1
|
Cillari R, Acúrcio RC, Barateiro A, Florindo HF, Mauro N, Cavallaro G. Harnessing sulfur-doped carbon nanodots conjugated with IDO inhibitors act as a dual-mode breast cancer immunotherapy. J Control Release 2025; 381:113575. [PMID: 40024343 DOI: 10.1016/j.jconrel.2025.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/10/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Fluorescent ultrasmall nanoparticles (d < 10 nm), such as carbon nanodots (CDs), are promising nanosystems for precision cancer therapy. Their optimal size allows them to diffuse within complex microenvironments, enabling drug delivery, imaging, and monitoring. Additionally, CDs can be engineered to hold inherent nanotoxicity toward cancer cells, overcoming multidrug resistance associated with conventional drugs. Nevertheless, cancer is a multifactorial disease where combinational strategies are most likely to tackle metastatic tumors and efficiently avoid recidivism. Therefore, developing multifunctional CDs that exhibit intrinsic nanotoxicity against cancer cells and drive effective antitumor immune responses is a promising approach to improving patients' response rates. Here, we developed an innovative nanosystem by conjugating N-,S-doped CDs with indoximod (IND) through a simple and cost-effective method. Our CDs-IND not only retained the advantages of bare CDs, including photoluminescence for self-tracking but also significantly controlled breast cancer progression in vivo following CDs-IND intratumoral (IT) and intravenous (IV) administration. Tumor microenvironment (TME) immune profiling revealed that CDs-IND reduced IDO expression and recruited NK, NKT, and T cells. This study underscores the potential of combining the inherent pharmacological properties of CDs with indoximod-mediated immunotherapy, offering a promising strategy for precision breast cancer treatment.
Collapse
Affiliation(s)
- Roberta Cillari
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo, Italy.
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon 1649-003, Portugal.
| | - Andreia Barateiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon 1649-003, Portugal.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon 1649-003, Portugal; CIBERONC, IISCIII, Madrid, Spain.
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo, Italy.
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo, Italy.
| |
Collapse
|
2
|
Itoo AM, Paul M, Jain N, Are V, Singh A, Ghosh B, Biswas S. Biotinylated platinum(IV)-conjugated graphene oxide nanoparticles for targeted chemo-photothermal combination therapy in breast cancer. BIOMATERIALS ADVANCES 2025; 168:214121. [PMID: 39577365 DOI: 10.1016/j.bioadv.2024.214121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Graphene oxide (GO) and GO-based nanocomposites are promising in drug delivery and photothermal therapy due to their exceptional near-infrared optical absorption and high specific surface area. In this study, we have effectively conjugated an oxaliplatin (IV) prodrug, PEGylated graphene oxide, and PEGylated biotin (PB) in a single platform for breast cancer treatment. This platform demonstrates promising prospects for targeted drug delivery and the synergistic application of photothermal-chemotherapy when exposed to NIR-laser irradiation. The resulting nanocomposite (GO(OX)PB (1/1/0.2) NPs) displayed an exceptionally large surface area, minimal particle size (195.7 nm), specific targeting capabilities, a high drug load capacity (43.56 %) and entrapment efficiency (89.48 %) and exhibit excellent photothermal conversion efficiency and photostability when exposed to NIR-laser irradiation (808 nm). The therapeutic effectiveness was assessed both in vitro and in vivo conditions employing human breast cancer cells (MCF-7), mouse mammary gland adenocarcinoma cells (4T1), and 4T1-Luc tumor-bearing mouse models. The findings demonstrated that GO(OX)PB (1/1/0.2) NPs (+L) were highly effective in causing significant cytotoxicity, G2/M phase cell cycle arrest, ROS generation, mitochondrial membrane depolarization, apoptosis, and photothermal effect. This resulted in a greater percentage of cell death compared to free OX, GO(OX)PEG (1/1/0.2) NPs (±L), and GO(OX)PB (1/1/0.2) NPs (-L). The in vivo therapeutic studies on 4T1-Luc tumor-bearing mice revealed that a combination of GO(OX)PB (1/1/0.2) NPs (+L) caused complete disappearance of the tumor, no tumor recurrence, prolonged survival, reduced lung metastasis, and mitigated nephrotoxicity. The serum and blood analysis demonstrated minimal systemic toxicity of GO(OX)PB (1/1/0.2) NPs. The developed nanoplatform, in this context, may serve as a potential nanomedicine to address conventional nephrotoxicity in breast cancer and prevent metastasis by combining chemo-photothermal therapy.
Collapse
Affiliation(s)
- Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Naitik Jain
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Varshini Are
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Ankita Singh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
3
|
Dey B, Kundu S, Sundara BK. Polymeric Nanostructures Revolutionizing Cervical Cancer: Diagnostics, Therapeutics, and Theranostics. BIONANOSCIENCE 2024; 14:3906-3933. [DOI: 10.1007/s12668-024-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 01/05/2025]
Abstract
AbstractCervical cancer is the fourth most common cancer among women. Despite recent advancements in diagnostics and therapeutics, this disease is still a formidable challenge to deal with. Conventional methods for detecting human papillomavirus infection and imaging the tissues face major hurdles due to a lack of signal specificity and obscured resolution respectively. Moreover, chemotherapeutics struggle against the development of multidrug resistance and rapid clearance. With their easily tunable properties, polymeric nanostructures present a promising avenue for rapid, specific, and efficient diagnostics and therapeutics. These nanostructures also serve as theranostic agents that integrate imaging modalities with therapeutic approaches concurrently. This review highlights various types of polymeric nanostructures that serve as biosensors for the detection and quantification of cervical cancer biomarkers and act as nanocarriers for transporting fluorophores, photosensitizers, drugs, and radiosensitizers to their target site of action.
Graphical Abstract
Collapse
|
4
|
Ayreen Z, Khatoon U, Kirti A, Sinha A, Gupta A, Lenka SS, Yadav A, Mohanty R, Naser SS, Mishra R, Chouhan RS, Samal SK, Kaushik NK, Singh D, Suar M, Verma SK. Perilous paradigm of graphene oxide and its derivatives in biomedical applications: Insight to immunocompatibility. Biomed Pharmacother 2024; 176:116842. [PMID: 38810404 DOI: 10.1016/j.biopha.2024.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
With advancements in nanotechnology and innovative materials, Graphene Oxide nanoparticles (GONP) have attracted lots of attention among the diverse types of nanomaterials owing to their distinctive physicochemical characteristics. However, the usage at scientific and industrial level has also raised concern to their toxicological interaction with biological system. Understanding these interactions is crucial for developing guidelines and recommendations for applications of GONP in various sectors, like biomedicine and environmental technologies. This review offers crucial insights and an in-depth analysis to the biological processes associated with GONP immunotoxicity with multiple cell lines including human whole blood cultures, dendritic cells, macrophages, and multiple cancer cell lines. The complicated interactions between graphene oxide nanoparticles and the immune system, are highlighted in this work, which reveals a range of immunotoxic consequences like inflammation, immunosuppression, immunostimulation, hypersensitivity, autoimmunity, and cellular malfunction. Moreover, the immunotoxic effects are also highlighted with respect to in vivo models like mice and zebrafish, insighting GO Nanoparticles' cytotoxicity. The study provides invaluable review for researchers, policymakers, and industrialist to understand and exploit the beneficial applications of GONP with a controlled measure to human health and the environment.
Collapse
Affiliation(s)
- Zobia Ayreen
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Uzma Khatoon
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Rupali Mohanty
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Richa Mishra
- Parul University, Vadodara, Gujarat 391760, India
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana 1000, Slovenia
| | | | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
5
|
Ghali ENHK, Pranav, Chauhan SC, Yallapu MM. Inulin-based formulations as an emerging therapeutic strategy for cancer: A comprehensive review. Int J Biol Macromol 2024; 259:129216. [PMID: 38185294 PMCID: PMC10922702 DOI: 10.1016/j.ijbiomac.2024.129216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cancer stands as the second leading cause of death in the United States (US). Most chemotherapeutic agents exhibit severe adverse effects that are attributed to exposure of drugs to off-target tissues, posing a significant challenge in cancer therapy management. In recent years, inulin, a naturally occurring prebiotic fiber has gained substantial attention for its potential in cancer treatment owing to its multitudinous health values. Its distinctive structure, stability, and nutritional properties position it as an effective adjuvant and carrier for drug delivery in cancer therapy. To address some of the above unmet clinical issues, this review summarizes the recent efforts towards the development of inulin-based nanomaterials and nanocomposites for healthcare applications with special emphasis on the multifunctional role of inulin in cancer therapy as a synergist, signaling molecule, immunomodulatory and anticarcinogenic molecule. Furthermore, the review provides a concise overview of ongoing clinical trials and observational studies associated with inulin-based therapy. In conclusion, the current review offers insights on the significant role of inulin interventions in exploring its potential as a therapeutic agent to treat cancer.
Collapse
Affiliation(s)
- Eswara Naga Hanuma Kumar Ghali
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Pranav
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
6
|
Mauro N, Cillari R, Andrea Utzeri M, Costa S, Giammona G, Nicosia A, Cavallaro G. Controlled delivery of sildenafil by β-Cyclodextrin-decorated sulfur-doped carbon nanodots: a synergistic activation of ROS signaling in tumors overexpressing PDE-5. Int J Pharm 2023; 645:123409. [PMID: 37722496 DOI: 10.1016/j.ijpharm.2023.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Fluorescent sulfur- and nitrogen-doped carbon nanodots (CDs) are zero-dimensional nanoparticles that mediate ROS production in cancer cells, displaying inherent anticancer properties. Thus, they have been proposed as nanotheranostic tools useful in image-guided cancer therapy. Here, we try to show that cancerous cells (high PDE-5 expression) receiving sildenafil delivered by CDs-based nanostructures promote positive reinforcement of PDE-5-mediated cell death via the overexpression of genes involved in the production of ROS. We explored the regioselective Huisgen cycloaddition between azide-β-cyclodextrin and CDs-alkyne to synthetize homogeneous nanostructures, named CDs-PEG4-β-Cdx, consisting of CDs functionalized at the surface with β-cyclodextrins capable of including high amount drugs such as sildenafil (>20 % w/w), and releasing them in a controlled manner. We investigated how CDs-PEG4-β-Cdx bearing sildenafil enter cells, enhancing ROS production and cell death specifically in cancer cells overexpressing PDE-5. These nanoplatforms go beyond the bounds of EPR-based nanomedicines in which carriers are conceived as inert vehicles of toxic drugs. Our findings enable the development of clever anticancer nanoplatforms that synergistically combine nanomedicines that perturb the mitochondrial electron transport chain (ROS production) with PDE-5 inhibitors which trigger oxidative stress specifically in cancer cells regardless of their location.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy.
| | - Roberta Cillari
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Mara Andrea Utzeri
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Salvatore Costa
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), 90146 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy; Advanced Technologies Network Center, Viale Delle Scienze Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
7
|
Sardo C, Mencherini T, Tommasino C, Esposito T, Russo P, Del Gaudio P, Aquino RP. Inulin-g-poly-D,L-lactide, a sustainable amphiphilic copolymer for nano-therapeutics. Drug Deliv Transl Res 2022; 12:1974-1990. [PMID: 35194764 PMCID: PMC9242920 DOI: 10.1007/s13346-022-01135-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
Cancer therapies started to take a big advantage from new nanomedicines on the market. Since then, research tried to better understand how to maximize efficacy while maintaining a high safety profile. Polyethylene glycol (PEG), the gold standard for nanomedicines coating design, is a winning choice to ensure a long circulation and colloidal stability, while in some cases, patients could develop PEG-directed immunoglobulins after the first administration. This lead to a phenomenon called accelerated blood clearance (ABC effect), and it is correlated with clinical failure because of the premature removal of the nanosystem from the circulation by immune mechanism. Therefore, alternatives to PEG need to be found. Here, looking at the backbone structural analogy, the hydrophilicity, flexibility, and its GRAS status, the natural polysaccharide inulin (INU) was investigated as PEG alternative. In particular, the first family of Inulin-g-poly-D,L-lactide amphiphilic copolymers (INU-PLAs) was synthesized. The new materials were fully characterized from the physicochemical point of view (solubility, 1D and 2D NMR, FT-IR, UV–Vis, GPC, DSC) and showed interesting hybrid properties compared to precursors. Moreover, their ability in forming stable colloids and to serve as a carrier for doxorubicin were investigated and compared with the already well-known and well-characterized PEGylated counterpart, polyethylene glycol-b-poly-D,L-lactide (PEG-PLA). This preliminary investigation showed INU-PLA to be able to assemble in nanostructures less than 200 nm in size and capable of loading doxorubicin with an encapsulation efficiency in the same order of magnitude of PEG-PLA analogues.
Collapse
Affiliation(s)
- Carla Sardo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Teresa Mencherini
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Carmela Tommasino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Tiziana Esposito
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Paola Russo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
8
|
Mauro N, Utzeri MA, Sciortino A, Messina F, Cannas M, Popescu R, Gerthsen D, Buscarino G, Cavallaro G, Giammona G. Decagram-Scale Synthesis of Multicolor Carbon Nanodots: Self-Tracking Nanoheaters with Inherent and Selective Anticancer Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2551-2563. [PMID: 34985246 DOI: 10.1021/acsami.1c19599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon nanodots (CDs) are a new class of carbon-based nanoparticles endowed with photoluminescence, high specific surface area, and good photothermal conversion, which have spearheaded many breakthroughs in medicine, especially in drug delivery and cancer theranostics. However, the tight control of their structural, optical, and biological properties and the synthesis scale-up have been very difficult so far. Here, we report for the first time an efficient protocol for the one-step synthesis of decagram-scale quantities of N,S-doped CDs with a narrow size distribution, along with a single nanostructure multicolor emission, high near-infrared (NIR) photothermal conversion efficiency, and selective reactive oxygen species (ROS) production in cancer cells. This allows achieving targeted and multimodal cytotoxic effects (i.e., photothermal and oxidative stresses) in cancer cells by applying biocompatible NIR laser sources that can be remotely controlled under the guidance of fluorescence imaging. Hence, our findings open up a range of possibilities for real-world biomedical applications, among which is cancer theranostics. In this work, indocyanine green is used as a bidentate SOx donor which has the ability to tune surface groups and emission bands of CDs obtained by solvothermal decomposition of citric acid and urea in N,N-dimethylformamide. The co-doping implies various surface states providing transitions in the visible region, thus eliciting a tunable multicolor emission from blue to red and excellent photothermal efficiency in the NIR region useful in bioimaging applications and image-guided anticancer phototherapy. The fluorescence self-tracking capability of SOx-CDs reveals that they can enter cancer cells more quickly than healthy cell lines and undergo a different intracellular fate after cell internalization. This could explain why sulfur doping entails pro-oxidative activities by triggering more ROS generation in cancer cells when compared to healthy cell lines. We also find that oxidative stress can be locally enhanced under the effects of a NIR laser at moderate power density (2.5 W cm-2). Overall, these findings suggest that SOx-CDs are endowed with inherent drug-independent cytotoxic effects toward cancer cells, which would be selectively enhanced by external NIR light irradiation and helpful in precision anticancer approaches. Also, this work opens a debate on the role of CD surface engineering in determining nanotoxicity as a function of cell metabolism, thus allowing a rational design of next-generation nanomaterials with targeted anticancer properties.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Mara Andrea Utzeri
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Alice Sciortino
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
| | - Fabrizio Messina
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
- ATeNCenter, University of Palermo, Viale delle Scienze─Ed. 18/A, 90128 Palermo, Italy
| | - Marco Cannas
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology|KIT, Finanzmanagement Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology|KIT, Finanzmanagement Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Gianpiero Buscarino
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
- ATeNCenter, University of Palermo, Viale delle Scienze─Ed. 18/A, 90128 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
- ATeNCenter, University of Palermo, Viale delle Scienze─Ed. 18/A, 90128 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
9
|
Alfieri ML, Massaro M, d'Ischia M, D'Errico G, Gallucci N, Gruttadauria M, Licciardi M, Liotta LF, Nicotra G, Sfuncia G, Riela S. Site-specific halloysite functionalization by polydopamine: A new synthetic route for potential near infrared-activated delivery system. J Colloid Interface Sci 2022; 606:1779-1791. [PMID: 34507169 DOI: 10.1016/j.jcis.2021.08.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Halloysite nanotubes (HNTs) represent a versatile core structure for the design of functional nanosystems of biomedical interest. However, the development of selective methodologies for the site-controlled functionalization of the nanotubes at specific sites is not an easy task. This study aims to accomplish a procedure for the site-selective/specific, "pin-point", functionalization of HNTs with polydopamine (HNTs@PDA). This goal was achieved, at pH 6.5, by exploiting the basicity of ZnO nanoparticles anchored on the HNTs external surface (HNTs@ZnO) to induce a punctual polydopamine polymerization and coating. The morphology and the chemical composition of the nanomaterial was demonstrated by several techniques. Turbidimetric analysis showed that PDA coating affected the aqueous stability of HNTs@PDA compared to both HNTs@ZnO and HNTs. Notably, hyperthermia studies revealed that the nanomaterial induced a local thermic rise, up to 50 °C, under near-infrared (NIR) irradiation. Furthermore, secondary functionalization of HNTs@PDA by selective grafting of biotin onto the PDA coating followed by avidin binding was also accomplished.
Collapse
Affiliation(s)
- Maria Laura Alfieri
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cinthia 4, Napoli I-80126, Italy
| | - Marina Massaro
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Sez. Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, Palermo 90128, Italy
| | - Marco d'Ischia
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cinthia 4, Napoli I-80126, Italy.
| | - Gerardino D'Errico
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cinthia 4, Napoli I-80126, Italy
| | - Noemi Gallucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cinthia 4, Napoli I-80126, Italy
| | - Michelangelo Gruttadauria
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Sez. Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, Palermo 90128, Italy
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), sez. Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi, 32 90123, Italy
| | - Leonarda F Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, Palermo 90146, Italy
| | | | | | - Serena Riela
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Sez. Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, Palermo 90128, Italy.
| |
Collapse
|
10
|
Afinjuomo F, Abdella S, Youssef SH, Song Y, Garg S. Inulin and Its Application in Drug Delivery. Pharmaceuticals (Basel) 2021; 14:ph14090855. [PMID: 34577554 PMCID: PMC8468356 DOI: 10.3390/ph14090855] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Inulin’s unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules. This review focuses on the various types of inulin drug delivery systems such as hydrogel, conjugates, nanoparticles, microparticles, micelles, liposomes, complexes, prodrugs, and solid dispersion. The preparation and applications of the different inulin drug delivery systems are further discussed. This work highlights the fact that modification of inulin allows the use of this polymer as multifunctional scaffolds for different drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Garg
- Correspondence: ; Tel.: +61-88-302-1575; Fax: +61-88-302-2389
| |
Collapse
|
11
|
Cui G, Wu J, Lin J, Liu W, Chen P, Yu M, Zhou D, Yao G. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J Nanobiotechnology 2021; 19:211. [PMID: 34266419 PMCID: PMC8281664 DOI: 10.1186/s12951-021-00902-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021; 26:3085. [PMID: 34064173 PMCID: PMC8196792 DOI: 10.3390/molecules26113085] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Paola Varvarà
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
- Advanced Technologies Network Center, University of Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
13
|
Mauro N, Utzeri MA, Drago SE, Nicosia A, Costa S, Cavallaro G, Giammona G. Hyaluronic acid dressing of hydrophobic carbon nanodots: A self-assembling strategy of hybrid nanocomposites with theranostic potential. Carbohydr Polym 2021; 267:118213. [PMID: 34119168 DOI: 10.1016/j.carbpol.2021.118213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
We propose a rational design of hyaluronic acid-dressed red-emissive carbon dots (CDs), with a well-structured hydrophobic core capable of locally delivering high amount doxorubicin (Doxo) (> 9% w/w) and heat (hyperthermia) in a light stimuli sensitive fashion. We combined in a unique micelle-like superstructure the peculiar optical properties of CDs (NIR photothermal conversion and red fluorescence) with the ability of hyaluronic acid (HA) shell of stabilizing nanomedicines in aqueous environment and recognizing cancer cells overexpressing CD44 receptors on their membranes, thus giving rise to smart theranostic agents useful in cancer imaging and NIR-triggered chemo-phototherapy of solid tumors. Hydrophobic CDs, named HCDs, were used as functional beads to self-assemble amphiphilic HA derivatives carrying polylactic acid side chains (HA-g-PLA), yielding to light-sensitive and biodegradable core-shell superstructures. We explored the biocompatibility and synergistic effects of chemo-phototherapy combination, together with fluorescence imaging, showing the huge potential of the proposed engineering strategy in improving efficacy. CHEMICAL COMPOUNDS.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Emanuele Drago
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), 90146 Palermo, Italy
| | - Salvatore Costa
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
14
|
Development of New Targeted Inulin Complex Nanoaggregates for siRNA Delivery in Antitumor Therapy. Molecules 2021; 26:molecules26061713. [PMID: 33808586 PMCID: PMC8003534 DOI: 10.3390/molecules26061713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Here, a novel strategy of formulating efficient polymeric carriers based on the already described INU-IMI-DETA for gene material whose structural, functional, and biological properties can be modulated and improved was successfully investigated. In particular, two novel derivatives of INU-IMI-DETA graft copolymer were synthesized by chemical functionalisation with epidermal growth factor (EGF) or polyethylenglycol (PEG), named INU-IMI-DETA-EGF and INU-IMI-DETA-PEG, respectively, in order to improve the performance of already described "inulin complex nanoaggregates" (ICONs). The latter were thus prepared by appropriately mixing the two copolymers, by varying each component from 0 to 100 wt% on the total mixture, named EP-ICONs. It was seen that the ability of the INU-IMI-DETA-EGF/INU-IMI-DETA-PEG polymeric mixture to complex siGL3 increases with the increase in the EGF-based component in the EP-ICONs and, for each sample, with the increase in the copolymer:siRNA weight ratio (R). On the other hand, the susceptibility of loaded siRNA towards RNase decreases with the increase in the pegylated component in the polymeric mixture. At all R values, the average size and the zeta potential values are suitable for escaping from the RES system and suitable for prolonged intravenous circulation. By means of biological characterisation, it was shown that MCF-7 cells are able to internalize mainly the siRNA-loaded into EGF-decorated complexes, with a significant difference from ICONs, confirming its targeting function. The targeting effect of EGF on EP-ICONs was further demonstrated by a competitive cell uptake study, i.e., after cell pre-treatment with EGF. Finally, it was shown that the complexes containing both EGF and PEG are capable of promoting the internalisation and therefore the transfection of siSUR, a siRNA acting against surviving mRNA, and to increase the sensitivity to an anticancer agent, such as doxorubicin.
Collapse
|
15
|
Wei X, Li P, Zhou H, Hu X, Liu D, Wu J, Wang Y. Engineering of gemcitabine coated nano-graphene oxide sheets for efficient near-infrared radiation mediated in vivo lung cancer photothermal therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112125. [PMID: 33601257 DOI: 10.1016/j.jphotobiol.2021.112125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
Gemcitabine (GEM) and its derivatives of deoxycytosine is a promising anticancer candidate which is effective for the treatment of various cancers including lung cancer via cascade targetting Erk/Mek/Raf/Ras pathway and blocking the proliferation of the tumor cells. In this present work, we have described reduced graphene oxide (rGO) in the presence of anticancer utilizing ascorbic acid as reducing agents for lung cancer treatment. GEM reduced graphene oxide (termed as GEM-rGO) has resulted in a smooth and transparent morphological surface, which was confirmed by various spectroscopical investigations. The anticancer drug-loaded rGO has displayed remarkable cytotoxic activities against a panel of lung cancer cell lines when compared to the untreated lung cancer cells. Further, we examined the morphological observation of the cancer cell death was monitored through the fluorescence microscopic examinations. In addition, the cell deaths of the lung cancer cells were observed by the flow cytometry analyses. In addition, the non-toxic nature of potent GEM-rGO and GEM-rGO + NIR was confirmed by in vivo systemic toxicity analysis. Besides, the higher safety feature of the GEM-rGO and GEM-rGO + NIR was evidenced by histological analyses of the mice organs. The subcutaneous injection of GEM-rGO and GEM-rGO + NIR into mice bearing A549 xenografts more effectively inhibited the tumor than the free GEM. Based on the outcomes, we can summarise that the GEM reduced graphene oxide (GEM-rGO) can be used as a promising drug candidate for the treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Peixian Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Hongfeng Zhou
- Department of Medical Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin 150088, Heilongjiang, China
| | - Xiaowei Hu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Dan Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jin Wu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Yi Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
16
|
Gao Q, Gao J, Ding C, Li S, Deng L, Kong Y. Construction of a pH- and near-infrared irradiation-responsive nanoplatform for chemo-photothermal therapy. Int J Pharm 2021; 593:120112. [PMID: 33259903 DOI: 10.1016/j.ijpharm.2020.120112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023]
Abstract
Au nanoclusters, decorated with graphene quantum dots (GQDs), were obtained through photocatalytic reduction of AuCl43- by UV irradiation, and then cytarabine (Cyt) was loaded to the Au/GQDs via charge-dipole interactions. Mercaptopropionic acid (MPA) was anchored to the Cyt-loaded Au/GQDs through the formation of Au-S bond, which was further encapsulated by polyethyleneimine (PEI) via charge-dipole interactions. The delivery of Cyt from the quaternary complex (Au/GQDs/MPA/PEI) is pH-sensitive and can be modulated by near-infrared (NIR) irradiation. The results of cell viability test indicate that the developed nanoplatform can be used for chemo-photothermal combination therapy of cancer cells, and the efficacy of chemo-photothermal combination therapy is significantly higher than that of the single mode of photothermal therapy (PTT) or chemotherapy.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 518000, China
| | - Jun Gao
- Department of Orthopedics, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou 213003, China.
| | - Chengqiang Ding
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Shangji Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
17
|
Fang W, Jin R, Mu W. Near-infrared mediated polymer-coated carbon nanodots loaded cisplatin for targeted care management of lung cancer therapy. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Mauro N, Utzeri MA, Buscarino G, Sciortino A, Messina F, Cavallaro G, Giammona G. Pressure-Dependent Tuning of Photoluminescence and Size Distribution of Carbon Nanodots for Theranostic Anticancer Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4899. [PMID: 33142826 PMCID: PMC7662895 DOI: 10.3390/ma13214899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022]
Abstract
Carbon nanodots (CDs) have recently attracted attention in the field of nanomedicine because of the biocompatibility, cost-effective nature, high specific surface, good near infrared (NIR) photothermal conversion into heat and tunable fluorescence properties, which have paved the way toward incorporating use of CDs into innovative anticancer theranostic platforms. However, a reliable synthesis of CDs with established and controlled physiochemical proprieties is precluded owing to the lack of full manipulation of thermodynamic parameters during the synthesis, thus limiting their use in real world medical applications. Herein, we developed a robust solvothermal protocol which allow fine controlling of temperature and pressure in order to obtain CDs with tunable properties. We obtained different CDs by modulating the operating pressure (from 8 to 18.5 bar) during the solvothermal decomposition of urea and citric acid in N,N-dimethylformamide at fixed composition. Atomic force microscopy (AFM), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis) and fluorescence spectroscopy were used to assess the role of pressure in influencing size, optical and surface properties of the obtained CDs. While preliminary biological and anticancer performance of CDs was established on the MDA-MB-231 cell line, used as triple negative breast cancer model. Our results indicate that pressure impinge on the formation of carbon nanoparticles under solvothermal conditions and impart desired optical, size distribution, surface functionalization and anticancer properties in a facile way. However, we have highlighted that a strategic surface engineering of these CDs is needed to limit the adsorption of corona proteins and also to increase the average surface diameter, avoiding a rapid renal clearance and improving their therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (G.C.); (G.G.)
- Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milano, Italy
| | - Mara Andrea Utzeri
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (G.C.); (G.G.)
| | - Gianpiero Buscarino
- Department of Physics and Chemistry “E. Segrè”, University of Palermo, via Archirafi 36, 90123 Palermo, Italy; (G.B.); (A.S.); (F.M.)
| | - Alice Sciortino
- Department of Physics and Chemistry “E. Segrè”, University of Palermo, via Archirafi 36, 90123 Palermo, Italy; (G.B.); (A.S.); (F.M.)
| | - Fabrizio Messina
- Department of Physics and Chemistry “E. Segrè”, University of Palermo, via Archirafi 36, 90123 Palermo, Italy; (G.B.); (A.S.); (F.M.)
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (G.C.); (G.G.)
- Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (G.C.); (G.G.)
- Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
19
|
Carbon Nanodots for On Demand Chemophotothermal Therapy Combination to Elicit Necroptosis: Overcoming Apoptosis Resistance in Breast Cancer Cell Lines. Cancers (Basel) 2020; 12:cancers12113114. [PMID: 33113761 PMCID: PMC7692354 DOI: 10.3390/cancers12113114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Carbon nanodots (CDs) are considered a versatile family of fluorescent, near infrared (NIR) active, and bioeliminable nanoparticles. Accordingly, the CDs application in photothermal therapy and theranostics increased. Problems limiting their use arise from the heterogeneity of most CDs and the lack of exhaustive information on their nanotoxicity at cellular and molecular levels. The lack of these data is often quite dramatic and causes substantial loss of translational value. To overcome this, we developed biocompatible homogenous CDs with a well-known structure as well as efficient red fluorescence and NIR photothermal conversion. The controlled photothermal effect and the on-demand release of the irinotecan successfully kill breast cancer cell lines in absence of relevant cell stress after internalization. We believe that these results provide insights to advance the field with significant impact, paving the way for the design of effective and safe nanomedicines for precision photothermal cancer therapies. Abstract Background: Engineered luminescent carbon nanodots (CDs) are appealing nanomaterials for cancer image-guided photothermal therapy combining near infrared (NIR)–triggered hyperthermia, imaging, and drug delivery in a single platform for efficient killing of cancer cells. This approach would allow eliciting synergistic regulated cell death (RCD) routes such as necroptosis, targeting breast cancer cells refractory to apoptosis, thus overcoming drug resistance. Methods: We report the preparation of CDs bearing biotin as a targeting agent (CDs-PEG-BT), which are able to load high amounts of irinotecan (23.7%) to be released in a pulsed on-demand fashion. CDs-PEG-BT have narrow size distribution, stable red luminescence, and high photothermal conversion in the NIR region, allowing imaging of MDA-MB231 and MCF-7 cancer cells and killing them by photothermal and chemotherapeutic insults. Results: Cellular uptake, viability profiles, and RCD gene expression analyses provided insights about the observed biocompatibility of CDs-PEG-BT, indicating that necroptosis can be induced on-demand after the photothermal activation. Besides, photothermal activation of drug-loaded CDs-PEG-BT implies both necroptosis and apoptosis by the TNFα and RIPK1 pathway. Conclusions: The controlled activation of necroptosis and apoptosis by combining phototherapy and on-demand release of irinotecan is the hallmark of efficient anticancer response in refractory breast cancer cell lines in view of precision medicine applications.
Collapse
|
20
|
Mauro N, Utzeri MA, Drago SE, Buscarino G, Cavallaro G, Giammona G. Carbon Nanodots as Functional Excipient to Develop Highly Stable and Smart PLGA Nanoparticles Useful in Cancer Theranostics. Pharmaceutics 2020; 12:E1012. [PMID: 33113976 PMCID: PMC7690707 DOI: 10.3390/pharmaceutics12111012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 01/19/2023] Open
Abstract
Theranostic systems have attracted considerable attention for their multifunctional approach to cancer. Among these, carbon nanodots (CDs) emerged as luminescent nanomaterials due to their exceptional chemical properties, synthetic ease, biocompatibility, and for their photothermal and fluorescent properties useful in cancer photothermal therapy. However, premature renal excretion due to the small size of these particles limits their biomedical application. To overcome these limitations, here, hybrid poly(lactic-co-glycolic acid) (PLGA-CDs) nanoparticles with suitable size distribution and stability have been developed. CDs were decisive in the preparation of polymeric nanoparticles, not only conferring them photothermal and fluorescent properties, needed in theranostics, but also having a strategic role in the stabilization of the system in aqueous media. In fact, CDs provide stable PLGA-based nanoparticles in aqueous media and sufficient cryoprotection in combination with 1% PVP. While PLGA nanoparticles required at least 5% of sucrose. Comparing nanosystems with different CDs content, it is also evident how these positively impinge on the loading and release of the drug, favoring high drug loading (~4.5%) and a sustained drug release over 48 h. The therapeutic and imaging potentials were finally confirmed through in vitro studies on a breast cancer cell line (MDA-MB-231) using fluorescence imaging and the MTS cell viability assay.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (S.E.D.); (G.B.); (G.C.); (G.G.)
- Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milano, Italy
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (S.E.D.); (G.B.); (G.C.); (G.G.)
| | - Salvatore Emanuele Drago
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (S.E.D.); (G.B.); (G.C.); (G.G.)
| | - Gianpiero Buscarino
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (S.E.D.); (G.B.); (G.C.); (G.G.)
- Department of Physics and Chemistry (DiFC), University of Palermo, via Archirafi 36, 90123 Palermo, Italy
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (S.E.D.); (G.B.); (G.C.); (G.G.)
- Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Gaetano Giammona
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (S.E.D.); (G.B.); (G.C.); (G.G.)
- Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
21
|
Abid M, Naveed M, Azeem I, Faisal A, Faizan Nazar M, Yameen B. Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil. Int J Pharm 2020; 586:119605. [DOI: 10.1016/j.ijpharm.2020.119605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
|
22
|
Near-Infrared, Light-Triggered, On-Demand Anti-inflammatories and Antibiotics Release by Graphene Oxide/Elecrospun PCL Patch for Wound Healing. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Very recently, significant attention has been focused on the adsorption and cell adhesion properties of graphene oxide (GO), because it is expected to allow high drug loading and controlled drug release, as well as the promotion of cell adhesion and proliferation. This is particularly interesting in the promotion of wound healing, where antibiotics and anti-inflammatories should be locally released for a prolonged time to allow fibroblast proliferation. Here, we designed an implantable patch consisting of poly(caprolactone) electrospun covered with GO, henceforth named GO–PCL, endowed with high ibuprofen (5.85 mg cm−2), ketoprofen (0.86 mg cm−2), and vancomycin (0.95 mg cm−2) loading, used as anti-inflammatory and antibiotic models respectively, and capable of responding to near infrared (NIR)-light stimuli in order to promptly release the payload on-demand beyond three days. Furthermore, we demonstrated the GO is able to promote fibroblast adhesion, a key characteristic to potentially provide wound healing in vivo.
Collapse
|
23
|
Folic acid-functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110201. [PMID: 31761243 DOI: 10.1016/j.msec.2019.110201] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
Abstract
PEGylated graphene oxide (GO) has shown potential as NIR converting agent to produce local heat useful in breast cancer therapy, since its suitable photothermal conversion, high stability in physiological fluids, biocompatibility and huge specific surface. GO is an appealing nanomaterial for potential clinical applications combining drug delivery and photothermal therapy in a single nano-device capable of specifically targeting breast cancer cells. However, native GO sheets have large dimensions (0.5-5 μm) such that tumor accumulation after a systemic administration is usually precluded. Herein, we report a step-by-step synthesis of folic acid-functionalized PEGylated GO, henceforth named GO-PEG-Fol, with small size and narrow size distribution (∼30 ± 5 nm), and the ability of efficiently converting NIR light into heat. GO-PEG-Fol consists of a nano-GO sheet, obtained by fragmentation of GO by means of non-equilibrium plasma etching, fully functionalized with folic acid-terminated PEG2000 chains through amidic coupling and azide-alkyne click cycloaddition, which we showed as active targeting agents to selectively recognize breast cancer cells such as MCF7 and MDA-MB-231. The GO-PEG-Fol incorporated a high amount of doxorubicin hydrochloride (Doxo) (>33%) and behaves as NIR-light-activated heater capable of triggering sudden Doxo delivery inside cancer cells and localized hyperthermia, thus provoking efficient breast cancer death. The cytotoxic effect was found to be selective for breast cancer cells, being the IC50 up to 12 times lower than that observed for healthy fibroblasts. This work established plasma etching as a cost-effective strategy to get functionalized nano-GO with a smart combination of properties such as small size, good photothermal efficiency and targeted cytotoxic effect, which make it a promising candidate as photothermal agent for the treatment of breast cancer.
Collapse
|
24
|
Wang C, Wang X, Chen Y, Fang Z. In-vitro photothermal therapy using plant extract polyphenols functionalized graphene sheets for treatment of lung cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 204:111587. [PMID: 32062387 DOI: 10.1016/j.jphotobiol.2019.111587] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/04/2019] [Accepted: 08/08/2019] [Indexed: 01/31/2023]
Abstract
Although the photothermal therapy (PTT) has achieved tremendous progress in the recent times, still it has to improve an extensive way to achieve the efficient targeted photothermal removal of the tumor cells. Owing to this requirement, we demonstrated a novel class of reduced graphene oxide based photothermal therapeutic agent for the ablation of lung cancer cells (A549). A single step bio facile fabrication of graphene nanosheets using Memecylon edule leaf extract intermediated reduction of Graphene Oxide (GO). This process does not include the utilization of any toxic or harmful reducing agents. The relative results of different characterizations of graphene oxide and Memecylon edule leaf extract RGO delivers a potential representation by excluding the groups containing oxygen from GO and consecutive stabilization of the developed RGO. The reduced GO functionalization with the oxidized polyphenols results in their stability by avoiding the aggregation. The poly phenol anchored Reduced Graphene Oxide (RGO) exhibited exceptional near-infrared (NIR) irradiation of the lung cancer cells directed in vitro to deliver cytotoxicity. In an area of restricted success in the treatment of cancer, the results of our translation can provide a path for designing targeted PTT agents and also responds to stimulus environment for the safe ablation of the devastating disease.
Collapse
Affiliation(s)
- Chunmei Wang
- Department of Thoracic and Cardiovascular Surgery, Huaihe Hospital of Henan University, China
| | - Xiangyun Wang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, China.
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, China
| | - Zheng Fang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, China.
| |
Collapse
|
25
|
Scialabba C, Sciortino A, Messina F, Buscarino G, Cannas M, Roscigno G, Condorelli G, Cavallaro G, Giammona G, Mauro N. Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents toward Precision Cancer Medicine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19854-19866. [PMID: 31088077 DOI: 10.1021/acsami.9b04925] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Very recent red-emissive carbon nanodots (CDs) have shown potential as near-infrared converting tools to produce local heat useful in cancer theranostics. Besides, CDs seem very appealing for clinical applications combining hyperthermia, imaging, and drug delivery in a single platform capable of selectively targeting cancer cells. However, CDs still suffer from dramatic dot-to-dot variability issues such that a rational design of their structural, optical, and chemical characteristics for medical applications has been impossible so far. Herein, we report for the first time a simple and highly controllable layer-by-layer synthesis of biotin-decorated CDs with monodisperse size distribution, well established polymeric shell thickness, and degree of surface functionalization, endowed with strong red luminescence and the ability to convert NIR light into heat. These CDs, henceforth named CDs-PEG-BT, consist of a carbonaceous core passivated with biotin-terminated PEG2000 chains, which we demonstrate as active targeting groups to recognize cancer cells. The CDs-PEG-BT are designed to efficiently incorporate a high amount of anticancer drugs such as irinotecan (16-28%) and to act as NIR-activated nanoheaters capable of triggering local hyperthermia and massive drug release inside tumors, thus provoking sudden and efficient tumor death. The potential of the irinotecan-loaded CDs-PEG-BT (CDs-PEG-BT@IT) in fluorescence imaging was studied on 2D cultures and on complex 3D spheroids mimicking in vivo tumor architectures, showing their capability of selectively entering cancer cells through biotin receptors overexpressed in cell membranes. The efficient anticancer effect of these CDs was thoroughly assessed on multicellular 3D spheroids and patient organoids (tumor-on-a-dish preclinical models) to predict the drug response in humans in view of personalized medicine applications. CDs-PEG-BT@IT have a smart combination of properties, which pave the way to their real-world use as anticancer theranostic agents for image-guided photothermal applications.
Collapse
Affiliation(s)
- Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF) , University of Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Alice Sciortino
- Dipartimento di Fisica e Chimica , Università degli Studi di Palermo , Via Archirafi 36 , 90123 Palermo , Italy
| | - Fabrizio Messina
- Dipartimento di Fisica e Chimica , Università degli Studi di Palermo , Via Archirafi 36 , 90123 Palermo , Italy
| | - Gianpiero Buscarino
- Dipartimento di Fisica e Chimica , Università degli Studi di Palermo , Via Archirafi 36 , 90123 Palermo , Italy
| | - Marco Cannas
- Dipartimento di Fisica e Chimica , Università degli Studi di Palermo , Via Archirafi 36 , 90123 Palermo , Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology , "Federico II" University of Naples , 80131 Naples , Italy
- Fondazione Umberto Veronesi , Piazza Velasca 5 , 20122 Milano , Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology , "Federico II" University of Naples , 80131 Naples , Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF) , University of Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF) , University of Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF) , University of Palermo , Via Archirafi 32 , 90123 Palermo , Italy
- Fondazione Umberto Veronesi , Piazza Velasca 5 , 20122 Milano , Italy
| |
Collapse
|
26
|
Gupta N, Jangid AK, Pooja D, Kulhari H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int J Biol Macromol 2019; 132:852-863. [PMID: 30926495 DOI: 10.1016/j.ijbiomac.2019.03.188] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Inulin (INU) is a flexible, fructan type polysaccharide carbohydrate, mainly obtained from the root of chicory. It is a water-soluble dietary fibre and has been recently approved by the Food and Drug Administration for improving the nutritional values of food products. INU is not digested or fermented in the initial portion of the human digestive system and directly reaches on the distal portion of the colon. Owing to this superior property, INU is specially applied to develop specific carrier systems for localized delivery of drugs related to colon diseases. Several studies proved that the fermented bi-products of INU help the growth and stimulating activity of colon bacteria e.g. Bifidobacterium and Lactobacilli. INU also has several inherent therapeutic effects like reduction of tumor risks, help in calcium ion absorption, anti-inflammatory, antioxidant properties etc. Apart from these, INU has been used for different pharmaceutical applications as a drug carrier, stabilizing agent, cryoprotectant, and an alternative to fats and sugars. Here, we review the applications of INU in different areas of biomedical science, look back into the nutritional effects of INU and outline various routes of administration of INU-based formulations.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Deep Pooja
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
27
|
Vinothini K, Rajendran NK, Munusamy MA, Alarfaj AA, Rajan M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded κ-carrageenan grafted graphene oxide nanocarrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:676-687. [PMID: 30948104 DOI: 10.1016/j.msec.2019.03.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 01/17/2023]
Abstract
Cervical cancer is one of the most occurring cancers and the fourth leading occurrence of cancer in women, worldwide. In this study, we planned to synthesis κ-Carrageenan grafted graphene oxide nanocarrier conjugated with biotin (GO-κ-Car-biotin) for targeted cervical cancer. Doxorubicin (DOX) is a well-known anticancer drug for any type of cancer and it is used to entrap over on the graphene oxide surface via π-π stacking interaction. The chemical function and crystalline nature of the synthesized nanocarrier was characterized by Fourier Transformed Infrared Spectroscopy (FT-IR) and X-ray diffraction Analysis (XRD). The surface morphological study was carried out through Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The in-vitro drug release profile of DOX was carried out by UV-Vis spectrometer at the λmax value of 480 nm. The entrapment of DOX on GO-κ-car-biotin has been observed at 94%. The hydrophilic DOX drug has excellent pH-sensitive drug released in an in-vitro study. The anticancer efficiency of the synthesized GO-based nanocarrier was examined using HeLa cell line in-vitro. Cell viability, proliferation, cytotoxicity, and nuclear chromatin condensation was studied by trypan blue assay, triphosphate assay (ATP), lactate dehydrogenase assay (LDH) and Hoechst staining respectively. Finally, biotin leading GO-κ-Car carrier demonstrated is a promising drug delivery system for cervical cancer treatment.
Collapse
Affiliation(s)
- Kandasamy Vinothini
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulla A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
28
|
Mauro N, Scialabba C, Puleio R, Varvarà P, Licciardi M, Cavallaro G, Giammona G. SPIONs embedded in polyamino acid nanogels to synergistically treat tumor microenvironment and breast cancer cells. Int J Pharm 2018; 555:207-219. [PMID: 30458257 DOI: 10.1016/j.ijpharm.2018.11.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
The extremely complex tumor microenvironment (TME) in humans is the major responsible for the therapeutic failure in cancer nanomedicine. A new concept of disease-driven nanomedicine, henceforth named "Theranomics", which attempts to target cancer cells and TME on the whole, represents an attractive alternative. Herein, a nanomedicine able to co-deliver doxorubicin and a tumor suppressive proteolytic protein such as collagenase-2 was developed. We successfully obtained superparamagnetic nanogels (SPIONs/Doco@Col) via the intermolecular azide-alkyne Huisgen cycloaddition. We demonstrated that a local ECM degradation and remodeling in solid tumors by means of collagenase-2 could enhance tumor penetration of nanomedicines and the in situ sustained release of the drug payload throughout 3-D tumor spheroids up to the core (parenchyma), thus enabling a synergistic and efficient anticancer effect toward highly invasive breast tumors. We illustrate that SPIONs/Doxo@Col is also capable of reducing the invasivity of cancer cells.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milano, Italy.
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Roberto Puleio
- Area Diagnostica Specialistica, Istituto Zooprofilattico Sperimentale della Sicilia, via Marinuzzi 3, 90129 Palermo, Italy
| | - Paola Varvarà
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Mariano Licciardi
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; Institute of Biophysics, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
29
|
Li Volsi A, Fiorica C, D'Amico M, Scialabba C, Palumbo FS, Giammona G, Licciardi M. Hybrid Gold/Silica/Quantum-Dots supramolecular-nanostructures encapsulated in polymeric micelles as potential theranostic tool for targeted cancer therapy. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Zhang H, Sun Y, Huang R, Cang H, Cai Z, Sun B. pH-sensitive prodrug conjugated polydopamine for NIR-triggered synergistic chemo-photothermal therapy. Eur J Pharm Biopharm 2018; 128:260-271. [PMID: 29733952 DOI: 10.1016/j.ejpb.2018.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
Combination of chemotherapy with photothermal therapy (PTT) demonstrate highly desirable for efficient medical treatment of tumor. At present works, camptothecin (CPT)-containing polymeric prodrug (PCPT) were fabricated by polymerization of a pH-sensitive camptothecin (CPT) prodrug monomer and MPC using reversible addition-fragmentation transfer (RAFT) strategy. The pH-sensitive polymeric prodrug was tethered onto surface of polydopamine (PDA) nanoparticles by amidation chemistry for combination of chemotherapy with photothermal therapy. Specifically, the active CPT quickly released from the multifunctional nanoparticles in acidic microenvironment ascribe to the cleavage of bifunctional silyl ether linkage. Meanwhile, the PDA could convert the near infrared (NIR) light energy into heat with high efficiency, which makes the resulted nanoparticles an effective platform for photothermal therapy. In vitro analysis confirmed that the PDA@PCPT nanoparticles could be efficiently uptaked by HeLa cells and deliver CPT into the nuclei of cancer cells. The cell viability assays indicated an evident in vitro cytotoxicity to HeLa cancer cells under 808 nm light irradiation. Significant tumor regression was also observed in the tumor-bearing mice model with the combinational therapy provided from the PDA@PCPT nanoparticles. The PDA@PCPT multifunctional system which was achieved by a facile route should be a potential candidate in the anti-cancer field due to the synergistic therapeutic effect, which is superior to any single approach.
Collapse
Affiliation(s)
- Huaihong Zhang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yu Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Rong Huang
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hui Cang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaosheng Cai
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Baiwang Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
31
|
Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Patel A, Tiwari S, Jha PK. Density functional theory based probe of the affinity interaction of saccharide ligands with extra-cellular sialic acid residues. J Biomol Struct Dyn 2018; 37:1545-1554. [PMID: 29624120 DOI: 10.1080/07391102.2018.1461690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in glycosylation pattern leads to malignant transformations among the cells. In combination with upregulated actions of sialyltransferases, it ultimately leads to differential expression of sialic acid (SA) at cell surface. Given its negative charge and localization to extracellular domain, SA has been exploited for the development of targeted theranostics using approaches, such as, cationization and appending recognition saccharides on carrier surface. In this study, we have performed quantum mechanical calculations based on density functional theory (DFT) to study the interaction of saccharides with extracellular SA. Gradient-corrected DFT with the three parameter function (B3) was utilized for the calculation of Lee-Yang-Parr (LYP) correlation function. Atomic charge, vibrational frequencies and energy of the optimized structures were calculated through B3LYP. Our calculations demonstrate a stronger galactose-sialic acid interaction at tumour-relevant low pH and hyperthermic condition. These results support the application of pH responsive delivery vehicles and targeted hyperthermic chemotherapy for eradicating solid tumour deposits. These studies, conducted a priori, can guide the formulation scientists over appropriate choice of ligands and their applications in the design of 'smart' theranostic tools.
Collapse
Key Words
- AChE, Acetylcholine Esterase
- ASDase, aspartate semialdehyde dehydrogenase
- B3LYP, Becke 3-Parameter Lee, Yang and Parr
- BACE1, Beta-secretase 1
- BSSE, basis set superposition error
- CK2, casein kinase 2
- CMAS, cytidine monophosphate N-acetylneuraminic acid synthase
- DFT, density functional theory
- EcPLA, Echis carinatus Phospholipase A
- FF, fukui function
- GSK3β, glycogen synthase kinase 3β
- Gal, galactose
- HLG, HOMO-LUMO gap
- HOMO, highest occupied molecular orbital
- LUMO, lowest unoccupied molecular orbital
- MEP, molecular electrostatic potential
- Man, mannose
- NBO, natural bond orbital
- NC, nanocarriers.
- PBA, phenylboronic acid
- SA, sialic acid
- cancer
- density functional theory
- hypersialylation
- recognition saccharides
- targeted theranostics
Collapse
Affiliation(s)
- Anjali Patel
- a Department of Physics, Faculty of Science , The Maharaja Sayajirao University of Baroda , Vadodara - 390 002 , India
| | - Sanjay Tiwari
- b Maliba Pharmacy College , UKA Tarsadia University, Gopal-Vidyanagar Campus , Surat , 394350 , India
| | - Prafulla K Jha
- a Department of Physics, Faculty of Science , The Maharaja Sayajirao University of Baroda , Vadodara - 390 002 , India
| |
Collapse
|
33
|
Porsio B, Craparo EF, Mauro N, Giammona G, Cavallaro G. Mucus and Cell-Penetrating Nanoparticles Embedded in Nano-into-Micro Formulations for Pulmonary Delivery of Ivacaftor in Patients with Cystic Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:165-181. [PMID: 29235345 DOI: 10.1021/acsami.7b14992] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, mucus-penetrating nanoparticles (NPs) for pulmonary administration of ivacaftor in patients with cystic fibrosis (CF) were produced with the dual aim of enhancing ivacaftor delivery to the airway epithelial cells, by rapid diffusion through the mucus barrier, and at the same time, promoting ivacaftor lung cellular uptake. Pegylated and Tat-decorated fluorescent nanoparticles (FNPs) were produced by nanoprecipitation, starting from two synthetic copolymers, and showed nanometric sizes (∼70 nm), a slightly negative ζ potential, and high cytocompatibility toward human bronchial epithelium cells. After having showed the significant presence of poly(ethylene glycol) chains and Tat protein onto the FNP surface, the FNP mucus-penetrating ability, ivacaftor release profile, and lung cellular uptake were studied in the presence of CF-artificial mucus as a function of the FNP surface chemical composition. Moreover, microparticle-based pulmonary drug-delivery systems composed of mucus-penetrating FNPs loaded with ivacaftor and mannitol were prepared by using the nano-into-micro strategy and realized by spray-drying, thereby providing optimal preservation and stabilization of FNP technological and fluorescence properties.
Collapse
Affiliation(s)
- Barbara Porsio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Emanuela Fabiola Craparo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Nicolò Mauro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Via Archirafi 32, 90123 Palermo, Italy
- Mediterranean Center for Human Health Advanced Biotechnologies (CHAB), Aten Center, University of Palermo , Viale delle Scienze, Ed. 18, 90123 Palermo, Italy
| | - Gennara Cavallaro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
34
|
Cervello M, Pitarresi G, Volpe AB, Porsio B, Balasus D, Emma MR, Azzolina A, Puleio R, Loria GR, Puleo S, Giammona G. Nanoparticles of a polyaspartamide-based brush copolymer for modified release of sorafenib: In vitro and in vivo evaluation. J Control Release 2017; 266:47-56. [PMID: 28917533 DOI: 10.1016/j.jconrel.2017.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
Abstract
In this paper, we describe the preparation of polymeric nanoparticles (NPs) loaded with sorafenib for the treatment of hepatocellular carcinoma (HCC). A synthetic brush copolymer, named PHEA-BIB-ButMA (PBB), was synthesized by Atom Trasnfer Radical Polymerization (ATRP) starting from the α-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) and poly butyl methacrylate (ButMA). Empty and sorafenib loaded PBB NPs were, then, produced by using a dialysis method and showed spherical morphology, colloidal size, negative ζ potential and the ability to allow a sustained sorafenib release in physiological environment. Sorafenib loaded PBB NPs were tested in vitro on HCC cells in order to evaluate their cytocompatibility and anticancer efficacy if compared to free drug. Furthermore, the enhanced anticancer effect of sorafenib loaded PBB NPs was demonstrated in vivo by using a xenograft model, by first allowing Hep3B cells to grow subcutaneously into nude mice and then administering sorafenib as free drug or incorporated into NPs via intraperitoneal injection. Finally, in vivo biodistribution studies were performed, showing the ability of the produced drug delivery system to accumulate in a significant manner in the solid tumor by passive targeting, thanks to the enhanced permeability and retention effect.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Italy.
| | - Antonella Bavuso Volpe
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Italy
| | - Barbara Porsio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Italy
| | - Daniele Balasus
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Maria Rita Emma
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Antonina Azzolina
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Area Diagnostica Specialistica, Laboratorio di Istopatologia ed Immunoistochimica, Palermo, Italy
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Area Diagnostica Specialistica, Laboratorio di Istopatologia ed Immunoistochimica, Palermo, Italy
| | - Stefano Puleo
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Italy
| | - Gaetano Giammona
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| |
Collapse
|
35
|
Otari SV, Kumar M, Anwar MZ, Thorat ND, Patel SKS, Lee D, Lee JH, Lee JK, Kang YC, Zhang L. Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications. Sci Rep 2017; 7:10980. [PMID: 28887565 PMCID: PMC5591228 DOI: 10.1038/s41598-017-10777-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023] Open
Abstract
This article presents novel, rapid, and environmentally benign synthesis method for one-step reduction and decoration of graphene oxide with gold nanoparticles (NAuNPs) by using thermostable antimicrobial nisin peptides to form a gold-nanoparticles-reduced graphene oxide (NAu-rGO) nanocomposite. The formed composite material was characterized by UV/Vis spectroscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). HR-TEM analysis revealed the formation of spherical AuNPs of 5-30 nm in size on reduced graphene oxide (rGO) nanosheets. A non-volatile-memory device was prepared based on a solution-processed ZnO thin-film transistor fabricated by inserting the NAu-rGO nanocomposite in the gate dielectric stack as a charge trapping medium. The transfer characteristic of the ZnO thin-film transistor memory device showed large clockwise hysteresis behaviour because of charge carrier trapping in the NAu-rGO nanocomposite. Under positive and negative bias conditions, clear positive and negative threshold voltage shifts occurred, which were attributed to charge carrier trapping and de-trapping in the ZnO/NAu-rGO/SiO2 structure. Also, the photothermal effect of the NAu-rGO nanocomposites on MCF7 breast cancer cells caused inhibition of ~80% cells after irradiation with infrared light (0.5 W cm-2) for 5 min.
Collapse
Affiliation(s)
- Sachin V Otari
- Key Laboratory of Biopesticide and Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, 350002, PR China
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Manoj Kumar
- Department of Mechanical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Muhammad Zahid Anwar
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Nanasaheb D Thorat
- Materials & Surface Science, Institute Bernal Institute, University of Limerick, Limerick, Ireland
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dongjin Lee
- Department of Mechanical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jai Hyo Lee
- Department of Mechanical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Liaoyuan Zhang
- Key Laboratory of Biopesticide and Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, 350002, PR China.
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
36
|
Tsai MH, Peng CL, Yang SJ, Shieh MJ. Photothermal, Targeting, Theranostic Near-Infrared Nanoagent with SN38 against Colorectal Cancer for Chemothermal Therapy. Mol Pharm 2017; 14:2766-2780. [PMID: 28703590 DOI: 10.1021/acs.molpharmaceut.7b00315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer research regarding near-infrared (NIR) agents for chemothermal therapy (CTT) has shown that agents with specific functions are able to inhibit tumor growth. The aim of current study was to optimize CTT efficacy for treatment of colorectal cancer (CRC) by exploring strategies which can localize high temperature within tumors and maximize chemotherapeutic drug uptake. We designed a new and simple multifunctional NIR nanoagent composed of the NIR cyanine dye, polyethylene glycol, and a cyclic arginine-glycine-aspartic acid peptide and loaded with the anti-CRC chemotherapeutic agent, 7-ethyl-10-hydroxy-camptothecin (SN38). Each component of this nanoagent exhibited its specific functions that help boost CTT efficacy. The results showed that this nanoagent greatly strengthens the theranostic effect of SN38 and CTT against CRC due to its NIR imaging ability, photothermal, enhanced permeability and retention (EPR) effect, reticuloendothelial system avoidance, and angiogenic blood vessel-targeting properties. This NIR nanoagent will help facilitate development of new strategies for treating CRC.
Collapse
Affiliation(s)
- Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei City 10051, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research , Taoyuan City 32546, Taiwan
| | - Shu-Jyuan Yang
- Gene'e Tech Co. Ltd. 2F., No.661, Bannan Rd., Zhonghe Dist., New Taipei City 235, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei City 10051, Taiwan.,Department of Oncology, National Taiwan University Hospital and College of Medicine , #7, hung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
37
|
Li Volsi A, Scialabba C, Vetri V, Cavallaro G, Licciardi M, Giammona G. Near-Infrared Light Responsive Folate Targeted Gold Nanorods for Combined Photothermal-Chemotherapy of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14453-14469. [PMID: 28383273 DOI: 10.1021/acsami.7b03711] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Folate-targeted gold nanorods (GNRs) are proposed as selective theranostic agents for osteosarcoma treatment. An amphiphilic polysaccharide based graft-copolymer (INU-LA-PEG-FA) and an amino derivative of the α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide functionalized with folic acid (PHEA-EDA-FA), have been synthesized to act as coating agents for GNRs. The obtained polymer-coated GNRs were characterized in terms of size, shape, zeta potential, chemical composition, and aqueous stability. They protected the anticancer drug nutlin-3 and were able to deliver it efficiently in different physiological media. The ability of the proposed systems to selectively kill tumor cells was tested on U2OS cancer cells expressing high levels of FRs and compared with human bronchial epithelial cells (16HBE) and human dermal fibroblasts (HDFa). The property of the nanosystems of efficiently controlling drug release upon NIR laser irradiation and of acting as an excellent hyperthermia agent as well as Two Photon Luminescence imaging contrast agents was demonstrated. The proposed folate-targeted GNRs have also been tested in terms of chemoterapeutic and thermoablation efficacy on tridimensional (3-D) osteosarcoma models.
Collapse
Affiliation(s)
- Anna Li Volsi
- Laboratory of Biocompatible Polymers, Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo , Via Archirafi, 32, 90123 Palermo, Italy
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo , Via Archirafi, 32, 90123 Palermo, Italy
| | - Valeria Vetri
- Department of Physics and Chemistry, University of Palermo , 90123 Palermo, Italy
- Mediterranean Center for Human Health Advanced Biotechnologies (CHAB), Aten Center, University of Palermo , 90129 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo , Via Archirafi, 32, 90123 Palermo, Italy
| | - Mariano Licciardi
- Laboratory of Biocompatible Polymers, Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo , Via Archirafi, 32, 90123 Palermo, Italy
- Mediterranean Center for Human Health Advanced Biotechnologies (CHAB), Aten Center, University of Palermo , 90129 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo , Via Archirafi, 32, 90123 Palermo, Italy
- Mediterranean Center for Human Health Advanced Biotechnologies (CHAB), Aten Center, University of Palermo , 90129 Palermo, Italy
| |
Collapse
|
38
|
Mauro N, Scialabba C, Pitarresi G, Giammona G. Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide. Int J Pharm 2017; 526:167-177. [PMID: 28442269 DOI: 10.1016/j.ijpharm.2017.04.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
The physicochemical characteristics of a biomaterial surface highly affect the interaction with living cells. Recently, much attention has been focused on the adhesion properties of functional biomaterials toward cancer cells, since is expected to control metastatic spread of a tumor, which is related to good probability containing the progression of disease burden. Here, we designed an implantable poly(caprolactone)-based electrospun microfiber scaffold, henceforth PCLMF-GO, to simultaneously capture and kill cancer cells by tuning physicochemical features of the hybrid surface through nitrogen plasma activation and hetero-phase graphene oxide (GO) covalent functionalization. The surface immobilization of GO implies enhanced cell adhesion and proliferation, promoting the selective adhesion of cancer cells, even if allowing cancer associated fibroblast (CAFs) capture. We also display that the functionalization with GO, thanks to the high near-infrared (NIR) absorbance, enables the discrete photothermal eradication of the captured cancer cells in situ (≈98%).
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy.
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Giovanna Pitarresi
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy; Mediterranean Center for Human Advanced Biotechnologies (Med-Chab), Viale delle Scienze Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
39
|
Fiorica C, Mauro N, Pitarresi G, Scialabba C, Palumbo FS, Giammona G. Double-Network-Structured Graphene Oxide-Containing Nanogels as Photothermal Agents for the Treatment of Colorectal Cancer. Biomacromolecules 2017; 18:1010-1018. [PMID: 28192653 DOI: 10.1021/acs.biomac.6b01897] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we reported the production of hyaluronic acid/polyaspartamide-based double-network nanogels for the potential treatment of colorectal carcinoma. Graphene oxide, thanks to the huge aromatic surface area, allows to easily load high amount of irinotecan (33.0% w/w) and confers to the system hyperthermic properties when irradiated with a near-infrared (NIR) laser beam. We demonstrate that the release of antitumor drug is influenced both by the pH of the external medium and the NIR irradiation process. In vitro biological studies, conducted on human colon cancer cells (HCT 116), revealed that nanogels are uptaken by the cancer cells and, in the presence of the antitumor drug, can produce a synergistic hyperthermic/cytotoxic effect. Finally, 3D experiments demonstrate that it is possible to conduct thermal ablation of solid tumors after the intratumoral administration of nanogels.
Collapse
Affiliation(s)
- Calogero Fiorica
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Giovanna Pitarresi
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Fabio S Palumbo
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy.,Mediterranean Center for Human Advanced Biotechnologies (Med-Chab), Viale delle Scienze Ed.18, 90128 Palermo, Italy
| |
Collapse
|
40
|
Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 2017; 5:901-952. [DOI: 10.1039/c7bm00008a] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review deals with four different types of carbon allotrope based nanosystems and summarizes the results of recent studies that are likely to have applications in cancer theranostics. We discuss the applications of these nanosystems for cancer imaging, drug delivery, hyperthermia, and PDT/TA/PA.
Collapse
Affiliation(s)
- Shine Augustine
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Jay Singh
- Department of Applied Chemistry & Polymer Technology
- Delhi Technological University
- Delhi 110042
- India
| | - Manish Srivastava
- Department of Physics & Astrophysics
- University of Delhi
- Delhi 110007
- India
| | - Monica Sharma
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Asmita Das
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Bansi D. Malhotra
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| |
Collapse
|
41
|
Craparo EF, Porsio B, Schillaci D, Cusimano MG, Spigolon D, Giammona G, Cavallaro G. Polyanion–tobramycin nanocomplexes into functional microparticles for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Nanomedicine (Lond) 2017; 12:25-42. [DOI: 10.2217/nnm-2016-0262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Efficacy of antibiotics in cystic fibrosis (CF) is compromised by the poor penetration through mucus barrier. This work proposes a new ‘nano-into-micro’ approach, used to obtain a combinatorial effect: achieve a sustained delivery of tobramycin and overcome mucus barrier. Methods: Mannitol microparticles (MPs) were loaded with a tobramycin polymeric nanocomplex and characterized in presence of CF artificial mucus. Results & discussion: MPs are able to alter the rheological properties of CF artificial mucus, enhancing drug penetration into it and allowing a prolonged drug release. MPs resulted to be effective in Pseudomonas aeruginosa infections if compared with free tobramycin. Conclusion: MPs resulted to be a formulation of higher efficacy, with potential positive implications, as lower required dose, administration frequency, side effects and antibiotic resistance problems.
Collapse
Affiliation(s)
- Emanuela F Craparo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Porsio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria G Cusimano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Dario Spigolon
- Institute of Biophysics, National Research Council, Palermo, Italy
- Department of Physics & Chemistry, University of Palermo, Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Gennara Cavallaro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
42
|
Alibolandi M, Mohammadi M, Taghdisi SM, Ramezani M, Abnous K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr Polym 2017; 155:218-229. [DOI: 10.1016/j.carbpol.2016.08.046] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022]
|
43
|
Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. Int J Pharm 2017; 516:334-341. [DOI: 10.1016/j.ijpharm.2016.11.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022]
|
44
|
Rahmanian N, Eskandani M, Barar J, Omidi Y. Recent trends in targeted therapy of cancer using graphene oxide-modified multifunctional nanomedicines. J Drug Target 2016; 25:202-215. [DOI: 10.1080/1061186x.2016.1238475] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nazanin Rahmanian
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Rezaei A, Akhavan O, Hashemi E, Shamsara M. Toward Chemical Perfection of Graphene-Based Gene Carrier via Ugi Multicomponent Assembly Process. Biomacromolecules 2016; 17:2963-71. [PMID: 27499268 DOI: 10.1021/acs.biomac.6b00767] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The graphene-based materials with unique, versatile, and tunable properties have brought new opportunities for the leading edge of advanced nanobiotechnology. In this regard, the use of graphene in gene delivery applications is still at early stages. In this study, we successfully designed a new complex of carboxylated-graphene (G-COOH) with ethidium bromide (EtBr) and used it as a nanovector for efficient gene delivery into the AGS cells. G-COOH, with carboxyl functions on its surface, in the presence of EtBr, formaldehyde, and cyclohexylisocyanide were participated in Ugi four component reaction to fabricate a stable amphiphilic graphene-EtBr (AG-EtBr) composite. The coupling reaction was confirmed by further analyses with FT-IR, AFM, UV-vis, Raman, photoluminescence, EDS, and XPS. The AG-EtBr nanocomposite was able to interact with a plasmid DNA (pDNA). This nanocomposite has been applied for transfection of cultured mammalian cells successfully. Moreover, the AG-EtBr composites showed a remarkable decreased cytotoxicity in compared to EtBr. Interestingly, the advantages of AG-EtBr in cell transfection are more dramatic (3-fold higher) than Lipofectamine2000 as a commercial nonviral vector. To the best of our knowledge, this is the first report in which EtBr is used as an intercalating agent along with graphene to serve as a new vehicle for gene delivery application.
Collapse
Affiliation(s)
- Aram Rezaei
- Department of Physics, Sharif University of Technology , P.O. Box 11155-9161, Tehran, Iran.,Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences , Kermanshah, Iran.,National Research Center for Transgenic Mouse and Animal Biotechnology Division, National Institute of Genetic Engineering and Biotechnology , P.O. Box 14965-161, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology , P.O. Box 11155-9161, Tehran, Iran.,Institute for Nanoscience and Nanotechnology, Sharif University of Technology , P.O. Box 14588-89694, Tehran, Iran
| | - Ehsan Hashemi
- National Research Center for Transgenic Mouse and Animal Biotechnology Division, National Institute of Genetic Engineering and Biotechnology , P.O. Box 14965-161, Tehran, Iran
| | - Mehdi Shamsara
- National Research Center for Transgenic Mouse and Animal Biotechnology Division, National Institute of Genetic Engineering and Biotechnology , P.O. Box 14965-161, Tehran, Iran
| |
Collapse
|
46
|
Zhou B, Huang Y, Yang F, Zheng W, Chen T. Dual-Functional Nanographene Oxide as Cancer-Targeted Drug-Delivery System to Selectively Induce Cancer-Cell Apoptosis. Chem Asian J 2016; 11:1008-19. [DOI: 10.1002/asia.201501277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/28/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Binwei Zhou
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Yanyu Huang
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Fang Yang
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Wenjie Zheng
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| |
Collapse
|
47
|
Mauro N, Campora S, Adamo G, Scialabba C, Ghersi G, Giammona G. Polyaminoacid–doxorubicin prodrug micelles as highly selective therapeutics for targeted cancer therapy. RSC Adv 2016. [DOI: 10.1039/c6ra14935a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An amphiphilic copolymer carrying high-dose doxorubicin (21% on a weight basis), PHEA–EDA–P,C–Doxo, was prepared by coupling doxorubicin with a biocompatible polyaminoacid through a pH-sensitive spacer.
Collapse
Affiliation(s)
- N. Mauro
- Laboratory of Biocompatible Polymers
- Department of Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)
- University of Palermo
- 32 90123 Palermo
- Italy
| | - S. Campora
- Department of Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)
- University of Palermo
- 16 90128 Palermo
- Italy
| | - G. Adamo
- Department of Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)
- University of Palermo
- 16 90128 Palermo
- Italy
| | - C. Scialabba
- Laboratory of Biocompatible Polymers
- Department of Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)
- University of Palermo
- 32 90123 Palermo
- Italy
| | - G. Ghersi
- Department of Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)
- University of Palermo
- 16 90128 Palermo
- Italy
| | - G. Giammona
- Laboratory of Biocompatible Polymers
- Department of Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)
- University of Palermo
- 32 90123 Palermo
- Italy
| |
Collapse
|
48
|
Singh RK, Kumar R, Singh DP. Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 2016. [DOI: 10.1039/c6ra07626b] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review article, we describe a general introduction to GO, its synthesis, reduction and some selected frontier applications. Its low cost and potential for mass production make GO a promising building block for functional hybrid materials.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- School of Physical & Material Sciences
- Central University of Himachal Pradesh (CUHP)
- Dharamshala
- India
| | - Rajesh Kumar
- Center for Semiconductor Components and Nanotechnology (CCS Nano)
- University of Campinas (UNICAMP)
- 13083-870 Campinas
- Brazil
| | | |
Collapse
|