333754 PMCID: PMC7765182 DOI: 10.3390/ijms21249529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023] Open
Abstract
Pollen grain was explored as a new carrier for enzyme immobilization. After being modified with boric acid-functionalized titania, the pollen grain was able to covalently immobilize glycosylated enzymes by boronate affinity interaction under very mild experimental conditions (e.g., pH 7.0, ambient temperature and free of organic solvent). The glucose oxidase and horse radish peroxidase-immobilized pollen grain became a bienzyme system. The pollen grain also worked as an indicator of the cascade reaction by changing its color. A rapid, simple and cost-effective approach for the visual detection of glucose was then developed. When the glucose concentration exceeded 0.5 mM, the color change was observable by the naked eye. The assay of glucose in body fluid samples exhibited its great potential for practical application.
Collapse
Affiliation(s)
- Shanxia Jin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Liping Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Mengying Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Yaru Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Ping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
- Correspondence:
| |
Collapse
|
17
|
Chakraborty S, Khamrui R, Ghosh S. Redox responsive activity regulation in exceptionally stable supramolecular assembly and co-assembly of a protein. Chem Sci 2020; 12:1101-1108. [PMID: 34163877 PMCID: PMC8179030 DOI: 10.1039/d0sc05312k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/14/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular assembly of biomolecules/macromolecules stems from the desire to mimic complex biological structures and functions of living organisms. While DNA nanotechnology is already in an advanced stage, protein assembly is still in its infancy as it is a significantly difficult task due to their large molecular weight, conformational complexity and structural instability towards variation in temperature, pH or ionic strength. This article reports highly stable redox-responsive supramolecular assembly of a protein Bovine serum albumin (BSA) which is functionalized with a supramolecular structure directing unit (SSDU). The SSDU consists of a benzamide functionalized naphthalene-diimide (NDI) chromophore which is attached with the protein by a bio-reducible disulfide linker. The SSDU attached protein (NDI-BSA) exhibits spontaneous supramolecular assembly in water by off-set π-stacking among the NDI chromophores, leading to the formation of spherical nanoparticles (diameter: 150-200 nm). The same SSDU when connected with a small hydrophilic wedge (NDI-1) instead of the large globular protein, exhibits a different π-stacking mode with relatively less longitudinal displacement which results in a fibrillar network and hydrogelation. Supramolecular co-assembly of NDI-BSA and NDI-1 (3 : 7) produces similar π-stacking and an entangled 1D morphology. Both the spherical assembly of NDI-BSA or the fibrillar co-assembly of NDI-BSA + NDI-1 (3 : 7) provide sufficient thermal stability to the protein as its thermal denaturation could be completely surpassed while the secondary structure remained intact. However, the esterase like activity of the protein reduced significantly as a result of such supramolecular assembly indicating limited access by the substrate to the active site of the enzyme located in the confined environment. In the presence of glutathione (GSH), a biologically important tri-peptide, due to the cleavage of the disulfide bond, the protein became free and was released, resulting in fully regaining its enzymatic activity. Such supramolecular assembly provided excellent protection to the protein against enzymatic hydrolysis as the relative hydrolysis was estimated to be <30% for the co-assembled protein with respect to the free protein under identical conditions. Similar to bioactivity, the enzymatic hydrolysis also became prominent after GSH-treatment, confirming that the lack of hydrolysis in the supramolecularly assembled state is indeed related to the confinement of the protein in the nanostructure assembly.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| |
Collapse
|
18
|
Sikder A, Ray D, Aswal VK, Ghosh S. Supramolecular Assembly of a Molecularly Engineered Protein and Polymer. Chemistry 2019; 25:10464-10471. [DOI: 10.1002/chem.201901844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Amrita Sikder
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science Kolkata 700032 India
| | - Debes Ray
- Solid State Physics DivisionBhabha Atomic Research Centre Mumbai- 400085 India
| | - Vinod K. Aswal
- Solid State Physics DivisionBhabha Atomic Research Centre Mumbai- 400085 India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
19
|
Production and Purification of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:1-24. [DOI: 10.1007/978-981-13-7709-9_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Locally anchoring enzymes to tissues via extracellular glycan recognition. Nat Commun 2018; 9:4943. [PMID: 30467349 PMCID: PMC6250738 DOI: 10.1038/s41467-018-07129-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/12/2018] [Indexed: 01/06/2023] Open
Abstract
Success of enzymes as drugs requires that they persist within target tissues over therapeutically effective time frames. Here we report a general strategy to anchor enzymes at injection sites via fusion to galectin-3 (G3), a carbohydrate-binding protein. Fusing G3 to luciferase extended bioluminescence in subcutaneous tissue to ~7 days, whereas unmodified luciferase was undetectable within hours. Engineering G3-luciferase fusions to self-assemble into a trimeric architecture extended bioluminescence in subcutaneous tissue to 14 days, and intramuscularly to 3 days. The longer local half-life of the trimeric assembly was likely due to its higher carbohydrate-binding affinity compared to the monomeric fusion. G3 fusions and trimeric assemblies lacked extracellular signaling activity of wild-type G3 and did not accumulate in blood after subcutaneous injection, suggesting low potential for deleterious off-site effects. G3-mediated anchoring to common tissue glycans is expected to be broadly applicable for improving local pharmacokinetics of various existing and emerging enzyme drugs. The use of enzymes as drugs requires that they persist within target tissues over therapeutically relevant time frames. Here the authors use a galectin-3 fusion to anchor enzymes at injection sites for up to 14 days.
Collapse
|
21
|
Affiliation(s)
- Xun Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Fan Wu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yong Ji
- Department of Cardiothoracic Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|