1
|
Yu A, He X, Shen T, Yu X, Mao W, Chi W, Liu X, Wu H. Design strategies for tetrazine fluorogenic probes for bioorthogonal imaging. Chem Soc Rev 2025; 54:2984-3016. [PMID: 39936362 DOI: 10.1039/d3cs00520h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Tetrazine fluorogenic probes play a critical role in bioorthogonal chemistry, selectively activating fluorescence upon reaction to enhance precision in imaging and sensing within complex biological environments. Recent structural innovations-such as varied fluorophore choices, spacer optimization, and direct tetrazine integration within a fluorophore's π-conjugated system-have expanded their spectral range from visible to NIR, enhancing adaptability across various applications. This review examines advancements in the rational design and synthesis of these probes. We examine key fluorogenic mechanisms, such as energy transfer, internal conversion, and electron/charge transfer, that significantly influence fluorescence activation. We also highlight representative applications in live-cell imaging, super-resolution microscopy, and therapeutic monitoring, underscoring the expanding role of tetrazine probes in biomedical research and diagnostics. Collectively, these insights provide a strategic foundation for developing next-generation tetrazine probes with tailored properties to address evolving diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Aiwen Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Xinyu Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Wang L, Huang Y, Wang J, Jiang Y, Jiang BP, Chen H, Liang H, Shen XC. Bioorthogonal Reaction of β-Chloroacroleins with meta-Aminothiophenol to Develop Near-Infrared Fluorogenic Probes for Simultaneous Two-color Imaging. J Am Chem Soc 2025; 147:6707-6716. [PMID: 39932871 DOI: 10.1021/jacs.4c16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Highly fluorogenic probe based bioorthogonal chemistry has become a promising tool in biomedical applications. However, the majority of fluorogenic probes are designed by introducing a bioorthogonal partner as a fluorescence quencher into classical fluorophores, and these probes exhibit a deteriorating fluorogenicity as the emission wavelength shifts toward the near-infrared (NIR) region, greatly limiting their applications in vivo. Herein, we report a novel fluorogenic bioorthogonal reaction involving β-chloroacroleins (β-CAs) and meta-aminothiophenol (m-AT1), whose fluorescence increases more than 500-fold upon in situ generating fluorophores. β-CAs are stable under physiological conditions and react rapidly (β-CA9, k2 = 2.2 × 102 M-1 s-1, in H2O) and chemoselectively with m-AT1 in the presence of biological nucleophiles, and delightfully, the reaction proceeds swiftly even under solvent-free conditions. Furthermore, manipulating the conjugate length of β-CAs enables the emission wavelength of the probes to be fine-tuned from 627 to 778 nm. These probes allow the simultaneous labeling of multiple cellular organelles without washing steps, and two-color tumor visualization is achieved in living mice. We believe this study not only provides new insights for the development of NIR fluorogenic probes with superior turn-on behaviors but also presents a promising fluorogenic bioorthogonal reaction CA-AT with widespread potential applications in biomedical research.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yujie Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jing Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yulan Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
3
|
Tan J, Wang C, Hu Z, Zhang X. Wash-free fluorescent tools based on organic molecules: Design principles and biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230094. [PMID: 40040824 PMCID: PMC11875451 DOI: 10.1002/exp.20230094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/28/2024] [Indexed: 01/05/2025]
Abstract
Fluorescence-assisted tools based on organic molecules have been extensively applied to interrogate complex biological processes in a non-invasive manner with good sensitivity, high resolution, and rich contrast. However, the signal-to-noise ratio is an essential factor to be reckoned with during collecting images for high fidelity. In view of this, the wash-free strategy is proven as a promising and important approach to improve the signal-to-noise ratio, thus a thorough introduction is presented in the current review about wash-free fluorescent tools based on organic molecules. Firstly, generalization and summarization of the principles for designing wash-free molecular fluorescent tools (WFTs) are made. Subsequently, to make the thought of molecule design more legible, a wash-free strategy is highlighted in recent studies from four diverse but tightly binding aspects: (1) special chemical structures, (2) molecular interactions, (3) bio-orthogonal reactions, (4) abiotic reactions. Meanwhile, biomedical applications including bioimaging, biodetection, and therapy, are ready to be accompanied by. Finally, the prospects for WFTs are elaborated and discussed. This review is a timely conclusion about wash-free strategy in the fluorescence-guided biomedical applications, which may bring WFTs to the forefront and accelerate their extensive applications in biology and medicine.
Collapse
Affiliation(s)
- Jingyun Tan
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Chunfei Wang
- Faculty of Health SciencesUniversity of MacauMacauChina
- Department of PharmacologySchool of PharmacyWannan Medical CollegeWuhuChina
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of MacauMacauChina
- MOE Frontiers Science Centre for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
4
|
Kozma E, Kele P. Bioorthogonal Reactions in Bioimaging. Top Curr Chem (Cham) 2024; 382:7. [PMID: 38400853 PMCID: PMC10894152 DOI: 10.1007/s41061-024-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/26/2024]
Abstract
Visualization of biomolecules in their native environment or imaging-aided understanding of more complex biomolecular processes are one of the focus areas of chemical biology research, which requires selective, often site-specific labeling of targets. This challenging task is effectively addressed by bioorthogonal chemistry tools in combination with advanced synthetic biology methods. Today, the smart combination of the elements of the bioorthogonal toolbox allows selective installation of multiple markers to selected targets, enabling multicolor or multimodal imaging of biomolecules. Furthermore, recent developments in bioorthogonally applicable probe design that meet the growing demands of superresolution microscopy enable more complex questions to be addressed. These novel, advanced probes enable highly sensitive, low-background, single- or multiphoton imaging of biological species and events in live organisms at resolutions comparable to the size of the biomolecule of interest. Herein, the latest developments in bioorthogonal fluorescent probe design and labeling schemes will be discussed in the context of in cellulo/in vivo (multicolor and/or superresolved) imaging schemes. The second part focuses on the importance of genetically engineered minimal bioorthogonal tags, with a particular interest in site-specific protein tagging applications to answer biological questions.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary.
| |
Collapse
|
5
|
Martin A, Rivera-Fuentes P. A general strategy to develop fluorogenic polymethine dyes for bioimaging. Nat Chem 2024; 16:28-35. [PMID: 38012391 PMCID: PMC10774129 DOI: 10.1038/s41557-023-01367-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
Fluorescence imaging is an invaluable tool to study biological processes and further progress depends on the development of advanced fluorogenic probes that reach intracellular targets and label them with high specificity. Excellent fluorogenic rhodamine dyes have been reported, but they often require long and low-yielding syntheses, and are spectrally limited to the visible range. Here we present a general strategy to transform polymethine compounds into fluorogenic dyes using an intramolecular ring-closure approach. We illustrate the generality of this method by creating both spontaneously blinking and no-wash, turn-on polymethine dyes with emissions across the visible and near-infrared spectrum. These probes are compatible with self-labelling proteins and small-molecule targeting ligands, and can be combined with rhodamine-based dyes for multicolour and fluorescence lifetime multiplexing imaging. This strategy provides access to bright, fluorogenic dyes that emit at wavelengths that are more red-shifted compared with those of existing rhodamine-based dyes.
Collapse
Affiliation(s)
- Annabell Martin
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | |
Collapse
|
6
|
Ihnatenko I, Müller MJ, Orban OCF, Lindhof JC, Benítez D, Ortíz C, Dibello E, Seidl LL, Comini MA, Kunick C. The indole motif is essential for the antitrypanosomal activity of N5-substituted paullones. PLoS One 2023; 18:e0292946. [PMID: 38032881 PMCID: PMC10688702 DOI: 10.1371/journal.pone.0292946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023] Open
Abstract
Severe infections with potentially fatal outcomes are caused by parasites from the genera Trypanosoma and Leishmania (class Kinetoplastea). The diseases affect people of remote areas in the tropics and subtropics with limited access to adequate health care. Besides insufficient diagnostics, treatment options are limited, with tenuous developments in recent years. Therefore, new antitrypanosomal antiinfectives are required to fight these maladies. In the presented approach, new compounds were developed and tested on the target trypanothione synthetase (TryS). This enzyme is crucial to the kinetoplastids' unique trypanothione-based thiol redox metabolism and thus for pathogen survival. Preceding studies have shown that N5-substituted paullones display antitrypanosomal activity as well as TryS inhibition. Herein, this compound class was further examined regarding the structure-activity relationships (SAR). Diverse benzazepinone derivatives were designed and tested in cell-based assays on bloodstream Trypanosoma brucei brucei (T. b. brucei) and intracellular amastigotes of Leishmania infantum (L. infantum) as well as in enzyme-based assays on L. infantum TryS (LiTryS) and T. b. brucei TryS (TbTryS). While an exchange of just the substituent in the 9-position of paullones led to potent inhibitors on LiTryS and T. b. brucei parasites, new compounds lacking the indole moiety showed a total loss of activity in both assays. Conclusively, the indole as part of the paullone structure is pivotal for keeping the TryS inhibitory and antitrypanosomal activity of this substance class.
Collapse
Affiliation(s)
- Irina Ihnatenko
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Marco J Müller
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Oliver C F Orban
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Jens C Lindhof
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Ortíz
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Estefanía Dibello
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leonardo L Seidl
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Conrad Kunick
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Samanta S, Lai K, Wu F, Liu Y, Cai S, Yang X, Qu J, Yang Z. Xanthene, cyanine, oxazine and BODIPY: the four pillars of the fluorophore empire for super-resolution bioimaging. Chem Soc Rev 2023; 52:7197-7261. [PMID: 37743716 DOI: 10.1039/d2cs00905f] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In the realm of biological research, the invention of super-resolution microscopy (SRM) has enabled the visualization of ultrafine sub-cellular structures and their functions in live cells at the nano-scale level, beyond the diffraction limit, which has opened up a new window for advanced biomedical studies to unravel the complex unknown details of physiological disorders at the sub-cellular level with unprecedented resolution and clarity. However, most of the SRM techniques are highly reliant on the personalized special photophysical features of the fluorophores. In recent times, there has been an unprecedented surge in the development of robust new fluorophore systems with personalized features for various super-resolution imaging techniques. To date, xanthene, cyanine, oxazine and BODIPY cores have been authoritatively utilized as the basic fluorophore units in most of the small-molecule-based organic fluorescent probe designing strategies for SRM owing to their excellent photophysical characteristics and easy synthetic acquiescence. Since the future of next-generation SRM studies will be decided by the availability of advanced fluorescent probes and these four fluorescent building blocks will play an important role in progressive new fluorophore design, there is an urgent need to review the recent advancements in designing fluorophores for different SRM methods based on these fluorescent dye cores. This review article not only includes a comprehensive discussion about the recent developments in designing fluorescent probes for various SRM techniques based on these four important fluorophore building blocks with special emphasis on their effective integration into live cell super-resolution bio-imaging applications but also critically evaluates the background of each of the fluorescent dye cores to highlight their merits and demerits towards developing newer fluorescent probes for SRM.
Collapse
Affiliation(s)
- Soham Samanta
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Kaitao Lai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Feihu Wu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yingchao Liu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Songtao Cai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xusan Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhigang Yang
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Albitz E, Németh K, Knorr G, Kele P. Evaluation of bioorthogonally applicable tetrazine-Cy3 probes for fluorogenic labeling schemes. Org Biomol Chem 2023; 21:7358-7366. [PMID: 37646224 DOI: 10.1039/d3ob01204b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The fluorogenic features of three sets of tetrazine-Cy3 probes were evaluated in bioorthogonal tetrazine-cyclooctyne ligation schemes. These studies revealed that the more efficient, internal conversion-based quenching of fluorescence by the tetrazine modul is translated to improved fluorogenicity compared to the more conventional, energy transfer-enabled design. Furthermore, a comparison of directly conjugated probes and vinylene-linked tetrazine-Cy3 probes revealed that more intimate conjugation of the tetrazine and the chromophore results in more efficient IC-based quenching even in spectral ranges where tetrazine exhibits diminished modulation efficiency. The applicability of these tetrazine-quenched fluorogenic Cy3 probes was demonstrated in the fluorogenic labeling schemes of the extra- and intracellular proteins of live cells.
Collapse
Affiliation(s)
- Evelin Albitz
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117, Budapest, Hungary
| | - Krisztina Németh
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Gergely Knorr
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| |
Collapse
|
9
|
Aktalay A, Lincoln R, Heynck L, Lima MADBF, Butkevich AN, Bossi ML, Hell SW. Bioorthogonal Caging-Group-Free Photoactivatable Probes for Minimal-Linkage-Error Nanoscopy. ACS CENTRAL SCIENCE 2023; 9:1581-1590. [PMID: 37637742 PMCID: PMC10450876 DOI: 10.1021/acscentsci.3c00746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Here we describe highly compact, click compatible, and photoactivatable dyes for super-resolution fluorescence microscopy (nanoscopy). By combining the photoactivatable xanthone (PaX) core with a tetrazine group, we achieve minimally sized and highly sensitive molecular dyads for the selective labeling of unnatural amino acids introduced by genetic code expansion. We exploit the excited state quenching properties of the tetrazine group to attenuate the photoactivation rates of the PaX, and further reduce the overall fluorescence emission of the photogenerated fluorophore, providing two mechanisms of selectivity to reduce the off-target signal. Coupled with MINFLUX nanoscopy, we employ our dyads in the minimal-linkage-error imaging of vimentin filaments, demonstrating molecular-scale precision in fluorophore positioning.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Richard Lincoln
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Lukas Heynck
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | | | - Alexey N. Butkevich
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Shamsipur M, Ghavidast A, Pashabadi A. Phototriggered structures: Latest advances in biomedical applications. Acta Pharm Sin B 2023; 13:2844-2876. [PMID: 37521863 PMCID: PMC10372844 DOI: 10.1016/j.apsb.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023] Open
Abstract
Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.
Collapse
|
11
|
Teng Y, Zhang R, Yang B, Yang H, Li X, Yin D, Feng X, Tian Y. Bio-orthogonally activated tetraphenylene-tetrazine aggregation-induced emission fluorogenic probes. J Mater Chem B 2022; 10:8642-8649. [PMID: 36254898 DOI: 10.1039/d2tb01893d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetrazine-based bio-orthogonally activated fluorogenic probes have drawn great attention due to their excellent performance in bioimaging; however, most of them suffer from aggregation-caused quenching (ACQ) problems. Herein, we developed a set of novel tetrazine-modified tetraphenylenes (TPEs) as bio-orthogonally activated aggregation-induced emission (AIE) fluorogenic probes. Both the fluorescence and AIE features are quenched by tetrazine, which is mediated by the through-bond energy-transfer (TBET) mechanism, and are activated upon converting tetrazine to pyridazine via the inverse electron-demand Diels-Alder (iEDDA) reaction. The activated cycloadducts displayed a notable fluorescence enhancement, a large Stokes shift, a high fluorescence quantum yield, and evident AIE-active features. Manipulating the length and position of the π-linker enables fine-tuning of the photophysical properties of the probes, while an overlong planar π-linker leads to AIE-to-ACQ transformation. We also designed bi-tetrazyl-substituted probes, which exhibited a higher turn-on ratio than the mono-tetrazyl analogs owing to the 'double-quenched' function. When they reacted with double-clickable linkers, fluorescent macrocycles were obtained because of the restriction of the free rotation of the phenyl rings of TPE. Using an organelle-pretargeting strategy, we succeeded in applying these probes for mitochondria-specific bio-orthogonal imaging in live cells under no-wash conditions, which is expected to provide a powerful tool for biomedical applications.
Collapse
Affiliation(s)
- Yu Teng
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Rongrong Zhang
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Bingbing Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hong Yang
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xiang Li
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Dali Yin
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yulin Tian
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
12
|
Zhang X, Gao J, Tang Y, Yu J, Liew SS, Qiao C, Cao Y, Liu G, Fan H, Xia Y, Tian J, Pu K, Wang Z. Bioorthogonally activatable cyanine dye with torsion-induced disaggregation for in vivo tumor imaging. Nat Commun 2022; 13:3513. [PMID: 35717407 PMCID: PMC9206667 DOI: 10.1038/s41467-022-31136-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Advancement of bioorthogonal chemistry in molecular optical imaging lies in expanding the repertoire of fluorophores that can undergo fluorescence signal changes upon bioorthogonal ligation. However, most available bioorthogonally activatable fluorophores only emit shallow tissue-penetrating visible light via an intramolecular charge transfer mechanism. Herein, we report a serendipitous "torsion-induced disaggregation (TIDA)" phenomenon in the design of near-infrared (NIR) tetrazine (Tz)-based cyanine probe. The TIDA of the cyanine is triggered upon Tz-transcyclooctene ligation, converting its heptamethine chain from S-trans to S-cis conformation. Thus, after bioorthogonal reaction, the tendency of the resulting cyanine towards aggregation is reduced, leading to TIDA-induced fluorescence enhancement response. This Tz-cyanine probe sensitively delineates the tumor in living mice as early as 5 min post intravenous injection. As such, this work discovers a design mechanism for the construction of bioorthogonally activatable NIR fluorophores and opens up opportunities to further exploit bioorthogonal chemistry in in vivo imaging.
Collapse
Affiliation(s)
- Xianghan Zhang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Jingkai Gao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yingdi Tang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jie Yu
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Si Si Liew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chaoqiang Qiao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yutian Cao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Guohuan Liu
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Hongyu Fan
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yuqiong Xia
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jie Tian
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Zhongliang Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, China.
| |
Collapse
|
13
|
Elucidation of the molecular mechanisms of 1,2,3,5- and 1,2,4,5-tetrazines with strained and electron-rich alkynes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Ye Z, Zheng Y, Peng X, Xiao Y. Surpassing the Background Barrier for Multidimensional Single-Molecule Localization Super-Resolution Imaging: A Case of Lysosome-Exclusively Turn-on Probe. Anal Chem 2022; 94:7990-7995. [PMID: 35613079 DOI: 10.1021/acs.analchem.2c00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The background barrier restricts the dimensionality of live-cell single-molecule localization super-resolution imaging. Ideally, a probe exclusively turned on by its target, without any nonspecific fluorescence signals from off-target molecules, constitutes a practical solution to surpass this barrier. Yet, few such fluorophores have been developed. A lysosome with a unique acidic lumen was chosen as the target for demonstrating the concept advantage. A representative lyso-tracker Lyso-R (piperazine rhodamine) with high brightness has been spirocyclized with o-phenylenediamine to form Lyso-Ropa. This probe shifted its bright-dark spirocyclization balance to a strong acidity domain (pKa = -0.18). Consequently, under no-wash conditions, Lyso-Ropa showed almost undetectable background photons (only one-sixtieth of that of Lyso-R) in a neutral cellular environment, and it formed sparsely brightened molecules at a low ratio (∼1 × 10-3%) in lysosomes. This background-free probe enabled super-resolution imaging and modeling of live-cell lysosomes in four dimensions at 2 s resolution, with quantitative determination of lysosomal volume expansion and deformation at starvation. Our molecular approach sheds new light on surpassing the background barrier for multidimensional super-resolution imaging.
Collapse
Affiliation(s)
- Zhiwei Ye
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Ying Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Ros E, Bellido M, Matarin JA, Gallen A, Martínez M, Rodríguez L, Verdaguer X, Ribas de Pouplana L, Riera A. Amino acids with fluorescent tetrazine ethers as bioorthogonal handles for peptide modification. RSC Adv 2022; 12:14321-14327. [PMID: 35702248 PMCID: PMC9096626 DOI: 10.1039/d2ra02531k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
A set of 3-bromo-1,2,4,5-tetrazines with three distinct substitutions have been used as reagents for late-stage functionalization of small molecules through nucleophilic aromatic substitution. Spectroscopic studies of the products obtained proved that tetrazine ethers are intrinsically fluorescent. This fluorescence is lost upon inverse Electron-Demand Diels–Alder (iEDDA) cycloaddition with strained alkenes. Tetrazine-phenol ethers are rather interesting because they can undergo rapid iEDDA reactions with a second order rate constant (k2) compatible with bioorthogonal ligations. As a showcase, l-tyrosine was derivatized with 3-bromo-6-methyl-1,2,4,5-tetrazine and coupled to the peptide drug octreotide. This peptide was detected in cellular flow cytometry, and its fluorescence turned off through a bioorthogonal iEDDA cycloaddition with a strained alkene, showing for the first time the detection and reactivity of intrinsically fluorescent tetrazines in a biologically relevant context. The synthesis and characterization of fluorescent tetrazine ethers with bioorthogonal applicability pave the way for the generation of useful compounds for both detection and bioconjugation in vivo. Octreotide derivatized with the fluorogenic amino acid 6-methyltetratrazinyl tryosine. Emission spectra before and after the iEDDA cycloaddition.![]()
Collapse
Affiliation(s)
- Enric Ros
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Marina Bellido
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Joan A Matarin
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,BCN Peptides S.A., Pol. Ind. Els Vinyets-Els Fogars Sector II, Ctra. Comarcal 244, Km. 22, 08777 Sant Quintí de Mediona Barcelona Spain
| | - Albert Gallen
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona 08028. Barcelona Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona 08028. Barcelona Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| |
Collapse
|
16
|
Bioorthogonal Ligation‐Activated Fluorogenic FRET Dyads. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Albitz E, Kern D, Kormos A, Bojtár M, Török G, Biró A, Szatmári Á, Németh K, Kele P. Bioorthogonal Ligation-Activated Fluorogenic FRET Dyads. Angew Chem Int Ed Engl 2022; 61:e202111855. [PMID: 34861094 PMCID: PMC9305863 DOI: 10.1002/anie.202111855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/04/2022]
Abstract
An energy transfer-based signal amplification relay concept enabling transmission of bioorthogonally activatable fluorogenicity of blue-excitable coumarins to yellow/red emitting cyanine frames is presented. Such relay mechanism resulted in improved cyanine fluorogenicities together with increased photostabilities and large apparent Stokes-shifts allowing lower background fluorescence even in no-wash bioorthogonal fluorogenic labeling schemes of intracellular structures in live cells. These energy transfer dyads sharing the same donor moiety together with their parent donor molecule allowed three-color imaging of intracellular targets using one single excitation source with separate emission windows. Sub-diffraction imaging of intracellular structures using the bioorthogonally activatable FRET dyads by STED microscopy is also presented.
Collapse
Affiliation(s)
- Evelin Albitz
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Dóra Kern
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Attila Kormos
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Márton Bojtár
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - György Török
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityTűzoltó u. 37–471094BudapestHungary
| | - Adrienn Biró
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Ágnes Szatmári
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Krisztina Németh
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Péter Kele
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| |
Collapse
|
18
|
Seen SB, Gong Y, Ashton M. The application of the Fischer indole synthesis in medicinal chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Graziotto ME, Adair LD, Kaur A, Vérité P, Ball SR, Sunde M, Jacquemin D, New EJ. Versatile naphthalimide tetrazines for fluorogenic bioorthogonal labelling. RSC Chem Biol 2021; 2:1491-1498. [PMID: 34704054 PMCID: PMC8496007 DOI: 10.1039/d1cb00128k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
Fluorescent probes for biological imaging have revealed much about the functions of biomolecules in health and disease. Fluorogenic probes, which are fluorescent only upon a bioorthogonal reaction with a specific partner, are particularly advantageous as they ensure that fluorescent signals observed in biological imaging arise solely from the intended target. In this work, we report the first series of naphthalimide tetrazines for bioorthogonal fluorogenic labelling. We establish that all of these compounds can be used for imaging through photophysical, analytical and biological studies. The best candidate was Np6mTz, where the tetrazine ring is appended to the naphthalimide at its 6-position via a phenyl linker in a meta configuration. Taking our synthetic scaffold, we generated two targeted variants, LysoNpTz and MitoNpTz, which successfully localized within the lysosomes and mitochondria respectively, without the requirement of genetic modification. In addition, the naphthalimide tetrazine system was used for the no-wash imaging of insulin amyloid fibrils in vitro, providing a new method that can monitor their growth kinetics and morphology. Since our synthetic approach is simple and modular, these new naphthalimide tetrazines provide a novel scaffold for a range of bioorthogonal tetrazine-based imaging agents for selective staining and sensing of biomolecules.
Collapse
Affiliation(s)
- Marcus E Graziotto
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
| | - Liam D Adair
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
| | - Amandeep Kaur
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| | | | - Sarah R Ball
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
| | - Margaret Sunde
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| | | | - Elizabeth J New
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| |
Collapse
|
21
|
Szatmári Á, Cserép GB, Molnár TÁ, Söveges B, Biró A, Várady G, Szabó E, Németh K, Kele P. A Genetically Encoded Isonitrile Lysine for Orthogonal Bioorthogonal Labeling Schemes. Molecules 2021; 26:4988. [PMID: 34443576 PMCID: PMC8402055 DOI: 10.3390/molecules26164988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 01/11/2023] Open
Abstract
Bioorthogonal click-reactions represent ideal means for labeling biomolecules selectively and specifically with suitable small synthetic dyes. Genetic code expansion (GCE) technology enables efficient site-selective installation of bioorthogonal handles onto proteins of interest (POIs). Incorporation of bioorthogonalized non-canonical amino acids is a minimally perturbing means of enabling the study of proteins in their native environment. The growing demand for the multiple modification of POIs has triggered the quest for developing orthogonal bioorthogonal reactions that allow simultaneous modification of biomolecules. The recently reported bioorthogonal [4 + 1] cycloaddition reaction of bulky tetrazines and sterically demanding isonitriles has prompted us to develop a non-canonical amino acid (ncAA) bearing a suitable isonitrile function. Herein we disclose the synthesis and genetic incorporation of this ncAA together with studies aiming at assessing the mutual orthogonality between its reaction with bulky tetrazines and the inverse electron demand Diels-Alder (IEDDA) reaction of bicyclononyne (BCN) and tetrazine. Results showed that the new ncAA, bulky-isonitrile-carbamate-lysine (BICK) is efficiently and specifically incorporated into proteins by genetic code expansion, and despite the slow [4 + 1] cycloaddition, enables the labeling of outer membrane receptors such as insulin receptor (IR) with a membrane-impermeable dye. Furthermore, double labeling of protein structures in live and fixed mammalian cells was achieved using the mutually orthogonal bioorthogonal IEDDA and [4 + 1] cycloaddition reaction pair, by introducing BICK through GCE and BCN through a HaloTag technique.
Collapse
Affiliation(s)
- Ágnes Szatmári
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Gergely B. Cserép
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Tibor Á. Molnár
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Bianka Söveges
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Adrienn Biró
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - György Várady
- Molecular Cell Biology Research Group, Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.V.); (E.S.)
| | - Edit Szabó
- Molecular Cell Biology Research Group, Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.V.); (E.S.)
| | - Krisztina Németh
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary; (G.B.C.); (T.Á.M.); (B.S.); (A.B.)
| |
Collapse
|
22
|
Kurutos A, Nikodinovic-Runic J, Veselinovic A, Veselinović JB, Kamounah FS, Ilic-Tomic T. RNA-targeting low-molecular-weight fluorophores for nucleoli staining: synthesis, in silico modelling and cellular imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj01659h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein we present our work on the synthesis, investigation of the photophysical properties, interactions with nucleic acids, molecular docking, and imaging application of three carbocyanine dyes.
Collapse
Affiliation(s)
- Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | | | | - Jovana B. Veselinović
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Fadhil S. Kamounah
- Department of Chemistry
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
23
|
Pinto‐Pacheco B, Carbery WP, Khan S, Turner DB, Buccella D. Fluorescence Quenching Effects of Tetrazines and Their Diels–Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Brismar Pinto‐Pacheco
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - William P. Carbery
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - Sameer Khan
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - Daniel B. Turner
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
- Current address: Micron School of Materials Science and Engineering Boise State University Boise ID 83725 USA
| | - Daniela Buccella
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
24
|
Pinto-Pacheco B, Carbery WP, Khan S, Turner DB, Buccella D. Fluorescence Quenching Effects of Tetrazines and Their Diels-Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angew Chem Int Ed Engl 2020; 59:22140-22149. [PMID: 33245600 DOI: 10.1002/anie.202008757] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Inverse electron demand Diels-Alder reactions between s-tetrazines and strained dienophiles have numerous applications in fluorescent labeling of biomolecules. Herein, we investigate the effect of the dienophile on the fluorescence enhancement obtained upon reaction with a tetrazine-quenched fluorophore and study the possible mechanisms of fluorescence quenching by both the tetrazine and its reaction products. The dihydropyridazine obtained from reaction with a strained cyclooctene shows a residual fluorescence quenching effect, greater than that exerted by the pyridazine arising from reaction with the analogous alkyne. Linear and ultrabroadband two-dimensional electronic spectroscopy experiments reveal that resonance energy transfer is the mechanism responsible for the fluorescence quenching effect of tetrazines, whereas a mechanism involving more intimate electronic coupling, likely photoinduced electron transfer, is responsible for the quenching effect of the dihydropyridazine. These studies uncover parameters that can be tuned to maximize fluorogenic efficiency in bioconjugation reactions and reveal that strained alkynes are better reaction partners for achieving maximum contrast ratio.
Collapse
Affiliation(s)
- Brismar Pinto-Pacheco
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - William P Carbery
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Sameer Khan
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Daniel B Turner
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.,Current address: Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
| | - Daniela Buccella
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
25
|
Bachollet SPJT, Addi C, Pietrancosta N, Mallet JM, Dumat B. Fluorogenic Protein Probes with Red and Near-Infrared Emission for Genetically Targeted Imaging*. Chemistry 2020; 26:14467-14473. [PMID: 32691883 DOI: 10.1002/chem.202002911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 11/09/2022]
Abstract
Fluorogenic probes are important tools to image proteins with high contrast and no wash protocols. In this work, we rationally designed and synthesized a small set of four protein fluorogens with red or near-infrared emission. The fluorophores were characterized in the presence of albumin as a model protein environment and exhibited good fluorogenicity and brightness (fluorescence quantum yield up to 36 %). Once conjugated to a haloalkane ligand, the probes reacted with the protein self-labeling tag HaloTag with a high fluorescence enhancement (up to 156-fold). The spectroscopic properties of the fluorogens and their reaction with HaloTag were investigated experimentally in vitro and with the help of molecular dynamics. The two most promising probes, one in the red and one in the near-infrared range, were finally applied to image the nucleus or actin in live-cell and in wash-free conditions using fluorogenic and chemogenetic targeting of HaloTag fusion proteins.
Collapse
Affiliation(s)
- Sylvestre P J T Bachollet
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Cyril Addi
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, CNRS UMR3691, Sorbonne Université, 75005, Paris, France
| | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Blaise Dumat
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
26
|
Wilkovitsch M, Haider M, Sohr B, Herrmann B, Klubnick J, Weissleder R, Carlson JCT, Mikula H. A Cleavable C 2-Symmetric trans-Cyclooctene Enables Fast and Complete Bioorthogonal Disassembly of Molecular Probes. J Am Chem Soc 2020; 142:19132-19141. [PMID: 33119297 PMCID: PMC7662912 DOI: 10.1021/jacs.0c07922] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Bioorthogonal chemistry is bridging the divide between static chemical connectivity and the dynamic physiologic regulation of molecular state, enabling in situ transformations that drive multiple technologies. In spite of maturing mechanistic understanding and new bioorthogonal bond-cleavage reactions, the broader goal of molecular ON/OFF control has been limited by the inability of existing systems to achieve both fast (i.e., seconds to minutes, not hours) and complete (i.e., >99%) cleavage. To attain the stringent performance characteristics needed for high fidelity molecular inactivation, we have designed and synthesized a new C2-symmetric trans-cyclooctene linker (C2TCO) that exhibits excellent biological stability and can be rapidly and completely cleaved with functionalized alkyl-, aryl-, and H-tetrazines, irrespective of click orientation. By incorporation of C2TCO into fluorescent molecular probes, we demonstrate highly efficient extracellular and intracellular bioorthogonal disassembly via omnidirectional tetrazine-triggered cleavage.
Collapse
Affiliation(s)
- Martin Wilkovitsch
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Maximilian Haider
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Barbara Sohr
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Barbara Herrmann
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Jenna Klubnick
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jonathan C. T. Carlson
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Cancer
Center, Massachusetts General Hospital and
Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
27
|
Li H, Conde J, Guerreiro A, Bernardes GJL. Tetrazine Carbon Nanotubes for Pretargeted In Vivo “Click‐to‐Release” Bioorthogonal Tumour Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He Li
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - João Conde
- Instituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa Av. Prof. Egas Moniz 1649-028 Lisboa Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa Av. Prof. Egas Moniz 1649-028 Lisboa Portugal
| | - Gonçalo J. L. Bernardes
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Instituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa Av. Prof. Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
28
|
Cao D, Zhu L, Liu Z, Lin W. Through bond energy transfer (TBET)-based fluorescent chemosensors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Bojtár M, Németh K, Domahidy F, Knorr G, Verkman A, Kállay M, Kele P. Conditionally Activatable Visible-Light Photocages. J Am Chem Soc 2020; 142:15164-15171. [PMID: 32786783 PMCID: PMC7472520 DOI: 10.1021/jacs.0c07508] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The proof of concept for conditionally
activatable photocages is
demonstrated on a new vinyltetrazine-derivatized coumarin. The tetrazine
form is disabled in terms of light-induced cargo release, however,
bioorthogonal transformation of the modulating tetrazine moiety results
in fully restored photoresponsivity. Irradiation of such a “click-armed”
photocage with blue light leads to fast and efficient release of a
set of caged model species, conjugated via various linkages. Live-cell
applicability of the concept was also demonstrated by the conditional
release of a fluorogenic probe using mitochondrial pretargeting.
Collapse
Affiliation(s)
- Márton Bojtár
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Krisztina Németh
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Farkas Domahidy
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Gergely Knorr
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary.,Faculty of Chemistry and Earth Sciences, Friedrich-Schiller-Universität Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - András Verkman
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter Kele
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
30
|
Li H, Conde J, Guerreiro A, Bernardes GJL. Tetrazine Carbon Nanotubes for Pretargeted In Vivo "Click-to-Release" Bioorthogonal Tumour Imaging. Angew Chem Int Ed Engl 2020; 59:16023-16032. [PMID: 32558207 PMCID: PMC7540421 DOI: 10.1002/anie.202008012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/26/2022]
Abstract
The bioorthogonal inverse‐electron‐demand Diels–Alder (IEDDA) cleavage reaction between tetrazine and trans‐cyclooctene (TCO) is a powerful way to control the release of bioactive agents and imaging probes. In this study, a pretargeted activation strategy using single‐walled carbon nanotubes (SWCNTs) that bear tetrazines (TZ@SWCNTs) and a TCO‐caged molecule was used to deliver active effector molecules. To optimize a turn‐on signal by using in vivo fluorescence imaging, we developed a new fluorogenic near‐infrared probe that can be activated by bioorthogonal chemistry and image tumours in mice by caging hemicyanine with TCO (tHCA). With our pretargeting strategy, we have shown selective doxorubicin prodrug activation and instantaneous fluorescence imaging in living cells. By combining a tHCA probe and a pretargeted bioorthogonal approach, real‐time, non‐invasive tumour visualization with a high target‐to‐background ratio was achieved in a xenograft mice tumour model. The combined advantages of enhanced stability, kinetics and biocompatibility, and the superior pharmacokinetics of tetrazine‐functionalised SWCNTs could allow application of targeted bioorthogonal decaging approaches with minimal off‐site activation of fluorophore/drug.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - João Conde
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
31
|
Buckle T, van der Wal S, van Willigen DM, Aalderink G, KleinJan GH, van Leeuwen FW. Fluorescence background quenching as a means to increase Signal to Background ratio - a proof of concept during Nerve Imaging. Theranostics 2020; 10:9890-9898. [PMID: 32863966 PMCID: PMC7449926 DOI: 10.7150/thno.46806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 01/15/2023] Open
Abstract
Introduction: Adequate signal to background ratios are critical for the implementation of fluorescence-guided surgery technologies. While local tracer administrations help to reduce the chance of systemic side effects, reduced spatial migration and non-specific tracer diffusion can impair the discrimination between the tissue of interest and the background. To combat background signals associated with local tracer administration, we explored a pretargeting concept aimed at quenching non-specific fluorescence signals. The efficacy of this concept was evaluated in an in vivo neuronal tracing set-up. Methods: Neuronal tracing was achieved using a wheat germ agglutinin (WGA) lectin. functionalized with an azide-containing Cy5 dye (N3-Cy5-WGA). A Cy7 quencher dye (Cy7-DBCO) was subsequently used to yield Cy7-Cy5-WGA, a compound wherein the Cy5 emission is quenched by Förster resonance energy transfer to Cy7. The photophysical properties of N3-Cy5-WGA and Cy7-Cy5-WGA were evaluated together with deactivation kinetics in situ, in vitro (Schwannoma cell culture), ex vivo (muscle tissue from mice; used for dose optimization), and in vivo (nervus ischiadicus in THY-1 YFP mice). Results:In situ, conjugation of Cy7-DBCO to N3-Cy5-WGA resulted in >90% reduction of the Cy5 fluorescence signal intensity at 30 minutes after addition of the quencher. In cells, pretargeting with the N3-Cy5-WGA lectin yielded membranous staining, which could efficiently be deactivated by Cy7-DBCO over the course of 30 minutes (91% Cy5 signal decrease). In ex vivo muscle tissue, administration of Cy7-DBCO at the site where N3-Cy5-WGA was injected induced 80-90% quenching of the Cy5-related signal after 10-20 minutes, while the Cy7-related signal remained stable over time. In vivo,Cy7-DBCO effectively quenched the non-specific background signal up to 73% within 5 minutes, resulting in a 50% increase in the signal-to-background ratio between the nerve and injection site. Conclusion: The presented pretargeted fluorescence-quenching technology allowed fast and effective reduction of the background signal at the injection site, while preserving in vivo nerve visualization. While this proof-of-principle study was focused on imaging of nerves using a fluorescent WGA-lectin, the same concept could in the future also apply to applications such as sentinel node imaging.
Collapse
|
32
|
Galeta J, Dzijak R, Obořil J, Dračínský M, Vrabel M. A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging. Chemistry 2020; 26:9945-9953. [PMID: 32339341 PMCID: PMC7497033 DOI: 10.1002/chem.202001290] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 12/20/2022]
Abstract
Fluorescent probes that light-up upon reaction with complementary bioorthogonal reagents are superior tools for no-wash fluorogenic bioimaging applications. In this work, a thorough study is presented on a set of seventeen structurally diverse coumarin-tetrazine probes that produce fluorescent dyes with exceptional turn-on ratios when reacted with trans-cyclooctene (TCO) and bicyclononyne (BCN) dienophiles. In general, formation of the fully aromatic pyridazine-containing dyes resulting from the reaction with BCN was found superior in terms of fluorogenicity. However, evaluation of the probes in cellular imaging experiments revealed that other factors, such as reaction kinetics and good cell permeability, prevail over the fluorescence turn-on properties. The best compound identified in this study showed excellent performance in live cell-labeling experiments and enabled no-wash fluorogenic imaging on a timescale of seconds.
Collapse
Affiliation(s)
- Juraj Galeta
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Jan Obořil
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| |
Collapse
|
33
|
Abstract
Recent advances in super-resolution (sub-diffraction limited) microscopy have yielded remarkable insights into the nanoscale architecture and behavior of cells. In addition to the capacity to provide sub 100 nm resolution, these technologies offer unique quantitative opportunities with particular relevance to platelet and megakaryocyte biology. In this review, we provide a short introduction to modern super-resolution microscopy, its applications in the field of platelet and megakaryocyte biology, and emerging quantitative approaches which will allow for unprecedented insights into the biology of these unique cell types.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Birmingham, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham , UK
| |
Collapse
|
34
|
Non-cytotoxic photostable monomethine cyanine platforms: Combined paradigm of nucleic acid staining and in vivo imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Kormos A, Kern D, Egyed A, Söveges B, Németh K, Kele P. Microscope laser assisted photooxidative activation of bioorthogonal ClickOx probes. Chem Commun (Camb) 2020; 56:5425-5428. [PMID: 32292970 DOI: 10.1039/d0cc01512a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A photoactivatable fluorogenic tetrazine-rhodaphenothiazine probe was synthesized and studied in light-assisted, bioorthogonal labeling schemes. Experimental results revealed that the bioorthogonally conjugated probe efficiently sensitizes 1O2 generation upon illumination with green or orange light and undergoes self-oxidation leading to an intensely fluorescent sulfoxide product. An added value of the present probe is that it is also suitable for STED super-resolution microscopy using a 660 nm depletion laser.
Collapse
Affiliation(s)
- Attila Kormos
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest H-1117, Hungary.
| | | | | | | | | | | |
Collapse
|
36
|
Németh E, Knorr G, Németh K, Kele P. A Bioorthogonally Applicable, Fluorogenic, Large Stokes-Shift Probe for Intracellular Super-Resolution Imaging of Proteins. Biomolecules 2020; 10:biom10030397. [PMID: 32143419 PMCID: PMC7175155 DOI: 10.3390/biom10030397] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/02/2023] Open
Abstract
Herein, we present the synthesis and application of a fluorogenic, large Stokes-shift (>100 nm), bioorthogonally conjugatable, membrane-permeable tetrazine probe, which can be excited at common laser line 488 nm and detected at around 600 nm. The applied design enabled improved fluorogenicity in the orange/red emission range, thus efficient suppression of background and autofluorescence upon imaging biological samples. Moreover, unlike our previous advanced probes, it does not require the presence of special target platforms or microenvironments to achieve similar fluorogenicity and can be generally applied, e.g., on translationally bioorthogonalized proteins. Live-cell labeling schemes revealed that the fluorogenic probe is suitable for specific labeling of intracellular proteins, site-specifically modified with a cyclooctynylated, non-canonical amino acid, even under no-wash conditions. Furthermore, the probe was found to be applicable in stimulated emission depletion (STED) super-resolution microscopy imaging using a 660 nm depletion laser. Probably the most salient feature of this new probe is that the large Stokes-shift allows dual-color labeling schemes of cellular structures using distinct excitation and the same detection wavelengths for the combined probes, which circumvents chromatic aberration related problems.
Collapse
|
37
|
Werther P, Yserentant K, Braun F, Kaltwasser N, Popp C, Baalmann M, Herten D, Wombacher R. Live-Cell Localization Microscopy with a Fluorogenic and Self-Blinking Tetrazine Probe. Angew Chem Int Ed Engl 2020; 59:804-810. [PMID: 31638314 PMCID: PMC6972563 DOI: 10.1002/anie.201906806] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/11/2019] [Indexed: 11/15/2022]
Abstract
Recent developments in fluorescence microscopy call for novel small-molecule-based labels with multiple functionalities to satisfy different experimental requirements. A current limitation in the advancement of live-cell single-molecule localization microscopy is the high excitation power required to induce blinking. This is in marked contrast to the minimal phototoxicity required in live-cell experiments. At the same time, quality of super-resolution imaging depends on high label specificity, making removal of excess dye essential. Approaching both hurdles, we present the design and synthesis of a small-molecule label comprising both fluorogenic and self-blinking features. Bioorthogonal click chemistry ensures fast and highly selective attachment onto a variety of biomolecular targets. Along with spectroscopic characterization, we demonstrate that the probe improves quality and conditions for regular and single-molecule localization microscopy on live-cell samples.
Collapse
Affiliation(s)
- Philipp Werther
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Klaus Yserentant
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22969120HeidelbergGermany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 26769120HeidelbergGermany
- Fakultät für BiowissenschaftenRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 23469120HeidelbergGermany
| | - Felix Braun
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22969120HeidelbergGermany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 26769120HeidelbergGermany
| | - Nicolai Kaltwasser
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Christoph Popp
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Mathis Baalmann
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Dirk‐Peter Herten
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22969120HeidelbergGermany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 26769120HeidelbergGermany
- Institute of Cardiovascular Sciences & School of ChemistryCollege of Medical and Dental SciencesMedical SchoolUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsUK
| | - Richard Wombacher
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| |
Collapse
|
38
|
Egyed A, Kormos A, Söveges B, Németh K, Kele P. Bioothogonally applicable, π-extended rhodamines for super-resolution microscopy imaging for intracellular proteins. Bioorg Med Chem 2020; 28:115218. [DOI: 10.1016/j.bmc.2019.115218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023]
|
39
|
Werther P, Yserentant K, Braun F, Kaltwasser N, Popp C, Baalmann M, Herten D, Wombacher R. Live‐Cell Localization Microscopy with a Fluorogenic and Self‐Blinking Tetrazine Probe. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philipp Werther
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Klaus Yserentant
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Fakultät für BiowissenschaftenRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 234 69120 Heidelberg Germany
| | - Felix Braun
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Nicolai Kaltwasser
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Christoph Popp
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Mathis Baalmann
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Dirk‐Peter Herten
- Physikalisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- CellNetworks, Single-Molecule SpectroscopyRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Institute of Cardiovascular Sciences & School of ChemistryCollege of Medical and Dental SciencesMedical SchoolUniversity of Birmingham Edgbaston Birmingham B15 2TT UK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and Nottingham Midlands UK
| | - Richard Wombacher
- Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|
40
|
Liu HS, Ishizuka T, Kawaguchi M, Nishii R, Kataoka H, Xu Y. A Nucleoside Derivative 5-Vinyluridine (VrU) for Imaging RNA in Cells and Animals. Bioconjug Chem 2019; 30:2958-2966. [DOI: 10.1021/acs.bioconjchem.9b00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong-shan Liu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
41
|
Kim E, Koo H. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem Sci 2019; 10:7835-7851. [PMID: 31762967 PMCID: PMC6855312 DOI: 10.1039/c9sc03368h] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, click chemistry has provided important advances in biomedical research fields. Particularly, copper-free click chemistry including strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse-electron-demand Diels-Alder (iEDDA) reactions enable fast and specific chemical conjugation under aqueous conditions without the need for toxic catalysts. Click chemistry has resulted in a change of paradigm, showing that artificial chemical reactions can occur on cell surfaces, in cell cytosol, or within the body, which is not easy with most other chemical reactions. Click chemistry in vitro allows specific labelling of cellular target proteins and studying of drug target engagement with drug surrogates in live cells. Furthermore, cellular membrane lipids and proteins could be selectively labelled with click chemistry in vitro and cells could be adhered together using click chemistry. Click chemistry in vivo enables efficient and effective molecular imaging and drug delivery for diagnosis and therapy. Click chemistry ex vivo can be used to develop molecular tools to understand tissue development, diagnosis of diseases, and therapeutic monitoring. Overall, the results from research to date suggest that click chemistry has emerged as a valuable tool in biomedical fields as well as in organic chemistry.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Molecular Science and Technology , Ajou University , Suwon 16499 , Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea .
- Department of Biomedicine & Health Sciences , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea
- Catholic Photomedicine Research Institute , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea
| |
Collapse
|
42
|
Beliu G, Kurz AJ, Kuhlemann AC, Behringer-Pliess L, Meub M, Wolf N, Seibel J, Shi ZD, Schnermann M, Grimm JB, Lavis LD, Doose S, Sauer M. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy. Commun Biol 2019; 2:261. [PMID: 31341960 PMCID: PMC6642216 DOI: 10.1038/s42003-019-0518-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Genetic code expansion (GCE) technology allows the specific incorporation of functionalized noncanonical amino acids (ncAAs) into proteins. Here, we investigated the Diels-Alder reaction between trans-cyclooct-2-ene (TCO)-modified ncAAs, and 22 known and novel 1,2,4,5-tetrazine-dye conjugates spanning the entire visible wavelength range. A hallmark of this reaction is its fluorogenicity - the tetrazine moiety can elicit substantial quenching of the dye. We discovered that photoinduced electron transfer (PET) from the excited dye to tetrazine is the main quenching mechanism in red-absorbing oxazine and rhodamine derivatives. Upon reaction with dienophiles quenching interactions are reduced resulting in a considerable increase in fluorescence intensity. Efficient and specific labeling of all tetrazine-dyes investigated permits super-resolution microscopy with high signal-to-noise ratio even at the single-molecule level. The different cell permeability of tetrazine-dyes can be used advantageously for specific intra- and extracellular labeling of proteins and highly sensitive fluorescence imaging experiments in fixed and living cells.
Collapse
Affiliation(s)
- Gerti Beliu
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas J. Kurz
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander C. Kuhlemann
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lisa Behringer-Pliess
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Natalia Wolf
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zhen-Dan Shi
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Martin Schnermann
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147 USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147 USA
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
43
|
Siegl SJ, Galeta J, Dzijak R, Vázquez A, Del Río‐Villanueva M, Dračínský M, Vrabel M. An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions. Chembiochem 2019; 20:886-890. [PMID: 30561884 PMCID: PMC6471176 DOI: 10.1002/cbic.201800711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Indexed: 02/06/2023]
Abstract
Inverse-electron-demand Diels-Alder (iEDDA) cycloaddition between 1,2,4,5-tetrazines and strained dienophiles belongs among the most popular bioconjugation reactions. In addition to its fast kinetics, this cycloaddition can be tailored to produce fluorescent products from non-fluorescent starting materials. Here we show that even the reaction intermediates formed in iEDDA cycloaddition can lead to the formation of new types of fluorophores. The influence of various substituents on their photophysical properties and the generality of the approach with use of various trans-cyclooctene derivatives were studied. Model bioimaging experiments demonstrate the application potential of fluorogenic iEDDA cycloaddition.
Collapse
Affiliation(s)
- Sebastian J. Siegl
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Juraj Galeta
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Arcadio Vázquez
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Miguel Del Río‐Villanueva
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| |
Collapse
|
44
|
Wang L, Frei MS, Salim A, Johnsson K. Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy. J Am Chem Soc 2019; 141:2770-2781. [PMID: 30550714 DOI: 10.1021/jacs.8b11134] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Super-resolution fluorescence microscopy is a powerful tool to visualize biomolecules and cellular structures at the nanometer scale. Employing these techniques in living cells has opened up the possibility to study dynamic processes with unprecedented spatial and temporal resolution. Different physical approaches to super-resolution microscopy have been introduced over the last years. A bottleneck to apply these approaches for live-cell imaging has become the availability of appropriate fluorescent probes that can be specifically attached to biomolecules. In this Perspective, we discuss the role of small-molecule fluorescent probes for live-cell super-resolution microscopy and the challenges that need to be overcome for their generation. Recent trends in the development of labeling strategies are reviewed together with the required chemical and spectroscopic properties of the probes. Finally, selected examples of the use of small-molecule fluorescent probes in live-cell super-resolution microscopy are given.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany
| | - Michelle S Frei
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Aleksandar Salim
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Kai Johnsson
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| |
Collapse
|
45
|
Neumann K, Gambardella A, Bradley M. The Emerging Role of Tetrazines in Drug-Activation Chemistries. Chembiochem 2019; 20:872-876. [PMID: 30394615 DOI: 10.1002/cbic.201800590] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Traditionally, prodrug activation has been limited to enzymatic triggers or gross physiological aberrations, such as pH, that offer low selectivity and control over dosage. In recent years, the field of prodrug activation chemistry has been transformed by the use of bioorthogonal reactions that can be carried out under biological conditions at sub-millimolar concentrations, with the tetrazine-mediated inverse electron demand Diels-Alder reaction amongst the most recognised. Their high reaction rates, chemoselectivity and excellent biocompatibility make tetrazines ideal small molecules for activating prodrugs. Recently the tetrazine moiety has been used as a prodrug for a pyridazine thus broadening the scope of prodrug systems. This article discusses the concept of using tetrazines as small-molecule activators for prodrugs, and provides an overview of tetrazine-based prodrug systems, with a particular focus on the recently reported prodrug-prodrug activation strategy.
Collapse
Affiliation(s)
- Kevin Neumann
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.,Present address: Laboratory of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Alessia Gambardella
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Mark Bradley
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
46
|
Abstract
Fluorogenic probes efficiently reduce non-specific background signals, which often results in highly improved signal-to-noise ratios.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| | - Péter Kele
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| |
Collapse
|
47
|
Söveges B, Imre T, Póti ÁL, Sok P, Kele Z, Alexa A, Kele P, Németh K. Tracking down protein-protein interactions via a FRET-system using site-specific thiol-labeling. Org Biomol Chem 2018; 16:5756-5763. [PMID: 29947400 DOI: 10.1039/c8ob00742j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Förster resonance energy transfer is among the most popular tools to follow protein-protein interactions. Although limited to certain cases, site-specific fluorescent labeling of proteins via natural functions by means of chemical manipulations can redeem laborious protein engineering techniques. Herein we report on the synthesis of a heterobifunctional tag and its use in site-specific protein labeling studies aiming at exploring protein-protein interactions. The oxadiazole-methylsulfonyl functionality serves as a thiol specific warhead that enables easy and selective installation of fluorescent labels through a bioorthogonal motif. Mitogen activated protein kinase (MAPK14) and its substrate mitogen activated protein kinase activated kinase (MAPKAP2) or its docking motif, a 22 amino acid-long peptide fragment, were labeled with a donor and an acceptor, respectively. Evolution of strong FRET signals upon protein-protein interactions supported the specific communication between the partners. Using an efficient FRET pair allowed the estimation of dissociation constants for protein-protein and peptide-protein interactions (145 nM and 240 nM, respectively).
Collapse
Affiliation(s)
- B Söveges
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Organic Chemistry, Chemical Biology Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - T Imre
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Instrumentation Center, MS Metabolomics Research Group, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Á L Póti
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Enzymology, Protein Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - P Sok
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Enzymology, Protein Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Zs Kele
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Organic Chemistry, Chemical Biology Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - A Alexa
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Enzymology, Protein Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - P Kele
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Organic Chemistry, Chemical Biology Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - K Németh
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Organic Chemistry, Chemical Biology Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
48
|
van der Wal S, de Korne CM, Sand LGL, van Willigen DM, Hogendoorn PCW, Szuhai K, van Leeuwen FWB, Buckle T. Bioorthogonally Applicable Fluorescence Deactivation Strategy for Receptor Kinetics Study and Theranostic Pretargeting Approaches. Chembiochem 2018; 19:1758-1765. [PMID: 29863301 PMCID: PMC6120557 DOI: 10.1002/cbic.201800229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 12/14/2022]
Abstract
The availability of a receptor for theranostic pretargeting approaches was assessed by use of a new click-chemistry-based deactivatable fluorescence-quenching concept. The efficacy was evaluated in a cell-based model system featuring both membranous (available) and internalized (unavailable) receptor fractions of the clinically relevant receptor chemokine receptor 4 (CXCR4). Proof of concept was achieved with a deactivatable tracer consisting of a CXCR4-specific peptide functionalized with a Cy5 dye bearing a chemoselective azide handle (N3 -Cy5-AcTZ14011). Treatment with a Cy7 quencher dye (Cy7-DBCO) resulted in optically silent Cy7-[click]-Cy5-AcTZ14011. In situ, a >90 % FRET-based reduction of the signal intensity of N3 -Cy5-AcTZ14011 [KD =(222.4±25.2) nm] was seen within minutes after quencher addition. In cells, discrimination between the membranous and the internalized receptor fraction could be achieved through quantitative assessment of quenching/internalization kinetics. Similar evaluation of an activatable tracer variant based on the same targeting moiety (Cy5-S-S-Cy3-AcTZ14011) was unsuccessful in vitro. As such, using the described deactivatable approach to screen membrane receptors and their applicability in receptor-(pre-)targeted theranostics can become straightforward.
Collapse
Affiliation(s)
- Steffen van der Wal
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Clarize M. de Korne
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Laurens G. L. Sand
- Department of PathologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
- Bone Marrow Transplantation and Cell TherapySt. Jude Children's Research Hospital262 Danny Thomas PlaceMemphisTN38105USA
| | - Danny M. van Willigen
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Pancras C. W. Hogendoorn
- Department of PathologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Karoly Szuhai
- Department of Molecular Cell BiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
- Division of Molecular PathologyNetherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL)Plesmanlaan 1211066 CXAmsterdamThe Netherlands
| |
Collapse
|
49
|
Petrovics R, Söveges B, Egyed A, Knorr G, Kormos A, Imre T, Török G, Zeke A, Kocsmár É, Lotz G, Kele P, Németh K. A rapid and concise setup for the fast screening of FRET pairs using bioorthogonalized fluorescent dyes. Org Biomol Chem 2018; 16:2997-3005. [PMID: 29629719 DOI: 10.1039/c8ob00213d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the most popular means to follow interactions between bio(macro)molecules is Förster resonance energy transfer (FRET). There is large interest in widening the selection of fluorescent FRET pairs especially in the region of the red/far red range, where minimal autofluorescence is encountered. A set of bioorthogonally applicable fluorescent dyes, synthesized recently in our lab, were paired (Cy3T/Cy5T; Cy1A/Cy3T and Cy1A/CBRD1A) based on their spectral characteristics in order to test their potential in FRET applications. For fast elaboration of the selected pairs we have created a bioorthogonalized platform based on complementary 17-mer DNA oligomers. The cyclooctynylated strands were modified nearly quantitatively with the fluorophores via bioorthogonal chemistry steps, using azide- (Cy1; CBRD1) or tetrazine-modified (Cy3; Cy5) dyes. Reactions were followed by capillary electrophoresis using a method specifically developed for this project. FRET efficiencies of the fluorescent dye pairs were compared both in close proximity (5' and 3' matched) and at larger distance (5' and 5' matched). The specificity of FRET signals was further elaborated by denaturation and competition studies. Cy1A/Cy3T and Cy1A/CBRD1A introduced here as novel FRET pairs are highly recommended for FRET applications based on the significant changes in fluorescence intensities of the donor and acceptor peaks. Application of one of the FRET pairs was demonstrated in live cells, transfected with labeled oligos. Furthermore, the concise installation of the dyes allows for efficient fluorescence modification of any selected DNA strands as was demonstrated in the construction of Cy3T labeled oligomers, which were used in the FISH-based detection of Helicobacter pylori.
Collapse
Affiliation(s)
- Réka Petrovics
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Institute of Organic Chemistry, "Lendület" Chemical Biology Research Group, H-1117 Budapest, Magyar tudósok krt. 2, Hungary.
| | - Bianka Söveges
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Institute of Organic Chemistry, "Lendület" Chemical Biology Research Group, H-1117 Budapest, Magyar tudósok krt. 2, Hungary.
| | - Alexandra Egyed
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Institute of Organic Chemistry, "Lendület" Chemical Biology Research Group, H-1117 Budapest, Magyar tudósok krt. 2, Hungary.
| | - Gergely Knorr
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Institute of Organic Chemistry, "Lendület" Chemical Biology Research Group, H-1117 Budapest, Magyar tudósok krt. 2, Hungary.
| | - Attila Kormos
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Institute of Organic Chemistry, "Lendület" Chemical Biology Research Group, H-1117 Budapest, Magyar tudósok krt. 2, Hungary.
| | - Tímea Imre
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Instrumentation Center, MS Metabolomics Research Group, H-1117 Budapest, Magyar tudósok krt. 2, Hungary
| | - György Török
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Institute of Enzymology, Molecular Cell Biology Research Group, H-1117 Budapest, Magyar tudósok krt. 2, Hungary
| | - András Zeke
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Institute of Enzymology, Protein Research Group, H-1117 Budapest, Magyar tudósok krt. 2, Hungary
| | - Éva Kocsmár
- 2nd Department of Pathology, Semmelweis University, Budapest H-1091 Üllői str. 93, Hungary
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest H-1091 Üllői str. 93, Hungary
| | - Péter Kele
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Institute of Organic Chemistry, "Lendület" Chemical Biology Research Group, H-1117 Budapest, Magyar tudósok krt. 2, Hungary.
| | - Krisztina Németh
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Institute of Organic Chemistry, "Lendület" Chemical Biology Research Group, H-1117 Budapest, Magyar tudósok krt. 2, Hungary.
| |
Collapse
|