1
|
He YT, Geng XY, Chang MY, Li FF, Du XL, Chen BZ, Guo XD. Harnessing innovation in microneedle technology for Women's healthcare. J Control Release 2025; 382:113706. [PMID: 40220870 DOI: 10.1016/j.jconrel.2025.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/17/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Women's health management plays a crucial role in modern healthcare, encompassing the prevention, detection, and treatment of female diseases. However, existing technologies often face challenges, such as the invasiveness and discomfort associated with serological testing and injection-based therapies. Microneedles, as an emerging technology in biomedical engineering, demonstrate significant advantages. These micron-sized transdermal devices are applicable in a range of applications, from drug delivery to interstitial fluid sampling, and their painless, minimally invasive nature significantly enhances medication compliance. In recent years, microneedles have been widely utilized in women's health management, showing promising results in early disease prevention and subsequent treatment. Although there are reviews about microneedles applied in disease treatment management, few of them focus on the application of microneedles in the prevention and early detection of women's disease. Herein, we present a comprehensive overview of the current application status of microneedles in women's health management, with a special emphasis on their design and mechanism for disease prevention, and treatment in women. Finally, we discuss the advantages and limitations of microneedles in women's health management, and propose suggestions for future research direction.
Collapse
Affiliation(s)
- Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Yao Geng
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Yu Chang
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fei Fei Li
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Ling Du
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Zhuo Y, Wang F, Lv Q, Fang C. Dissolving microneedles: Drug delivery and disease treatment. Colloids Surf B Biointerfaces 2025; 250:114571. [PMID: 39983455 DOI: 10.1016/j.colsurfb.2025.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Traditional transdermal drug delivery methods are often plagued by technical inefficiencies, limited absorption, and the potential for adverse reactions. In contrast, dissolving microneedles (DMNs) offer a novel approach to transdermal drug delivery by effectively merging the benefits of subcutaneous injection with those of conventional transdermal methods. These microneedles dissolve completely within the body, releasing the encapsulated antigen without leaving any sharp remnants. Furthermore, DMNs overcome the limitations of traditional transdermal patches, which are restricted to delivering only small molecule drugs. By facilitating the efficient transdermal absorption of large molecules, DMNs enable precise and painless disease treatment. With advantages such as effective delivery, safety, controllable administration, DMNs hold significant promise in the fields of disease treatment and drug delivery. This article explores the substrate materials, preparation techniques, characterization methods, and current applications of DMNs. We also discuss the current challenges and obstacles faced by DMNs. Finally, we outline potential future research directions for DMNs, aiming to provide a theoretical reference for researchers involved in their preparation and application.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; College of Intelligent Agriculture, Yulin Normal University, Yulin 537000, China
| | - Fangyue Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin 537000, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China.
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|
3
|
Wang X, Li A, Wang A, He M, Zeng Y, Li D, Rong R, Liu J. Exosome-Based Vaccines: Pioneering New Frontiers in Combating Infectious Diseases and Cancer. SMALL METHODS 2025:e2402222. [PMID: 40195907 DOI: 10.1002/smtd.202402222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Exosomes, small extracellular vesicles with lipid bilayer membranes, play a crucial role in cellular communication and can transfer diverse biological cargo, including proteins, lipids, and nucleic acids, from donor to recipient cells. Exosomes possess diverse immunological properties, such as antigen delivery and immune activation, along with excellent drug delivery capabilities, making them promising candidates for vaccine development. For different diseases, exosome-based vaccines can be designed as therapeutic or prophylactic vaccines by leveraging cellular immunity or humoral immunity. With the emergence of precision medicine, exosome-based personalized vaccines demonstrate exceptional therapeutic potential. This review systematically introduces the sources, biogenesis mechanisms, and components of exosomes and describes their regulatory roles in the immune system. Subsequently, the preparation, administration, and personalized therapy of exosome-based vaccines are discussed. Finally, the applications and clinical trials of exosome-based vaccines in the fields of anti-infection and anti-tumor therapies are particularly highlighted, with an analysis of the potential challenges in future vaccine development.
Collapse
Affiliation(s)
- Xuejun Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ailing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanye Zeng
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| |
Collapse
|
4
|
Nguyen HX. Beyond the Needle: Innovative Microneedle-Based Transdermal Vaccination. MEDICINES (BASEL, SWITZERLAND) 2025; 12:4. [PMID: 39982324 PMCID: PMC11843882 DOI: 10.3390/medicines12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Vaccination represents a critical preventive strategy in the current global healthcare system, serving as an indispensable intervention against diverse pathogenic threats. Although conventional immunization relies predominantly on hypodermic needle-based administration, this method carries substantial limitations, including needle-associated fear, bloodborne pathogen transmission risks, occupational injuries among healthcare workers, waste management issues, and dependence on trained medical personnel. Microneedle technology has emerged as an innovative vaccine delivery system, offering convenient, effective, and minimally invasive administration. These microscale needle devices facilitate targeted antigen delivery to epidermal and dermal tissues, where abundant populations of antigen-presenting cells, specifically Langerhans and dermal dendritic cells, provide robust immunological responses. Multiple research groups have extensively investigated microneedle-based vaccination strategies. This transdermal delivery technique offers several advantages, notably circumventing cold-chain requirements and enabling self-administration. Numerous preclinical investigations and clinical trials have demonstrated the safety profile, immunogenicity, and patient acceptance of microneedle-mediated vaccine delivery across diverse immunization applications. This comprehensive review examines the fundamental aspects of microneedle-based immunization, including vaccination principles, transcutaneous immunization strategies, and microneedle-based transdermal delivery-including classifications, advantages, and barriers. Furthermore, this review addresses critical technical considerations, such as treatment efficacy, application methodologies, wear duration, dimensional optimization, manufacturing processes, regulatory frameworks, and sustainability considerations, followed by an analysis of the future perspective of this technology.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| |
Collapse
|
5
|
Choi IJ, Cha HR, Kwon D, Kang A, Kim JS, Kim J, Choi JE, Chung HW, Park S, Shim DH, Kim TH, Baek SK, Na WS, Lee JM, Park JH. Development and Evaluation of Five-in-One Vaccine Microneedle Array Patch for Diphtheria, Tetanus, Pertussis, Hepatitis B, and Haemophilus influenzae Type b: Immunological Efficacy and Long-Term Stability. Pharmaceutics 2024; 16:1631. [PMID: 39771609 PMCID: PMC11677855 DOI: 10.3390/pharmaceutics16121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background and objectives: The development of a five-in-one vaccine microneedle patch (five-in-one MN patch) aims to address challenges in administering vaccines against Diphtheria (DT), Tetanus (TT), Pertussis (wP), Hepatitis B (HBsAg), and Haemophilus influenzae type b (Hib). Combining multiple vaccines into a single patch offers a novel solution to improve vaccine accessibility, stability, and delivery efficiency, particularly in resource-limited settings. Methods: The five-in-one MN patch consists of four distinct microneedle arrays: DT and TT vaccines are coated together on one array, while wP, HepB, and Hib vaccines are coated separately on individual arrays. The patch was tested for long-term stability (12 months at 25 °C) and evaluated for immunogenicity in mice and minipigs. Antibody titers were measured using ELISA to compare immune responses between microneedle-based delivery and traditional intramuscular (IM) injection. Results: The five-in-one MN patch demonstrated stable antigenicity for up to 12 months at room temperature. In animal studies, the patch induced antibody titers comparable to traditional IM injections for all vaccines. Notably, immunogenic responses to Pertussis and Haemophilus influenzae type b vaccines via microneedles were reported for the first time. The patch facilitated the simultaneous yet independent delivery of vaccines, preserving their immunogenicity without interference. Conclusions: The five-in-one MN patch represents a significant advancement in vaccine delivery by enabling stable, minimally invasive, and efficient immunization. Its innovative design addresses the critical limitations of combination vaccines and has the potential to enhance vaccine accessibility in low- and middle-income countries. Future studies will focus on optimizing patch application techniques and evaluating broader clinical applicability.
Collapse
Affiliation(s)
- In-Jeong Choi
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Republic of Korea; (I.-J.C.); (A.K.); (J.K.)
| | - Hye-Ran Cha
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.-R.C.)
| | - Danbi Kwon
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Republic of Korea; (I.-J.C.); (A.K.); (J.K.)
| | - Aram Kang
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Republic of Korea; (I.-J.C.); (A.K.); (J.K.)
| | - Ji Seok Kim
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Republic of Korea; (I.-J.C.); (A.K.); (J.K.)
| | - Jooyoung Kim
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Republic of Korea; (I.-J.C.); (A.K.); (J.K.)
| | - Jeong-Eun Choi
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Republic of Korea; (I.-J.C.); (A.K.); (J.K.)
| | - Hyeon Woo Chung
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.-R.C.)
| | - Sunghoon Park
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.-R.C.)
| | - Doo Hee Shim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.-R.C.)
| | | | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Republic of Korea; (I.-J.C.); (A.K.); (J.K.)
| | - Woon-Sung Na
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.-R.C.)
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Zhang J, Liu Y, Guan Y, Zhang Y. A single-injection vaccine providing protection against two HPV types. J Mater Chem B 2024; 12:11237-11250. [PMID: 39373456 DOI: 10.1039/d4tb00606b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Prophylactic human papillomavirus (HPV) vaccines against cervical cancer were successfully developed; however, challenges such as high cost and low compliance still remain to be overcome. In addition, because many HPV types can cause cervical cancer, antigens of multiple HPV types are needed to achieve broad protection. In this study, a bivalent single-injection HPV vaccine was designed in which virus-like particles (VLPs) of HPV 16 L1 and HPV 18 L1 were used as antigens. A recently developed drug carrier that uses tannic acid/polyethylene glycol films as the erodible layer was employed to accomplish multiple pulsatile releases of the antigens. Monovalent single-injection vaccines for HPV 16 and HPV 18 were first designed. A bivalent single-injection vaccine was then obtained by simply mixing the two monovalent vaccines. The bivalent vaccine provided protection against both HPV types. More importantly, it elicited both humoral and cellular immune responses as potent as those elicited by the corresponding multiple dose vaccine because of their similar release profile of antigens. Cross-reactivity was observed between HPV 16 and 18 in terms of cellular immune responses, while no cross-reactivity was found in terms of humoral immune responses. Note that other multivalent single-injection vaccines could be designed in the same way. These vaccines are expected to help prevent cervical cancer because of their broad protection, enhanced compliance and lowered vaccination cost.
Collapse
Affiliation(s)
- Jianchen Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu Liu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
7
|
Li Z, Wang Y, Zhang R, Liu Z, Chang Z, Deng Y, Qi X. Microneedles-Based Theranostic Platform: From the Past to the Future. ACS NANO 2024; 18:23876-23893. [PMID: 39177073 DOI: 10.1021/acsnano.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fully integrated theranostic devices are highly esteemed in clinical applications, offering immense potential in real-time disease monitoring and personalized care. Microneedles (MNs), as innovative and wearable devices, boast important advantages in biosensing and therapy, thus holding significant promise in the advancement of diagnostic and therapeutic platforms. Encouragingly, advancements in electrochemical sensing technology, micronano fabrication, and biocompatible materials are propelling momentum for MNs-based closed-loop systems, enhancing detection capabilities, biocompatibility, and cost-effectiveness. Moreover, the notable progress in integrating MN chips with other biochips signifies a frontier for growth. Successful clinical trials in target molecule monitoring and drug delivery domains herald excellent clinical translational prospects for the aforementioned theranostic platform. Finally, we delineate both challenges and opportunities in the development of integrated diagnostic and therapeutic MN systems, including continuous monitoring, intelligent control algorithms, safety, and regulatory considerations.
Collapse
Affiliation(s)
- Ziyang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhan Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiwei Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Rai CI, Kuo TH, Chen YC. Novel Administration Routes, Delivery Vectors, and Application of Vaccines Based on Biotechnologies: A Review. Vaccines (Basel) 2024; 12:1002. [PMID: 39340032 PMCID: PMC11436249 DOI: 10.3390/vaccines12091002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Traditional vaccines can be classified into inactivated vaccines, live attenuated vaccines, and subunit vaccines given orally or via intramuscular (IM) injection or subcutaneous (SC) injection for the prevention of infectious diseases. Recently, recombinant protein vaccines, DNA vaccines, mRNA vaccines, and multiple/alternative administering route vaccines (e.g., microneedle or inhalation) have been developed to make vaccines more secure, effective, tolerable, and universal for the public. In addition to preventing infectious diseases, novel vaccines have currently been developed or are being developed to prevent or cure noninfectious diseases, including cancer. These vaccine platforms have been developed using various biotechnologies such as viral vectors, nanoparticles, mRNA, recombination DNA, subunit, novel adjuvants, and other vaccine delivery systems. In this review, we will explore the development of novel vaccines applying biotechnologies, such as vaccines based on novel administration routes, vaccines based on novel vectors, including viruses and nanoparticles, vaccines applied for cancer prevention, and therapeutic vaccines.
Collapse
Affiliation(s)
- Chung-I Rai
- Department of Cosmetic Science, Vanung University, 1, Van Nung Road, Chung-Li City 320676, Taiwan;
| | - Tsu-Hsiang Kuo
- Department of Rehabilitation Science, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan;
- Department of Biotechnology and Pharmaceutical Management, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan
| | - Yuan-Chuan Chen
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan
- Department of Medical Technology, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Pourmansouri Z, Malekkhatabi A, Toolabi M, Akbari M, Shahbazi MA, Rostami A. Anti-Nociceptive Effect of Sufentanil Polymeric Dissolving Microneedle on Male Mice by Hot Plate Technique. IRANIAN BIOMEDICAL JOURNAL 2024; 28:192-205. [PMID: 38946039 PMCID: PMC11444482 DOI: 10.61186/ibj.4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Despite the widespread use of opioids to manage severe pain, its systemic administration results in side effects. Among the subcutaneous and transdermal drug delivery systems developed to deal with adverse effects, microneedles have drawn attention due to their rapid action, high drug bioavailability, and improved permeability. Sufentanil (SUF) is an effective injectable opioid for treating severe pain. In this study, we investigated the analgesic effects of SUF using dissolvable microneedles. Methods SUF polymeric dissolvable microneedles were constructed through the mold casting method and characterized by SEM and FTIR analysis. Its mechanical strength was also investigated using a texture analyzer. Fluorescence microscopy was applied in vitro to measure the penetration depth of microneedle arrays. Irritation and microchannel closure time, drug release profile, and hemocompatibility test were conducted for the validation of microneedle efficiency. Hot plate test was also used to investigate the analgesic effect of microneedle in an animal model. Results Local administration of SUF via dissolving microneedles had an effective analgesic impact. One hour after administration, there was no significant difference between the subcutaneous and the microneedle groups, and the mechanical properties were within acceptable limits. Conclusion Microneedling is an effective strategy in immediate pain relief compared to the traditional methods.
Collapse
Affiliation(s)
- Zeinab Pourmansouri
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Atefeh Malekkhatabi
- Department of Pharmaceutical Biomaterials, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Mahsa Akbari
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Mohammad Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Ali Rostami
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Limcharoen B, Wanichwecharungruang S, Kröger M, Sansureerungsikul T, Schleusener J, Lena Klein A, Banlunara W, Meinke MC, Darvin ME. Dissolvable microneedles in the skin: Determination the impact of barrier disruption and dry skin on dissolution. Eur J Pharm Biopharm 2024; 199:114303. [PMID: 38657740 DOI: 10.1016/j.ejpb.2024.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Dissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo. After DMNs application, comprehensive investigations including dermoscopy, stereomicroscope, skin hydration, transepidermal water loss (TEWL), optical coherence tomography (OCT), reflectance confocal laser scanning microscopy (RCLSM), confocal Raman micro-spectroscopy (CRM), two-photon tomography combined with fluorescence lifetime imaging (TPT-FLIM), histology, and scanning electron microscopy (SEM) were conducted. The 400 µm long DMNs successfully penetrated the skin to depths of ≈200 µm for dry skin and ≈200-290 µm for barrier-disrupted skin. Although DMNs fully inserted into all skin conditions, their dissolution rates were high in barrier-disrupted and low in dry skin, as observed through stereomicroscopy and TPT-FLIM. The dissolved polymer exhibited a more significant expansion in barrier-disrupted skin compared to intact skin, with the smallest increase observed in dry skin. Elevated TEWL and reduced skin hydration levels were evident in barrier-disrupted and dry skins compared to intact skin. OCT and RCLSM revealed noticeable skin indentation and pronounced microchannel areas, particularly in barrier-disrupted and dry skin. Additional confirmation of DMN effects on the skin and substance dissolution was obtained through histology, SEM, and CRM techniques. This study highlights the impact of skin condition on DMN effectiveness, emphasizing the importance of considering dissolvability and dissolution rates of needle materials, primarily composed of hyaluronic acid, for optimizing DMN-based drug delivery.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Marius Kröger
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Titiporn Sansureerungsikul
- Mineed Technology, 928 Block 28, Building D, Chulalongkorn 7 Alley, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Johannes Schleusener
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Anna Lena Klein
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| | - Maxim E Darvin
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| |
Collapse
|
11
|
G Popova P, Chen SP, Liao S, Sadarangani M, Blakney AK. Clinical perspective on topical vaccination strategies. Adv Drug Deliv Rev 2024; 208:115292. [PMID: 38522725 DOI: 10.1016/j.addr.2024.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Vaccination is one of the most successful measures in modern medicine to combat diseases, especially infectious diseases, and saves millions of lives every year. Vaccine design and development remains critical and involves many aspects, including the choice of platform, antigen, adjuvant, and route of administration. Topical vaccination, defined herein as the introduction of a vaccine to any of the three layers of the human skin, has attracted interest in recent years as an alternative vaccination approach to the conventional intramuscular administration because of its potential to be needle-free and induce a superior immune response against pathogens. In this review, we describe recent progress in developing topical vaccines, highlight progress in the development of delivery technologies for topical vaccines, discuss potential factors that might impact the topical vaccine efficacy, and provide an overview of the current clinical landscape of topical vaccines.
Collapse
Affiliation(s)
- Petya G Popova
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sunny P Chen
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suiyang Liao
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pediatrics, University of British Columbia, 4480 Oak St, Vancouver, BC V6H 0B3, Canada
| | - Anna K Blakney
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
12
|
Du H, Yang J, Li M, Xia Y, Li Y, Zhu J, Zhang L, Tao J. Microneedle-assisted percutaneous delivery of methotrexate-loaded nanoparticles enabling sustained anti-inflammatory effects in psoriasis therapy. J Mater Chem B 2024; 12:2618-2627. [PMID: 38376394 DOI: 10.1039/d3tb02643d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Methotrexate (MTX) is one of the first-line drugs used for the treatment of moderate to severe psoriasis. However, low bioavailability and systemic side effects of traditional oral and injectable MTX greatly limit its clinical application. Delivering MTX using dissolving microneedles (MNs) into psoriasis-like skin lesion could improve the in situ therapeutic effects with higher bioavailability and less side effects. Here, we propose a novel therapeutic approach for psoriasis involving MN-assisted percutaneous delivery of chitosan-coated hollow mesoporous silica nanoparticles containing MTX (MTX@HMSN/CS). The MTX@HMSN/CS-loaded MNs were strong enough to successfully penetrate the psoriasiform thickened epidermis, allowing MTX@HMSN/CS to be accurately delivered to the site of skin lesion following the rapid dissolution of MNs. MTX was then released continuously from HMSN/CS for at least one week to maintain effective therapeutic drug concentration for skin lesion with long-term anti-proliferative and anti-inflammatory effects. Incubation with MTX@HMSN/CS not only inhibited the proliferation of human immortalized keratinocytes (HaCaT cells), but also significantly reduced the expression of proinflammatory cytokines and chemokines. In addition, MTX@HMSN/CS-loaded MNs showed better efficacy in alleviating psoriasis-like skin inflammation than MTX-loaded MNs at the same dose. Compared to psoriasiform mice treated with 15.8 μg MTX-loaded MNs every day, 47.4 μg MTX@HMSN/CS-loaded MNs reduce the frequency of treatment to once every 3 days and achieve comparable amelioration. Therefore, MTX@HMSN/CS loaded MNs are a promising treatment strategy for psoriasis due to their durability, efficacy, convenience, and safety in relieving psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Hongyao Du
- Hubei Engineering Research Center for Skin Repair and Theranostics, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Jing Yang
- Hubei Engineering Research Center for Skin Repair and Theranostics, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Mo Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China.
| | - Yuting Xia
- Hubei Engineering Research Center for Skin Repair and Theranostics, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Yan Li
- Hubei Engineering Research Center for Skin Repair and Theranostics, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China.
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China.
| | - Juan Tao
- Hubei Engineering Research Center for Skin Repair and Theranostics, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| |
Collapse
|
13
|
Liu G, Yang J, Zhang K, Wu H, Yan H, Yan Y, Zheng Y, Zhang Q, Chen D, Zhang L, Zhao Z, Zhang P, Yang G, Chen H. Recent progress on the development of bioinspired surfaces with high aspect ratio microarray structures: From fabrication to applications. J Control Release 2024; 367:441-469. [PMID: 38295991 DOI: 10.1016/j.jconrel.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Surfaces with high aspect ratio microarray structures can implement sophisticated assignment in typical fields including microfluidics, sensor, biomedicine, et al. via regulating their deformation or the material properties. Inspired by natural materials and systems, for example sea cockroaches, water spiders, cacti, lotus leaves, rice leaves, and cedar leaves, many researchers have focused on microneedle functional surface studies. When the surface with high aspect ratio microarray structures is stimulated by the external fields, such as optical, electric, thermal, magnetic, the high aspect ratio microarray structures can undergo hydrophilic and hydrophobic switching or shape change, which may be gifted the surfaces with the ability to perform complex task, including directional liquid/air transport, targeted drug delivery, microfluidic chip sensing. In this review, the fabrication principles of various surfaces with high aspect ratio microarray structures are classified and summarized. Mechanisms of liquid manipulation on hydrophilic/hydrophobic surfaces with high aspect ratio microarray structures are clarified based on Wenzel model, Cassie model, Laplace pressure theories and so on. Then the intelligent control strategies have been demonstrated. The applications in microfluidic, drug delivery, patch sensors have been discussed. Finally, current challenges and new insights of future prospects for dynamic manipulation of liquid/air based on biomimetic surface with high aspect ratio microarray structures are also addressed.
Collapse
Affiliation(s)
- Guang Liu
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Jiajun Yang
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Kaiteng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Hongting Wu
- Zhongtong Bus Holding Co., Ltd, Liaocheng, Shandong, China
| | - Haipeng Yan
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yu Yan
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yingdong Zheng
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Qingxu Zhang
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Dengke Chen
- College of Transportation, Ludong University, Yantai, Shandong, China
| | - Liwen Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Zehui Zhao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Pengfei Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Guang Yang
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China.
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
| |
Collapse
|
14
|
Gholap AD, Gupta J, Kamandar P, Bhowmik DD, Rojekar S, Faiyazuddin M, Hatvate NT, Mohanto S, Ahmed MG, Subramaniyan V, Kumarasamy V. Harnessing Nanovaccines for Effective Immunization─A Special Concern on COVID-19: Facts, Fidelity, and Future Prospective. ACS Biomater Sci Eng 2024; 10:271-297. [PMID: 38096426 DOI: 10.1021/acsbiomaterials.3c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Nanotechnology has emerged as a transformative pathway in vaccine research and delivery. Nanovaccines, encompassing lipid and nonlipid formulations, exhibit considerable advantages over traditional vaccine techniques, including enhanced antigen stability, heightened immunogenicity, targeted distribution, and the potential for codelivery with adjuvants or immune modulators. This review provides a comprehensive overview of the latest advancements and applications of lipid and non-lipid-based nanovaccines in current vaccination strategies for immunization. The review commences by outlining the fundamental concepts underlying lipid and nonlipid nanovaccine design before delving into the diverse components and production processes employed in their development. Subsequently, a comparative analysis of various nanocarriers is presented, elucidating their distinct physicochemical characteristics and impact on the immune response, along with preclinical and clinical studies. The discussion also highlights how nanotechnology enables the possibility of personalized and combined vaccination techniques, facilitating the creation of tailored nanovaccines to meet the individual patient needs. The ethical aspects concerning the use of nanovaccines, as well as potential safety concerns and public perception, are also addressed. The study underscores the gaps and challenges that must be overcome before adopting nanovaccines in clinical practice. This comprehensive analysis offers vital new insights into lipid and nonlipid nanovaccine status. It emphasizes the significance of continuous research, collaboration among interdisciplinary experts, and regulatory measures to fully unlock the potential of nanotechnology in enhancing immunization and ensuring a healthier, more resilient society.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Juhi Gupta
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Pallavi Kamandar
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Deblina D Bhowmik
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Faiyazuddin
- Department of Pharmaceutics, School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India
| | - Navnath T Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru 575018, Karnataka, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Mao Y, Zhang X, Sun Y, Shen Z, Zhong C, Nie L, Shavandi A, Yunusov KE, Jiang G. Fabrication of lidocaine-loaded polymer dissolving microneedles for rapid and prolonged local anesthesia. Biomed Microdevices 2024; 26:9. [PMID: 38189892 DOI: 10.1007/s10544-024-00695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
There is an urgent need for research into effective interventions for pain management to improve patients' life quality. Traditional needle and syringe injection were used to administer the local anesthesia. However, it causes various discomforts, ranging from brief stings to trypanophobia and denial of medical operations. In this study, a dissolving microneedles (MNs) system made of composite matrix materials of polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and sodium hyaluronate (HA) was successfully developed for the loading of lidocaine hydrochloride (LidH). The morphology, size and mechanical properties of the MNs were also investigated. After the insertion of MNs into the skin, the matrix at the tip of the MNs was swelled and dissolved by absorption of interstitial fluid, leading to a rapid release of loaded LidH from MNs' tips. And the LidH in the back patching was diffused into deeper skin tissue through microchannels created by MNs insertion, forming a prolonged anesthesia effect. In addition, the back patching of MNs could be acted as a drug reservoir to form a prolonged local anesthesia effect. The results showed that LidH MNs provided a superior analgesia up to 8 h, exhibiting a rapid and long-lasting analgesic effects. Additionally, tissue sectioning and in vitro cytotoxicity tests indicated that the MNs patch we developed had a favorable biosafety profile.
Collapse
Affiliation(s)
- Yanan Mao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Xiufeng Zhang
- Department of Colorectal Surgery, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhong Shen
- Department of Colorectal Surgery, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Chao Zhong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China.
| |
Collapse
|
16
|
Chung YH, Ortega-Rivera OA, Volckaert BA, Jung E, Zhao Z, Steinmetz NF. Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis. Proc Natl Acad Sci U S A 2023; 120:e2221859120. [PMID: 37844250 PMCID: PMC10614828 DOI: 10.1073/pnas.2221859120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/25/2023] [Indexed: 10/18/2023] Open
Abstract
Metastatic cancer accounts for 90% of all cancer-related deaths and continues to be one of the toughest challenges in cancer treatment. A growing body of data indicates that S100A9, a major regulator of inflammation, plays a central role in cancer progression and metastasis, particularly in the lungs, where S100A9 forms a premetastatic niche. Thus, we developed a vaccine against S100A9 derived from plant viruses and virus-like particles. Using multiple tumor mouse models, we demonstrate the effectiveness of the S100A9 vaccine candidates in preventing tumor seeding within the lungs and outgrowth of metastatic disease. The elicited antibodies showed high specificity toward S100A9 without cross-reactivity toward S100A8, another member of the S100A family. When tested in metastatic mouse models of breast cancer and melanoma, the vaccines significantly reduced lung tumor nodules after intravenous challenge or postsurgical removal of the primary tumor. Mechanistically, the vaccines reduce the levels of S100A9 within the lungs and sera, thereby increasing the expression of immunostimulatory cytokines with antitumor function [(interleukin) IL-12 and interferonγ] while reducing levels of immunosuppressive cytokines (IL-10 and transforming growth factorβ). This also correlated with decreased myeloid-derived suppressor cell populations within the lungs. This work has wide-ranging impact, as S100A9 is overexpressed in multiple cancers and linked with poor prognosis in cancer patients. The data presented lay the foundation for the development of therapies and vaccines targeting S100A9 to prevent metastasis.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
| | | | | | - Eunkyeong Jung
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Zhongchao Zhao
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
- Department of Radiology, University of California, San Diego, CA92093
- Institute for Materials Discovery and Design, University of California, San Diego, CA92093
- Center for Nano-ImmunoEngineering, University of California, San Diego, CA92093
- Center for Engineering in Cancer, University of California, San Diego, CA92093
| |
Collapse
|
17
|
Lee J, Beukema M, Zaplatynska OA, O'Mahony C, Hinrichs WLJ, Huckriede ALW, Bouwstra JA, van der Maaden K. Efficient fabrication of thermo-stable dissolving microneedle arrays for intradermal delivery of influenza whole inactivated virus vaccine. Biomater Sci 2023; 11:6790-6800. [PMID: 37622228 DOI: 10.1039/d3bm00377a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Dissolving microneedle arrays (dMNAs) can be used to deliver vaccines via the intradermal route. Fabrication of dMNAs using centrifugation is the most common preparation method of dMNAs, but it results in a substantial loss of antigens. In order to solve the issue of antigen waste, we engineered an automatic dispensing system for dMNA preparation. Here, we report on the fabrication of influenza whole inactivated virus (WIV) vaccine-loaded dMNAs (WIV dMNAs) by using the automatic dispensing system. Prior to the dispensing process, polydimethylsiloxane (PDMS) moulds were treated with oxygen plasma to increase surface hydrophilicity. WIV dMNAs were prepared with 1% (w/v) trehalose and pullulan (50 : 50 weight ratio). During the dispensing process, reduced pressure was applied to the PDMS mould via a vacuum chamber to make microneedle cavities airless. After producing dMNAs, WIV was quantified and 1.9 μg of WIV was loaded per dMNA, of which 1.3 μg was in the microneedle tips. Compared to the centrifugation method, this automatic dispensing system resulted in a 95% reduction of antigen waste. A hemagglutination assay confirmed that WIV dMNA maintained the stability of the antigen for at least four weeks of storage, even at room temperature or at 37 °C. The WIV dMNAs displayed 100% penetration efficiency in human skin, and 83% of the microneedle volume was dissolved in the skin within 10 minutes. In a vaccination study, mice immunised with WIV dMNAs showed similar IgG levels to those that received WIV intramuscularly. In conclusion, using the automatic dispensing system for dMNA production strongly reduced antigen waste and yielded dMNAs with excellent physical, mechanical, and immunological properties.
Collapse
Affiliation(s)
- Jihui Lee
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Martin Beukema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Oliwia A Zaplatynska
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Conor O'Mahony
- Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| | - Anke L W Huckriede
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Koen van der Maaden
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
- Department of Immunology, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| |
Collapse
|
18
|
Jiang X, Chen P, Niu W, Fang R, Chen H, An Y, Wang W, Jiang C, Ye J. Preparation and evaluation of dissolving tofacitinib microneedles for effective management of rheumatoid arthritis. Eur J Pharm Sci 2023; 188:106518. [PMID: 37419290 DOI: 10.1016/j.ejps.2023.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Dissolving microneedles have become a focal point in transdermal drug delivery. They have the advantages of painless, rapid drug delivery and high drug utilization. The purpose of this study was to evaluate the efficacy of Tofacitinib citrate microneedles in arthritis treatment, assess the dose-effect relationship, and determine the cumulative penetration during percutaneous injection. In this study, block copolymer was utilized to prepare the dissolving microneedles. The microneedles were characterized through skin permeation tests, dissolution tests, treatment effect evaluations, and Western blot experiments. In vivo dissolution experiments revealed that the soluble microneedles completely dissolved within 2.5 min, while in vitro skin permeation experiments demonstrated the highest unit area of skin permeation of the microneedles reached 2118.13 mg/cm2. The inhibition of Tofacitinib microneedle on joint swelling in rats with Rheumatoid arthritis was better than Ketoprofen and close to that of oral Tofacitinib. Western-blot experiment comfirmed the Tofacitinib microneedle's inhibitory effect on the JAK-STAT3 pathway in rats with Rheumatoid arthritis. In conclusion, Tofacitinib microneedles effectively inhibited arthritis in rats, demonstrating potential for Rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Xiumei Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Pu Chen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenxin Niu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Renhua Fang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Hang Chen
- Collaborative Innovation Center of Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue An
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Weiqing Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Changzhao Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Jincui Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
19
|
Liu X, Song H, Sun T, Wang H. Responsive Microneedles as a New Platform for Precision Immunotherapy. Pharmaceutics 2023; 15:1407. [PMID: 37242649 PMCID: PMC10220742 DOI: 10.3390/pharmaceutics15051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microneedles are a well-known transdermal or transdermal drug delivery system. Different from intramuscular injection, intravenous injection, etc., the microneedle delivery system provides unique characteristics for immunotherapy administration. Microneedles can deliver immunotherapeutic agents to the epidermis and dermis, where immune cells are abundant, unlike conventional vaccine systems. Furthermore, microneedle devices can be designed to respond to certain endogenous or exogenous stimuli including pH, reactive oxygen species (ROS), enzyme, light, temperature, or mechanical force, thereby allowing controlled release of active compounds in the epidermis and dermis. In this way, multifunctional or stimuli-responsive microneedles for immunotherapy could enhance the efficacy of immune responses to prevent or mitigate disease progression and lessen systemic adverse effects on healthy tissues and organs. Since microneedles are a promising drug delivery system for accurate delivery and controlled drug release, this review focuses on the progress of using reactive microneedles for immunotherapy, especially for tumors. Limitations of current microneedle system are summarized, and the controllable administration and targeting of reactive microneedle systems are examined.
Collapse
Affiliation(s)
- Xinyang Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haohao Song
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tairan Sun
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou 075100, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Feng YX, Hu H, Wong YY, Yao X, He ML. Microneedles: An Emerging Vaccine Delivery Tool and a Prospective Solution to the Challenges of SARS-CoV-2 Mass Vaccination. Pharmaceutics 2023; 15:pharmaceutics15051349. [PMID: 37242591 DOI: 10.3390/pharmaceutics15051349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Vaccination is an effective measure to prevent infectious diseases. Protective immunity is induced when the immune system is exposed to a vaccine formulation with appropriate immunogenicity. However, traditional injection vaccination is always accompanied by fear and severe pain. As an emerging vaccine delivery tool, microneedles overcome the problems associated with routine needle vaccination, which can effectively deliver vaccines rich in antigen-presenting cells (APCs) to the epidermis and dermis painlessly, inducing a strong immune response. In addition, microneedles have the advantages of avoiding cold chain storage and have the flexibility of self-operation, which can solve the logistics and delivery obstacles of vaccines, covering the vaccination of the special population more easily and conveniently. Examples include people in rural areas with restricted vaccine storage facilities and medical professionals, elderly and disabled people with limited mobility, infants and young children afraid of pain. Currently, in the late stage of fighting against COVID-19, the main task is to increase the coverage of vaccines, especially for special populations. To address this challenge, microneedle-based vaccines have great potential to increase global vaccination rates and save many lives. This review describes the current progress of microneedles as a vaccine delivery system and its prospects in achieving mass vaccination against SARS-CoV-2.
Collapse
Affiliation(s)
- Ya-Xiu Feng
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Huan Hu
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yu-Yuen Wong
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xi Yao
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Liang He
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- CityU Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
21
|
Aljabali AAA, Bashatwah RM, Obeid MA, Mishra V, Mishra Y, Serrano-Aroca Á, Lundstrom K, Tambuwala MM. Current state of, prospects for, and obstacles to mRNA vaccine development. Drug Discov Today 2023; 28:103458. [PMID: 36427779 DOI: 10.1016/j.drudis.2022.103458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Given their superior efficacy, rapid engineering, low-cost manufacturing, and safe delivery prospects, mRNA vaccines offer an intriguing alternative to conventional vaccination technologies. Several mRNA vaccine platforms targeting infectious diseases and various types of cancer have exhibited beneficial results both in vivo and in vitro. Issues related to mRNA stability and immunogenicity have been addressed. Current mRNA vaccines can generate robust immune responses, without being constrained by the major histocompatibility complex (MHC) haplotype of the recipient. Given that mRNA vaccinations are the only transient genetic information carriers, they are also safe. In this review, we provide an update and overview on mRNA vaccines, including their current state, and the problems that have prevented them from being used in more general therapeutic ways.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan.
| | - Rasha M Bashatwah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan.
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia 46001, Spain
| | | | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
22
|
Chung YH, Volckaert BA, Steinmetz NF. Development of a Modular NTA:His Tag Viral Vaccine for Co-delivery of Antigen and Adjuvant. Bioconjug Chem 2023; 34:269-278. [PMID: 36608270 PMCID: PMC10545220 DOI: 10.1021/acs.bioconjchem.2c00601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for vaccines that are effective, but quickly produced. Of note, vaccines with plug-and-play capabilities that co-deliver antigen and adjuvant to the same cell have shown remarkable success. Our approach of utilizing a nitrilotriacetic acid (NTA) histidine (His)-tag chemistry with viral adjuvants incorporates both of these characteristics: plug-and-play and co-delivery. We specifically utilize the cowpea mosaic virus (CPMV) and the virus-like particles from bacteriophage Qβ as adjuvants and bind the model antigen ovalbumin (OVA). Successful binding of the antigen to the adjuvant/carrier was verified by SDS-PAGE, western blot, and ELISA. Immunization in C57BL/6J mice demonstrates that with Qβ - but not CPMV - there is an improved antibody response against the target antigen using the Qβ-NiNTA:His-OVA versus a simple admixture of antigen and adjuvant. Antibody isotyping also shows that formulation of the vaccines can alter T helper biases; while the Qβ-NiNTA:His-OVA particle produces a balanced Th1/Th2 bias the admixture was strongly Th2. In a mouse model of B16F10-OVA, we further demonstrate improved survival and slower tumor growth in the vaccine groups compared to controls. The NiNTA:His chemistry demonstrates potential for rapid development of future generation vaccines enabling plug-and-play capabilities with effectiveness boosted by co-delivery to the same cell.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Britney A Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
23
|
Wijesundara YH, Herbert FC, Trashi O, Trashi I, Brohlin OR, Kumari S, Howlett T, Benjamin CE, Shahrivarkevishahi A, Diwakara SD, Perera SD, Cornelius SA, Vizuet JP, Balkus KJ, Smaldone RA, De Nisco NJ, Gassensmith JJ. Carrier gas triggered controlled biolistic delivery of DNA and protein therapeutics from metal-organic frameworks. Chem Sci 2022; 13:13803-13814. [PMID: 36544734 PMCID: PMC9710232 DOI: 10.1039/d2sc04982a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
The efficacy and specificity of protein, DNA, and RNA-based drugs make them popular in the clinic; however, these drugs are often delivered via injection, requiring skilled medical personnel, and producing biohazardous waste. Here, we report an approach that allows for their controlled delivery, affording either a burst or slow release without altering the formulation. We show that when encapsulated within zeolitic-imidazolate framework eight (ZIF-8), the biomolecules are stable in powder formulations and can be inoculated with a low-cost, gas-powered "MOF-Jet" into living animal and plant tissues. Additionally, their release profiles can be modulated through judicious selection of the carrier gas used in the MOF-Jet. Our in vitro and in vivo studies reveal that when CO2 is used, it creates a transient and weakly acidic local environment that causes a near-instantaneous release of the biomolecules through an immediate dissolution of ZIF-8. Conversely, when air is used, ZIF-8 biodegrades slowly, releasing the biomolecules over a week. This is the first example of controlled-biolistic delivery of biomolecules using ZIF-8, which provides a powerful tool for fundamental and applied science research.
Collapse
Affiliation(s)
- Yalini H. Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Fabian C. Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Olivia R. Brohlin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Thomas Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Candace E. Benjamin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Arezoo Shahrivarkevishahi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Shashini D. Diwakara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Sachini D. Perera
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Samuel A. Cornelius
- Department of Biological Sciences, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Juan P. Vizuet
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Kenneth J. Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Ronald A. Smaldone
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Nicole J. De Nisco
- Department of Biological Sciences, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA,Department of Biomedical Engineering, The University of Texas at Dallas800 West Campbel RdRichardson 75080TXUSA
| |
Collapse
|
24
|
Xu G, Mao Y, Jiang T, Gao B, He B. Structural design strategies of microneedle-based vaccines for transdermal immunity augmentation. J Control Release 2022; 351:907-922. [DOI: 10.1016/j.jconrel.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
|
25
|
Kim Y, Min HS, Shin J, Nam J, Kang G, Sim J, Yang H, Jung H. Film-trigger applicator (FTA) for improved skin penetration of microneedle using punching force of carboxymethyl cellulose film acting as a microneedle applicator. Biomater Res 2022; 26:53. [PMID: 36199121 PMCID: PMC9533547 DOI: 10.1186/s40824-022-00302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Dissolving microneedle (DMN) is a transdermal drug delivery system that creates pore in the skin and directly deliver drug through the pore channel. DMN is considered as one of the promising system alternatives to injection because it is minimally invasive and free from needle-related issues. However, traditional DMN patch system has limitations of incomplete insertion and need of complex external devices. Here, we designed film-trigger applicator (FTA) system that successfully delivered DMN inside the skin layers using fracture energy of carboxymethyl cellulose (CMC) film via micropillars. We highlighted advantages of FTA system in DMN delivery compared with DMN patch, including that the film itself can act as DMN applicator. Methods FTA system consists of DMNs fabricated on the CMC film, DMN array holder having holes aligned to DMN array, and micropillars prepared using general purpose polystyrene. We analyzed punching force on the film by micropillars until the film puncture point at different CMC film concentrations and micropillar diameters. We also compared drug delivery efficiency using rhodamine B fluorescence diffusion and skin penetration using optical coherence tomography (OCT) of FTA with those of conventional DMN patch. In vivo experiments were conducted to evaluate DMN delivery efficiency using C57BL/6 mice and insulin as a model drug. Results FTA system showed enhanced delivery efficiency compared with that of the existing DMN patch system. We concluded CMC film as a successful DMN applicator as it showed enhanced DMN penetration in OCT and rhodamine B diffusion studies. Further, we applied FTA on shaved mouse dorsal skin and observed successful skin penetration. The FTA group showed higher level of plasma insulin in vivo than that of the DMN patch group. Conclusions FTA system consisting of simple polymer film and micropillars showed enhanced DMN delivery than that of the existing DMN patch system. Because FTA works with simple finger force without sticky patch and external devices, FTA is a novel and promising platform to overcome the limitations of conventional microneedle patch delivery system; we suggest FTA as a next generation applicator for microneedle application in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00302-5.
Collapse
Affiliation(s)
- Youseong Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hye Su Min
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jiwoo Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jeehye Nam
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Geonwoo Kang
- Juvic Inc, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| | - Jeeho Sim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Huisuk Yang
- Juvic Inc, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea. .,Juvic Inc, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea.
| |
Collapse
|
26
|
Ou BS, Saouaf OM, Baillet J, Appel EA. Sustained delivery approaches to improving adaptive immune responses. Adv Drug Deliv Rev 2022; 187:114401. [PMID: 35750115 DOI: 10.1016/j.addr.2022.114401] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
The immune system is one of the most important, complex biological networks regulating and protecting human health. Its precise modulation can prevent deadly infections and fight cancer. Accordingly, prophylactic vaccines and cancer immunotherapies are some of the most powerful technologies to protect against potential dangers through training of the immune system. Upon immunization, activation and maturation of B and T cells of the adaptive immune system are necessary for development of proper humoral and cellular protection. Yet, the exquisite organization of the immune system requires spatiotemporal control over the exposure of immunomodulatory signals. For example, while the human immune system has evolved to develop immunity to natural pathogenic infections that often last for weeks, current prophylactic vaccination technologies only expose the immune system to immunomodulatory signals for hours to days. It has become clear that leveraging sustained release technologies to prolong immunogen and adjuvant exposure can increase the potency, durability, and quality of adaptive immune responses. Over the past several years, tremendous breakthroughs have been made in the design of novel biomaterials such as nanoparticles, microparticles, hydrogels, and microneedles that can precisely control and the presentation of immunomodulatory signals to the immune system. In this review, we discuss relevant sustained release strategies and their corresponding benefits to cellular and humoral responses.
Collapse
Affiliation(s)
- Ben S Ou
- Department of Bioengineering, Stanford University, Stanford 94305, USA
| | - Olivia M Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA; University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac 33600, France
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford 94305, USA; Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA; Department of Pediatrics (Endocrinology), Stanford University, Stanford 94305, USA; ChEM-H Institute, Stanford University, Stanford CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Mane A, Limaye S, Patil L, Kulkarni-Kale U. Genetic variability in minor capsid protein (L2 gene) of human papillomavirus type 16 among Indian women. Med Microbiol Immunol 2022; 211:153-160. [PMID: 35552511 PMCID: PMC9101989 DOI: 10.1007/s00430-022-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
Human papillomavirus type 16 (HPV-16) is the predominant genotype worldwide associated with invasive cervical cancer and hence remains as the focus for diagnostic development and vaccine research. L2, the minor capsid protein forms the packaging unit for the HPV genome along with the L1 protein and is primarily associated with transport of genomic DNA to the nucleus. Unlike L1, L2 is known to elicit cross-neutralizing antibodies and thus becomes a suitable candidate for pan-HPV prophylactic vaccine development. In the present study, a total of 148 cervical HPV-16 isolates from Indian women were analyzed by PCR-directed sequencing, phylogenetic analysis and in silico immunoinformatics tools to determine the L2 variations that may impact the immune response and oncogenesis. Ninety-one SNPs translating to 35 non-synonymous amino acid substitutions were observed, of these 16 substitutions are reported in the Indian isolates for the first time. T245A, L266F, S378V and S384A substitutions were significantly associated with high-grade cervical neoplastic status. Multiple substitutions were observed in samples from high-grade cervical neoplastic status as compared to those from normal cervical status (p = 0.027), specifically from the D3 sub-lineage. It was observed that substitution T85A was part of both, B and T cell epitopes recognized by MHC-I molecules; T245A was common to B and T cell epitopes recognized by MHC-II molecules and S122P/A was common to the region recognized by both MHC-I and MHC-II molecules. These findings reporting L2 protein substitutions have implications on cervical oncogenesis and design of next-generation L2-based HPV vaccines.
Collapse
Affiliation(s)
- Arati Mane
- ICMR - National AIDS Research Institute, '73' G Block, MIDC, Bhosari, Pune, 411026, India.
| | - Sanket Limaye
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, India
| | - Linata Patil
- ICMR - National AIDS Research Institute, '73' G Block, MIDC, Bhosari, Pune, 411026, India
| | | |
Collapse
|
28
|
Kulkarni D, Damiri F, Rojekar S, Zehravi M, Ramproshad S, Dhoke D, Musale S, Mulani AA, Modak P, Paradhi R, Vitore J, Rahman MH, Berrada M, Giram PS, Cavalu S. Recent Advancements in Microneedle Technology for Multifaceted Biomedical Applications. Pharmaceutics 2022; 14:1097. [PMID: 35631683 PMCID: PMC9144002 DOI: 10.3390/pharmaceutics14051097] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Microneedle (MNs) technology is a recent advancement in biomedical science across the globe. The current limitations of drug delivery, like poor absorption, low bioavailability, inadequate skin permeation, and poor biodistribution, can be overcome by MN-based drug delivery. Nanotechnology made significant changes in fabrication techniques for microneedles (MNs) and design shifted from conventional to novel, using various types of natural and synthetic materials and their combinations. Nowadays, MNs technology has gained popularity worldwide in biomedical research and drug delivery technology due to its multifaceted and broad-spectrum applications. This review broadly discusses MN's types, fabrication methods, composition, characterization, applications, recent advancements, and global intellectual scenarios.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India;
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh;
| | - Dipali Dhoke
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India;
| | - Shubham Musale
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Ashiya A. Mulani
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Pranav Modak
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Roshani Paradhi
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Jyotsna Vitore
- National Institute of Pharmaceutical Education and Research, Ahmedabad 160062, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|