1
|
Rumyantsev M, Kalagaev IY, Rumyantsev S. Catalytic Effect of Potassium Xanthates and Related Compounds on Disulfide Bond Enrichment of Polyalkylene Sulfides Synthesized in the Course of Episulfide Polymerization. J Phys Chem B 2024; 128:11277-11292. [PMID: 39491547 DOI: 10.1021/acs.jpcb.4c05474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The original method for the preparation of high-molecular-weight polyalkylene sulfides was reported. Assuming anomalous peculiarities of the reaction (high polymerization rates, high degrees of polymerization, and huge discrepancy between the expected Mn values and the experimentally obtained values), the priority task was set to study the mechanism underlying the observed new type of polymerization. Thus, it was demonstrated that xanthate and related molecules could act as pure catalysts, facilitating both the chain-growth polymerization (ring-opening of episulfides) realized via an anionic route and the direct attack of the sulfur atom of one episulfide molecule on the methylene carbon atom of the second (neighbor) episulfide molecule, accompanied by the subsequent formation of a stable thiiranium-based zwitterionic adduct. The role of xanthate and related compounds as catalysts and stabilizing particles was further supplemented by modeling the attack of thiolate on the sulfur atom of a thiiranium-based adduct. The xanthate molecule acting as a catalyst was found to be involved in all stages of the process discussed by sharing the potassium atom with the sulfur atoms of active components of the system (the initial episulfide molecule, thiolate, and the zwitterionic intermediate). The subsequent analysis revealed the exceptional transparency of the materials obtained, which was found to exceed 99%. The pronounced self-healing ability was also found to be a distinctive feature of the synthesized high-molecular-weight polyalkylene sulfides enriched with disulfide bonds.
Collapse
Affiliation(s)
- Mikhail Rumyantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 minin St., Nizhny Novgorod 603950, Russia
| | - Ivan Yu Kalagaev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 minin St., Nizhny Novgorod 603950, Russia
| | - Sergey Rumyantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 minin St., Nizhny Novgorod 603950, Russia
| |
Collapse
|
2
|
Debele TA, Chen CK, Yu LY, Lo CL. Lipopolyplex-Mediated Co-Delivery of Doxorubicin and FAK siRNA to Enhance Therapeutic Efficiency of Treating Colorectal Cancer. Pharmaceutics 2023; 15:pharmaceutics15020596. [PMID: 36839918 PMCID: PMC9968081 DOI: 10.3390/pharmaceutics15020596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Tumor metastasis is a major concern in cancer therapy. In this context, focal adhesion kinase (FAK) gene overexpression, which mediates cancer cell migration and invasion, has been reported in several human tumors and is considered a potential therapeutic target. However, gene-based treatment has certain limitations, including a lack of stability and low transfection ability. In this study, a biocompatible lipopolyplex was synthesized to overcome the aforementioned limitations. First, polyplexes were prepared using poly(2-Hydroxypropyl methacrylamide-co-methylacrylate-hydrazone-pyridoxal) (P(HPMA-co-MA-hyd-VB6)) copolymers, which bore positive charges at low pH value owing to protonation of pyridoxal groups and facilitated electrostatic interactions with negatively charged FAK siRNA. These polyplexes were then encapsulated into methoxy polyethylene glycol (mPEG)-modified liposomes to form lipopolyplexes. Doxorubicin (DOX) was also loaded into lipopolyplexes for combination therapy with siRNA. Experimental results revealed that lipopolyplexes successfully released DOX at low pH to kill cancer cells and induced siRNA out of endosomes to inhibit the translation of FAK proteins. Furthermore, the efficient accumulation of lipopolyplexes in the tumors led to excellent cancer therapeutic efficacy. Overall, the synthesized lipopolyplex is a suitable nanocarrier for the co-delivery of chemotherapeutic agents and genes to treat cancers.
Collapse
Affiliation(s)
- Tilahun Ayane Debele
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chemical & Environmental Engineering, College of Engineering and Applied Science (CEAS), University of Cincinnati, Cincinnati, OH 452, USA
| | - Chi-Kang Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Lu-Yi Yu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (L.-Y.Y.); (C.-L.L.); Tel.: +886-2-28267000 (ext. 67914) (C.-L.L.)
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (L.-Y.Y.); (C.-L.L.); Tel.: +886-2-28267000 (ext. 67914) (C.-L.L.)
| |
Collapse
|
3
|
Li S, Song F, Sun C, Hu J, Zhang Y. Amphiphilic methoxy poly(ethylene glycol)-b-poly(carbonate-selenide) with enhanced ROS responsiveness: Facile synthesis and oxidation process. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Ji H, Peng R, Jin L, Ma J, Yang Q, Sun D, Wu W. Recent Advances in ROS-Sensitive Nano-Formulations for Atherosclerosis Applications. Pharmaceutics 2021; 13:1452. [PMID: 34575528 PMCID: PMC8468237 DOI: 10.3390/pharmaceutics13091452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Over the past decade, ROS-sensitive formulations have been widely used in atherosclerosis applications such as ROS scavenging, drug delivery, gene delivery, and imaging. The intensified interest in ROS-sensitive formulations is attributed to their unique self-adaptive properties, involving the main molecular mechanisms of solubility switch and degradation under the pathological ROS differences in atherosclerosis. This review outlines the advances in the use of ROS-sensitive formulations in atherosclerosis applications during the past decade, especially highlighting the general design requirements in relation to biomedical functional performance.
Collapse
Affiliation(s)
- Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Renyi Peng
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Jiahui Ma
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Wei Wu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
5
|
Shueng PW, Yu LY, Chiu HC, Chang HC, Chiu YL, Kuo TY, Yen YW, Lo CL. Early phago-/endosomal escape of platinum drugs via ROS-responsive micelles for dual cancer chemo/immunotherapy. Biomaterials 2021; 276:121012. [PMID: 34252800 DOI: 10.1016/j.biomaterials.2021.121012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/01/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023]
Abstract
Recent studies have indicated that cancer treatment based on immunotherapy alone is not viable. Combined treatment with other strategies is required to achieve the expected therapeutic effect. Reactive oxygen species (ROS) play an important role in regulating cancer cells and the tumor microenvironment, even in immune cells. However, rigorous regulation of the ROS level within the entire tumor tissue is difficult, limiting the application of ROS in cancer therapy. Therefore, we design an early phago-/endosome-escaping micelle that can release platinum-based drugs into the cytoplasm of macrophages and cancer cells, thereby enhancing the ROS levels of the entire tumor tissue; inducing apoptosis of cancer cells, down-regulation of CD47 expression of cancer cells, polarization of M1 macrophages, and phagocytosis of cancer cells by M1 macrophages; and achieving the dual effect of chemotherapy and macrophage-mediated immunotherapy.
Collapse
Affiliation(s)
- Pei-Wei Shueng
- Division of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan, ROC; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan, ROC; Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 112, Taiwan, ROC
| | - Lu-Yi Yu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 300, Taiwan, ROC
| | - Hui-Ching Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Yen-Ling Chiu
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, 320, Taiwan, ROC; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, 100, Taiwan, ROC; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan, ROC
| | - Tzu-Yu Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Yu-Wei Yen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan, ROC; Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
6
|
Ramezani-Aliakbari M, Varshosaz J, Sadeghi-Aliabadi H, Hassanzadeh F, Rostami M. Biotin-Targeted Nanomicellar Formulation of an Anderson-Type Polyoxomolybdate: Synthesis and In Vitro Cytotoxicity Evaluations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6475-6489. [PMID: 34010005 DOI: 10.1021/acs.langmuir.1c00623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study is aimed at developing a micellar carrier for an Anderson-type manganese polyoxomolybdate (TRIS-MnPOMo) to improve the potency and reduce the general toxicity. The biotin-targeted stearic acid-polyethylene glycol (SPB) polymeric conjugate was selected for the first time as a micelle-forming basis for the delivery of TRIS-MnPOMo to breast cancer cells. The cytotoxicity of TRIS-MnPOMo and its nanomicellar form (TRIS-MnPOMo@SPB) was evaluated against MCF-7, MDA-MB-231 (breast cancer cell lines), and HUVEC (normal cell line) in vitro using the MTT assay. The quantity of cellular uptake and apoptosis level were studied properly using standard methods. The hydrodynamic size, zeta potential, and polydispersity index of the prepared micelles were 140 nm, -15.6 mV, and 0.16, respectively. The critical micelle concentration was about 30 μg/mL, which supports the colloidal stability of the micellar dispersion. The entrapment efficiency was interestingly high (about 82%), and a pH-responsive release of TRIS-MnPOMo was successfully achieved. The micellar form showed better cytotoxicity than the free TRIS-MnPOMo on cancer cells without any significant heme and normal cell toxicity. Biotin-targeted nanomicelles internalized into the MDA-MB-231 cells interestingly better than nontargeted micelles and TRIS-MnPOMo, most probably via the endocytosis pathway. Furthermore, at the same concentration, micelles remarkably increased the level of induced apoptosis in MDA-MB-231 cells. In conclusion, TRIS-MnPOMo@SPB could profoundly improve potency, safety, and cellular uptake; these results are promising for further evaluations in vivo.
Collapse
Affiliation(s)
- Maryam Ramezani-Aliakbari
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Center and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| |
Collapse
|
7
|
Vitamin E succinate with multiple functions: A versatile agent in nanomedicine-based cancer therapy and its delivery strategies. Int J Pharm 2021; 600:120457. [PMID: 33676991 DOI: 10.1016/j.ijpharm.2021.120457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
Vitamin E succinate (VES), a succinic acid ester of vitamin E, is one of the most effective anticancer compounds of the vitamin E family. VES can inhibit tumor growth by multiple pathways mainly involve tumor proliferation inhibition, apoptosis induction, and metastasis prevention. More importantly, the mitochondrial targeting and damaging property of VES endows it with great potential in exhibiting synergetic effect with conventional chemotherapeutic drugs and overcoming multidrug resistance (MDR). Given the lipophilicity of VES that hinders its bioavailability and therapeutic activity, nanotechnology with multiple advantages has been widely explored to deliver VES and opened up new avenues for its in vivo application. This review aims to introduce the anticancer mechanisms of VES and summarize its delivery strategies using nano-drug delivery systems. Specifically, VES-based combination therapy for synergetic anticancer effect, MDR-reversal, and oral chemotherapy improvement are highlighted. Finally, the challenges and perspectives are discussed.
Collapse
|
8
|
Rumyantsev M. Living polymerizations of propylene sulfide initiated with potassium xanthates characterized by unprecedentedly high propagation rates. Polym Chem 2021. [DOI: 10.1039/d0py01740j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this paper we describe the original thiol-free approach towards the polymerization of propylene sulfide (PS) under various conditions (bulk, solution, and emulsion) initiated with potassium xanthates.
Collapse
Affiliation(s)
- Misha Rumyantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev
- 603950 Nizhny Novgorod
- Russia
| |
Collapse
|
9
|
Liu J, Li Y, Chen S, Lin Y, Lai H, Chen B, Chen T. Biomedical Application of Reactive Oxygen Species-Responsive Nanocarriers in Cancer, Inflammation, and Neurodegenerative Diseases. Front Chem 2020; 8:838. [PMID: 33062637 PMCID: PMC7530259 DOI: 10.3389/fchem.2020.00838] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Numerous pathological conditions, including cancer, inflammatory diseases, and neurodegenerative diseases, are accompanied by overproduction of reactive oxygen species (ROS). This makes ROS vital flagging molecules in disease pathology. ROS-responsive drug delivery platforms have been developed. Nanotechnology has been broadly applied in the field of biomedicine leading to the progress of ROS-responsive nanoparticles. In this review, we focused on the production and physiological/pathophysiological impact of ROS. Particular emphasis is put on the mechanisms and effects of abnormal ROS levels on oxidative stress diseases, including cancer, inflammatory disease, and neurodegenerative diseases. Finally, we summarized the potential biomedical applications of ROS-responsive nanocarriers in these oxidative stress diseases. We provide insights that will help in the designing of new ROS-responsive nanocarriers for various applications.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjin Li
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongpeng Lin
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoqiang Lai
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Bolai Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Shi W, Hass B, Kuss MA, Zhang H, Ryu S, Zhang D, Li T, Li YL, Duan B. Fabrication of versatile dynamic hyaluronic acid-based hydrogels. Carbohydr Polym 2020; 233:115803. [DOI: 10.1016/j.carbpol.2019.115803] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
|
11
|
Qin X, Li Y. Strategies To Design and Synthesize Polymer‐Based Stimuli‐Responsive Drug‐Delivery Nanosystems. Chembiochem 2020; 21:1236-1253. [DOI: 10.1002/cbic.201900550] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/23/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xing Qin
- Laboratory of Low-Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of the Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 P.R.China
| | - Yongsheng Li
- Laboratory of Low-Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of the Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 P.R.China
| |
Collapse
|
12
|
Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials 2019; 223:119473. [DOI: 10.1016/j.biomaterials.2019.119473] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022]
|
13
|
Du C, Liang Y, Ma Q, Sun Q, Qi J, Cao J, Han S, Liang M, Song B, Sun Y. Intracellular tracking of drug release from pH-sensitive polymeric nanoparticles via FRET for synergistic chemo-photodynamic therapy. J Nanobiotechnology 2019; 17:113. [PMID: 31699100 PMCID: PMC6839248 DOI: 10.1186/s12951-019-0547-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Synergistic therapy of tumor is a promising way in curing cancer and in order to achieve effective tumor therapy with real-time drug release monitoring, dynamic cellular imaging and antitumor activity. RESULTS In this work, a polymeric nanoparticle with Forster resonance energy transfer (FRET) effect and chemo-photodynamic properties was fabricated as the drug vehicle. An amphiphilic polymer of cyclo(RGDfCSH) (cRGD)-poly(ethylene glycol) (PEG)-Poly(L-histidine) (PH)-poly(ε-caprolactone) (PCL)-Protoporphyrin (Por)-acting as both a photosensitizer for photodynamic therapy (PDT) and absorption of acceptor in FRET was synthesized and self-assembled into polymeric nanoparticles with epirubicin (EPI)-acting as an antitumor drug for chemotherapy and fluorescence of donor in FRET. Spherical EPI-loaded nanoparticles with the average size of 150 ± 2.4 nm was procured with negatively charged surface, pH sensitivity and high drug loading content (14.9 ± 1.5%). The cellular uptake of EPI-loaded cRGD-PEG-PH-PCL-Por was monitored in real time by the FRET effect between EPI and cRGD-PEG-PH-PCL-Por. The polymeric nanoparticles combined PDT and chemotherapy showed significant anticancer activity both in vitro (IC50 = 0.47 μg/mL) and better therapeutic efficacy than that of free EPI in vivo. CONCLUSIONS This work provided a versatile strategy to fabricate nanoassemblies for intracellular tracking of drug release and synergistic chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Chen Du
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Qianwen Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Jinghui Qi
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| | - Mingtao Liang
- Department of Pharmaceutics, School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Bo Song
- Department of Neurology, The Second Subsidiary Hospital of Qingdao University, Qingdao, 266042 China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021 China
| |
Collapse
|
14
|
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1476-1487. [DOI: 10.1080/21691401.2019.1601104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guangping Yu
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Zhongcheng Mo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Henyang, China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
15
|
Jang HH, Park SB, Hong JS, Lee HL, Song YH, Kim J, Jung YH, Kim C, Kim DM, Lee SE, Jeong YI, Kang DH. Piperlongumine-Eluting Gastrointestinal Stent Using Reactive Oxygen Species-Sensitive Nanofiber Mats for Inhibition of Cholangiocarcinoma Cells. NANOSCALE RESEARCH LETTERS 2019; 14:58. [PMID: 30778693 PMCID: PMC6379506 DOI: 10.1186/s11671-019-2887-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The aim of this study is to fabricate drug-eluting gastrointestinal (GI) stent using reactive oxygen species (ROS)-sensitive nanofiber mats for treatment of cholangiocarcinoma (CCA) cell. A ROS-producing agent, piperlongumine (PL)-incorporated nanofiber mats were investigated for drug-eluting stent (DES) application. METHODS Selenocystamine-conjugated methoxy poly(ethylene glycol) (MePEG) was conjugated with poly(L-lactide) (PLA) to produce block copolymer (LEse block copolymer). Various ratios of poly(ε-caprolactone) (PCL) and LEse block copolymer were dissolved in organic solvent with PL, and then nanofiber mats were fabricated by electro-spinning techniques. RESULTS The higher amount of LEse in the blend of PCL/LEse resulted in the formation of granules while PCL alone showed fine nanofiber structure. Nanofiber mats composed of PCL/LEse polymer blend showed ROS-sensitive drug release, i.e., PL release rate from nanofiber mats was accelerated in the presence of hydrogen peroxide (H2O2) while nanofiber mats of PCL alone have small changes in drug release rate, indicating that PL-incorporated nanofiber membranes have ROS responsiveness. PL itself and PL released from nanofiber mats showed almost similar anticancer activity against various CCA cells. Furthermore, PL released from nanofiber mats properly produced ROS generation and induced apoptosis of CCA cells as well as PL itself. In HuCC-T1 cell-bearing mice, PL-incorporated nanofiber mats showed improvement in anticancer activity. CONCLUSION PL-incorporated ROS-sensitive nanofiber mats were coated onto GI stent and showed improved anticancer activity with ROS responsiveness. We suggested PL-incorporated ROS-sensitive nanofiber mats as a promising candidate for local treatment of CCA cells.
Collapse
Affiliation(s)
- Hyung Ha Jang
- School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612 South Korea
| | - Su Bum Park
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Jeong Sup Hong
- Division of Animal Care, Yonam College, Cheonan, Chungnam 31005 South Korea
| | - Hye Lim Lee
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Yeon Hui Song
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Jungsoo Kim
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Yun Hye Jung
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Chan Kim
- Amotech Co. Ltd, Incheon, Gyeonggi-do South Korea
| | - Doo-Man Kim
- Department of Photonics Engineering, Chonnam National University, Gwangju, 61186 South Korea
| | - Sang Eun Lee
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Young-Il Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Dae Hwan Kang
- School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612 South Korea
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| |
Collapse
|
16
|
Meng Q, Hu H, Zhou L, Zhang Y, Yu B, Shen Y, Cong H. Logical design and application of prodrug platforms. Polym Chem 2019. [DOI: 10.1039/c8py01160e] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes the current state of prodrugs and elaborates the logical design and future development of the prodrug platform.
Collapse
Affiliation(s)
- Qingye Meng
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Liping Zhou
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yixin Zhang
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
17
|
Gulfam M, Sahle FF, Lowe TL. Design strategies for chemical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today 2019; 24:129-147. [PMID: 30292916 PMCID: PMC6372326 DOI: 10.1016/j.drudis.2018.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Chemical-stimuli-responsive nanotherapeutics have gained great interest in drug delivery and diagnosis applications. These nanotherapeutics are designed to respond to specific internal stimuli including pH, ionic strength, redox, reactive oxygen species, glucose, enzymes, ATP and hypoxia for site-specific and responsive or triggered release of payloads and/or biomarker detections. This review systematically and comprehensively addresses up-to-date technological and design strategies, and challenges nanomaterials to be used for triggered release and sensing in response to chemical stimuli.
Collapse
Affiliation(s)
- Muhammad Gulfam
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
18
|
Qin SY, Zhang AQ, Zhang XZ. Recent Advances in Targeted Tumor Chemotherapy Based on Smart Nanomedicines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802417. [PMID: 30247806 DOI: 10.1002/smll.201802417] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/03/2018] [Indexed: 05/22/2023]
Abstract
Efficacy and safety of chemotherapeutic drugs constitute two major criteria in tumor chemotherapy. Nanomedicines with tumor-targeted properties hold great promise for improving the efficacy and safety. To design targeted nanomedicines, the pathological characteristics of tumors are extensively and deeply excavated. Here, the rationale, principles, and advantages of exploiting these pathological characteristics to develop targeted nanoplatforms for tumor chemotherapy are discussed. Homotypic targeting with the ability of self-recognition to source tumors is reviewed individually. In the meanwhile, the limitations and perspective of these targeted nanomedicines are also discussed.
Collapse
Affiliation(s)
- Si-Yong Qin
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Ai-Qing Zhang
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
19
|
Lin GQ, Yi WJ, Liu Q, Yang XJ, Zhao ZG. Aromatic Thioacetal-Bridged ROS-Responsive Nanoparticles as Novel Gene Delivery Vehicles. Molecules 2018; 23:E2061. [PMID: 30126108 PMCID: PMC6225261 DOI: 10.3390/molecules23082061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 01/08/2023] Open
Abstract
In this report, a series of polycations are designed and synthesized by conjugating reactive oxygen species (ROS)-responsive thioacetal-linkers to low molecular weight (LMW) polyethylenimine (PEI) via ring-opening polymerization. Their structure⁻activity relationships (SARs) as gene delivery vectors are systematically studied. Although the MWs of the target polymers are only ~9 KDa, they show good DNA binding ability. The formed polyplexes, which are stable toward serum but decomposed under ROS-conditions, have appropriate sizes (180~300 nm) and positive zeta-potentials (+35~50 mV). In vitro experiments reveal that these materials have low cytotoxicity, and higher transfection efficiency (TE) than controls. Furthermore, the title polymers exhibit excellent serum tolerance. With the present of 10% serum, the TE of the polymers even increases up to 10 times higher than 25 KDa PEI and 9 times higher than Lipofectamine 2000. The SAR studies also reveal that electron-withdrawing groups on the aromatic ring in 4a may benefit to balance between the DNA condensation and release for efficient gene transfection.
Collapse
Affiliation(s)
- Guo-Qing Lin
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Wen-Jing Yi
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Qiang Liu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Xue-Jun Yang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Zhi-Gang Zhao
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
20
|
Bhaw-Luximon A, Jhurry D. Redox-responsive Drug Delivery Systems. STIMULI-RESPONSIVE DRUG DELIVERY SYSTEMS 2018. [DOI: 10.1039/9781788013536-00109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Disbalanced reactive oxygen species (ROS) and glutathione (GSH) are characteristic features of tumor cells. High intracellular GSH concentration in tumor cells is a well-documented fact that leads to a very high reducing intracellular bio-milieu. High accumulation of ROS is known to occur in almost all cancers and can act as a two-edged sword during tumor development, by either promoting or inhibiting growth. These two features present unique opportunities to design drug delivery systems that are responsive to reduction or/and oxidation stimuli and has attracted accrued interest from researchers. These nanocarriers change their structural integrity, either through disassembly or degradation, to deliver their payload in the presence of the trigger. The aim of this chapter is to summarize the key developments in the design of materials with redox-responsive behaviour and their subsequent application in the field of nanomedicine targeting cancer. Strategies into exploiting both stimuli in a single nano drug delivery system to enhance therapeutic efficacy are also addressed.
Collapse
Affiliation(s)
- Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius Réduit Mauritius
| | - Dhanjay Jhurry
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius Réduit Mauritius
| |
Collapse
|
21
|
Yu L, Yang Y, Du FS, Li ZC. ROS-Responsive Chalcogen-Containing Polycarbonates for Photodynamic Therapy. Biomacromolecules 2018; 19:2182-2193. [PMID: 29669209 DOI: 10.1021/acs.biomac.8b00271] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS)-responsive polymers have attracted attention for their potential in photodynamic therapy. Herein, we report the ROS-responsive aliphatic polycarbonates prepared by the ring-opening polymerization (ROP) of three six-membered cyclic carbonate monomers with ethyl selenide, phenyl selenide or ethyl telluride groups. Under catalysis of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), all three monomers underwent the controlled anionic ROP, showing a feature of equilibrium polymerization due to the bulky effect of 5,5-disubstituents. With PEG macroinitiator, three series amphiphilic block copolymers were prepared. They could form spherical nanoparticles of ∼100 nm, which were stable in neutral phosphate buffer but dissociated rapidly under triggering of H2O2. We studied the H2O2-induced oxidation profiles of selenide- or telluride-containing small molecules by 1H NMR and revealed the factors that affect the oxidation kinetics and products. On this basis, the oxidative degradation mechanism of the copolymer nanoparticles has been clarified. Under the same oxidative condition, the telluride-containing nanoparticle degraded with the fastest rate while the phenyl selenide-based one degraded most slowly. These ROS-responsive nanoparticles could load photosensitizer chlorin e6 (Ce6) and anticancer drug doxorubicin (DOX). Under red light irradiation, Ce6-sensitized production of 1O2 that triggered the degradation of nanoparticles, resulting in an accelerated payload release. In vitro cytotoxicity assays demonstrate that the nanoparticles coloaded with DOX and Ce6 exhibited a synergistic cell-killing effect to MCF-7 cells, representing a novel responsive nanoplatform for PDT and/or chemotherapy.
Collapse
Affiliation(s)
- Li Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yue Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
22
|
Wang X, Li X, Liang X, Liang J, Zhang C, Yang J, Wang C, Kong D, Sun H. ROS-responsive capsules engineered from green tea polyphenol–metal networks for anticancer drug delivery. J Mater Chem B 2018; 6:1000-1010. [DOI: 10.1039/c7tb02688a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS)-responsive nanocapsules for cancer drug delivery were engineered from green tea polyphenol–metal networks.
Collapse
Affiliation(s)
- Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Xuanling Li
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Jiayi Liang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Chao Zhang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Chun Wang
- Department of Biomedical Engineering
- University of Minnesota
- Minneapolis
- USA
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Hongfan Sun
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| |
Collapse
|
23
|
Bhargava C, Dürkop H, Zhao X, Weng A, Melzig MF, Fuchs H. Targeted dianthin is a powerful toxin to treat pancreatic carcinoma when applied in combination with the glycosylated triterpene SO1861. Mol Oncol 2017; 11:1527-1543. [PMID: 28755527 PMCID: PMC5664001 DOI: 10.1002/1878-0261.12115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Targeted cancer therapy provides the basis for the arrest of tumor growth in aggressive pancreatic carcinoma; however, a number of protein-based targeted toxins lack efficacy due to insufficient endosomal escape after being endocytosed. Therefore, we tested a fusion protein of the ribosome-inactivating protein dianthin and human epidermal growth factor in combination with a glycosylated triterpene (SO1861) that serves as an endosomal escape enhancer. In vitro investigations with the pancreatic carcinoma cell lines BxPC-3 and MIA PaCa-2 revealed no significant differences to off-target cells in the half maximal inhibitory concentration (IC50 ) for the fusion protein. In contrast, combination with SO1861 decreased the IC50 for BxPC-3 cells from 100 to 0.17 nm, whereas control cells remained unaffected. Monotherapy of BxPC-3 xenografts in CD-1 nude mice led to a 51.7% average reduction in tumor size (40.8 mm3 ) when compared to placebo; however, combined treatment with SO1861 resulted in a more than 13-fold better efficacy (3.0 mm3 average tumor size) with complete regression in 80% of cases. Immunohistochemical analyses showed that tumor cells with lower target receptor expression are, in contrast to the combination therapy, able to escape from the monotherapy, which finally results in tumor growth. At the effective concentration, we did not observe liver toxicity and saw no other side effects with the exception of a reversible skin hardening at the SO1861 injection site, alongside an increase in platelet counts, plateletcrit, and platelet distribution width. In conclusion, combining a targeted toxin with SO1861 is proven to be a very promising approach for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Cheenu Bhargava
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
| | | | - Xiangli Zhao
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
| | - Alexander Weng
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
- Institute for PharmacyFreie Universität BerlinGermany
| | | | - Hendrik Fuchs
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
| |
Collapse
|
24
|
Pillarisetti S, Maya S, Sathianarayanan S, Jayakumar R. Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment. Colloids Surf B Biointerfaces 2017; 159:809-819. [DOI: 10.1016/j.colsurfb.2017.08.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 01/27/2023]
|
25
|
Hassan S, Prakash G, Ozturk A, Saghazadeh S, Sohail MF, Seo J, Dockmeci M, Zhang YS, Khademhosseini A. Evolution and Clinical Translation of Drug Delivery Nanomaterials. NANO TODAY 2017; 15:91-106. [PMID: 29225665 PMCID: PMC5720147 DOI: 10.1016/j.nantod.2017.06.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the advent of technology, the role of nanomaterials in medicine has grown exponentially in the last few decades. The main advantage of such materials has been exploited in drug delivery applications, due to their effective targeting that in turn reduces systemic toxicity compared to the conventional routes of drug administration. Even though these materials offer broad flexibility based on targeting tissue, disease, and drug payload, the demand for more effective yet highly biocompatible nanomaterial-based drugs is increasing. While therapeutically improved and safe materials have been introduced in nanomedicine platforms, issues related to their degradation rates and bio-distribution still exist, thus making their successful translation for human use very challenging. Researchers are constantly improving upon novel nanomaterials that are safer and more effective not only as therapeutic agents but as diagnostic tools as well, making the research in the field of nanomedicine ever more fascinating. In this review stress has been made on the evolution of nanomaterials that have been approved for clinical applications by the United States Food and Drug Administration Agency (FDA).
Collapse
Affiliation(s)
- Shabir Hassan
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gyan Prakash
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aycabal Ozturk
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Saghi Saghazadeh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohammad Farhan Sohail
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jungmok Seo
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mehmet Dockmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
26
|
Li X, Gao M, Xin K, Zhang L, Ding D, Kong D, Wang Z, Shi Y, Kiessling F, Lammers T, Cheng J, Zhao Y. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J Control Release 2017; 260:12-21. [DOI: 10.1016/j.jconrel.2017.05.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/15/2022]
|
27
|
Wang J, Zhang Y, Archibong E, Ligler FS, Gu Z. Leveraging H 2 O 2 Levels for Biomedical Applications. ACTA ACUST UNITED AC 2017; 1:e1700084. [PMID: 32646189 DOI: 10.1002/adbi.201700084] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/31/2017] [Indexed: 12/21/2022]
Abstract
Hydrogen peroxide (H2 O2 )-responsive materials have been employed as drug delivery or diagnostic systems to treat or detect diseases with abnormal oxidative stress. A number of H2 O2 -responsive systems have been developed, and they have achieved great progress in controlled drug delivery for disease treatment. However, pathological sites with elevated H2 O2 level, such as cancer and inflammation, have their own characteristics; therefore the material structures and the subsequent formulations should be reasonably designed to acquire maximized therapeutic effects. In this progress report, we overview the development of H2 O2 -responsive functional groups for constructing H2 O2 -responsive formulations, as well as the guidance for designing suitable formulations to treat each specific pathological condition. The challenges and perspectives in this field are also discussed.
Collapse
Affiliation(s)
- Jinqiang Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Edikan Archibong
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
28
|
Mathew AP, Cho KH, Uthaman S, Cho CS, Park IK. Stimuli-Regulated Smart Polymeric Systems for Gene Therapy. Polymers (Basel) 2017; 9:E152. [PMID: 30970831 PMCID: PMC6432211 DOI: 10.3390/polym9040152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/02/2023] Open
Abstract
The physiological condition of the human body is a composite of different environments, each with its own parameters that may differ under normal, as well as diseased conditions. These environmental conditions include factors, such as pH, temperature and enzymes that are specific to a type of cell, tissue or organ or a pathological state, such as inflammation, cancer or infection. These conditions can act as specific triggers or stimuli for the efficient release of therapeutics at their destination by overcoming many physiological and biological barriers. The efficacy of conventional treatment modalities can be enhanced, side effects decreased and patient compliance improved by using stimuli-responsive material that respond to these triggers at the target site. These stimuli or triggers can be physical, chemical or biological and can be internal or external in nature. Many smart/intelligent stimuli-responsive therapeutic gene carriers have been developed that can respond to either internal stimuli, which may be normally present, overexpressed or present in decreased levels, owing to a disease, or to stimuli that are applied externally, such as magnetic fields. This review focuses on the effects of various internal stimuli, such as temperature, pH, redox potential, enzymes, osmotic activity and other biomolecules that are present in the body, on modulating gene expression by using stimuli-regulated smart polymeric carriers.
Collapse
Affiliation(s)
- Ansuja Pulickal Mathew
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Ki-Hyun Cho
- Department of Plastic Surgery, Institute of Dermatology and Plastic Surgery, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | - Saji Uthaman
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - In-Kyu Park
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| |
Collapse
|
29
|
|
30
|
Kang Y, Ju X, Ding LS, Zhang S, Li BJ. Reactive Oxygen Species and Glutathione Dual Redox-Responsive Supramolecular Assemblies with Controllable Release Capability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4475-4484. [PMID: 28103014 DOI: 10.1021/acsami.6b14640] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A dual redox and biorelevant triggered supramolecular system is developed through noncovalent supramolecular inclusion interactions between the ferrocene (Fc) modified on camptothecin (CPT) and β-cyclodextrin (β-CD) at the end of methoxy polyethylene glycol (mPEG). With these two segments, a stable noncovalent supramolecular structure, i.e., mPEG-β-CD/Fc-CPT, can be formed, and then self-assembled into micellar structures in water. Interestingly, these supramolecular micelles showed uniform sphere structure, high and constant drug loading content, hyper-fast redox-responsive drug release, and exhibited equal cellular proliferation inhibition toward A549 cancer cells. The cytotoxicity evaluation of mPEG-β-CD also indicated good biocompatibility. In vivo results revealed the mPEG-β-CD/Fc-CPT nanoparticles had higher in vivo efficacy without side effects. It is anticipated this supramolecular complex may serve as a new kind of promising alternative for drug delivery systems.
Collapse
Affiliation(s)
- Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041, Sichuan, China
| | - Xin Ju
- State Key Laboratory of Polymer Materials Engineering (Sichuan University), Polymer Research Institute of Sichuan University , Chengdu 610065, Sichuan, China
| | - Li-Sheng Ding
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041, Sichuan, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering (Sichuan University), Polymer Research Institute of Sichuan University , Chengdu 610065, Sichuan, China
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041, Sichuan, China
| |
Collapse
|